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White Matter Hyperintensity Segmentation Via
Ensembled Semi-supervised Large Margin Learning

Chen Qin, Ricardo Guerrero, Christopher Bowles, David Alexander Dickie, Maria del C. Valdes-Hernandez,
Joanna Wardlaw and Daniel Rueckert

Abstract—Precise detection and quantification of white matter
hyperintensities (WMHs) is of great interest in studies of neu-
rological and vascular disorders. It is believed that the accurate
quantification of WMHs in terms of total volume and distribution
is of clinical importance for disease diagnosis, prognosis, and
tracking of disease progressions. In this work, we propose a
novel ensembled semi-supervised machine learning algorithm for
the segmentation of WMHs. The proposed algorithm optimizes
a kernel based max-margin objective function which aims to
maximize the margin averaged over inliers and outliers while ex-
ploiting a limited amount of available labelled data. We show that
the learning problem can be formulated as a joint framework,
learning a classifier and label assignment simultaneously, which
can be solved efficiently by an iterative algorithm. The learned
ensemble model can give a probability estimate of whether a voxel
is WMH or not, which is then further refined in a post-processing
step by spatial priors and fully connected conditional random
field (CRF). We evaluate our method on a database of 167 brain
fluid-attenuated inversion recovery (FLAIR) magnetic resonance
(MR) images from subjects with vascular disease. Compared
with other well established methods, the WMHs identified by the
proposed algorithm were found to have better agreement with
WMHs determined by semi-automated computational processing
with expert visual correction. Both qualitative and quantitative
evaluation of the proposed algorithm show that it outperforms
other well known methods for WMH segmentation.

Index Terms—Semi-supervised learning, segmentation, white
matter hyperintensities, brain MRI

I. INTRODUCTION

WHITE matter hyperintensities (WMH) are areas of
the brain in cerebral white matter (WM) that ap-

pear bright on T2-weighted fluid-attenuated inversion recovery
(FLAIR) magnetic resonance (MR) images due to localized,
pathological changes in tissue composition [1]. WMHs are
commonly observed in elderly subjects and patients with
neurodegenerative diseases (NDs), such as vascular dementia
(VaD) and Alzheimer’s disease (AD). Accurate quantification
of WMHs in terms of total volume and distribution is believed
to be of clinical importance for prognosis, tracking of disease
progression and assessment of the treatment effectiveness [2].
Clinically, the amount of WMHs is often characterized by the
Fazekas score [3], which is useful in the assessment of subjects
with possible dementia, but such visual rating scales lack
sensitivity for the finer details of subtle differences in WMHs
[4]. Manual quantification of WMHs is an alternative way
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to assess WM abnormalities. However, manual segmentation
is a laborious, observer-dependent and time consuming task
that is unfeasible for larger datasets and/or clinical practice.
Moreover, WMHs in patients with NDs such as VaD can
be small, irregular and scattered, which makes the precise
segmentation of WMH rather difficult to tackle. Thus, steps
towards more reliable and precise WMH identification and
quantification are highly desirable.

A. Related work

Recently, several techniques that seek to automatically and
precisely segment and quantify WMH have been put forward
[5]. Arguably, most state-of-the-art approaches are machine
learning-based with these broadly subdivided into supervised
and unsupervised methods. In the supervised setting, machine
learning methods such as k-nearest neighbors (kNN) [6],
support vector machines (SVM) [7], random forests [8] and
convolutional neural networks (CNN) [9], [10], [11] have
been applied to the problem of lesion segmentation. These
approaches learn the characteristic features of lesions from
training samples that have been manually segmented by an
expert. For example, Anbeek et al. [6] used a kNN algorithm
to segment WMHs by using both the intensity and spatial
features, while Maillard et al. [12] employed a Bayesian
approach to implement a multispectral segmentation strategy.
More recently, Ithapu et al. [8] formulated the problem of
WMH segmentation as a supervised inference problem by
learning a random forest classifier from texton based features
to discriminate WMH and non-WMH voxels. 3D CNN ap-
proaches were also developed to model a voxel-wise classifier
which used multi-channel 3D patches of MRI volumes as input
for brain tumor segmentation [11] and multiple sclerosis (MS)
lesion segmentation [9], [10]. A drawback of all supervised
methods is their reliance on expertly annotated data for train-
ing which can be costly and time consuming.

In contrast, unsupervised segmentation methods do not
require expertly annotated training data. Most of these ap-
proaches employ clustering techniques, such as fuzzy C-means
clustering [13] and EM-based algorithms [14] to group similar
voxels. A different type of approach considers lesions as
outliers to normal tissues [15], [16]. Van Leemput et al. [15]
employed a weighted EM framework in which voxels far from
the model were weighted less in the estimation and considered
to be potential lesions. Weiss et al. [17] proposed to identify
outliers (or lesions) if they could not be well reconstructed
using a dictionary of patches learned from healthy brain
image tissue. Also, Bowles et al. [18] proposed to segment
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WMH by comparing a real FLAIR image with a subject-
specific pathology-free synthetic FLAIR image generated from
a T1-weighted image by a modality transformation technique.
Recently, a lesion growth algorithm [19] has been developed,
which constructs a conservative lesion belief map with a
pre-chosen threshold (κ), followed by the initial map being
grown along voxels that appear hyperintense in the FLAIR
image. However, such unsupervised approaches cannot always
produce satisfactory results in subjects with NDs, since WMH
in those subjects are often small, irregular, and heterogeneous
within and across subjects [8].

Another group of algorithms for WMH segmentation are
semi-automated methods. Most of these methods adopt region
growing thresholding techniques [20]. For example, the region
growing algorithm proposed by Itti et al. [21] operated by
growing from a seed point into adjacent voxels whose intensity
was above an optimized threshold. Kawata et al. [22] seg-
mented WMH regions on the subtraction image between a T1-
weighted and FLAIR images using two segmentation methods,
i.e., a region-growing technique and a level-set method, which
were selected on each WMH region based on its image
features by using a support vector machine.

Most of the above algorithms were originally designed for
lesion detection in MS patients, nonetheless, their underly-
ing assumptions should allow them to generalize to disease
independent WMH segmentation. However, in practice, these
methods perform only moderately well when applied to older
subjects, due to the fact that there is an age related decrease in
contrast between grey matter (GM) and WM in MR images,
and that the boundaries of MS lesions are often less diffuse
than those of WMHs [5], [23].

B. Contributions

In this work, we propose an ensembled semi-supervised
large margin approach for WMH segmentationa. Specifically,
our method optimizes a kernel based max-margin objective
function formulated to exploit limited labelled information
and a large amount of unlabelled data. The proposed model
jointly learns a large margin classifier and a label assignment,
via iteratively updating the classifier and the label indicator.
The key concept behind the proposed approach is to tackle
the unlabelled input data’s uncertainty with the help of a
small proportion of labels, and to discover outliers (WMHs)
by training a classifier which maximizes the average margins
between the estimated inliers (normal tissues) and outliers. In
addition, we propose to learn an ensemble of semi-supervised
classifiers via K-means algorithm acceleration for the esti-
mation of WMH probability map, which can then be further
refined by an additional post-processing step including spatial
priors and fully connected conditional random field (CRF).

Instead of assuming that data is generated from a particular
distribution as most of other outlier detection methods do [15],
[16], which may not hold true for WMH segmentation, our
method assumes that neighboring patches in feature space tend
to have consistent classifications that are guided by available
labelled data. Also, compared to other semi-automated meth-
ods, our proposed framework makes full use of both labelled

and unlabelled information across the whole brain image to
explore the underlying patterns of the data as opposed to
just seed points. The proposed model can also work as an
unsupervised method under the special case where initial label
information is determined automatically and conservatively
based on WM intensity distribution [24].

A preliminary form of this work has been published in
[24]. In this paper, we propose a new method for WMH
probability map estimation and refinement, provide a more
in-depth description and analysis of the proposed approach,
and perform a more thorough quantitative evaluation of the
segmentation on a large database of subjects which contains
WMH masks that were semi-automated computational pro-
cessed with expert visual correction. Furthermore, association
analysis with clinical rating scales and risk factors are also
included allowing for further comparisons between methods.
Both quantitative and qualitative results indicate the compet-
itiveness and effectiveness of the proposed algorithm against
other well know methods on WMH segmentation.

II. METHODS

For better understanding, we first give a conceptual
overview of the major steps of our algorithm: First, MR
image pre-processing is performed with an automated brain
segmentation tool [25]. By pre-processing the T1 and FLAIR
images (see Fig. 2, Section III-B), we are able to obtain a
WM region of interest (ROI) that can be used in subsequent
steps. Second, K-means clustering is then employed to group
similar input patches into clusters, with the aim of accelerating
the algorithm implementation and thus learning an ensemble
of classifiers, through which a WMH probability map can
be estimated. Third, WMH segmentation is then achieved by
training an ensemble of large margin classifiers that maximize
the average margins of judged normal tissues and WMHs. A
limited amount of available labelled information is introduced
to provide additional guidance in the classification process.
Finally, a two-step post-processing method is proposed to
refine the WMH probability map, where WM lesion atlas
and 3D fully connected conditional random field (CRF) are
used to remove false positives (FPs). Also, CRF is able to
provide label predictions based on intensity and location of
voxels rather than a predefined threshold. In the following
subsections, we describe our algorithm in detail.

A. Semi-supervised Large Margin Algorithm (SSLM)

Let X =
{
xi ∈ Rd

}n
i=1

denote a set of n unlabelled input
samples (in this work, 3 × 3 patches), and yi represent
the corresponding unknown soft label that assigns a positive
value for normal samples (c+) and a negative (c−) value for
outliers. Additionally, let H be a reproducing kernel Hilbert
space (RKHS) of the function: f(x) =

∑n
i=1 κ(x,xi)αi, with

associated kernel κ as the functional base and the expansion
coefficient α. Unsupervised one-class learning (UOCL) [26]
is an unsupervised algorithm that uses a self-guided labelling
procedure to discover potential outliers in the data, which has
been shown to be robust to a high outlier proportion. This
method aims to separate inliers from outliers by training a
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large margin classifier, which is obtained from minimizing the
following objective function:

min
f∈H,{yi}

n∑
i=1

(f(xi)− yi)2 + γ1 ‖f‖2M −
2γ2
n+

∑
i,yi>0

f(xi)

s.t. yi ∈ {c+, c−} , ∀i ∈ [1 : n],
0 < n+ = |{i|yi > 0}| < n.

(1)
The first term in Equation (1) uses the squared loss to make
the classification function consistent with the label assignment.
The second term of Equation (1) is a manifold regularizer
[27], which endows f with the smoothness along the intrinsic
manifold structureM underlying the data. HereM is obtained
from a kNN graph with affinity matrix defined as

Wi,j =

{
exp

(
−D(xi,xj)

ε2

)
, i ∈ Nj or j ∈ Ni,

0, otherwise,
(2)

where D(, ) is a Euclidean distance measure, the set Ni ⊂ [1 :
n] contains the indices of k nearest neighbors of xi in X , and
ε is the bandwidth parameter. Then the manifold regularizer
can be written as:

‖f‖2M =
1

2

n∑
i,j=1

(f(xi)− f(xj))2Wij = fTLf . (3)

Here, f =
[
f(x1), · · · , f(xn)

]T ∈ Rn, and the graph
Laplacian matrix L = D −W , where D is a diagonal matrix
with diagonal elements being Dii =

∑n
j=1Wij . The third

term of Equation (1) represents the margin averaged over the
positive samples, which aims to push the majority of the inliers
as far away as possible from the decision boundary f(x) = 0.
The importance of all three terms are balanced by the trade-off
parameters γ1 and γ2. For more details, please refer to [26].

When it comes to WMH segmentation, the classification
results of UOCL are not always satisfactory. Since outliers
can originate from low-density samples and be later separated
from high-density regions without guidance from labelled
information, the UOCL method can produce many FPs when
segmenting WMHs. In particular, intensity edges and partial
volumes can be identified as outliers. To address this prob-
lem, we developed a semi-supervised large margin algorithm
(SSLM). A limited amount of labelled data is introduced to
provide some guidance for unlabelled samples, with the aim of
improving its performance over unsupervised methods as well
as reducing the need for the expensive labelled data required
in fully supervised learning.

1) SSLM Learning Model: Following the notations defined
in Section II-A, we define L as a labelled data set and U
as the unlabelled data set, which, in WMH segmentation
case, represent sets of voxels with known and unknown labels
respectively. The objective function of our proposed semi-
supervised model is formulated as:

min
f∈H,{yi}

∑
xi∈U

(f(xi)− yi)2 + λ
∑

xj∈L
(f(xj)− yj)2

+γ1 ‖f‖2M −
2γ2
n+

∑
k,yk>0

f(xk) +
2γ3
n−

∑
k,yk<0

f(xk),

s.t. yi ∈ {c+, c−} , n+ = |{i|yi > 0}| ,
n− = |{i|yi < 0}| ,

(4)

where xk ∈ L ∪ U , variables λ, γ1, γ2 and γ3 are trade-
off parameters controlling the model, and n+ and n− are
numbers of positive and negative samples respectively during
the learning. To make full use of the limited amount of labelled
information and to enable the classification to be informed
by the available labels, in this model, we introduce a new
term

∑
xj∈L (f(xj)− yj)2 that represents the squared loss

for labelled data, thereby allowing it to better discriminate
between inliers and outliers. Additionally, motivated by [28],
we also introduce another new term

∑
k,yk<0 f(xk)/n− into

the objective function given by Equation (4), which aims to
maximize the average margin between the outliers and the
decision boundary. The last two terms in objective function
(4) work together to push the positive samples and outliers
far away from the decision boundary, thus enabling these two
groups of data to be far away from each other.

For a more concise notation, we further define the vectorial
kernel mapping k(x) =

[
κ(xi,x), · · · , κ(xn,x)

]T
, and

the kernel matrix K = [κ(xi,xj)]1≤i,j≤n, so the target
function can be expressed as f(x) = αTk(x) and f = Kα, in
which α =

[
α1, · · · , αn

]T ∈ Rn. Thus, the objective
function can be rewritten as follows:

min
α,y

αTK(Λ + γ1L)Kα− 2αTKΛy + yTΛy − 2αTKỹ

s.t. y ∈ {c+, c−}n×1, Λ = diag(1, . . . 1, λ, . . . λ︸ ︷︷ ︸
xj∈L

, 1, . . . 1),

ỹi =

{
γ2
‖y‖+

, yi = c+,

− γ3
‖y‖−

, yi = c−.

(5)
Here, ‖y‖+ = n+ and ‖y‖− = n− respectively stand for the
number of positive elements and negative elements in vector
y. In the proposed method, the same soft label assignment for
(c+, c−) as in [26], i.e. (

√
n−
n+
,−
√

n+

n−
) was adopted.

2) SSLM Optimization: Similar to the UOCL method,
solving the proposed model involves a mixed optimization of
a continuous variable α and a discrete variable y. One key
observation is that if one of the two components is fixed, the
optimization problem becomes easy to solve. Here, similar to
an expectation-maximization (EM) framework, we propose to
alternatingly optimize α and y via iterative updates.

First, for a given label indicator y, computing the optimal
α is equivalent to minimization of the following sub-problem:

min
α

Q(α) := αTK(Λ+γ1L)Kα−2αTKΛy−2αTKỹ. (6)

The gradient of the objective function Q(α) in Equation (6)
with respect to α is

δQ

δα
= 2 {[K(Λ + γ1L)K]α−KΛy −Kỹ} . (7)

By using the gradient, Equation (6) can be efficiently solved
by the conjugate gradient descent method.

When α is fixed, we need to deal with the y-subproblem
with objective function H(y), that is

max
y

H(y) := 2αTK(Λy + ỹ)− yTΛy

s.t. y ∈ {c+, c−}n×1, ỹi =

{
γ2
‖y‖+

, yi = c+,

− γ3
‖y‖−

, yi = c−.

(8)
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Algorithm 1 SSLM
Input: Input samples X , kernel and graph Laplacian matrices

K, L, model parameters λ, γ1, γ2, γ3 > 0, Λ and maxiter
Initialization
α0 = 1√

n
, m0 = argmax

m
H(q(Kα0,m)), y0 =

q(Kα0,m0), ỹ0 = h(m0,y0), t = 0;
repeat

Update αt+1 by optimizing function (6) using conjugate
gradient descent method;

Update mt+1: mt+1 = argmax
m

H(q(Kαt+1,m));
Update yt+1 and ỹt+1: yt+1 = q(Kαt+1,mt+1), ỹt+1 =

h(mt+1,yt+1);
t = t+ 1;

until convergence or t > maxiter
Output: expansion coefficient α∗ = αt and the soft label

assignment y∗ = yt.

Here, a simpler case is shown to solve this discrete optimiza-
tion problem. If an integer m = ‖y‖+ is given, then yTΛy
and the soft label assignment for labelled data remain the same
regardless of the label assignment for unlabelled data. Thus
this problem reduces to the same one as in UOCL, i.e., to
maximize (Kα)

T
(y + ỹ) in the unlabelled data set. It has

been shown in [26] that an optimal solution satisfies yi > 0 if
and only if fi is among m largest elements of f .

One optimal solution to the Equation (8) can be simply
obtained by sorting f for unlabelled data in a descending order.
Then yi > 0 is assigned to samples before and including
the mU -th element, while yi < 0 to those after the mU -
th element. Here mU = m − mL, where mU and mL

stand for the number of positive samples in the unlabelled
and labelled data sets respectively, with mL a fixed number.
Therefore, the solution to the subproblem given by Equation
(8) can be expressed as y∗(α) = q(Kα,m∗(α)), in which
m∗(α) = argmax

m
H(q(Kα,m)). Note that the known labels

are kept unchanged when learning. For simplicity, we further
define ỹ as a function of m and y, i.e., ỹ = h(m,y). A
summary of this method is shown in Algorithm 1.

B. Ensemble learning via K-means acceleration

Note that the proposed SSLM can only predict hard labels
for input samples, which, in WMH segmentation case, can not
provide confidence value for each voxel and also makes it hard
for the refinement process. Thus, an estimation of a probability
map for WMHs is preferred which can be achieved by learning
an ensemble of classifiers.

However, in the implementation, using every patch from the
ROIs as input to the algorithm can be quite difficult to train the
classifiers due to the large sample size, which will certainly
make it more difficult to train an ensemble of classifiers.
Therefore, here we propose a K-means acceleration method
to address the problem. Instead of using the patch of each
voxel of interest as an input sample, we propose to first cluster
patches of those voxels of interest into K clusters by using K-
means clustering. The resulting centroids of clusters are used
as input data to be fed into the proposed algorithm. If the

Fig. 1. The lesion atlas constructed from a different group of subjects.

centroids are classified as lesions at the output stage, then
all the voxels whose patches belong to that cluster are also
deemed to be lesions. Such input pre-selection is based on the
assumption that neighbouring samples (in feature space) tend
to have consistent labels, and thus it is reasonable to use their
cluster centroids as representatives. This method significantly
reduces the computational burden and hence the run time of
the proposed algorithm. We also observed that the number of
FPs also decreased due to the pre-clustering step compared
with preliminary experiments [24]. Additionally, since the
number of inputs is only K, only a limited amount of labelled
data is required to guide the classification. Also note that the
number of known labelled voxels from non-pathological tissue
is much more than that from WMHs. In Section V, we will
discuss the ways of generating labelled data.

Due to the randomness involved in K-means, we are able to
learn an ensemble of classifiers based on different sets of input
data generated by K-means clustering, which thereby enables
the estimation of a probability map for WMHs. The predic-
tions of the ensembles can be formulated as y = 1

N

∑N
c=1 yc,

in which yc is the prediction of c-th classifier and N is the
total number of classifiers in the ensemble.

C. Spatial priors and CRF refinement

To further refine the WMH probability map, a two-step
post-processing method is introduced. First, we incorporate the
spatial information by introducing a white matter lesion atlas
(see Fig. 1). Since a lesion atlas associates a lesion likelihood
to each voxel, we can use this information to remove FPs
near the cortex (where by definition WMHs do not occur) and
increase the likelihood of voxels that are in high incidence
regions. A new WMH probability map can be constructed in
the following way:

Pc =
Po × Pa

Po × Pa + (1− Po)× (1− Pa)
, (9)

in which Po, Pa and Pc stand for the WMH probability
from the ensemble’s output lesion map, atlas lesion map and
the combined map respectively. In this way, we are able to
effectively remove FPs, e.g. from the cortex.

Second, we employ a fully connected CRF [29] to enhance
the accuracy of the voxel-level labelling tasks. The key idea
of CRF inference is to formulate label assignment as a
probabilistic inference problem that incorporates assumptions
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such as label agreement between similar pixels. Therefore,
intuitively, CRFs can be used as a post-processing step to
“clean-up” the results of the proposed method and to achieve
more accurate predictions. In our experiments, we used a 3D
fully connected CRF extended by [11].

In the CRF framework, we seek a labelling y for each voxel
i in the input image I, minimising

E(y) =
∑
i

ψu(yi) +
∑
i,j,i 6=j

ψp(yi, yj), (10)

in which ψu(yi) serves as an unary data consistency term and
is defined as the negative log-likelihood of the probability

ψu(yi) = − logP (yi | I), (11)

where in our case, P (yi | I) is the output of the proposed
model. In a fully connected CRF, the pairwise potential is of
the form

ψp(yi, yj) = g(i, j)[yi 6= yj ], (12)

which consists of two penalty terms modelling appearance and
smoothness between locations zi and zj :

g(i, j) = ω1exp
(
− |zi−zj |

2

2θα
− |Ii−Ij |

2

2θβ

)
+ ω2exp

(
− |zi−zj |

2

2θγ

)
.

(13)
Here Ii and zi are the intensity and location for voxel i
respectively. The relative contributions of the two penalty
terms are controlled by the regularisation parameters ω1 and
ω2, while θα, θβ and θγ control the spatial proximity and
similarity.

In the WMH segmentation framework proposed here, the
spatial lesion probability atlas and 3D fully connected CRF
refinement steps are applied sequentially to obtain the binary
labels for WMH. Parameters involved in the CRF were chosen
empirically based on experiments on a subset of the images.

III. EXPERIMENTS

A. Data

Data used in the preparation of this work consisted of T1
and FLAIR MR images from 167 subjects with WMHs of
vascular dementia origin although without radiological evi-
dence of recent or old subcortical strokes. All image data was
acquired at the Brain Research Imaging Centre of Edinburgh
(http://www.bric.ed.ac.uk) on a GE Signa Horizon HDx 1.5T
clinical scanner (General Electric, Milwaukee, WI), equipped
with a self-shielding gradient set and manufacturer-supplied
eight-channel phased-array head coil. More details can be
found in [30]. As to clinical variables, 150/167 images were
rated by an expert for WMH burden using the Fazekas score.
Also, subjects had available additional information including
age, reported diabetes, reported hypertension, reported hyper-
lipidaemia, reported smoking and a score reflecting enlarged
perivascular spaces in the basal ganglia (BGPVS). 128/167
subjects had complete clinical data available.

The WM lesion atlas used in this work was built on a
different group of data consisting of 277 MR images from
subjects with small vessel disease (SVD). The atlas gives a 3D
population-based WMH occurrence probabilistic distribution.
Details of the atlas construction can be found in [31].

Co-

registration

Bias 

correction

Tissue 

extraction

Thresholding

Dilation 

and

erosion

T1

FLAIR BiasCorr

FLAIR

Ventricle WM Proc.WM

ROI

Intensity 

normalization

Fig. 2. Preprocessing pipeline. T1 and FLAIR are used to construct the ROI.

Since no gold standard for segmentation of WMHs exists,
we compared our algorithm with semi-automated computa-
tional processing with expert visual correction. WMHs from
83 images were extracted following the procedure described
in [4], [30], which uses a multispectral colour-fusion-based
semi-automatic segmentation method and considers WMH
hyperintense signals that simultaneously appear in all T2-
weighted-based sequences. WMHs from the remaining 84
images were delineated via a human corrected histogram-
based threshold of the FLAIR sequence.

B. MR image pre-processing

The MR image pre-processing pipeline is shown in Fig.
2. All image sequences were coregistered to FLAIR space
using FSL-FLIRT [32]. T1 images were segmented using an
automated brain segmentation tool [25], from which brain,
WM and ventricle probability maps were obtained. A region
of interest (ROI) was then determined using voxels with WM
probability larger than 0.1. However, it was observed that
several regions lying on the boundaries of ventricles and
also some WMH regions exhibit low WM probability due
to segmentations being formed from T1 images, in which
WMH can appear hypointense. We therefore adjusted the ROI
to include periventricular regions and all WMH regions by
using the segmented ventricles and employing morphological
operations such as dilation and erosion. Additionally, FLAIR
images were intensity normalized [33] and bias field corrected
using N4 correction [34]. For each voxel in the ROI, a feature
vector was constructed with intensities of a 3×3 neighborhood
patch from the FLAIR image. Here we used 2D patches, as
FLAIR MR images are commonly acquired using 2D multi-
slice acquisitions with large slice thickness.

C. Evaluation Measures

Overlap measures are often used to measure the degree
of closeness between the automated segmentation results and
the ground truth. In binary classification, there are four basic
possible outcomes that give insight into a classifier’s perfor-
mance: true positives (TPs) and true negatives (TNs), where
the segmentation is correct, and false positives (FPs) and false
negatives (FNs), where segmentation results are not consistent
with the ground truth. From these four basic measurements
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TABLE I
METRICS USED TO EVALUATE WMH SEGMENTATION METHODS

Metric Formula

Dice similarity coefficient (DSC) 2×TP
FP+FN+2×TP

Sensitivity/Recall TP
TP+FN

Specificity TN
FP+TN

Accuracy TP+TN
TP+FP+TN+FN

Precision TP
TP+FP

Geometric mean
√
Precision×Recall

Jaccard index TP
TP+FP+FN

several other measurements can be derived that focus on
different aspects of performance.

The most widely used measure for evaluation of segmen-
tation performance is the similarity index or Dice similarity
coefficient (DSC) [35]. In the context of WMH segmentation,
there are many more TNs than TPs, which leads to a lack of
information about under segmentation when using the DSC
metric. Other evaluation measures include sensitivity, speci-
ficity/recall, accuracy, precision, geometric mean and Jaccard
index [36]. The definitions of these measures are given in Table
I. The values of these similarity metrics vary between 0 and
1, with higher values indicating better performance.

Besides these measures, total lesion load (TLL) is often
used as a biomarker in clinical trials, and has also been
employed to evaluate the performance of WMH segmentation
methods [37]. Bland and Altman analysis [38] assesses the
comparability between automatic segmentation volumes and
manual segmentation volumes by studying the mean difference
and constructing limits of agreement. The coefficient of de-
termination R2 measures the regression performance between
these two volumes. Additionally, clinical validation, including
correlation between WMH volumes and Fazekas scores and
linear regression models between WMH volumes and risk
factors, is used to show the consistency between automatic
segmentation results and clinical scores. We will evaluate our
proposed algorithms against other existing methods based on
the above evaluation measures in the following section.

D. Experimental settings

In our experiments, we compared the proposed algorithm
with the widely used lesion growth algorithm (LGA) and
lesion prediction algorithm (LPA) as implemented in the LST
toolbox version 2.0.15 (www.statistical-modelling.de/lst.html).
LPA is a supervised method which was trained using a
logistic regression model on the data of 53 MS patients with
severe lesion patterns. LGA [19] is an unsupervised method
which segments lesions using a combination of FLAIR and
T1 images. Parameters for LGA and LPA were determined
via cross validation. In our experimental settings, the chosen
optimal threshold of κ for LGA was 0.1, and the optimal
threshold t used for binarizing the probabilistic segmentations
of LPA was 0.2. In the implementation of SSLM, a Gaussian
kernel κ(x,x′) = exp(−‖x− x′‖2 /2σ2) was used in the
classification function in which σ2 =

∑n
i,j=1 ‖xi − xj‖2 /n2,

k = 3 was used to build the affinity matrix, and the model
parameters λ, γ1, γ2 and γ3 were determined empirically based
on a subset of the data. We also compared the proposed
method with the unsupervised method UOCL and a popular
semi-supervised method LapSVM [27]. For a fair comparison,
UOCL and LapSVM use the same pre-processing and post-
processing framework as SSLM, as described in Sections
III-B, II-B and II-C. For the number of clusters in the K-
means acceleration step, preliminary experiments showed that
K = 500 was sufficient to yield a reasonable result, and
the number of classifiers in the ensemble was set to 50.
For LapSVM and SSLM, 300 labelled voxels (less than
0.5% of the ROI) were generated randomly from the semi-
automatic manual tracing masks as labelled data to guide the
segmentation.

IV. RESULTS

We first show a visualization of the proposed method
compared with LGA, LPA, UOCL and LapSVM in Fig.
3. Qualitative comparisons of these methods show that the
proposed SSLM framework outperforms the other methods on
these subjects. Fig. 3 showed that LGA and LPA did a fairly
good job at detecting some of the more obvious hyperinten-
sities, but did not detect many of the subtle and deep ones.
Similarly, UOCL also missed parts of some hyperintensities,
and at the same time introduced a large amount of FPs when
the lesion load was small, as shown in the second row of
Fig. 3. These FPs were not removed even after the refinement
step proposed in Section II-C. In contrast, the semi-supervised
methods LapSVM and SSLM seem more effective compared
to unsupervised methods in picking up hyperintensities with
the guidance provided by the labelled data. We can see from
Fig. 3 that the proposed SSLM method can give a visually
more accurate segmentation and improved detection of WMHs
compared with the other methods. SSLM does not only
pick up large and contiguous regions, but also detects small
and irregular hyperintensities. Though some cortical regions
were falsely detected by SSLM(0.5) due to their hyperintense
appearance on FLAIR images, the post-processing using CRF
step was able to effectively remove those small and isolated
FPs, thus leading to more accurate segmentation results.

For quantitative evaluation, a comparison of the DSC scores
between automated segmentation results and the expertly an-
notated WMH masks was performed, with the results shown
in Table II. The performance of the different methods with
regards to patient lesion load was also examined. Subjects are
grouped according to lesion load and DSC scores per group
are also presented in Table II. In this experiment it can be
observed that overall the proposed algorithm outperforms the
other methods with respect to the DSC score. In addition,
on subjects with higher WMH volumes (>5ml), the proposed
algorithm can give an improvement over LGA by more than
20%, and around 3% higher than LPA. The proposed algorithm
with a CRF refinement step can further improve results and
outperform SSLM(0.5) by 2% on average, and by around 4%
on subjects with WMH volumes less than 5ml. A comparison
of more classification and overlap measures between different
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FLAIR LGAExpert SSLM(0.5)LPA SSLM(CRF)UOCL LapSVM

Fig. 3. Example WMH segmentation results compared with LGA, LPA, UOCL, LapSVM and human expert annotations on three different subjects.

TABLE II
MEAN DSC SCORE COMPARISON BETWEEN LGA, LPA, UOCL, LAPSVM AND SSLM (THE BEST RESULTS ARE SHOWN IN BOLD)

Lesion volume (ml) #subjects LGA LPA UOCL LapSVM SSLM (0.5) SSLM(CRF)
<5 45 0.2393 0.4658 0.1985 0.2545 0.3891 0.4275

5-15 47 0.3452 0.6008 0.4225 0.4303 0.6015 0.6315
15-30 30 0.5209 0.7269 0.6792 0.6150 0.7478 0.7624
>30 45 0.5613 0.8140 0.7367 0.7576 0.8298 0.8391
Total 167 0.4059 0.6445 0.4929 0.5043 0.6320 0.6560

TABLE III
OVERLAP MEASURES COMPARISON BETWEEN LGA, LPA, UOCL, LAPSVM AND SSLM (THE BEST RESULTS ARE SHOWN IN BOLD)

Measures LGA LPA UOCL LapSVM SSLM(0.5) SSLM(CRF)
Specificity 0.9997 0.9995 0.9982 0.9986 0.9995 0.9997
Accuracy 0.9982 0.9989 0.9973 0.9982 0.9989 0.9990

Sensitivity/Recall 0.3196 0.6633 0.6694 0.6031 0.6831 0.6603
Precision 0.6735 0.7163 0.5249 0.4490 0.6457 0.7102

Geometric mean 0.5285 0.8009 0.8104 0.7577 0.8196 0.8035
DSC 0.3958 0.6445 0.4929 0.5043 0.6320 0.6560

Jaccard index 0.2715 0.5033 0.3676 0.3647 0.4912 0.5158

methods is shown in Table III, where the proposed method
achieves higher scores than other methods on most of the
evaluation measures. The one exception was that LPA achieved
a higher precision value than any of the proposed methods.
However, SSLM still achieved a higher geometric mean score
which is combination of precision and recall.

For clinical validations, we normalized WMH volumes by
converting them to percentage of intra-cranial volume (ICV
%) in order to remove any bias introduced by differing head
sizes. Results of Bland and Altman analysis [38] are shown
in Fig. 4, in which mean difference (solid line) and the rep-
resentation of limits of agreement (dotted line), from -1.96SD
to +1.96SD (SD: standard deviation) are given. Regression
analysis between manual segmentation volumes and automatic
segmentation volumes (R2) and correlation analysis between

segmentation volumes with visual rating scales Fazekas scores
(CC Fazekas) are also shown in Table IV. We observed that
SSLM shows comparable and competitive results with respect
to these two measurements. Furthermore, an analysis of asso-
ciation between available clinical variables and WMH volumes
(128 subjects) was also performed. General linear models be-
tween calculated WMH volumes and eight clinical scores/risk
factors (age, diabetes, hypertension, hyperlipidaemia, smok-
ing, total cholesterol, BGPVS and deep atrophy volumes) were
learned to further evaluate the agreement between automatic
segmentation and expert annotations. Table V provides p-
values that indicate whether a certain value is associated with
WMH volumes, in which statistical significance above 0.05
is shown in bold. It can be seen that expert annotated WMH
volumes are associated with BGPVS and diabetes, and similar
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TABLE IV
CLINICAL VALIDATIONS BETWEEN EXPERT ANNOTATION AND AUTOMATIC

METHODS (THE BEST RESULTS ARE SHOWN IN BOLD)

Methods CC Fazekas R2

Expert 0.8319 -
LGA 0.7383 0.7037
LPA 0.8186 0.8565
UOCL 0.1667 0.1439
LapSVM 0.8474 0.9690
SSLM(0.5) 0.8400 0.9783
SSLM(CRF) 0.8402 0.9822

associations for the proposed method can also be observed.

V. DISCUSSION AND CONCLUSION

We proposed SSLM, an algorithm for segmentation of
white matter hyperintensities of presumed vascular origin.
The performance was evaluated by means of comparison with
segmented WMH masks derived from expert annotations in
terms of overlap and volumetric agreement and difference.
As to the overlap and classification measures, specificity and
accuracy (Table III) are reported for completeness sake of
classification measures, however due to the nature of the
problem addressed here, they offer very little insight about
performance. Both these measures are strongly influenced by
the number of TNs, which is inherently very large as the
lesion to healthy tissue ratio is very small. The definition of
sensitivity/recall and precision in Table I suggests that higher
sensitivity indicates more TPs, while lower precision indicates
more FPs given the same number of TPs. This shows that in
comparison with LPA, the proposed method is able to produce
relatively more TPs, but more FPs as well. Though LPA is
good at not making FP predictions, it is more likely to miss
small lesions (Fig. 3), which might be a more difficult problem
to address. In contrast, CRF refinement can be effectively
incorporated as a post-processing step of the output lesion
segmentation maps and remove FPs for the proposed method.
In addition, DSC and Jaccard index overlap measures equally
weight the number of FPs and FNs without accounting for the
absolute number of TNs. Therefore, these measures are more
suitable to evaluate the overall quality of lesion segmentation
algorithms. Some authors regard DSC values over 0.7 as
“excellent” [6], while others regard DSC values over 0.4 as
“moderate”, over 0.6 as “substantial”, and over 0.8 as “almost
perfect” [39]. According to those rules, the DSC analysis
(Table II) indicates that our degree of agreement with human
expert annotations is remarkably good given that the DSC
values on most of the subjects exceeded 0.6. It also suggests
that the proposed model is more effective to segment WMHs
on subjects with high lesion load than on subjects with lesion
load less than 5ml. This can be explained by inspection of
Fig. 3, in which the proposed model tends to detect more FPs
on subjects with fewer lesions where the number of TPs is
low, thus leading to a higher ratio between (FP+FN) and TP.
We believe that these results arise from the fact that SSLM
classifies voxels given a 3 × 3 intensity patch only. Since
no spatial information or lesion prior is incorporated before
the classification, the method is not informed of the spatial

position of lesions, thereby leading to more FPs especially
on subjects with low lesion load. To address this problem, a
lesion atlas and CRF are introduced as post-processing steps to
refine the lesion probability map. The lesion atlas introduces a
priori information about the location of lesions, which mainly
helps to remove FPs near the cortex that were mistakenly
identified as WMH due to their hyperintense appearance. The
proposed CRF step is able to further smooth the segmentation
by taking the intensity and spatial location into consideration.
Higher DSC scores and visually more accurate visualization
results of SSLM(CRF) compared to SSLM(0.5) indicate the
added value of these post-processing refinement steps. Also, as
WMHs should have more than 3mm diameter by definition,
removing small and spurious voxels could be an additional
post-processing step to refine the segmentation mask in the
future work.

With respect to the volumetric difference and correlation
analysis, the proposed method achieves higher determination
coefficient R2 values (Table IV) compared with other meth-
ods, indicating that the obtained results share around 98%
variability with the expert annotations. However, correlation
studies the relationship between two quantitative methods
of measurement, not the differences, and a high correlation
does not automatically imply that there is good agreement
between the two methods [40]. Therefore, the Bland and
Altman anlysis (Fig. 4) was performed to evaluate a bias
between the mean differences, and to estimate an agreement
interval, within which 95% of the differences of the automatic
segmentation fall compared to expert annotation [40]. The
proposed SSLM shows comparably small mean difference and
limit intervals, suggesting its high consistency with expert
annotations. Additionally, correlation analysis with standard
clinical measurement Fazekas score and association analysis
with clinical risk factors further indicated the comparability
between the proposed method and expert annotations.

In our experiments, labelled data was generated randomly
from the semi-automatic expertly annotated WMH masks. The
ratio between normal tissues and WMHs in the labelled data
set during training was set to be proportional to that of the
whole brain, which simulates the effort of manual annotation
needed for labelling the normal tissues and WMHs. In clinical
practice, it is easy for users to provide some labelled informa-
tion by using scribbles. Users can focus more on those difficult
and ambiguous regions or to point out more unconnected
WMH regions in order to provide labelled information with
more variance. Since labelling 300 voxels for each 3D MR
image is rather easy to accomplish and the effort is almost
negligible, more labelled data from users could be possible.
Then the labelled data used for the proposed framework could
be selected randomly from what users annotate, thus a higher
variance of the labelled space could be introduced to inform
the classification. Our algorithm can also be viewed as a
weakly supervised segmentation method from the perspective
of clinical use, since users only need to provide a sparse set
of scribbles for the foreground and background.

A limitation of the proposed method is that it currently
works on a per subject basis. Hence, the proposed method
can now only learn the segmentation based on the information
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Fig. 4. Bland and Altman plot: differences between expert annotated segmentation volumes and automatic segmentation volumes vs. the mean of the two
measurements, with mean difference (solid line) and the representation of the limits of agreement (doted line), from -1.96SD to +1.96SD.

TABLE V
P-VALUES OF LINEAR REGRESSION ASSOCIATIONS BETWEEN VOLUMES CALCULATED WITH DIFFERENT METHODS AND RISK FACTORS. BOLD NUMBERS

INDICATE STATISTICAL SIGNIFICANCE ABOVE 0.05.

Expert LGA LPA UOCL LapSVM SSLM(0.5) SSLM(CRF)
age 0.2394 0.5832 <0.001 0.4752 0.1006 0.0875 0.0933
diabetes 0.0371 0.0726 0.0024 0.4780 0.0491 0.0429 0.0405
hypertension 0.4699 0.2768 0.5229 0.3573 0.5692 0.3670 0.3984
hyperlipidaemia 0.9632 0.6200 0.6058 0.7291 0.9783 0.7378 0.7731
smoking 0.9726 0.6268 0.2578 0.3622 0.5453 0.4033 0.4386
total cholesterol 0.8405 0.4714 0.2012 0.9531 0.7261 0.5944 0.6174
BGPVS <0.001 <0.001 <0.001 0.4702 <0.001 <0.001 <0.001
deepAtrophyVol 0.1492 <0.001 <0.001 0.0129 0.2748 0.4622 0.4187

from the particular subject that is to be segmented. Therefore,
an interesting future line of research might be to explore
using information from multiple subjects to help guide the
segmentation of subjects without any annotations. Addition-
ally, even though the CRF refinement step can help remove
FPs, it inevitably removes some TPs as well, as indicated
in the lower sensitivity score of SSLM(CRF) compared to
SSLM(0.5) in Table III, which is also a problem that requires
further research. An alternative research direction is to ex-
plore the possibility of differential segmentation of WMHs of
presumed vascular origin and ischaemic infarcts, which often
coexist on subjects with vascular pathology. It still remains
a challenge due to their similar hyperintense appearances on
FLAIR images.

To conclude, we proposed a novel ensembled semi-
supervised large margin algorithm for WMH segmentation on
MR scans. The proposed model can better discover WMHs
under the supervision of a limited amount of available labelled
data. Encouraging experimental results were obtained both on
the qualitative visualization results and the quantitative scores,
showing the effectiveness and competitiveness of the proposed
model against other existing methods.
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