2,102 research outputs found

    Effective and efficient algorithm for multiobjective optimization of hydrologic models

    Get PDF
    Practical experience with the calibration of hydrologic models suggests that any single-objective function, no matter how carefully chosen, is often inadequate to properly measure all of the characteristics of the observed data deemed to be important. One strategy to circumvent this problem is to define several optimization criteria (objective functions) that measure different (complementary) aspects of the system behavior and to use multicriteria optimization to identify the set of nondominated, efficient, or Pareto optimal solutions. In this paper, we present an efficient and effective Markov Chain Monte Carlo sampler, entitled the Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm, which is capable of solving the multiobjective optimization problem for hydrologic models. MOSCEM is an improvement over the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization algorithm, using the concept of Pareto dominance (rather than direct single-objective function evaluation) to evolve the initial population of points toward a set of solutions stemming from a stable distribution (Pareto set). The efficacy of the MOSCEM-UA algorithm is compared with the original MOCOM-UA algorithm for three hydrologic modeling case studies of increasing complexity

    A Hierachical Evolutionary Algorithm for Multiobjective Optimization in IMRT

    Full text link
    Purpose: Current inverse planning methods for IMRT are limited because they are not designed to explore the trade-offs between the competing objectives between the tumor and normal tissues. Our goal was to develop an efficient multiobjective optimization algorithm that was flexible enough to handle any form of objective function and that resulted in a set of Pareto optimal plans. Methods: We developed a hierarchical evolutionary multiobjective algorithm designed to quickly generate a diverse Pareto optimal set of IMRT plans that meet all clinical constraints and reflect the trade-offs in the plans. The top level of the hierarchical algorithm is a multiobjective evolutionary algorithm (MOEA). The genes of the individuals generated in the MOEA are the parameters that define the penalty function minimized during an accelerated deterministic IMRT optimization that represents the bottom level of the hierarchy. The MOEA incorporates clinical criteria to restrict the search space through protocol objectives and then uses Pareto optimality among the fitness objectives to select individuals. Results: Acceleration techniques implemented on both levels of the hierarchical algorithm resulted in short, practical runtimes for optimizations. The MOEA improvements were evaluated for example prostate cases with one target and two OARs. The modified MOEA dominated 11.3% of plans using a standard genetic algorithm package. By implementing domination advantage and protocol objectives, small diverse populations of clinically acceptable plans that were only dominated 0.2% by the Pareto front could be generated in a fraction of an hour. Conclusions: Our MOEA produces a diverse Pareto optimal set of plans that meet all dosimetric protocol criteria in a feasible amount of time. It optimizes not only beamlet intensities but also objective function parameters on a patient-specific basis

    Approximating Pareto frontier using a hybrid line search approach

    Get PDF
    This is the post-print version of the final paper published in Information Sciences. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.The aggregation of objectives in multiple criteria programming is one of the simplest and widely used approach. But it is well known that this technique sometimes fail in different aspects for determining the Pareto frontier. This paper proposes a new approach for multicriteria optimization, which aggregates the objective functions and uses a line search method in order to locate an approximate efficient point. Once the first Pareto solution is obtained, a simplified version of the former one is used in the context of Pareto dominance to obtain a set of efficient points, which will assure a thorough distribution of solutions on the Pareto frontier. In the current form, the proposed technique is well suitable for problems having multiple objectives (it is not limited to bi-objective problems) and require the functions to be continuous twice differentiable. In order to assess the effectiveness of this approach, some experiments were performed and compared with two recent well known population-based metaheuristics namely ParEGO and NSGA II. When compared to ParEGO and NSGA II, the proposed approach not only assures a better convergence to the Pareto frontier but also illustrates a good distribution of solutions. From a computational point of view, both stages of the line search converge within a short time (average about 150 ms for the first stage and about 20 ms for the second stage). Apart from this, the proposed technique is very simple, easy to implement and use to solve multiobjective problems.CNCSIS IDEI 2412, Romani

    Determining a Robust, Pareto Optimal Geometry for a Welded Joint

    Get PDF
    Multi-criteria optimization problems are known to give rise to a set of Pareto optimal solutions where one solution cannot be regarded as being superior to another. It is often stated that the selection of a particular solution from this set should be based on additional criteria. In this paper a methodology has been proposed that allows a robust design to be selected from the Pareto optimal set. This methodology has been used to determine a robust geometry for a welded joint. It has been shown that the robust geometry is dependent on the variability of the geometric parameters

    Economic and environmental strategies for process design

    Get PDF
    This paper first addresses the definition of various objectives involved in eco-efficient processes, taking simultaneously into account ecological and economic considerations. The environmental aspect at the preliminary design phase of chemical processes is quantified by using a set of metrics or indicators following the guidelines of sustainability concepts proposed by . The resulting multiobjective problem is solved by a genetic algorithm following an improved variant of the so-called NSGA II algorithm. A key point for evaluating environmental burdens is the use of the package ARIANE™, a decision support tool dedicated to the management of plants utilities (steam, electricity, hot water, etc.) and pollutants (CO2, SO2, NO, etc.), implemented here both to compute the primary energy requirements of the process and to quantify its pollutant emissions. The well-known benchmark process for hydrodealkylation (HDA) of toluene to produce benzene, revisited here in a multiobjective optimization way, is used to illustrate the approach for finding eco-friendly and cost-effective designs. Preliminary biobjective studies are carried out for eliminating redundant environmental objectives. The trade-off between economic and environmental objectives is illustrated through Pareto curves. In order to aid decision making among the various alternatives that can be generated after this step, a synthetic evaluation method, based on the so-called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) (), has been first used. Another simple procedure named FUCA has also been implemented and shown its efficiency vs. TOPSIS. Two scenarios are studied; in the former, the goal is to find the best trade-off between economic and ecological aspects while the latter case aims at defining the best compromise between economic and more strict environmental impact

    Multicriteria global optimization for biocircuit design

    Get PDF
    One of the challenges in Synthetic Biology is to design circuits with increasing levels of complexity. While circuits in Biology are complex and subject to natural tradeoffs, most synthetic circuits are simple in terms of the number of regulatory regions, and have been designed to meet a single design criterion. In this contribution we introduce a multiobjective formulation for the design of biocircuits. We set up the basis for an advanced optimization tool for the modular and systematic design of biocircuits capable of handling high levels of complexity and multiple design criteria. Our methodology combines the efficiency of global Mixed Integer Nonlinear Programming solvers with multiobjective optimization techniques. Through a number of examples we show the capability of the method to generate non intuitive designs with a desired functionality setting up a priori the desired level of complexity. The presence of more than one competing objective provides a realistic design setting where every design solution represents a trade-off between different criteria. The tool can be useful to explore and identify different design principles for synthetic gene circuits

    Multi-objective routing optimization using evolutionary algorithms

    No full text
    Wireless ad hoc networks suffer from several limitations, such as routing failures, potentially excessive bandwidth requirements, computational constraints and limited storage capability. Their routing strategy plays a significant role in determining the overall performance of the multi-hop network. However, in conventional network design only one of the desired routing-related objectives is optimized, while other objectives are typically assumed to be the constraints imposed on the problem. In this paper, we invoke the Non-dominated Sorting based Genetic Algorithm-II (NSGA-II) and the MultiObjective Differential Evolution (MODE) algorithm for finding optimal routes from a given source to a given destination in the face of conflicting design objectives, such as the dissipated energy and the end-to-end delay in a fully-connected arbitrary multi-hop network. Our simulation results show that both the NSGA-II and MODE algorithms are efficient in solving these routing problems and are capable of finding the Pareto-optimal solutions at lower complexity than the ’brute-force’ exhaustive search, when the number of nodes is higher than or equal to 10. Additionally, we demonstrate that at the same complexity, the MODE algorithm is capable of finding solutions closer to the Pareto front and typically, converges faster than the NSGA-II algorithm
    corecore