
University of Huddersfield Repository

Barrans, Simon and Radhi, H.E.

Determining a Robust, Pareto Optimal Geometry for a Welded Joint

Original Citation

Barrans, Simon and Radhi, H.E. (2014) Determining a Robust, Pareto Optimal Geometry for a 

Welded Joint. Advanced Materials Research, 1016. pp. 39-43. ISSN 1662-8985 

This version is available at http://eprints.hud.ac.uk/21551/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Huddersfield Repository

https://core.ac.uk/display/30729921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Determining a Robust, Pareto Optimal Geometry for a Welded 
Joint  

Simon M Barrans1,a and Hazim. E. Radhi1,b  
1School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield, 

West Yorkshire, HD1 3DH, UK  
as.m.barrans@hud.ac.uk, bh.radhi @hud.ac.uk 

Keywords: Multi-criteria optimization, robust design, welded joints. 

Abstract. Multi -criteria optimization problems are known to give rise to a set of Pareto optimal 
solutions where one solution cannot be regarded as being superior to another. It is often stated that the 
selection of a particular solution from this set should be based on additional criteria. In this paper a 
methodology has been proposed that allows a robust design to be selected from the Pareto optimal set. 
This methodology has been used to determine a robust geometry for a welded joint. It has been shown 
that the robust geometry is dependent on the variability of the geometric parameters. 

Introduction 

The concept of robust design was perhaps first expounded by Taguchi [1] although the principle of 
accounting for manufacturing variability by applying tolerance limits to designs has existed much 
longer. The desire to produce optimal designs is also long standing. For single criteria problems linear 
and non-linear programming and goal seeking methods have been developed. It has been recognized 
that many engineering design problems have multiple objectives and approaches for multi criteria 
optimization in design were introduced by [2] for example. Key to these approaches was the Pareto 
concept of a design solution being optimal if no other solution existed that was superior with respect 
to all criteria. More recent advances in multi-criteria optimization have tended to use population 
based techniques such as genetic algorithms [3]. 

Recently the concept of robust optimization has been investigated much more thoroughly, 
especially within the field of operations management with a recent review being provided by 
Bertsimas et al [4]. One of the simplest forms of robust optimization is to apply expected tolerances to 
the design variables and then seek designs which minimize variability in the performance criterion. 
Unfortunately, as Iancu and Trichakis [5] have identified, when these methods are applied to 
multi-criteria problems, they can result in solutions which are not Pareto optimal. Koksoy and 
Yalcinoz [6] have introduced robustness into the multi-criteria optimization problem by considering 
the standard deviation of the criteria as an additional set of criteria themselves to form a dual response 
problem. The standard deviation criterion was introduced by adding it to the mean criterion value 
with weights being applied to the mean and the standard deviation. This introduced the difficulty of 
determining the correct weights to use. The problem of using a weighted sum of multiple objectives 
was observed by Chen et al [7] who created additional objectives to minimize worst case outcomes 
(as well as maximizing desired outcomes) in their multi-criteria optimization algorithm. 

In this paper a different approach to robust yet optimal designs is investigated. Rather than treating 
robustness as another criterion in the optimization problem, instead robustness has been used as a 
second stage in the design optimization process. This has allowed the identification of a subset of the 
Pareto optimal set which is the most robust. The technique has been applied to a classic, simply 
calculated robust design example and a stress concentration problem where the performance criteria 
have been calculated using finite element analysis. 

Robust design of a tank 

The stimulus for the approach to robust optimization being presented here came serendipitously 
from an attempt to carry out a benchmark analysis using the robust design features within the 



modeFRONTIER [8] software package. This software package allows multi-criteria optimization 
problems to be solved with a range of genetic algorithms, as discussed in [8]. The package also allows 
robust solutions to be determined. This is achieved by placing a normally distributed scatter of 
subsidiary points around each point in the design space. The variance on the objective functions due 
to the variance in the design variables can therefore be determined. The user is then able to determine 
the robust design set by running an optimization study with minimization of the variance in objective 
functions as the aim of the study. 

The robust design benchmark problem being analyzed is presented by Ullman [9]. The design 
being considered is a cylindrical tank which is required to have a volume of 4 m3. The designer is free 
to specify any radius, r, or length, h, for the tank within certain constraints. However, during 
manufacture tolerances tr and th will be allowed on these dimensions giving rise over a number of 
products to standard deviations sr and sh on radius and length. The objective of the design 
optimization analysis is therefore to minimize the standard deviation of the volume, sV. The standard 
deviation of the volume can be determined from: 

 �� = �����ℎ�2 �ℎ2 + ������2 ��2�1/2         (1) 

 
where: � = ��2ℎ           (2) 
 
Hence: �� = ��[�2�ℎ2 + 4ℎ2��2]1/2        (3) 
 
For an example where sr = 0.01 and sh = 0.05, it can be quickly determined that a long, small 

diameter cylinder will have a lower standard deviation than a short, fat cylinder. 
In attempting to introduce this example to modeFRONTIER it was immediately apparent that 

simply minimizing the variance in the volume would not produce an acceptable design since the 
volume would not be 4m3. A constraint was therefore introduced to only include those points with a 
volume of 4m3 in the feasible set. The results obtained then seemed to be almost randomly dependent 
on the size of the initial population and the type of genetic algorithm used with robust design points 
appearing at any position on the V = 4m3 curve in the design space. The reason for this of course was 
that only a very small number of designs would have a volume sufficiently close to 4m3 to be 
included in the feasible set. To allow for this a tolerance around the 4m3 volume target was 
introduced. The results of this are shown in Fig. 1 for tolerances of 20% and 2.5% on volume. Within 
these plots, the data points have been grouped according to standard deviation of the volume. 

The methodology employed has allowed the more robust designs to be identified. However, the 
designs with the lowest standard deviation on volume in both cases are not those predicted by the 
theory but is instead at a radius of approximately 0.75 m. This is due to two factors. Firstly, the 
normally distributed sample of points around each trial point in design space is limited to 100 points 
with a pseudo random variation in the scatter between trial points. Hence, the scatter around some 
trial points will contain individuals that produce poor results whilst better results are produced at 
other trial points. Secondly, the genetic algorithm used to refine the search will cross individuals with 
a similar performance (in this case the standard deviation of the volume). This has produced 
generations that increasingly occupy a  region of the solution space towards the middle of the 0.034 to 
0.04 standard deviation set. Within these later generations there will again be variation in the 
distribution of analysis points around each trial point. With the number of trial points generated 
(approximately 800), it is almost inevitable that one of these later generations will give rise to an 
individual with a particularly low scatter in the design space and hence a low standard deviation of 
volume. 

Pareto robust design methodology 

This benchmark problem has suggested a methodology for determining a robust design which is 
also close to being Pareto optimal. This is summarized in Fig. 2. 



 
Figure 1. Tank design outcome indicating standard deviation of volume with 20% (left) and 

2.5% (right) tolerance on volume 
 
The initial Pareto optimal set can be 

determined in a number of ways. In the 
work presented here, the Fast 
Multi -Objective Genetic Algorithm 
(FMOGA) available in 
modeFRONTIER has been used. 

All the examples presented here have 
been restricted to just two criteria. 
Hence, a curve has been used to 
approximate the Pareto front. A power 
series function with parameters 
determined using a least squares 
approach has been found to give a 
visually satisfactory fit. It has then been 
a simple task to find the functions 
defining the tolerance band. 

It is important to remember that the 
determination of design points giving 
low performance criteria standard 
deviations will be a multi-criteria 
problem if there is more than one 
performance criterion. Hence, in this 
work the FMOGA optimization routine 
has again been used. 

Butt weld analysis 

The example selected to demonstrate the new methodology is that of a butt welded joint subjected 
to both tension and bending. When such joints fail due to fatigue, the crack typically initiates at the 
weld toe where there can be a large stress concentration factor. In the literature this geometry is 
typically characterized using the parameters shown in Fig. 3 and Table 1. The ranges of parameters 
here were taken from the literature. The standard deviations on those parameters were derived from 
measurements of a test weld. This was a laser butt weld between two hot rolled steel plates (S335JR 
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Figure 2. Pareto robust design methodology 
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27), the type of plate often used for boilers, tanks and associated equipment. In order to measure the 
weld geometry, a silicon replica was cast over the surface of the weld in 11 places top and bottom of  
the plate. A photograph of the replica along with a graduated scale was then imported into 
AUTOCAD and the weld dimensions determined by superimposing ‘best fit’ geometric features over 
the photograph. Fig 3 illustrates this process. 

In order to analyze this problem an ABAQUS 
finite element model was created using linear 
plane strain elements with free form, quad 
dominated meshing. A parametric version of this 
model was then generated using the Python 
scripting language.  In order to correctly capture 
the stress concentration at the weld toe a highly 
refined mesh was required. A convergence study 
was carried out on a model with the smallest weld 
toe radius (judged to be the most difficult case to 
analyze) to ensure that the mesh was sufficiently 
refined. This refined mesh is shown in Fig 4. 

Two load cases were analyzed using the finite 
element model: in-plane tension and bending in 
the plane of the figure. For both cases a 
symmetry boundary constraint at the right hand 
side of the model was appropriate. On this edge 
a single point was also constrained in the 
vertical direction to prevent rigid body motion. 
To simulate tension a uniform traction acting 
normal to the left hand edge was applied. For the 
bending load case a linearly varying normal 
traction was applied to this edge. 

Robust Pareto optimization 

The parametric finite element model 
described above was used within an 
optimization study to determine the two 
criteria to be minimised: the peak von-Mises 
stress arising from the two load cases. As 
expected, these two cases gave similar results 
but a Pareto front was still generated. 
According to the procedure given in Fig. 2, a 
curve was then generated to approximate this 
Pareto front in criteria space along with a pair 
of bounding curves to give a tolerance on that Pareto front. 

The second stage of the analysis was to carry out a robust optimization with the objective of 
minimizing the standard deviation of the two maximum stress criteria with the standard deviations 
shown in Table 1 applied to the design variables. The solutions in this stage of the analysis were 
constrained to lie within the tolerance band on the Pareto front defined in the first stage. 

The robust optimization analysis produced three designs. These are represented on the radar plot in 
Fig. 5. The results here have been normalized over the parameter ranges shown in Table 1. It is 
interesting here that the designs are very similar. This was not the case with the initial optimization of 
the two stress criteria which produced a range of quite different designs. 

The analysis described above was repeated but with the standard deviation on the parameters 
reduced by a factor of two. The results of this analysis are shown in Fig 6. It is immediately apparent 

Table 1. Weld geometry parameters 

GEOMETRIC PARAMETER 
Lower 
bound 

Upper 
bound s.d. 

UPPER WELD TOE RAD, RU [mm] 0.5 5 0.1 

LOWER WELD TOE RAD, RL [mm] 0.5 5 0.1 

UPPER WELD TOE ANGLE, qU [°] 12 25 0.95 

LOWER WELD TOE ANGLE, qL  [°] 20 30 0.95 

UPPER REINFORCE, FU  [mm] 1 3 0.125 

LOWER REINFORCE, FL [mm] 1 3 0.125 

 
Figure 3. Weld geometry parameters (upper 

surface) 

 
Figure 4. Finite element model showing von-Mises 

stress under tension (N/mm2) 



the weld geometry shown here is quite different from that shown in Fig. 5. A further reduction of the 
standard deviation, again by a factor of two produced very similar results to those shown in Fig. 6. 

It is of course to be expected that the geometry giving the most robust design will depend upon the 
variation allowed on parameters defining the geometry. What is remarkable in this case is that 
maintaining the same relative variability on those parameters but uniformly changing their magnitude 
will also alter which designs are more robust. 

  
Figure 5. Robust design, large design tolerance Figure 6. Robust design, small design tolerance 

Conclusions 

A methodology for identifying robust designs that exist within the Pareto optimal set for 
multicriteria problems has been proposed. 

Robust, Pareto optimal geometries for a butt welded joint were identified. It was shown that these 
geometries were dependent on the magnitude of the variation allowed on the weld geometry 
parameters. 
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