
International Journal of Advanced Manufacturing Technology manuscript No.
(will be inserted by the editor)

S. Afshin Mansouri · S. Hamed Hendizadeh · Nasser Salmasi

Bicriteria scheduling of a two-machine flowshop with
sequence dependent setup times

Received: date / Accepted: date

Abstract A two-machine flowshop scheduling problem
is addressed to minimize setups and makespan where
each job is characterized by a pair of attributes that
entail setups on each machine. The setup times are se-
quence dependent on both machines. It is shown that
these objectives are conflicting so Pareto optimization
approach is considered. The scheduling problems con-
sidering either of these objectives are NP-hard, so ex-
act optimization techniques are impractical for large size
problems. We propose two multi-objective metaheurisc-
tics based on genetic algorithms (MOGA) and simulated
annealing (MOSA) to find approximations of Pareto-
optimal sets. The performances of these approaches are
compared with lower bounds for small problems. In larger
problems, performance of the proposed algorithms are
compared with each other. Experimentations revealed
that both algorithms perform very similar on small prob-
lems. Moreover, it was observed that MOGA outper-
forms MOSA in terms of the quality of solutions on larger
problems.

Keywords Multicriteria scheduling, Sequence-
dependent setups, Flowshop, Pareto-optimal frontier,
Genetic Algorithms, Simulated Annealing

S. Afshin Mansouri (corresponding author)
Brunel Business School, Brunel University, Uxbridge, Mid-
dlesex UB8 3PU, UK.
Fax: +44-1895-265361
E-mail: Afshin.Mansouri@brunel.ac.uk

S. Hamed Hendizadeh
Department of Mechanical and Manufacturing Engineering,
Faculty of Engineering, University of Manitoba, Winnipeg,
Manitoba, Canada R3T 5V6.
E-mail: umhendiz@cc.umanitoba.ca

Nasser Salmasi
Department of Industrial Engineering, Sharif University of
Technology, Tehran, Iran.
E-mail: nsalmasi@sharif.edu

1 Introduction

In a general flowshop scheduling problem, n jobs are to
be scheduled on m machines in order to optimize some
measures of performance. All jobs have the same process-
ing requirements so they need to be processed on all ma-
chines in the same order. Two-machine flowshop schedul-
ing problem has been considered as a major subproblem
due to its applications in real-life. There are cases where
setup times are negligible and therefore could be included
in the jobs’ processing times. However, in some appli-
cations, setups have major impact on the performance
measure considered for the scheduling problem so they
need to be considered separately. Wang and Cheng [31]
and Lee and Jung [12] have addressed, among others, this
kind of problem. Two-machine flowshop scheduling has
also been considered as a bicriteria problem for instance
by Tkindt et al. [30] and Chou and Lee [2].

In this paper we address a flowshop sequence depen-
dent job scheduling problem. The term ”sequence de-
pendent” implies that the setup times depend on the se-
quence in which the jobs are processed on the machines.
Each job Ji is characterized by two attributes. The at-
tribute of job Ji on machine k is denoted by ai,k. Let
A1 and A2 denote the sets of all possible attributes on
machines M1 and M2, respectively. If job Jj is processed
immediately after job Ji, a setup time sij,k is required
on machine k, if ai,k 6= aj,k. The setup times as in many
real world scheduling problems are sequence dependent
[32]. The process time of job Ji on machine k is shown
by pi,k. Scheduling with sequence-dependent setups has
received significant attention in recent years, for instance
by Lin and Ying [13], Low et al. [16], Pugazhendhi et al.
[23] and Gajpal et al. [8].

The goal is to schedule the set of jobs in order to
minimize the number of setups and the makespan (or
Cmax). The first objective is usually favored by the pro-
duction managers to reduce cost and complexity of the
production plan while the second one is mostly consid-
ered by the customers as a measure of service. There

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/1440944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Machine 2
1 2 3 4 5 6

1 - - - J1 J2 J3

2 - - J4 J5 - -
3 - J6 - J7 - -

Machine 1

4 J8 - - J9 - -

Table 1 Attributes of jobs. Each job is characterized by its
first attribute (row) on the first machine and second attribute
(column) on the second machine

Attributes
1 2 3 4 5 6

Machine 1 2 2 6 9 - -
Machine 2 9 4 9 3 1 7

Table 2 Process times of attributes

Attributes
1 2 3 4

1 8 4 8 20
2 18 12 5 4
3 1 8 20 7

Attributes

4 10 6 3 4

Table 3 Setup times on machine 1 (if the attribute in row
i is processed immediately after the attribute in column j.
The diameter show the setup times of the first attribute in
the sequence)

seems to be a natural conflict between these two ob-
jectives so one must consider the set of Pareto-optimal
solutions equally favorable if preferences of the decision-
maker are not known a priori. Using the standard three-
field notation of multicriteria scheduling problems [29],
the bicriteria problem addressed in this research can be
referred to as F2|Ssd|Setups, Cmax.

As an example of the above problem, consider a two-
stage furniture production system where each stage rep-
resents a machine. At stage one, sheets of raw materials
(MDF, DDF, plywood, etc.) are cut and subsequently
painted in the second stage according to the market
demand. The painted pieces are then assembled on an
assembly line and delivered to the customers. A setup
changeover is needed in the cutting department when
the thickness of two successive jobs (furniture parts) dif-
fers substantially. In the painting department, a setup is
required when the color of two successive jobs changes.
The setup times are sequence-dependent. For instance,
a setup changeover from black to white in the painting
department takes longer than the reverse case.

To show the conflict between the two objectives, con-
sider an instance consisting of nine jobs which are pro-
cessed on two machines. On the first machine, there are
four different attributes while the second machine is ca-
pable of handling six attributes. The attributes, process
times as well as setup times on the first and second ma-
chine are shown in Tables 1, 2, 3 and 4, respectively.

By minimizing the two objectives independently via
total enumeration, we find the following solutions:

Attributes
1 2 3 4 5 6

1 4 12 20 3 18 8
2 10 7 16 3 2 5
3 19 13 1 6 2 9
4 1 3 1 9 2 12
5 3 12 19 15 18 14

Attributes

6 6 15 5 4 20 17

Table 4 Setup times on machine 2 (if the attribute in row
i is processed immediately after the attribute in column j.
The diameter show the setup times of the first attribute in
the sequence)

S1 : J4J5J1J3J2J6J7J9J8

S2 : J9J4J5J1J3J6J7J8J2

The objective vectors for S1 and S2 are (11, 83)
and (14, 80), where the elements of the vector represent
setups and makespan, respectively. The sequence S1
minimizes total setups whilst S2 minimizes makespan.
Obviously none of these sequences dominates the other
one with respect to the both decision criteria. This shows
that minimizing the two objective functions are not equiv-
alent. Sequence S1 optimizes number of setups while se-
quence S2 minimizes the makespan. Figure 1 shows the
Gantt charts of S1 and S2. In this figure, the black blocks
represent the setup times.

Agnetis et al. [1] show that minimizing total setups in
a two stage supply chain where all jobs pass through both
stages in the same order (or problem F2||Setups) is NP-
hard. This is indeed a special case of the two-machine
flowshop scheduling problem and henceforth we conclude
that the optimization problem concerning the first ob-
jective is NP-hard. Gupta and Darrow [9] proved that
minimizing the makespan of the two machine sequence
dependent job scheduling (SDJS) problem is a NP-hard
problem. As such, we conclude that F2|Ssd|Setups, Cmax

is NP-hard and henceforth, exact optimization tools are
impractical for large size problem instances.

To the best of our knowledge, this problem has not
previously been addressed in the literature. We formu-
late it in a multi-objective optimization framework. As
show earlier, the two objectives are conflicting which en-
tails application of multi-objective search. We propose
two multi-objective metaheuristics based on genetic al-
gorithm and simulated annealing to find approximations
of Pareto-optimal fronts. An efficient lower bound is also
defined to evaluate performance of the solution tech-
niques in small sized problems. The possible effect of
an initializing heuristic on performance of the two al-
gorithms is examined. Extensive experiments are car-
ried out using a diverse set of test problems to identify
which algorithm is preferred for which class of problem
instances.

The rest of the paper is organized as follows: A dis-
cussion on multiobjective optimization is given in section
2. In section 3, lower bounds are introduced for the two

3

M1

M2

M1

M2

S1:

S2:

 0 80 83

Makespan

Fig. 1 Gantt chart of two solutions S1 = J4J5J1J3J2J6J7J9J8 and S2 = J9J4J5J1J3J6J7J8J2 found via complete enumer-
ation to minimize setups and makespan (or Cmax). The black segments within the bars represent setups. As it can be seen,
S1 requires the minimum setups = 11 and results in Cmax = 83 while S2 with more setups (14) minimizes Cmax to as low
as 80. This exapmle shows that the two objectives are conflicting and therefore, cannot be optimized at the same time in all
cases.

objectives in order to establish ideal solutions for com-
parison purposes. The MOGA and MOSA approaches
are introduced in sections 4 and 5 respectively. Compu-
tational results are discussed in section 6. Finally, section
7 concludes.

2 Multiobjective Optimization

A Multiobjective Optimization Problem (MOP) can be
defined as determining a vector of design variables within
a feasible region to minimize a vector of objective func-
tions that usually conflict with each other. Without the
loss of generality, a MOP can be formulated as follow:

Min {f1(x̃), . . . , fm(x̃)}

subject to:

gj(x̃) ≤ 0, j = 1, . . . , k;
hl(x̃) = 0, l = 1, . . . , p.

(1)

where x̃ is the vector of decision variables; fi(x̃) is the
i-th objective function; gj(x̃) is the j-th inequality con-
straint and hl(x̃) is the l-th equality constraint.

A decision vector x̃ is said to dominate a decision
vector ỹ (also written as x̃ ≻ ỹ) iff:

fi(x̃) ≤ fi(ỹ); ∀ i ∈ {1, . . . , m}; (2)

and:

∃ i ∈ {1, . . . , m} | fi(x̃) < fi(ỹ). (3)

All feasible decision vectors that are not dominated
by any other feasible decision vector are called nondom-
inated or Pareto-optimal. These are solutions for which
no objective can be improved without detracting from at
least one other objective.

There are various solution approaches for solving the
MOP. Among the most widely adopted techniques are:
sequential optimization, ǫ-constraint method, weighting

method, goal programming, goal attainment, distance
based method and direction based method. For a com-
prehensive study of these approaches, readers may refer
to Szidarovsky et al. [28] and Collette and Siarry [4].

Multicriteria scheduling problems can be classified as
a subset of MOPs in manufacturing and service sectors.
For a comprehensive survey on theory and applications
of multicriteria scheduling, readers may refer to T’kindt
and Billaut [29].

3 Ideal Solution

An ideal objective vector Θ could be defined consisting
of the lower bounds of the two objectives as follows:

Θ = (LB1, LB2) (4)

where LB1 and LB2 are lower bounds for the first
(minimization of setups) and the second (minimization
of makespan) criteria.

Mansouri [17] shows that LB1 could be defined as
follows:

LB1 = max{n, (|A1| + |A2|)} (5)

It is obvious that the number of setups could not be
less than the number of jobs. However, if the number of
jobs (n) is less than total attributes (|A1| + |A2|), the
lower bound need to be increased to take into account
at least one setup per attribute. These two facts are the
basis for deriving the lower bound of setups as stated in
the above formula.

Concerning LB2, Logendran et al. [14] proposed a
lower bounding technique by minimizing the makespan
criterion for the two machine group scheduling prob-
lem. This model is enhanced by Salmasi [24]. A special
case of this lower bound is used for the current research
where all groups contain only one job. This model mainly
solves the sequence dependent job scheduling problem
optimally. In other word, LB2 is defined for a given

4

problem by solving the appropriate optimization prob-
lem whose objective is to minimize makespan in a two-
machine sequence-dependent problem. We use CPLEX
package to find this lower bound for test problems in
this research.

4 The MOGA Approach

GAs have successfully been applied to the scheduling
problems with multiple objectives, for instance by Pon-
nambalam et al. [21], Pasupathy et al. [20] and Prasad
et al. [22]. For comprehensive details of multi-objective
optimization by means of GAs, readers may refer to the
books of Coello et al. [3] and Deb [6].

The main steps of the proposed MOGA approach are
presented in Algorithm 1. Moreover, major steps of the
algorithm are discussed in more details in the following
sub-sections.

input : Search parameters
output: A nondominated set

Let time counter t = 0;
Initialize search parameters;
Let {Elite Set} = ∅;
while t < tmax do

Perform nondominated sorting and niching;
Select individuals for mating pool ;
From mating pool, generate new generation using
genetic operators;
Let current generation = new generation;
Identify F 1 = nondominated frontier of current
generation;
Let {Elite Set} = {Elite Set} ∪ F 1;
Refine {Elite Set};
Let t = t + 1;

end

Report {Elite Set};

Algorithm 1: Pseudocode of the MOGA approach

4.1 Fitness Assignment

To assign appropriate fitness to the individuals in a pop-
ulation taking into account both objectives, nondomi-
nated sorting method proposed by Srinivas and Deb [25]
was selected. In this method, the population is ranked
on the basis of an individual’s non-domination. The non-
dominated individuals present in the population are first
identified by the current population. Then, all these indi-
viduals are assumed to constitute the first nondominated
frontier in the population and assigned a large dummy
fitness value (DFi for all i ∈ F 1). The same fitness value
is assigned to give an equal reproductive potential to all
these nondominated individuals. To maintain diversity
in the population, these classified individuals are then
shared with their dummy fitness values.

Sharing is achieved by dividing the dummy fitness
value of an individual by its niche count, i.e. the number
of individuals in its niche using the following formula:

fi =
DFi

NCi

(6)

where fi, DFi and NCi represent, respectively: fitness,
dummy fitness and niche count of individual i. This for-
mula is used to calculate the fitness of individuals in
a population. In order to calculate niche count for an
individual i (or NCi), its niche boundaries need to be
identified first. To calculate the niche dimensions in a
given population, the concept of niche cubicle proposed
by Hyun et al. [10] was adopted. A niche cubicle for an
individual is a rectangular region around the individual.
Dimensions of the niche cubicle in a problem having m
objectives are computed as follows:

σlg =
Maxlg − Minlg

m
√

PopSize
, l = 1, . . . , m (7)

where Maxlg and Minlg are maximum and minimum
of the l-th objective function at generation g. The niche
size is calculated at every generation. A solution located
in a less dense cubicle is allowed to have a higher prob-
ability to survive in the next generation. After sharing,
these nondominated individuals are ignored temporarily
to process the rest of the population in the same way to
identify individuals for the second nondominated fron-
tier. These nondominated solutions are then assigned a
new dummy fitness value that is kept smaller than the
minimum shared dummy fitness of the previous frontier.
In other words, dummy fitness value of the individu-
als in a given frontier F k must satisfy this condition:
DFk < min(fj), j ∈ F k−1. The dummy fitness values
are then shared and this process is continued until the
entire population is classified into several frontiers and
individuals are assigned fitness values.

4.2 Selection

Individuals at each generation are selected according to
their count share (C) which is calculated as follows:

Ci = fi × n; i = 1, . . . , n (8)

where n denotes the Population Size. Several copies of
a given individual might be selected for the mating pool.
The contribution of individual i to the mating pool is
determined by the integer part of Ci. The remaining in-
dividuals up to the PopSize are selected at random from
the {EliteSet}. As an example, consider a population of
three individuals with C1 = 1.6, C2 = 1.4 and C3 = 0.7.
According to the selection scheme, one copy of individ-
uals 1 and 2 along with an individual from {Elite Set}
constitute the mating pool.

5

4.3 Crossover

Part of selected individuals of mating pool are recom-
bined using The order crossover [18] according to Crossover

Rate. The rest of individuals are copied (i.e. reproduced)
to the next generation.

4.4 Diversification

In order to diversify the population, inversion and in-

sertion operators are implemented.
The inversion operator, inverts the order of jobs in

a randomly chosen part of the given individual. Indi-
viduals are chosen for inversion according to Inversion

Rate. Once an individual is chosen for inversion, it may
undergo several successive inversions whose number is
determined by Inversion Numbers.

The insertion operator mutates a given individual by
picking a single gene at random from the position i and
inserting it in a random position j along the chromosome

pushing forward (backward) the segment in between i
and j if i > j (j > i). The insertion operator is applied
to all individuals in a population at least once. However,
the number of times that this operator is applied on a
solution is controlled by Insertion Number.

The offspring produced by either operator in the di-
versification stage, are compared with their parents. The
parent is replaced if dominated by its offspring. However,
a dominated offspring is still given a chance to replace
its parent.

The probability for accepting a dominated offspring,
starting from 1.0, is decreased exponentially over the
generations to improve convergence. The probability of
accepting a dominated offspring resulted via inversion
or insertion operators at a given time t is denoted by
P (A) and is calculated using this formula:

P (A) = exp

(−t

tmax − t

)

, t = 0, . . . , tmax (9)

where tmax is the maximum execution (CPU) time. The
idea behind this formula is inspired by the annealing
process of simulated annealing in order to improve con-
vergence.

5 The MOSA Approach

Simulated annealing is an approach that can provide
near-optimal solutions to combinatorial optimization prob-
lems. Kirkpatrick et al. [11] and Eglese [7] do provide fun-
damental descriptions of simulated annealing in addition
to informative examples. SA has been applied to a vast
number of single objective optimization problems over
the last two decades. It has also been applied as a tool for
multiobjective optimization problems in some applica-
tions, for instance by Suresh and Mohanasundaram [27]

and Loukil et al. [15]. Readers for review of approaches
to multiobjective optimization by means of SA may re-
fer to Suman and Kumar [26], Nam and Park [19], and
Czyzak and Jaszkiewicz [5].

In this section, we explain the algorithmic steps of the
MOSA heuristic in search for Pareto-optimal solutions.
The MOSA heuristic is guided by the temperature level,
T , and the cooling rate, CR up to the freezing tempera-
ture, TF . Major steps of the proposed MOSA approach
are described in Algorithm 2.

input : Search Parameters
output: A Nondominated Frontier

Initialize search parameters;
Generate initial {Elite Set};
Randomly select current solution ∈ {Elite Set};
Let time counter t = 0;
while T > TF and t < tmax do

for i=1 to Iterations do
Generate test solution from current solution;
Compare test solution with {Elite Set};
Refine {Elite Set};
if test solution Is Not dominated then

{Elite Set} = {Elite Set} ∪ test solution;
Let current solution = test solution;

end
else if Metropolis criterion = true then

Let current solution = test solution;
end

end
Let T = T × CR;
Let t = t + 1;

end

Report {Elite Set};

Algorithm 2: Pseudocode of the MOSA approach

5.1 Neighborhood Generation

At a given temperature level T , a neighboring solution
to a current solution is generated via either inversion or
insertion operators, introduced in previous section. The
probabilties of inversion and insertion are complemen-
tary, i.e.:

P (inversion) = 1 − P (insertion) (10)

wherein the probability of inversion is calculated as
follows:

P (inversion) =
InversionRate × T

T1

(11)

This formula gives more chance to inversion to be
selected at the beginning of the annealing process; whilst
insertion is given more chance as the algorithm converges
to the final solutions.

6

5.2 Metropolis Criterion

The Metropolis criterion states the probability of accept-
ing a dominated solution as:

P (A) = exp

(−∆E

KbT

)

(12)

where:

∆E = Max
j

[

Min
i

(

di,j

fi,j

)]

(13)

and:

Kb =
−∆E1

T1ln (P (A)1)
(14)

Moreover, ∆E is the minimum distance between a
test solution and its associated dominating solutions in
nondominated frontier, di,j denotes the distance between
the i-th objective value of test solution and that of the
dominating solution j, and fi,j represents the i-th ob-
jective value of the dominating solution j. The value Kb

is referred to as the Boltzman constant and reflects the
probability of accepting a dominated solution (or P (A)1)
with ∆E1 distance from the furthest dominating solution
in the current nondominated frontier at the initial tem-
perature T1. This value gives the user some control over
the probability of dominated solutions being accepted.

The probability of accepting a dominated solution is
a function of both temperature of the system (T) and the
distance between the dominated solution and the current
nondominated frontier (∆E). Such a distance measure in
the proposed MOSA could be considered as the distance
between the worse solution and the current solution in a
single objective SA. In fact, current nondominated fron-
tier in the MOSA acts the same as the current solution in
a single objective SA as a reference. As the temperature
decreases, the probability of accepting worse moves de-
creases. Obviously at T = 0, no worse move is accepted.
P (A)1, ∆E1 and T1 are among the parameters of the
MOSA and need to be determined in the parameter set-
ting stage.

6 Computational Experiments

In this research we examine firstly the effect of the ini-
tializing procedure on the performance of the proposed
MOMHs. Then we compare performance of the two pro-
posed algorithms namely MOGA and MOSA to verify if
there is any difference between them. Finally, two prob-
lem specific features of the problem sets, i.e. density and
balance ness of the problem instances are tested as to
their effect on the performance of the preferred solution
technique.

6.1 Initialization

In order to verify the impact of initial Elite Set on the
final results of the solution techniques, an initializing
heuristic procedure was selected from Mansouri [4] which
is described in Algorithm 3.

input : Search Parameters
output: A Nondominated Frontier

while Stopping condition not met do
Let {Elite Set} = ∅;
Initialize the sequence S = ∅;
while A1 ∪ A2 6= ∅ do

Randomly select i ∈ A1 ∪ A2;
for all (i, x)[or(x, i)] ∈ B do

Let S = S ∪ (i, x)[or(x, i)];
end

Let A1 ∪ A2 = {A1 ∪ A2} \ i;
end

Let {Elite Set} = {Elite Set} ∪ S;
Refine {Elite Set};

end

Report {Elite Set};

Algorithm 3: Pseudocode of the Initializing Heuristic

The underlying idea of this heuristic procedure is to
try to minimize the number of dual setups (or global
changeovers as noted in [1]) in switching from one job
to another one while keeping a balanced level of setups
paid on each machine.

Two sets of experiments were conducted using MOGA
and MOSA for the largest problem with optimal objec-
tive values and also each set was run for 20 times. In the
first set, randomly generated initial Elite Sets were used
while in the second set, the above initializing procedure
was used. The results of these experiments show that the
application of the initializing procedure has not a ma-
jor positive impact on the quality nor the convergence
speed of the algorithms. For both MOGA and MOSA
aproaches, the average difference between the quality of
the final solutions with and without initializing heuristic
was just 0.002.

One explanation for this finding might be that the
proposed initializing procedure only favors the first ob-
jective. In addition, it seems that larger Pareto-optimal
frontiers in the current research compared to that of a
previous study [17] could be another reason why the ini-
tializing procedure does not contribute to the MOMHs
in this research. The initializing procedure forces the
MOMHs to start search from a solution in the neigh-
borhood of one extreme solution along the frontier. This
would in turn forces the algorithm to spend too efforts to
diversify the frontier in search for a good approximation
of true Pareto-optimal frontier.

7

6.2 Test Problems

Two groups of test problems were generated to evaluate
the performance of proposed solution approaches. The
first group includes 11 small size problems with 9 to 38
jobs. For this group, the ideal solution Θ (Equation 4)
could be defined for comparisons wherein, optimal values
for the second objective (LB2) could be calculated in a
reasonable CPU time using CLPEX solver. The second
group includes 32 larger problems with up to 2560 jobs.
For this group, the LB2 could not be found using opti-
mization tools in a reasonable time and henceforth, the
ideal solution Θ could not be defined.

6.3 Parameter Setting

Comprehensive experiments were done to find a good
set of parameter values to make the solution approaches
more efficient in finding true Pareto-optimal frontiers.
Most of those experiments were applied to the largest
problem whose optimal objective values were available.
Finally, the following values were selected for MOGA:
Population Size = 50, Crossover Rate = 0.05, Insertion
Number = 1, Inversion Rate = 0.80, and Inversion Num-

ber = 5. Also selected values for MOSA parameters are:
∆E1 = 0.01, P (A)1 = 0.01, CR = 0.99999, T1 = 10, TF
= 1, Iterations = 15 and Inversion Rate = 0.6.

One interesting observation made during the param-
eter setting, was on the effect of low Crossover Rate (i.e.
0.05) on performance of the MOGA. The other rates
that were considered in our experiments include: 0.02,
0.50 and 0.90. The results show that the selected rate is
the most efficient one from among the examined values.

6.4 Comparison Method

Two Quality Indices (QI) were defined for the two groups
of test problems. For small size problems, the QI is calcu-
lated with reference to lower bounds of the two objectives
using the following formula:

QI = 1 − Min

(

f1 − LB1

LB1

,
f2 − LB2

LB2

)

(15)

For large size problems, where LB2 could not be
found, the union of the final frontiers of MOGA and
MOSA is used as the reference set (called R) discarding
dominated solutions. For a given frontier F , the QI is
calculated as follows:

QI =

∑

j∈G Min
i∈R

{

(f
j

1
−fi

1)+(f
j

2
−fi

2)
f

j

1
+f

j

2

}

|G| (16)

where fx
1 (fx

2) denote the first (second) objective
value of the solution x and |G| represents cardinality of
the set G.

MOGA MOSA
Mean 0.930 0.933
Variance 0.002 0.003
Observations 14 14
Pearson correlation 0.963
Hypothesized mean difference 0
Degree of freedom 13
t Stat -0.710
t Critical one tail 1.771

Table 8 t-test: paired two sample for QI on small problems
(α = 0.05). The results indicate that there is no significant
difference between the two algorithms in terms of QI when
applied to small problems. This has been concluded from:
(t Stat) < (t Critical one tail). Therefore it could be stated
that at α = 0.05 level of confidence, both MOGA and MOSA
perform equivalently on small problems

6.5 Hardware and Software

The MOGA and MOSA algorithms were coded in C++
and executed on a Pentium III, 800 MHz processor with
128 MB RAM. The ILOG CPLEX (version 9.0) was used
to solve the lower bounding model of LB2 on a Power
Edge 2650 with 2400 MHz Xeon processor and 4000 MB
RAM.

6.6 Comparative Results

Both MOGA and MOSA algorithms were run 20 times
on each problem for 60 seconds. Average (AVRG) and
standard deviation (STDV) of these runs for small prob-
lems are reported in Table 5. Large problems are cate-
gorized in two group as balanced and unbalanced whose
results are reported in Tables 6 and 7, respectively. A
balanced problem is characterized by equal number of
attributes on both machines. The CPLEX CPU times to
find the optimal solution (LB2) for small size problems
are also reported in Table 5. It should be noted here that
although CPLEX was run on a more powerful machine
than the one used by MOGA and MOSA, it was not
able to find the optimal solution for a 40-job problem af-
ter two days. As such, the largest problem with optimal
solution (LB2) contains 38 jobs in this table.

6.7 Comparisons on small problems

Table 5 shows that the QI indices for MOGA and MOSA
on small problems are close. The average QI for MOGA
and MOSA for this group are 0.930 and 0.933, respec-
tively. To investigate whether this difference is signifi-
cant, a t-test was made at α = 0.05 level of significance
whose results are presented in Table 8. It reveals that the
performance of the two algorithms on small problems is
not significantly different.

Another t-test was also made at the same level of
significance to investigate the difference of the two algo-
rithms on the size of their final frontiers as a measure

8

Quality index (QI) Frontier Size
Problem CPLEX CPU MOGA MOSA MOGA MOSA

n |A1| |A2| Time (sec) AVRG STDV AVRG STDV AVRG STDV AVRG STDV
8 4 4 1.06 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
8 4 5 0.97 0.995 0.000 0.995 0.000 3.000 0.000 3.000 0.000
9 5 5 1.72 0.965 0.000 0.965 0.000 4.000 0.000 4.000 0.000
9 4 6 0.75 0.920 0.000 0.920 0.000 3.000 0.000 3.000 0.000
10 5 5 2.81 0.916 0.000 0.916 0.000 3.000 0.000 3.000 0.000
10 4 7 3.31 0.955 0.000 0.955 0.000 2.000 0.000 2.000 0.000
11 6 6 4.53 0.948 0.000 0.948 0.000 3.000 0.000 3.000 0.000
11 3 9 7.70 0.958 0.000 0.959 0.003 2.000 0.000 2.300 0.470
12 6 6 19.09 0.916 0.210 0.953 0.009 3.350 0.489 3.400 0.754
22 17 13 1679 0.968 0.010 0.964 0.011 3.100 1.165 3.300 0.979
28 17 13 4142 0.885 0.012 0.876 0.010 7.450 1.572 7.300 1.895
30 19 20 19000 0.892 0.204 0.921 0.019 7.300 2.055 7.250 1.251
35 19 20 33182 0.866 0.010 0.859 0.013 8.053 2.368 8.100 1.447
38 19 20 16056 0.837 0.015 0.826 0.015 8.000 2.224 8.100 1.210

Average 0.930 0.933

Table 5 Comparative results on small problems.

Problem MOGA QI MOSA QI
n |A1| |A2| Density AVRG STDV AVRG STDV
40 20 20 0.1 0.989 0.003 0.986 0.005
80 20 20 0.2 0.986 0.004 0.984 0.008
120 20 20 0.3 0.983 0.005 0.977 0.009
160 20 20 0.4 0.986 0.006 0.975 0.009
90 30 30 0.1 0.983 0.005 0.977 0.009
180 30 30 0.2 0.990 0.005 0.983 0.005
270 30 30 0.3 0.987 0.005 0.982 0.005
360 30 30 0.4 0.991 0.004 0.986 0.004
250 50 50 0.1 0.988 0.005 0.978 0.005
500 50 50 0.2 0.989 0.006 0.979 0.007
750 50 50 0.3 0.992 0.005 0.991 0.002
1000 50 50 0.4 0.995 0.001 0.996 0.002
640 80 80 0.1 0.994 0.002 0.965 0.012
1280 80 80 0.2 0.994 0.002 0.982 0.009
1920 80 80 0.3 0.994 0.002 0.988 0.006
2560 80 80 0.4 0.989 0.003 0.988 0.006

Average 0.989 0.982

Table 6 Comparative results on large balanced problems

Problem MOGA QI MOSA QI
n |A1| |A2| Density AVRG STDV AVRG STDV
22 17 13 0.1 0.977 0.009 0.971 0.011
42 19 11 0.2 0.895 0.003 0.984 0.006
48 7 23 0.3 0.978 0.011 0.968 0.011
80 10 20 0.4 0.966 0.015 0.954 0.023
90 27 33 0.1 0.985 0.005 0.976 0.011
160 20 40 0.2 0.984 0.007 0.977 0.013
263 35 25 0.3 0.979 0.010 0.964 0.011
312 41 19 0.4 0.986 0.005 0.979 0.004
233 37 64 0.1 0.990 0.004 0.984 0.003
495 45 55 0.2 0.992 0.004 0.984 0.003
630 70 30 0.3 0.991 0.004 0.989 0.004
968 48 59 0.4 0.989 0.006 0.987 0.006
562 72 78 0.1 0.992 0.003 0.952 0.013
1109 84 66 0.2 0.995 0.002 0.967 0.008
1361 42 108 0.3 0.994 0.002 0.981 0.008
2000 50 100 0.4 0.993 0.001 0.992 0.006

Average 0.980 0.976

Table 7 Comparative results on large unbalanced problems

9

MOGA MOSA
Mean 4.161 4.196
Variance 5.930 5.790
Observations 14 14
Pearson correlation 0.999
Hypothesized mean difference 0
Degree of freedom 13
t Stat -1.228
t Critical one tail 1.771

Table 9 t-test: paired two sample for Frontier Size on small
problems (α = 0.05). The results indicate that there is no
significant difference between the two algorithms in terms of
Frontier Size when applied to small problems. This has been
concluded from: (t Stat) < (t Critical one tail). Therefore it
could be stated that for small problems, at α = 0.05 level of
confidence, diversity of both MOGA and MOSA is equivalent

of diversity. The results, as shown in Table , show that
there is no significance difference between MOGA and
MOSA in this respect at = 0.05 level of significance. In
other words, both MOGA and MOSA perform equally
on small size problems.

6.8 Comparisons on large problems

To investigate performance of the two algorithms on large
size problems, the following research questions need to
be addressed:

i. Is there any difference, in terms of the quality of the
solutions, between the two algorithms on large size
problems? If yes, which algorithm performs better?

ii. Is performance of the algorithms influenced by fea-
tures of the problems, i.e., balance ness and density?

In order to answer the first question, a t-test is made
at α = 0.05 level of significance whose results are given in
Table 10. According to this table, the average QI metric
of MOGA is 0.985 while the same figure for MOSA is
0.979. The test reveals that this difference is significant.
In other words, it could be stated that at α = 0.05 level
of confidence, MOGA performs better than MOSA on
large size problems.

Concerning the second question, two ANOVA tests
were made for MOGA and MOSA separately to inves-
tigate whether their performance is influenced by the
balance of attributes on the two machines and density of
jobs in the attribute matrix of the problems. Each test
was made at α = 0.05 and α = 0.10 levels of significance.
The results for MOGA and MOSA are presented in Ta-
bles 11 and 12, respectively. The results of experiments
at α = 0.05 show that performance of both MOGA and
MOSA are not influenced by neither balance nor den-
sity of the problems. The same result was observed for
MOGA at α = 0.10 as shown in Table 11. However,
the experiments at α = 0.10 show that performance of
MOSA is influenced by balance of the attributes on two
machines in different problems. The result at α = 0.10
level of significance shown in Table 12 together with the

MOGA MOSA
Mean 0.985 0.979
Variance 0.000 0.000
Observations 32 32
Pearson correlation 0.106
Hypothesized mean difference 0
Degree of freedom 31
t Stat 1.731
t Critical one tail 1.696

Table 10 t-test: paired two sample for QI on large problems
(α = 0.05). The fact that (t Stat > t Critical one tail) implies
that the difference between the two algorithms is significant.
Hence, it is concluded that at α = 0.05 level of confidence,
MOGA performs better than MOSA on large problems

result of experiments reported in Tables 6 and 7 indi-
cate that MOSA performs better on balanced instances.
Again at this level of significance, the results show no
evidence as to the impact of density on performance of
MOSA.

7 Conclusion

We address a two machine flowshop scheduling problem
in which each job is featured by two attributes (called
attributes 1 and 2) which makes it different from other
jobs. A setup need to be done on the first (second) ma-
chine if two consecutive jobs have different attribute 1
(2). The scheduling objectives are the minimization of
the number of setups as well as minimization of makespan.
It was shown that these objectives are conflicting so they
cannot be optimized at the same time. So the set of
Pareto-optimal solutions need to be found and presented
to the production planner so he can select the appropri-
ate schedule based on his preferences.

The problem is NP-hard so exact optimization tools
are not applicable for large size problems. Two multi-
objective metaheuristic algorithms based on genetic al-
gorithms and simulated annealing, namely MOGA and
MOSA were proposed. Statistical experimentations show
that both algorithms are equally performing on small size
problems while MOGA performs better than MOSA on
large size instances.

Moreover, the effect of density and balance of the at-
tributes matrix, as two problem specific features were
investigated for their possible influence on performance
of the two algorithms through ANOVA tests. The results
show no evidence as to the impact of density on perfor-
mance of the algorithms at α = 0.05 level of significance.
In the meantime, an experiment at α = 0.10 show that
performance of the MOSA approach is influenced by the
balance of problems.

Application of other metaheuristics to the above prob-
lem besides application of the proposed solution tech-
niques to the problems with different set of criteria, e.g.
due date based objectives provide a broad area for fur-
ther research.

10

Source of variation SS DF MS F (test) F -critical (α = 0.05) F -critical (α = 0.10)
Balance of attributes on two machines 0.001 1 0.001 1.979 4.260 2.927
Density of jobs in the attribute matrix 0.000 3 0.000 0.495 3.009 2.327
Interactions 0.000 3 0.000 0.571 3.009 2.327
Within combinations 0.008 24 0.000

Total 0.001 23
SS: Sum of squares, DF: Degrees of Freedom, MS: Mean square

Table 11 ANOVA test for MOGA on large problems. The results indicate that performance of MOGA is not influenced by
neither balance nor density at α = 0.05 and α = 0.10 due to the fact that F (test) < Fcritical at these levels.

Source of variation SS DF MS F (test) F -critical (α = 0.05) F -critical (α = 0.10)
Balance of attributes on two machines 0.000 1 0.000 3.385 4.260 2.927
Density of jobs in the attribute matrix 0.000 3 0.000 1.006 3.009 2.327
Interactions 0.000 3 0.000 1.024 3.009 2.327
Within combinations 0.003 24 0.000

Total 0.002 23
SS: Sum of squares, DF: Degrees of Freedom, MS: Mean square

Table 12 ANOVA test for MOSA on large problems. The results indicate that performance of MOSA is not influenced by
neither balance nor density at α = 0.05 for F (test) < Fcritical at this level. However, the results at α = 0.10 indicate that
performance of MOSA is influenced by balance of the problem.

8 Acknowledgment

The authors would like to thank the anonymous refer-
ees for their constructive comments which improved the
quality and presentation of this paper. The work of Af-
shin Mansouri was partially supported by UK EPSRC
under grant EP/D050863/1.

References

1. A. Agnetis, P. Detti, C. Meloni, and D. Pacciarelli. Set-
up coordination between two stages of a supply chain.
Annals of Operations Research, 107(1-4):15–32, 2001.

2. F. D. Chou and C. E. Lee. Two-machine flowshop
scheduling with bicriteria problem. Computers & Indus-
trial Engineering, 36(3):549–564, 1999.

3. C. A. Coello Coello, D. A. Van Veldhuizen, and G. B.
Lamont. Evolutionary Algorithms for Solving Multi-
Objective Problems. Kluwer Academic Publishers, New
York, May 2002.

4. Y. Collette and P. Siarry. Multiobjective Optimization:
Principles and Case Studies. Springer, 2004.

5. P. Czyzak and A. Jaszkiewicz. Pareto simulated
annealing—a metaheuristic technique for multiple-
objective combinatorial optimization. Journal of Multi-
Criteria Decision Analysis, 7:34–47, 1998.

6. K. Deb. Multi-Objective Optimization Using Evolution-
ary Algorithms. Wiley, Chichester, UK, 2001.

7. R. W. Eglese. Simulated annealing: A tool for oper-
ational research. European Journal of Operational Re-
search, EJOR, Vol. 46, :271-281, 1990.

8. Y. Gajpal, C. Rajendran, and H. Ziegler. An ant colony
algorithm for scheduling in flowshops with sequence-
dependent setup times of jobs. The International Journal
of Advanced Manufacturing Technology, 30(5-6):416–424,
2006.

9. J. N. D. Gupta and W. P. Darrow. The Two-Machine
Sequence Dependent Flowshop Scheduling Problem. Eu-
ropean Journal of Operational Research, 24(3):439–446,
1986.

10. C. J. Hyun, Y. Kim, and Y. K. Kim. A Genetic Al-
gorithm for Multiple Objective Sequencing Problems in
Mixed Model Assembly Lines. Computers & Operations
Research, 25(7/8):675–690, 1998.

11. S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vec-
chi. Optimization by simulated annealing. Science,
220(4598):671–680, May 13 1983.

12. Y. H. Lee and J. W. Jung. New heuristics for no-wait
flowshop scheduling with precedence constraints and se-
quence dependent setup time. In O. Gervasi, M. L.
Gavrilova, V. Kumar, A. Laganà, H. P. Lee, Y. Mun,
D. Taniar, and C. J. K. Tan, editors, ICCSA (4), vol-
ume 3483 of Lecture Notes in Computer Science, pages
467–476. Springer, 2005.

13. S.-W. Lin and K.-C. Ying. Solving single-machine to-
tal weighted tardiness problems with sequence-dependent
setup times by meta-heuristics. The International Jour-
nal of Advanced Manufacturing Technology, to appear.

14. R. Logendran, N. Salmasi, and C. Sriskandarajah. Two-
machine group scheduling problems in discrete parts
manufacturing with sequence-dependent setups. Com-
puters & Operations Research, 33:158–180, 2006.

15. T. Loukil, J. Teghem, and P. Fortemps. A multi-objective
production scheduling case study solved by simulated
annealing. European Journal of Operational Research,
179(3):709–722, 2007.

16. C. Low, T.-H. Wu, and C.-M. Hsu. Mathematical mod-
elling of multi-objective job shop scheduling with de-
pendent setups and re-entrant operations. The Interna-
tional Journal of Advanced Manufacturing Technology,
27(1-2):181–189, 2005.

17. S. A. Mansouri. Coordination of setups between two
stages of a supply chain using multi-objective genetic al-
gorithms. International Journal of Production Research,
43(15):3163–3180, 2005.

18. Z. Michalewicz. Genetic Algorithms + Data Structures
= Evolution Programs, 3rd ed. Artificial Intelligence.
Springer-Verlag, Berlin, 1996.

19. D. Nam and C. H. Park. Multiobjective Simulated An-
nealing: A Comparative Study to Evolutionary Algo-
rithms. International Journal of Fuzzy Systems, 2(2):87–
97, 2000.

20. T. Pasupathy, C. Rajendran, and R. K. Suresh. A multi-
objective genetic algorithm for scheduling in flow shops to
minimize the makespan and total flow time of jobs. The

11

International Journal of Advanced Manufacturing Tech-
nology, 27(7-8):804–815, 2006.

21. S. G. Ponnambalam, H. Jagannathan, M. Kataria, and
A. Gadicherla. A TSP-GA multi-objective algorithm
for flow-shop scheduling. The International Journal of
Advanced Manufacturing Technology, 23(11-12):909–915,
2004.

22. S. D. Prasad, O. K. Chetty, , and C. Rajendran. A genetic
algorithmic approach to multi-objective scheduling in a
kanban-controlled flowshop with intermediate buffer and
transport constraints. The International Journal of Ad-
vanced Manufacturing Technology, 29(5):564–576, 2006.

23. S. Pugazhendhi, S. Thiagarajan, C. Rajendran, and
N. Anantharaman. Generating non-permutation sched-
ules in flowline-based manufacturing sytems with
sequence-dependent setup times of jobs: a heuristic ap-
proach. The International Journal of Advanced Manu-
facturing Technology, 23(1-2):64–78, 2004.

24. N. Salmasi. Multi-Stage Group Scheduling Problems with
Sequence Dependent Setups. PhD thesis, Oregon State
University, 2005.

25. N. Srinivas and K. Deb. Multiobjective Optimization Us-
ing Nondominated Sorting in Genetic Algorithms. Evo-
lutionary Computation, 2(3):221–248, Fall 1994.

26. B. Suman and P. Kumar. Multiobjective simulated an-
nealing: A comparative study to evolutionary algorithms.
Journal of the Operational Research Society, 57:1143–
1160, 2006.

27. R. K. Suresh and K. M. Mohanasundaram. Pareto
archived simulated annealing for job shop scheduling
with multiple objectives. The International Journal
of Advanced Manufacturing Technology, 29(1-2):184–196,
2006.

28. F. Szidarovsky, M. E. Gershon, and L. Dukstein. Tech-
niques for multiobjective decision making in systems
management. Elsevier, New York, 1986.

29. V. T’kindt and J.-C. Billaut. Multicriteria Scheduling.
Theory, Models and Algorithms. Springer, Berlin, 2006.

30. V. T’kindt, N. Monmarché, F. Tercinet, and D. Laügt.
An Ant Colony Optimization algorithm to solve a 2-
machine bicriteria flowshop scheduling problem. Euro-
pean Journal of Operational Research, 142(2):250–257,
Oct. 2002.

31. X. Wang and T. C. E. Cheng. Heuristics for two-
machine flowshop scheduling with setup times and an
availability constraint. Computers & Operations Re-
search, 34(1):152–162, 2007.

32. X. Zhu and W. E. Wilhelm. Scheduling and lot sizing
with sequence-dependent setups: A literature review. IIE
Transactions, 38:987–1007, 2006.

