176 research outputs found

    Multiclass Brain-Computer Interface Classification by Riemannian Geometry

    Get PDF
    International audienceThis paper presents a new classification framework for brain-computer interface (BCI) based on motor imagery. This framework involves the concept of Riemannian geometry in the manifold of covariance matrices. The main idea is to use spatial covariance matrices as EEG signal descriptors and to rely on Riemannian geometry to directly classify these matrices using the topology of the manifold of symmetric and positive definite (SPD) matrices. This framework allows to extract the spatial information contained in EEG signals without using spatial filtering. Two methods are proposed and compared with a reference method [multiclass Common Spatial Pattern (CSP) and Linear Discriminant Analysis (LDA)] on the multiclass dataset IIa from the BCI Competition IV. The first method, named minimum distance to Riemannian mean (MDRM), is an implementation of the minimum distance to mean (MDM) classification algorithm using Riemannian distance and Riemannian mean. This simple method shows comparable results with the reference method. The second method, named tangent space LDA (TSLDA), maps the covariance matrices onto the Riemannian tangent space where matrices can be vectorized and treated as Euclidean objects. Then, a variable selection procedure is applied in order to decrease dimensionality and a classification by LDA is performed. This latter method outperforms the reference method increasing the mean classification accuracy from 65.1% to 70.2%

    Study of Adaptation Methods Towards Advanced Brain-computer Interfaces

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Evolving spatial and frequency selection filters for brain-computer interfaces

    Get PDF
    Proceeding of: 2010 IEEE World Congress in Computational Intelligence (WCCI 2010), Barcelona, Spain, July 18-23, 2010Abstract—Machine Learning techniques are routinely applied to Brain Computer Interfaces in order to learn a classifier for a particular user. However, research has shown that classiffication techniques perform better if the EEG signal is previously preprocessed to provide high quality attributes to the classifier. Spatial and frequency-selection filters can be applied for this purpose. In this paper, we propose to automatically optimize these filters by means of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The technique has been tested on data from the BCI-III competition, because both raw and manually filtered datasets were supplied, allowing to compare them. Results show that the CMA-ES is able to obtain higher accuracies than the datasets preprocessed by manually tuned filters.This work has been funded by the Spanish Ministry of Science under contract TIN2008-06491-C04-03 (MSTAR project)Publicad

    A quality metric to improve wrapper feature selection in multiclass subject invariant brain computer interfaces

    Get PDF
    Title from PDF of title page, viewed on June 5, 2012Dissertation advisor: Reza DerakhshaniVitaIncludes bibliographical references (p. 116-129)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2012Brain computer interface systems based on electroencephalograph (EEG) signals have limitations which challenge their application as a practical device for general use. The signal features generated by the brain states we wish to detect possess a high degree of inter-subject and intra-subject variation. Additionally, these features usually exhibit a low variation across each of the target states. Collection of EEG signals using low resolution, non-invasive scalp electrodes further degrades the spatial resolution of these signals. The majority of brain computer interface systems to date require extensive training prior to use by each individual user. The discovery of subject invariant features could reduce or even eliminate individual training requirements. To obtain suitable subject invariant features requires search through a high dimension feature space consisting of combinations of spatial, spectral and temporal features. Poorly separable features can prevent the search from converging to a usable solution as a result of degenerate classifiers. In such instances the system must detect and compensate for degenerate classifier behavior. This dissertation presents a method to accomplish this search using a wrapper architecture comprised of a sequential forward floating search algorithm coupled with a support vector machine classifier. This is successfully achieved by the introduction of a scalar Quality (Q)-factor metric, calculated from the ratio of sensitivity to specificity of the confusion matrix. This method is successfully applied to a multiclass subject independent BCI using 10 untrained subjects performing 4 motor tasks.Introduction to brain computer interface systems -- Historical perspective and state of the art -- Experimental design -- Degeneracy in support vector machines -- Discussion of research -- Results -- Conclusion -- Appendix A. Information transfer rate -- Appendix B. Additional surface plots for individual tasks and subject

    Deep Learning Techniques for Electroencephalography Analysis

    Get PDF
    In this thesis we design deep learning techniques for training deep neural networks on electroencephalography (EEG) data and in particular on two problems, namely EEG-based motor imagery decoding and EEG-based affect recognition, addressing challenges associated with them. Regarding the problem of motor imagery (MI) decoding, we first consider the various kinds of domain shifts in the EEG signals, caused by inter-individual differences (e.g. brain anatomy, personality and cognitive profile). These domain shifts render multi-subject training a challenging task and impede robust cross-subject generalization. We build a two-stage model ensemble architecture and propose two objectives to train it, combining the strengths of curriculum learning and collaborative training. Our subject-independent experiments on the large datasets of Physionet and OpenBMI, verify the effectiveness of our approach. Next, we explore the utilization of the spatial covariance of EEG signals through alignment techniques, with the goal of learning domain-invariant representations. We introduce a Riemannian framework that concurrently performs covariance-based signal alignment and data augmentation, while training a convolutional neural network (CNN) on EEG time-series. Experiments on the BCI IV-2a dataset show that our method performs superiorly over traditional alignment, by inducing regularization to the weights of the CNN. We also study the problem of EEG-based affect recognition, inspired by works suggesting that emotions can be expressed in relative terms, i.e. through ordinal comparisons between different affective state levels. We propose treating data samples in a pairwise manner to infer the ordinal relation between their corresponding affective state labels, as an auxiliary training objective. We incorporate our objective in a deep network architecture which we jointly train on the tasks of sample-wise classification and pairwise ordinal ranking. We evaluate our method on the affective datasets of DEAP and SEED and obtain performance improvements over deep networks trained without the additional ranking objective

    Applying evolution strategies to preprocessing EEG signals for brain–computer interfaces

    Get PDF
    An appropriate preprocessing of EEG signals is crucial to get high classification accuracy for Brain–Computer Interfaces (BCI). The raw EEG data are continuous signals in the time-domain that can be transformed by means of filters. Among them, spatial filters and selecting the most appropriate frequency-bands in the frequency domain are known to improve classification accuracy. However, because of the high variability among users, the filters must be properly adjusted to every user’s data before competitive results can be obtained. In this paper we propose to use the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for automatically tuning the filters. Spatial and frequency-selection filters are evolved to minimize both classification error and the number of frequency bands used. This evolutionary approach to filter optimization has been tested on data for different users from the BCI-III competition. The evolved filters provide higher accuracy than approaches used in the competition. Results are also consistent across different runs of CMA-ES.This work has been funded by the Spanish Ministry of Science under Contract TIN2008-06491-C04-03 (MSTAR project) and TIN2011-28336 (MOVES project).Publicad

    Trends in EEG signal feature extraction applications

    Get PDF
    This paper will focus on electroencephalogram (EEG) signal analysis with an emphasis on common feature extraction techniques mentioned in the research literature, as well as a variety of applications that this can be applied to. In this review, we cover single and multi-dimensional EEG signal processing and feature extraction techniques in the time domain, frequency domain, decomposition domain, time-frequency domain, and spatial domain. We also provide pseudocode for the methods discussed so that they can be replicated by practitioners and researchers in their specific areas of biomedical work. Furthermore, we discuss artificial intelligence applications such as assistive technology, neurological disease classification, brain-computer interface systems, as well as their machine learning integration counterparts, to complete the overall pipeline design for EEG signal analysis. Finally, we discuss future work that can be innovated in the feature extraction domain for EEG signal analysis

    Signal Processing Using Non-invasive Physiological Sensors

    Get PDF
    Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition
    corecore