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Abstract

In this thesis we design deep learning techniques for training deep neural networks on

electroencephalography (EEG) data and in particular on two problems, namely EEG-

based motor imagery decoding and EEG-based affect recognition, addressing challenges

associated with them. Regarding the problem of motor imagery (MI) decoding, we

first consider the various kinds of domain shifts in the EEG signals, caused by inter-

individual differences (e.g. brain anatomy, personality and cognitive profile). These

domain shifts render multi-subject training a challenging task and impede robust cross-

subject generalization. We build a two-stage model ensemble architecture and propose

two objectives to train it, combining the strengths of curriculum learning and collabor-

ative training. Our subject-independent experiments on the large datasets of Physionet

and OpenBMI, verify the effectiveness of our approach. Next, we explore the utilization

of the spatial covariance of EEG signals through alignment techniques, with the goal

of learning domain-invariant representations. We introduce a Riemannian framework

that concurrently performs covariance-based signal alignment and data augmentation,

while training a convolutional neural network (CNN) on EEG time-series. Experiments

on the BCI IV-2a dataset show that our method performs superiorly over traditional

alignment, by inducing regularization to the weights of the CNN. We also study the

problem of EEG-based affect recognition, inspired by works suggesting that emotions

can be expressed in relative terms, i.e. through ordinal comparisons between different

affective state levels. We propose treating data samples in a pairwise manner to infer

the ordinal relation between their corresponding affective state labels, as an auxiliary

training objective. We incorporate our objective in a deep network architecture which

we jointly train on the tasks of sample-wise classification and pairwise ordinal ranking.

We evaluate our method on the affective datasets of DEAP and SEED and obtain
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performance improvements over deep networks trained without the additional ranking

objective.
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Chapter 1

Introduction

Contents

1.1 Electroencephalography (EEG) . . . . . . . . . . . . . . . . . . . . 3

1.2 Machine learning for EEG analysis . . . . . . . . . . . . . . . . . . 5

1.3 EEG-based motor imagery decoding . . . . . . . . . . . . . . . . . 6

1.4 EEG-based affect recognition . . . . . . . . . . . . . . . . . . . . . 7

1.5 Challenges and assumptions . . . . . . . . . . . . . . . . . . . . . 8

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1 Electroencephalography (EEG)

The brain is the most complex organ within the human body, having an estimated

average of 86 billion neurons [92]. As a part of the central nervous system, the brain

is involved in a multitude of functions such as motor movements, vision, hearing and

emotional responses. To accomplish these processes, the neurons of the brain send

electrical and chemical signals to other neurons or parts of the body. Electroenceph-

alography (EEG) is a neuroimaging technique that measures the electrical activity of

the brain through electrodes affixed to the scalp. The voltage captured by these elec-

trodes corresponds to collective activity of populations of neurons. Research around
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1.1. Electroencephalography (EEG)

the existence of electric current on animal brains dates back to the nineteenth century,

in the works of pioneer electrophysiologists Richard Caton [37] and Adolf Beck [23].

The first EEG recording on a human brain was done by Hans Berger in 1924, while

the results were published in 1929 [25].

Nowadays, technological and research developments have enabled the widespread

collection, storage and analysis of EEG data. In some cases these data need to be

further analyzed by human experts, which can be a lengthy process. For example, in

the healthcare domain, professionals with neurophysiological expertise are required to

interpret hour-long EEG recordings, in order to detect neonatal encephalopathy or to

provide sleep disorder diagnoses. The creation of automated EEG analysis systems has

been beneficial not only to medical professionals, but also to individuals and research

communities of several fields. Other applications of automated EEG systems include

stroke patient rehabilitation, visual spellers, interactive image synthesis and personal-

ized recommendation systems. In many of these applications, it is critical to have fast

and accurate neural decoding systems. For such purposes, various statistical tools and

machine learning techniques have been used [84, 76, 123, 97] since the decade of 1980.

In this thesis we focus on the problems of motor imagery decoding and affect re-

cognition from EEG data. In this chapter we first briefly describe the limitations of

traditional machine learning techniques and the potential of deep learning for EEG

analysis, in Section 1.2. Next, we introduce the problems of motor imagery decoding

and affect recognition, in Sections 1.3 and 1.4 respectively. Afterwards, in Section 1.5

we list the challenges and assumptions of the studied problems, while in Section 1.6 we

summarize the contributions of this thesis. Finally, in Section 1.7 we detail the outline

of this thesis.
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1.2. Machine learning for EEG analysis

1.2 Machine learning for EEG analysis

Traditional machine learning methods have shown particular limitations in their ability

to effectively handle natural data in their raw form. For this reason, and concerning

the modality of EEG, a plethora of handcrafted feature types has been investigated

for EEG-based tasks [94, 178, 68], spanning the time, frequency and time-frequency

domains. However, the lack of a consistent narrative on the suitability of each feature

type for a given task, is evident in the literature [102]. The vast majority of hand-

crafted features are electrode-wise, i.e. they are computed using the signal of a single

EEG electrode. The electrode-wise nature of these features brings into question their

potential towards capturing phenomena with manifestations in multiple areas of the

brain. Moreover, handcrafted features of an EEG time-series signal are computed on

temporal windows with pre-specified length. This restricts their usefulness towards

detecting patterns with varying duration. Additionaly, algorithms trained on hand-

crafted features present poor cross-subject generalization, thus in most cases they are

used to build subject-specific models.

The advent of deep learning (DL) [134], which is a subset of machine learning using

neural networks to learn representations, has led to significant progress on several data

modalities, such as images, audio and text. Since the breakthrough year of 2012 when

the DL architecture of AlexNet [127] won the ImageNet [193] large-scale visual recogni-

tion challenge, DL models have achieved state-of-the-art results on many benchmarks

and are widely deployed on production-level for a multitude of tasks [240]. The emer-

gence of DL techniques has been relatively slower for EEG data [192], partially due

to the lack of large publicly available datasets and open-source code libraries. How-

ever, there is an ever-increasing interest on the development of DL algorithms that will

enable bringing EEG technology in out-of-the-lab settings.

A big advantage of DL approaches for EEG data, is their ability to learn repres-

entations in an end-to-end manner, with minimal signal preprocessing needed. In this
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1.3. EEG-based motor imagery decoding

way, the requirement of standard machine learning techniques to operate on precom-

puted feature representations is bypassed. Deep architectures for EEG have excelled

at supervised [232] and self-supervised [16] learning scenarios, while proof-of-concepts

have been demonstrated in reinforcement learning [242]. Significant steps have been

made in the exploration of training methodologies and model architectures that can

accomodate learning from EEG datasets with an increasingly large number of parti-

cipants and learning from multiple datasets. Furthermore, DL architectures capable

of learning from a varying number of EEG electrodes [125] or learning from corrupted

channels [17] have been introduced.

Deep learning has undoubtedly brought dramatic improvements into the field of

EEG-based learning. Despite this fact, there are still plenty of open issues that are

not addressed by existing works. Whole families of deep learning techniques remain

relatively unexplored on EEG data. Furthermore, EEG-based DL approaches are often

motivated by unconventional rationales, that are not grounded to knowledge from the

domain of neuroscience. For these reasons, we deem that further research is necessary

on the direction of building more sophisticated methods for automated EEG analysis

using DL.

1.3 EEG-based motor imagery decoding

The main problem that we investigate in this thesis is EEG-based motor imagery

(MI) decoding. Motor imagery is a well-known paradigm for brain-computer inter-

faces (BCI), involving the imagination of motor acts, without overt motor execution

or muscle activation [149]. In the MI decoding task, EEG signals or signal-derived fea-

tures are fed to machine learning models, to predict the type of imagined movements

(e.g. left-hand, right-hand, feet or tongue movement). There are several factors that

influence the behaviour of a subject during a motor imagery task, including personal-

ity type, cognitive profile, neurophysiological predictors, brain anatomy and familiarity
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1.4. EEG-based affect recognition

with BCI technology [179, 104, 105]. These factors result in widely varying patterns

of EEG signals, even within an individual, rendering MI decoding a difficult task.

Practical applications of MI decoding include controlling a cursor or a prosthetic (i.e.

artificial) limb.

We divide the problem of MI decoding in two subproblems which we investigate.

The first subproblem is the development of a method that addresses the issue of do-

main shifts (i.e. inter-subject differences in the characteristics of EEG signals), that is

inherent in multi-subject EEG datasets. Our proposed solution enables: (i) training

on a large number of subjects and (ii) robust generalization on new (i.e. unseen) sub-

jects. The second subproblem that we deal with, is the exploration of ways to learn

domain-invariant representations through the combination of data alignment and data

augmentation techniques. We build a method that effectively achieves regularization

on CNN networks that operate on EEG time-series, by simultaneously performing data

alignment and data augmentation on the EEG signals during training.

1.4 EEG-based affect recognition

The second problem that we investigate is EEG-based affect recognition, where we

apply an idea originating from psychology. The role of emotions in human experience

and communication is crucial [182], as they affect actions, decision-making [143] and

situation awareness in human-centric environments. The increasing availability and use

of multimedia in everyday life, poses the challenge of further exploring the capabilities

of systems that can analyze and measure human affective responses to such multimedia

content. Practical applications of EEG-based emotion recognition include profile-based

video content suggestion [36] and neuromarketing [107].

Within the affective computing field, the topic of emotion recognition from EEG

data has been extensively studied in several works [5]. Using music video clips or

movies as stimuli that are presented to human subjects, affect recognition works aim
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1.5. Challenges and assumptions

to estimate the affective responses of the subjects to the content of the stimuli. The

problem of affect estimation is highly subjective, as the groundtruth labels of affective

datasets are usually emotional ratings in a continuous range of a numerical scale, self-

reported by human participants. Moreover, affective ratings are ordinal by nature,

since humans assign such values by comparing forthcoming to previously encountered

emotional experiences. The ordinality of human emotions has been largely ignored in

the literature, as raw continuous annotations are converted into discrete classes (i.e.,

splitting the scale range of ratings into classes such as “low”/“high” arousal/valence,

by defining a threshold value). Thus the developed machine learning models are often

trained solely on classification tasks that do not enable them to accurately capture

the structure of emotions. We address the problem of affect estimation by designing a

neural network architecture that does not disregard the ordinality of emotional ratings.

We exploit knowledge from the original continuous annotations by learning to perform

pairwise comparisons of samples with respect to their annotations.

1.5 Challenges and assumptions

In this thesis we address two problems, namely motor imagery decoding and affect

recognition. There are both general (i.e. problem-independent) and problem-specific

issues that render these tasks challenging. We briefly present the most important issues

that obstruct the development of robust EEG-based DL techniques:

• Low Signal-to-Noise Ratio (SNR): EEG signals measure electrical brain

activity, as captured by electrodes that are placed on the scalp. Between the

sources of this electrical activity (i.e. the cortical neurons) and the sensors that

measure this activity (i.e. the electrodes), lie materials with different electrical

conductivity, such as the scalp, the skull bone and the dura mater [51, 66]. This

means that electrical activity travelling through these materials will be distorted

before being picked up by the EEG sensors. This distortion inserts noise in the

8
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recorded EEG signal, making it difficult to recover the original brain activity.

Among the most well-known methods that improve the SNR of EEG signals,

is stimulus synchronized signal averaging. Signal averaging works under the as-

sumption that the signal is random (thus, averaging would yield the stable EEG

response), and the limitation that the signal is time-locked to an event, which

is the case in event-related potential (ERP) studies. However, a requirement of

implementing real-time BCIs is to be able to decode single trials, overcoming

the necessity of collecting data from multiple trials to perform signal averaging.

Moreover, in affective datasets where the stimuli are entire videos, each stimu-

lus is presented only a single time to each participant, rendering trial averaging

impossible.

• Limited data availability: The limited availability of EEG data is reflected

on several levels. First and foremost, there is a limited number of EEG datasets

that are publicly available, mostly because of privacy concerns. There is also a

limited number of available datasets on specific problems (e.g. affect recognition)

and the existing datasets are collected using different types of annotations (e.g.

discrete or continuous affective ratings) and different types of stimuli (e.g. music

video clips or movies). In many cases, EEG datasets contain a small number

of human subjects (usually less than fifty participants per dataset) and a small

number of trials per subject (usually a few tens of trials per participant). Com-

bining multiple datasets to combat data scarcity, is often impeded by the use

of different types of EEG recording equipment/devices (i.e. research-grade or

consumer-grade headsets) across datasets. Finally, the collection of EEG data

is an expensive and time-consuming process that requires domain expertise and

abidance to EEG data standardization protocols [177].

• Inter-subject variability: This is one of the biggest challenges in EEG-based

learning, referring to the existence of differences in the characteristics of EEG

signals acquired from different individuals (i.e., there are different data distribu-
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tions for each subject) [151]. In the literature, often the data of each subject

(and also of each session for a specific subject) are considered as a separate data

domain [126], hence the inter-subject differences are treated as domain shifts.

There are several sources of variation that lead to domain shifts, such as the per-

sonality type, cognitive profile, neurophysiological predictors and brain anatomy

of each subject [104, 105]. Overcoming the issue of inter-subject variability is of

utmost importance for building ML models with strong subject-independent per-

formance. A popular learning paradigm towards this direction, is the family of

domain adaptation (DA) techniques, which requires available data from the test

subjects (i.e. from the target domains) during the training phase. Evidently, this

requirement is a limiting factor, and there is a growing interest in the develop-

ment of calibration-free BCIs and ML models that do not require any knowledge

about test subjects during training.

• BCI illiteracy: This term has been used to describe the phenomenon of users

achieving low performance when attempting to operate a BCI system [3]. In

the MI paradigm, this relates to the ability of users to perform voluntary mod-

ulation of their sensorimotor rhythms, which are widely considered as the most

relevant brain pattern used by MI BCIs. BCI illiteracy is more common on

the MI paradigm, compared to other BCI paradigms such as ERPs or Steady

State Visually Evoked Potentials (SSVEPs) [185]. To improve the performance

of “BCI-illiterate” subjects, some works have employed co-adaptive learning [224],

i.e. adapting a classifier to the brain signals of a user. This adaptation is done

while the BCI system presents visual feedback to the user, e.g. by showing

whether a cursor is moving into a previously indicated target direction. An al-

ternative but more challenging direction of research towards reducing the issue

of BCI illiteracy, is the exploration of ways to train stronger classifiers without

the necessity of online adaptation.

• Annotation subjectiveness and uncertainty: Affective datasets let parti-
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cipants rate their emotional experiences while viewing multimedia content, using

the well-known Likert scales and self-assessment manikins [32]. That is, regard-

ing a particular stimulus, every participant reports the perceived emotion in

terms of arousal, valence or other attributes. The issue of label subjectiveness

is inherent in the process of affect annotation, both for users that perform self-

reporting of perceived emotions and for external annotators that perform data

labelling [247, 246]. The reaction of each person to a stimulus depends on several

factors, such as the current mood, the personality type, and familiarity with the

content of the stimulus. Moreover, each person may have a varying emotional

reaction across numerous trials where the same stimulus is presented. Another

limitation of affect annotation schemes, is that often they do not account for the

uncertainty of human perception [87], which is also reflected on the assigned la-

bel values from human annotators. Typically, even when (inherently uncertain)

continuous annotations are available for a dataset, researchers transform them

through quantization/thresholding to derive “hard” (i.e. discrete) labels that are

used as groundtruth in classification tasks. This transformation further amplifies

the existing label uncertainty. Moreover, collapsing the continuous labels into

discrete classes results in information loss regarding the pairwise relationships of

samples with respect to their original (i.e. continuous) labels.

• Long trial duration: Affective datasets that utilise music video clips or movies

as stimuli, have large durations for each trial [122, 158]. The provided trial-wise

labels are assumed to correspond to the entire duration of each stimulus. Each

stimulus has varying temporal evolution and audiovisual content across shorter

temporal windows (e.g. some moments may be more interesting/memorable than

others, or may elicit stronger emotions). Thus, the single groundtruth label of

each trial has fluctuating relevance to the content of the corresponding stimulus

across time. A trivial approach that is usually employed to alleviate this issue,

is to discard an initial segment of each trial (e.g. the first quarter of its entire
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duration). This is done under the assumption that the annotated emotion of a

trial is not elicited immediately after the onset of the stimulus.

1.6 Contributions

A summary of the main contributions of this thesis is provided in this section.

In the first main chapter (Chapter 3), we propose a domain generalization method

for motor imagery decoding. The main contributions of that chapter are the following:

• We propose a model ensembling approach to address the issue of domain shifts in

the task of motor imagery decoding. Our method is based on employing diverse

feature extractors to avoid the phenomenon of negative transfer learning due to

domain shifts. Specifically, we build a model ensembling architecture that con-

sists of two stages, namely the first stage that performs feature extraction using

multiple base models, and the second stage that contains a single shared classifier

that operates on top of all base models. A big advantage of our architecture is

its simple design. Existing ensemble architectures usually have a varying number

of filters, or varying filter lengths within each base model or across base models.

They also use multiple branches or multi-view input representations (e.g. EEG

signals that are bandpass-filtered on different frequency ranges) per base model.

By contrast, our architecture has the same input space and the same design for

all base models that act as feature extractors. The total number of trainable

parameters for our architecture, as well as its computational cost, are kept low

even when processing EEG signals from a large number of electrodes. Moreover,

our architecture is trained in an end-to-end manner in a single phase and does

not require any hyperparameter tuning or model selection process.

• We design a curriculum learning scheme, such that each model of our ensemble

architecture is trained on all the source domains (i.e. all training subjects), but
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progressively specializes to a specific subset of subjects, as training proceeds. As

a result, each feature extractor of our ensemble, captures patterns that are mostly

specific to EEG signal characteristics of a subset of training subjects. In essence,

our curriculum learning scheme equips our ensemble with local (i.e. focused on a

subset of the entire training set) feature extraction power and promotes diversity

across the models of the ensemble. The combination of multiple feature repres-

entations leads to strong generalization capabilities, as our architecture covers a

wide range of patterns through several models that act as diverse feature extract-

ors. To our knowledge, curriculum learning has not been previously explored for

cross-subject MI decoding.

• Another contribution of our method, is that we introduce an intra-ensemble dis-

tillation loss, in order to regulate the trade-off between feature diversity and

generalization performance [28]. Our distillation loss pushes the class score pre-

dictions of each individual model, close to the average of the predictions of all the

other models, thereby controlling the diversity within the ensemble. This is done

by using pseudolabels (obtained from the predictions of all the other models) as

groundtruth targets for each model. In essence, our distillation loss material-

izes a collaborative training scheme, that leads to exchange of knowledge across

the models, working complementary with the curriculum learning scheme that

is designed for each model. The balance between diversity and generalization is

controlled through a hyperparameter that weights the contribution of the distil-

lation loss to the total loss. Our work is the first to propose a pseudolabelling

scheme for EEG-based knowledge distillation.

In the following chapter (Chapter 4), we propose a regularization method for motor

imagery decoding. The main contributions of that chapter are the following:

• We propose covariance mixing (CovMix), a method that acts as a regularizer
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on CNNs that are trained on EEG time-series decoding. A rising trend when

using CNNs for EEG signal processing, is to transform the signals by performing

covariance-based alignment [89, 126], before feeding them as inputs to the CNN.

Alignment has been shown to improve cross-subject generalization, by helping to

learn domain-invariant representations. Typically, methods that employ align-

ment do so by using a symmetric positive definite (SPD) matrix that corresponds

to session-wise statistics. This SPD matrix is estimated either by directly com-

puting the session-wise covariance matrix of the EEG signals, or by averaging

the trial-wise covariance matrices across the entire session. In contrast to such

approaches, we propose to compute the SPD matrix that is used to perform

alignment, by interpolating between session-wise and trial-wise covariance stat-

istics with a random proportion. Considering the nature of covariance matrices,

we perform interpolation on the Riemannian manifold, by traversing along the

geodesic that connects the session-wise and trial-wise SPD matrices. Practic-

ally, our method simultaneously performs alignment and data augmentation, as

in each training step the input data are aligned using a different transformation

matrix (i.e. obtained by performing interpolation with a different proportion of

session and trial statistics).

• Our proposed method is performed before feeding the data to the classification

network. Thus, CovMix is agnostic to the model architecture that performs MI

decoding, and can be used in any method that employs CNNs for EEG-based

classification.

• We perform cross-subject evaluation on BCI Competition IV-2a dataset [215],

showing that adding CovMix acts as regularization to the classification network

and yields stronger generalization results compared to the standard covariance-

based alignment and the domain generalization techniques of MixUp and Mix-

Style.
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Finally, in the last main chapter of this thesis (Chapter 5), we work on the task of

affect recognition and apply the idea of performing pairwise ordinal ranking of data

samples with respect to their affective labels. The main contributions of that chapter

are the following:

• We investigate the utilization of pairwise ranking as an auxiliary objective to

improve the performance of deep neural networks on EEG-based affect classific-

ation. The kind of available affect annotations determines the expected output

of an affect recognition model, hence also the type of machine learning approach

that can be applied, namely regression, classification or preference learning. Typ-

ically, plain classification approaches are applied on EEG-based affective datasets,

by quantizing the original ratings to obtain discrete classes that correspond to

affective state levels. However, transforming ratings of ordinal nature into nom-

inal classes results in information loss regarding the structure of ratings. A more

suitable approach is preference learning, that involves comparing (i.e. ranking)

emotional ratings. Despite the exciting results of deep learning methods on af-

fective computing problems, the possibility of building deep networks that can

compare samples corresponding to different affective states, has remained mostly

unexplored. Refraining from using solely a sample-wise classification objective,

we propose employing an additional pairwise objective, namely the emotional

rating comparison. Considering a pair of data samples and their affective la-

bels, the comparison task infers the ordinal ranking relation between the labels

of the samples (i.e. higher/similar/lower arousal, higher/similar/lower valence).

We build a deep architecture that is jointly trained on two tasks: i) sample-wise

affect classification and ii) pairwise ordinal ranking of samples with respect to

their labels. Our goal is to boost the classification performance of affect recogni-

tion models, leveraging the additional supervision of the ranking task only during

training. Our experiments show that the former task benefits from the latter, as
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treating the data in a pairwise manner enables better representation learning.

• We further consider affective datasets such as SEED, where the original labels

are discrete, instead of continuous. In this case, affect recognition models are

directly trained on the available discrete labels. The three classes of SEED (i.e.

“Positive”, “Neutral” and “Negative”) practically correspond to three ordered levels

of valence. However, existing works ignore the evident ordinality in the classes

of SEED and treat them as being nominal. In an alternative approach, we adapt

our proposed network architecture to perform pairwise ranking of samples with

respect to their discrete labels, by inferring the ordinal relations between them.

Our experiments show that our method can be beneficial even in cases where the

original affective annotations are discrete, instead of continuous.

1.7 Outline of the thesis

The rest of the thesis is structured as follows. We start by discussing related works in

Chapter 2. We follow by introducing our proposed ensemble learning methodology in

Chapter 3, where we also present the experimental evaluation on two large MI datasets

(Physionet and OpenBMI). In Chapter 4 we address the issue of regularizing CNNs

that operate on EEG time-series, through our developed technique, CovMix, that uses

Riemannian geometry to jointly perform EEG signal alignment and data augmentation

during training. Moreover, we evaluate the proposed technique in the MI dataset of

BCI IV-2a. In Chapter 5, we work on the problem of affect recognition and provide a

preliminary study on employing pairwise ranking as an auxiliary task towards boosting

the classification performance of deep neural networks. Evaluation is performed on two

datasets, namely DEAP and SEED, where the original affective labels are continuous

and discrete, respectively. Finally, in Chapter 6 we draw our conclusions, highlight the

wider implications and discuss the strengths and limitations of the presented works.

Moreover, we identify potential applications and suggest directions for future research.
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In Chapter 1 we introduced the field of electroencephalography. We begin Chapter 2

by describing various techniques for EEG signal analysis in Section 2.1. We continue

by discussing the types and design principles of BCIs in Section 2.2. The state of

the art methods for motor imagery decoding are discussed in Section 2.3. In order

to study the problem of affect recognition, we provide an overview of affect modelling

and annotation schemes in Section 2.4. Then we discuss state of the art research on

affect recognition in Section 2.5. In Section 2.6, we describe the datasets as well as

the evaluation metrics that are used in this thesis. Finally, we conclude the chapter in

Section 2.7.
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2.1 EEG signal analysis

There are several types of tasks that can be performed by analyzing EEG signals. Fea-

tures derived from EEG signals can be used as a proxy towards interpreting underlying

processes of the brain. Research works that attempt to gain insights into collected

EEG data, are usually based on established connections between cortical functions and

brain areas. Among the most widely used mappings from cortical regions to functions,

is the categorization of German neuroanatomist Korbinian Brodmann, that divides the

cerebral cortex in 52 brain regions [34], called “Brodmann areas”. These regions are es-

sential for specific brain functions (e.g. sensation processing, motor planning, working

memory etc.), however each individual Brodmann area is not associated with a single

functional role. A visualisation of Brodmann areas is shown in Fig. 2.1. These cortical

areas are the sources of brain activity, however the neuroimaging technique of EEG

does not directly measure brain activity in its source space. In fact, EEG indirectly

measures brain activity by capturing the electrical activity on the sensor space, i.e. on

the scalp surface where the electrodes are placed. To support easier comparisons and

enable reproducibility across research studies that utilize EEG data, a standardization

method for the placement of EEG electrodes is necessary. The first such system was

presented in 1958 by Herbert Jasper [99] and was given the name “International 10–20

system”. The standard electrode locations according to the 10-20 system are shown

in Fig. 2.2. With the advent of more dense EEG montages that use hundreds of elec-

trodes, newer systems have been proposed, such as the 10-10 [42] and the 10-5 [169]

system.

In order to process EEG signals using any algorithm, the continuous EEG signal

needs to be discretely sampled with a specific frequency using an analog to digital

amplifier. According to the Nyquist–Shannon sampling theorem [204], the sampling

frequency should be at least two times larger than the maximum frequency that one

wants to retain from the original signal, in order to avoid the loss of information.
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(a) Lateral (side) view

(b) Medial view (section between the right and left hemi-
spheres)

Figure 2.1: Illustration of Brodmann areas. Figure taken from Wikipedia.

Typically, the upper limit of EEG frequencies that are studied lies in the range between

40-100 Hz. The reason for this, is that high frequencies are synchronously generated

by smaller regions of the brain, resulting in smaller signal amplitude that cannot be

captured on the scalp surface, while also because the skull filters out high-frequency

signals [165]. According to the most widely known categorization of neural oscillations

based on their frequency content, there are five basic frequency bands: delta (0.1-4Hz),

theta (4-8Hz), alpha (8-12Hz), beta (12-30Hz) and gamma (30-150Hz). An indicative
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Figure 2.2: Illustration of the International 10-20 EEG electrode placement system.
Figure taken from Wikipedia.

illustration of an EEG signal for each of the five bands is shown in Fig. 2.3.

Due to their nature (i.e. being collected from the scalp surface), EEG signals also

carry information that does not originate from the brain. This pertains to information

related to motion artifacts (e.g. saccadic eye movements, eye blinking, jaw clenching,

muscle/head/body movements), heart rate and power-line interference. In order to

obtain clean EEG signals that do not carry such noise, a few preprocessing steps are

commonly used:

• Notch filtering: A bandstop filtering operation that attenuates the power-line

interference appearing on 50Hz (or 60Hz for power lines on the United States of

America and South Korea).

• Bandpass filtering: A filtering operation that keeps the frequency content of

a specific range. An equivalent operation is to apply a highpass and a lowpass

filter.
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• Bad channel/data rejection: There are cases where an EEG electrode might

have a faulty connection, thus the signal of this electrode cannot be further

analyzed. To avoid using such data, one can reject individual EEG electrodes.

Optionally, the signal of a faulty electrode can be replaced by performing inter-

polation from the neighbouring electrodes. There are also cases where short-time

events (e.g. movements) render all EEG signals contaminated with artifacts.

In such cases, one can opt to reject all data within a contaminated short-time

window.

• Artifact removal: Individual sources of noise (e.g. ocular artifacts) can be re-

moved through techniques such as Independent Component Analysis (ICA) [225,

235]. First, the EEG signals are decomposed into a number of source compon-

ents. Then, the unwanted components are rejected (either automatically or upon

visual inspection from an expert [43]), and the EEG signals are reconstructed

using only the remaining ICA components.

2.2 Brain-computer interfaces

Brain-Computer Interfaces (BCIs) [245] are communication systems that translate

brain activity into commands, enabling the interaction of human users with robotic

limbs, computers or wheelchairs. The term “Brain-Computer Interface” (BCI) was

introduced by computer scientist Jacques Vidal in 1973 [222], while in 1977 Vidal

showed the first application [223] of a BCI where the user could move a cursor in a

two-dimensional maze using Event-Related Potentials (ERPs) [221]. According to a

definition given by Wolpaw et al. [236], “a brain–computer interface is a communica-

tion system that does not depend on the brain’s normal output pathways of peripheral

nerves and muscles”. There is a wide spectrum of BCI applications, including post-

stroke rehabilitation of limb motor impairments [15], character typing through visual

spellers [244] and interactive image generation [209, 61]. A general framework for
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Figure 2.3: Illustration of the five frequency bands. Figure taken from Wikipedia.

designing BCI systems was proposed by Mason and Birch [154], containing six basic

steps (illustrated in Fig. 2.4):

1. Signal acquisition: A neuroimaging technique is used in order to collect signals

that measure brain activity. The most prevalent neuroimaging modality used in

BCIs is EEG [1].

2. Signal preprocessing: Various algorithms (e.g. filtering and artifact rejection)

can be used to reduce the amount of noise that is present in the obtained signals.
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Figure 2.4: Architecture of a brain-computer interface.

3. Feature extraction: Several kinds of features can be extracted from the prepro-

cessed signals. In the recent years there is a growing interest on the usage of deep

neural networks for representation learning from EEG signals, while previously

more focus was given on handcrafted features [102].

4. Classification: A classification algorithm is applied on the learned features,

enabling the BCI system to infer a class as its prediction. This step is also

known as “feature translation”.

5. Control signal: A command is executed, corresponding to the predicted class of

the previous step. This command controls an application (e.g. moves a wheelchair

or a prosthetic limb, types a character on a visual speller, etc.).

6. Feedback: A feedback is provided to the users, informing them about how well
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they can control the BCI [191]. Typically, this feedback can be of various forms

(e.g. visual, auditory or haptic). The ultimate goal of providing feedback to the

users is to train them, so as to increase their performance.

There are several types of BCIs that, based on their characteristics, can be divided

in various sub-categories [40, 49], such as: (i) dependent and independent, (ii) endo-

genous and exogenous, (iii) invasive and non-invasive, (iv) synchronous (system-paced)

and asynchronous (self-paced) and (v) evoked and spontaneous. A major criterion of

categorization for BCI systems is whether they depend on evoked or spontaneous EEG

signals:

• Evoked BCIs: The term “Evoked Potentials” (EP) is used to describe the neural

response that is generated in the brain when a human perceives an external

stimulus. This response is time-locked to the stimulus. Among the most well-

known examples of evoked BCI systems are ERP-based BCIs (e.g. P300 [76]

and code-modulated Visually-Evoked Potentials (cVEP) [29]) and BCIs that are

based on Steady-State Visually-Evoked Potentials (SSVEP) [162]. Some of the

advantages of evoked BCIs are their high Information Transfer Rate (ITR) [237],

low calibration time and their ability to perform satisfactorily with a low number

of electrodes.

• Spontaneous BCIs: By contrast, spontaneous BCI systems do not employ ex-

ternal stimulation, thus allowing the user to control them by voluntarily generat-

ing specific rhythmic patterns of neural activity. The most well-studied example

is the Motor Imagery (MI) [181] paradigm, which is described in more detail in

Section 2.3, while other spontaneous BCIs are based on the concept of Slow Cor-

tical Potentials (SCP) [62, 202]. An advantage of spontaneous BCIs over evoked

BCIs is that their usage causes lower fatigue and mental workload, as the user is

not required to stare at stimuli [241, 110].
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2.3 Motor Imagery

Motor imagery (MI) is a well-known paradigm for BCIs, involving the imagination of

motor acts, without overt motor execution or muscle activation [149]. In the MI decod-

ing task, EEG signals or signal-derived features are fed to machine learning models, to

predict the labels of imagined limb movements (e.g. left-hand versus right-hand move-

ment). The relationship between motor imagery and motor preparation/execution has

been widely studied [120, 217], showing that these processes recruit common brain

areas [86] such as the primary motor cortex [101]. The usage of the MI paradigm for

BCIs is based on the phenomenon of sensorimotor rhythms (SMR) [250], i.e. rhythmic

oscillations over the sensorimotor cortex that arise during motor imagery. Thus, a key

ingredient towards recognizing motor intentions from brain activity, is the ability to

perform spatial localization of SMR modulation. A systematic mapping of the human

somatosensory cortex was presented in the seminal work published by Penfield and

Brodley [174] in 1937, while a few years later Penfield and Rasmussen [175] introduced

a mapping that associates areas of the cerebral cortex with motor and sensory func-

tions. This mapping, which is shown in Fig. 2.5, has been known as the “Penfield

Homunculus”. Many works that study MI tasks (e.g. imagination of hand/foot move-

ment) have observed clear SMR modulation on EEG electrodes that are placed in scalp

areas overlying the corresponding brain areas, as described in the Penfield Homuncu-

lus. For example, the C3/C4 EEG electrode locations are positioned on the scalp areas

that are closely related with right/left hand motor movements.

Following the general trend of the EEG field, there is a growing number of MI

datasets with an increasingly large number of participants. The issue of inter-subject

variability impedes the applicability of MI-based BCIs in real-world settings, as lengthy

user training and model calibration processes remain necessary. This variability is

related to spatial, spectral and temporal differences in the manifestation of sensorimotor

rhythms across individuals [188]. Thus, these differences lead to domain shifts that are
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Figure 2.5: Illustration of the Penfield Homunculus: (a) The central sulcus is a groove in
the cerebral cortex, separating the frontal lobe from the parietal lobe. More specifically,
it separates the primary motor cortex from the primary somatosensory cortex. (b)
According to the Penfield Homunculus, the motor cortex is responsible for processing
motor functions, while the somatosensory cortex is responsible for processing sensory
information (e.g. touch, temperature or pain) of different body parts. Figure taken
from [30].

present in multi-subject MI datasets. Exploring research directions that would allow

overcoming these domain shifts, is of paramount importance towards building MI-based

BCIs with robust performance in subject-independent settings.

In the remaining part of this section we present an overview of previous work and

state-of-the-art architectures on MI decoding.

Common Spatial Patterns (CSP): Early works on MI decoding include spatial

filtering techniques, such as the method of Common Spatial Patterns (CSP) [30, 123].

In CSP, the variances of the filtered signals are maximized/minimized over certain

conditions (i.e. classes). CSP methods involve computing the average spatial covariance

matrix of the EEG signals for each class and jointly diagonalizing them. Handcrafted

feature vectors are extracted from the spatially filtered signals, collapsing the temporal

aspect by computing the variance in the dimension of time. Then, typical classifiers

such as Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) [220]
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are used.

One limitation of the CSP method is that while the spatial filters are learned, the

spectral content is filtered either using a range that is selected manually, or using

a generic broad frequency range. An alternative solution is proposed in the work

of Dornhege et al. [65] that describes a simultaneous optimization of a spatial and

a spectral filter. As the process of finding the single “best” frequency band for each

subject can be time-consuming, more recent methods leverage filter banks, i.e. multiple

frequency bands in the same time. The method of Sub-Band CSP (SBCSP) [163]

performs CSP and trains individual classifiers in multiple sub-bands. In order to infer

the final prediction, SBCSP performs fusion on the scores of each sub-band using an

SVM. The method of Filter Bank CSP (FBCSP) [9] builds and extends the SBCSP

technique, as it includes four stages, namely frequency filtering, spatial filtering, feature

selection and classification. By investigating multiple algorithms for feature selection

and classification, FBCSP shows superior results compared to SBCSP and CSP. In

contrast to works that assume equal importance for all frequency sub-bands, Tang et

al. [214] propose assigning higher weights to specific sub-bands.

Several works highlight the importance of exploiting multi-band information in the

CSP framework, but less works explore the impact of the time window that is used. The

work of Miao et al. [157] proposes a method called Common Time-Frequency-Spatial

Patterns (CTFSP) that seeks to optimize the time window. CTFSP applies a sliding

window approach to segment each sample in multiple time windows. Then, for all the

data that correspond to each time window, CTFSP performs multi-band filtering, fea-

ture extraction and feature selection, before training a window-specific SVM classifier.

The final prediction is inferred by fusing the predictions of the individual classifiers.

The work of Zhang et al. [255] describes a technique for simultaneously optimizing the

frequency bands and the appropriate time windows, using a single SVM classifier.

The CSP framework is also used for ensemble learning, by combining the predic-
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tions of multiple EEG-based models. Initially this has been tried in intra-subject

settings [164, 136, 172, 48, 254]. Further work has been done on using CSP for subject-

independent models, by forming ensembles of CSP filters [198, 199].

Departing from subject-specific models and attempting to learn from multiple sub-

jects, numerous CSP-based algorithms are among the early works that tackle cross-

subject MI decoding. Lotte and Guan [148] propose incorporating information from

multiple subjects in a CSP framework by regularizing the covariance matrix of a sub-

ject towards the average covariance matrix of other subjects. However, for each target

subject the method requires selecting a subset of relevant source subjects. Another

work that builds on CSP, proposes weighting source subjects based on their similarity

to the target subject [46]. Alternatively from CSP works that use multiple training

subjects to learn task-relevant information, Samek et al. [197] propose learning inform-

ation related to the common non-stationarities that exist in the data. Specifically,

the assumption made in [197] is that non-stationarities that are caused by differences

in the stimulus presentation or feedback mode between sessions, are consistent across

subjects. An example of such a case is an experimental process where the training (i.e.

calibration) session is recorded without providing visual feedback to the user, while

in the testing session visual cues inform the user about the predictions of the BCI

system. This experimental design would yield increased activity in the occipital area,

that should be considered in the computation of the spatial filters.

Azab et al. [13] propose a transfer learning technique, leveraging multiple classifiers

that are trained on subject-specific CSP feature spaces from the source (i.e. training)

subjects. In more detail, the authors introduce a measure of similarity between the fea-

ture space of each training subject and the target (i.e. test) subject. Afterwards, when

computing the classification parameters of the test subject using a few labelled trials,

this measure is taken into account while also using knowledge from the classification

parameters of the source subjects.
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However, the family of CSP methods presents poor cross-subject generalization and

is restricted by the discarding of temporal information that occurs during feature ex-

traction. Furthermore, the CSP framework supports binary (i.e. two-class) problems

and extending CSP to multi-class scenarios requires solving multiple subproblems (i.e.

either between pairs of classes or in an one-versus-all manner) [142, 155, 115].

Covariance-based techniques: Instead of using the spatial covariance matrix of

EEG signals to compute spatial filters, another line of research inspired by Riemannian

geometry, directly uses them as the input features of classification models [248, 52].

Covariance matrices lie on the Riemannian manifold of symmetric positive definite

(SPD) matrices, hence should be treated accordingly. Riemannian geometry is a rich

framework for implementing algorithms that manipulate covariance matrices, as expli-

cit formulas exist for several operations (e.g. computation of the Riemannian distance

between two matrices, or computation of the Riemannian mean for a set of matrices)

in the Riemannian manifold. The work of Barachant et al. [19] is the first to pro-

pose a Riemannian classification framework for motor imagery BCIs that is based on

covariance matrices. Specifically, two scenarios are proposed in [19]: (i) classification

in the Riemannian manifold and (ii) classification in the Riemannian tangent space.

The first scenario is implemented using the Minimum Distance to Riemannian Mean

(MDRM) method. In MDRM, class-wise representations are obtained by estimating

the Riemannian mean of all trial-wise covariance matrices for each class. Note that this

Riemannian mean is a matrix that still belongs to the Riemannian manifold. Then, a

given test sample (i.e. covariance matrix) is classified by computing its distance to all

class-wise SPD matrices and assigning the index of the class that yields the minimum

distance, as the predicted class label. The second scenario is implemented by mapping

each sample into the tangent space that is located at the Riemannian mean of all the

training samples. This tangent space is Euclidean and thus classifiers such as LDA and

SVM can be employed.
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The method proposed in [20] deals with the problem of cross-session variability in the

feature distributions that are used in Riemannian frameworks. Evidently, when training

a classifier on features obtained through tangent space mapping, the selection of the

reference matrix that is used to perform the mapping is crucial. It is shown that by

properly adapting the reference point, the performance of classifiers can be improved on

data from sessions that are not included in the training set. Kalunga et al. [109] address

the problem of data scarcity proposing a method that performs data augmentation on

the Riemannian space, by interpolating on the log-Euclidean geodesic between trial-

wise covariance matrices. Specific care is taken to reject outliers that might exist in the

original covariance matrices, using the Riemannian potato [18] technique for automatic

artifact detection. Despite their widespread use, Riemannian geometry frameworks are

prone to outliers due to the non-stationarity of EEG signals [248] and do not allow

temporal information extraction.

Deep learning: Shifting from traditional handcrafted techniques (i.e. CSP-based

or Riemannian frameworks) to deep learning techniques and CNN-based architectures,

has enabled the exploration of more sophisticated methods. Using CNNs as feature ex-

tractors that automatically learn spatial, temporal and spectral representations, has led

to remarkable progress and state-of-the-art results in cross-subject EEG-based tasks,

including motor imagery decoding. Early works that use deep learning techniques

on EEG data focus on applications such as P300 detection [38] and epileptic seizure

detection [10].

A major breakthrough for CNN-based BCI applications is the introduction of EE-

GNet architecture by Lawhern et al. [132, 133]. EEGNet is a compact architecture

that operates on raw multi-channel EEG time-series and can be applied in various BCI

paradigms for classification purposes. EEGNet first temporally convolves the signals

in an electrode-wise manner, obtaining several frequency-specific signals that corres-

pond to each electrode. Then, EEGNet performs a spatial convolution that combines
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information across electrodes for each set of frequency-specific signals. Afterwards, a

depthwise convolution is applied to filter the temporal dimension, followed by a point-

wise convolution that combines information across the frequency dimension. Finally, a

single fully-connected layer is employed as the classifier of the architecture, predicting

the probability of each class. Variants of EEGNet that are inspired from the Incep-

tion architecture [213] are presented in Incep-EEGNet [189], EEG-Inception [251] and

MI-EEGNet [190].

Schirrmeister et al. [201] propose two convolutional architectures, namely “Deep Con-

vNet” and “Shallow ConvNet”, coupled with a training strategy that uses multiple crops

from each trial both during training and inference, to improve model performance.

These two architectures are compared against the handcrafted FBCSP [9] method

showing their superiority. Inspired by DenseNet [98] architecture, Kostas and Rudzicz

propose the architecture of TIDNet [126] that uses dilated convolutions and residual

connections in the temporal and spatial feature extraction stages. The method of

MIN2Net [12] employs multi-task learning in order to achieve better representation

learning. Specifically, MIN2Net is trained on three tasks: (i) an autoencoding task

where an encoder-decoder architecture attempts to reconstruct the original signals, (ii)

a deep metric learning task on the intermediate feature space at the output of the en-

coder and (iii) a standard classification task using the output of the encoder. However,

the data provided in [12] suggest that the reconstruction task is poorly addressed in

the training process of MIN2Net, indicating the importance of carefully assessing the

benefits of including each task in multi-task learning pipelines.

Other works go beyond designing neural architecture components and investigate

meaningful transfer learning approaches and combinations of multiple sources of data.

One such work is presented in [253] where the authors propose the technique of adaptive

transfer learning (ATL). ATL attempts to improve the performance of a pretrained

model, on test data from a subject that is not included in the training set. To achieve
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this, labelled data from the test subject are used for further training the pretrained

model, adapting its parameters to the test subject. The impact of two factors is

studied: (i) the amount of labelled data from the test subject and (ii) the number of

layers that are finetuned on the test subject. The experimental analysis validates that

ATL provides improvements over purely subject-independent models. However, the

assumption of using labelled data from a test subject, renders such scenarios as less

realistic and difficult to implement.

By contrast, other more plausible transfer learning scenarios try to utilize multiple

sources of data to train models with stronger robustness. Such models can be directly

employed in purely subject-independent settings, without requiring finetuning on tar-

get subjects. The work of EEGSym by Perez et al. [176] proposes pretraining models

on external datasets in order to overcome inter-subject variability. Combining multiple

EEG datasets requires careful data preprocessing, to appropriately account for the

differences in electrode montages and experimental conditions. Moreover, a novel ar-

chitecture along with data augmentation techniques are included in the method of EE-

GSym. The results of [176] prove the power of transfer learning, as EEGSym achieves

state-of-the-art performance in subject-independent evaluation settings, even with a

small number of electrodes. In [124] the method of BENDR is described, where a

transformer architecture is trained in a self-supervised manner on a large EEG data-

set [166] comprising more than a thousand subjects. Then, the architecture is further

finetuned in a supervised manner on various EEG-based tasks, showing the benefits of

self-supervised pretraining.

Overall, the adoption of deep learning for EEG-based tasks has led to dramatic

performance improvements on several tasks. An attempt to provide various taxonomies

of deep learning techniques applied on MI decoding, with respect to different criteria, is

shown in [7]. In the following paragraphs we discuss more extensively various families

of deep learning techniques for several EEG-based tasks, yet with a particular focus on
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MI decoding.

Domain generalization (DG): Training on multiple source domains with the aim

of generalizing on unseen target domains, is at the heart of domain generalization

techniques. A much larger volume of works has been published for DG on visual data,

compared to the works on EEG data. Regarding learning from visual data, there

is a line of works that claim various benefits, however upon a rigorous comparison,

the authors of [83] show that the trivial approach of Empirical Risk Minimization

(ERM) [219] can, if carefully tuned, outperform several state-of-the-art DG techniques.

Suitable DG approaches can help building strong cross-subject algorithms for learning

from EEG data. There has been very little cross-fertilization between DG algorithms

for visual and EEG data, and up to now a systematic study on DG methods that

work well on both of these two modalities has not been reported. One major reason

is that many DG works for visual data [140] rely on models pretrained on large vision

datasets (e.g. ResNet [90] pretrained on ImageNet [128]). Among other choices, the

strength (i.e. the accuracy on the test set of the external dataset) of these models

affects the performance on the final DG task [249]. The lack of off-the-shelf pretrained

models for EEG data, means that EEG-based DG algorithms cannot equally build on

the power of transfer learning. Moreover, it has been shown that when using particular

DG techniques on visual data, switching from shallower to deeper pretrained vision

models (e.g. ResNet-50 instead of ResNet-18 architecture) reduces the claimed gains

over an ERM baseline, leading to marginal or no boost at all [83]. These findings make

it difficult for researchers to draw parallels from visual to EEG data, and to be inspired

from DG techniques that are tailored to visual data, adapting them on EEG data.

Considering the above factors, it is worth noting that several works building subject-

independent models for EEG data (which by nature is a DG problem), do not expli-

citly take care of inter-subject variability by any means [12, 150, 258, 176]. Practically,

this leads to ERM-based approaches that simply minimize the training loss over all
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source domains (i.e. training subjects) simultaneously. Apart from the effective ERM

baseline, other DG methods that have been occasionaly used for multi-subject EEG

training, are MixUp [252, 126] (which was initially proposed for visual data), and

Euclidean/Riemannian Alignment (EA/RA) [89, 126, 243] (proposed for EEG data).

Alignment methods such as EA/RA have been proven significantly useful for learning

domain-invariant representations, while in the same time providing the ability to com-

bine them with other multi-domain learning techniques [126]. By contrast, MixUp has

been found to have a rather detrimental effect on multi-subject training [126].

Ensemble learning: Model ensembling [88] is ubiquitous in the applications of

machine learning on EEG data [208, 53]. A successful example of model ensembling

is the work of Bakas et al. [14], where a k-fold cross validation process results in

k trained models, with each model trained on data from all the available training

subjects. The authors of [187] leverage the power of available crowdsourced algorithms

for an EEG-based seizure prediction competition [129], exploring the possibility of

obtaining performance improvements by combining them through model ensembling.

A simple ensembling approach that builds on a neural network receiving the output

probabilities of all individual algorithms as inputs, manages to achieve higher seizure

prediction performance.

In [67], a deep neural network ensemble named InceptionEEG-Net (IENet) is pro-

posed. Focus is given in the architecture design of IENet, by increasing the receptive

field size of the architecture and keeping the computational cost small. In [64], an en-

sembling method is proposed, where an ensemble classifier is built by combining models

trained on different cross-validation splits of the training data. A set of experimental

runs for hyperparameter tuning is required in order to pick the best model for each

cross-validation split. Thus the suggested pipeline cannot be trained in an end-to-end

manner, and cannot be implemented in a single training phase. An example of en-

semble learning for EEG-based cognitive state estimation is presented in [39], where
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the method of FBCSP [9] is combined with a deep ensemble model. Each individual

model of the ensemble is trained on data from a single subject upon a subject-specific

feature selection process (i.e. the input data of each model contain different feature

subsets).

Feature diversity: One of the key properties of ensemble learning, is the emergence

of diverse feature representations across the individual base models of ensembles. How-

ever, feature diversity can also be obtained through alternative techniques which do

not fall within the category of ensemble learning, as they explore ways to obtain di-

verse features through a single model. In [152], a multi-branch network architecture

is proposed, where the input EEG signal is divided in four frequency bands, with a

dedicated branch for each band. The authors of [8] introduce a multi-branch network

based on EEGNet [133], where each branch contains a different number of temporal

filters, as well as a different temporal filter length. A network capable of processing

spectral-spatial representations as inputs is presented in [130].

In the work of Wei et al. [233], a multi-branch Separate-Common-Separate Network

(SCSN) is proposed to tackle the issue of negative transfer learning. Negative learning

can appear when training subject-agnostic feature extractors, i.e. when all the layers

of a single model are trained on all the training subjects. As a remedy to this, SCSN

has a separate feature extractor for each training subject. However such an approach

leads to non-optimal solutions, as training subject-specific layers compromises their

generalization capability.

2.4 Affect modelling and annotation

Research on affect recognition is theoretically grounded on particular models that define

the structure and type of emotions. Thus, the process of modelling human emotions

using affect modelling schemes, precedes that of recognizing emotions. In 1806, Charles

Bell publishes his work titled “Essays on the Anatomy of Expression in Painting” [24],
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stating that facial expressions reflect human emotions and studying the anatomy and

physiology of facial expressions. Modelling facial expressions as combinations of facial

muscular movements, is a primitive way of describing the elementary components that

constitute certain emotions. Charles Darwin, inspired by the work of Bell, publishes

the book “The expression of the emotions in man and animals” [58] in 1872, where

he identifies a particular set of facial expressions that are universal, i.e. commonly

perceived across cultures. The works of Bell and Darwin have been very influential to

early attempts of defining emotion models [144, 216, 75].

Various schemes to model human emotions have been proposed, with one of the most

important ones being the categorical scheme of Ekman, that suggests the existence

of seven universal emotions [71, 70]. Ekman further studies the existence not only of

universal [73] but also culture-specific emotions [74]. However, the line of works that are

based on the research of Ekman, mostly focus on facial expressions as a manifestation

of human emotions. This restricts not only the range of emotional experiences that can

be described through such emotion models, but also the possible applications that such

models can have in real life. The affective experiences that a human has in everyday

life are composed of a plurality of emotions, that are not necessarily expressed through

facial expressions. In fact, humans constantly process and perceive emotional stimuli

and their emotional reactions can include various bodily behaviors, facial expressions,

neural responses, or even concealment of emotions.

Another emotion modelling scheme is introduced by Russell and Barrett in [194, 195].

According to the dimensional model of Russell, affective states are related to each

other and organized in a circular arrangement. In this circumplex model, emotions are

adequately represented in two dimensions, namely arousal (i.e. intensity) and valence

(i.e. pleasantness). An illustration of the dimensional model of emotions is shown in

Fig 2.6 where the two axes correspond to arousal and valence. Additionaly, Fig 2.6

depicts various affective states that can be described as combinations of different arousal
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and valence values. The convention of the dimensional model of emotions requires

annotators to rate emotions by assigning values on a bounded continuous range of a

scale. The particular lower and upper limits of this bounded range may vary across

works (e.g. [−1, 1] in [160], or [1, 9] in [122]), yet the concept remains the same.

Furthermore, Likert scales [141] and Self-Assessment Manikins (SAM) [32] can be used

in the annotation process, to assist users while rating the affective dimensions. An

indicative example of the picture-oriented technique of SAM is shown in Fig 2.7.

Figure 2.6: Illustration of the dimensional emotion modelling scheme proposed by
Russell and Barrett [194, 195]. Figure taken from [82].

The model of Ekman is usually related to a classification task, where each emotional

state is assigned to a class, while the dimensional model of Russell is related to a

regression task, as it refers to the degree that an emotion is positive or intense. However,

even when using the dimensional model for annotation (i.e. label collection) purposes,

many evaluation protocols (thus also the developed algorithms) map the annotation

values of each emotional scale into classes (e.g. mapping a continuous arousal scale from
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Figure 2.7: Illustration of the Self-Assessment Manikin (SAM) [32] technique for emo-
tion annotation. SAM can be implemented either in an interactive computer program
or in a paper-and-pencil version.

the range [1.0, 9.0], to the classes “Low Arousal” and “High Arousal”). An evaluation

bias is introduced through this convention, as the annotations are inherently subjective

self-assessment ratings and the boundaries between what can be perceived as “Low

Arousal” or “High Arousal” vary across individuals.

According to the taxonomy of Stevens [210], three types of scales can be used to

measure emotions: nominal, ordinal and interval. The differences between these scale

types are shown in Fig. 2.8. In essence, nominal emotion annotations can be used in

a classification task, while ordinal ones can be used in ranking and interval ones can

be used in a regression task. There is evidence that treating annotations of affective

datasets as ordinal values through ranking approaches can yield more generalisable

affect models, compared to treating them as nominal values through classification [153].

When dealing with an affect recognition task, be it either classification or regression, the

selection of a specific modelling scheme for emotions, partly determines the limitations

that will be inherent in any developed method. Hence, we claim that new proposed

methods to analyze affective datasets, should be accompanied with a careful selection
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of the appropriate emotion modelling scheme.
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Figure 2.8: Illustration of the scale types that can be used for measuring human sen-
sation, based on the taxonomy of Stevens [210].

2.5 Affect recognition

Upon the adoption of an emotion modelling scheme and the collection of affective

annotations, one can proceed to the stage of training affect recognition models. Re-

cognizing emotional reactions to stimuli can be achieved through numerous modalities,

including visual (e.g. facial expressions, gaze, body pose, gestures), audio (e.g. speech

prosody), text (e.g. dialog transcripts) and neurophysiological (e.g. brain signals,

heart rate, skin conductivity, body temperature) data, to name a few. There is a

vast amount of works that use visual, audio and text modalities to study the topic of

affect recognition. Admittedly, less effort has been devoted to study emotions using

neurophysiological signals, including modalities of brain signals [6, 59].

EEG is one of the neuroimaging techniques that can provide useful information to-

wards affect recognition. Early works that study EEG-based affect recognition, focus

on combinations of facial expressions and EEG signals during the presentation of short

films as affective stimuli [60, 72]. However, the fact that the facial expressions of the

participants are studied together with their EEG signals, raises questions about poten-

tial confounders (e.g. ocular or muscular artifacts) in the conducted analysis. Keil et

al. [113] study the gamma band activity as well as the ERP components evoked by the

presentation of affective pictures taken from the International Affective Picture System
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(IAPS) [131] dataset. Their findings support the existence of lateralization in emotion

processing between the two brain hemispheres, as expressed by the Right-Hemisphere

Hypothesis (RHH) of Borod et al. [31, 118]. Aftanas et al. [2] use images from the IAPS

dataset to study the inter-hemisphere distribution of evoked changes in the power of

EEG signals. Their study shows that effects of both evoked synchronization and desyn-

chronization [180] can be observed in the anterior and posterior areas of the cerebral

cortex. Onton and Makeig [168] design an eyes-closed emotion imagination task, using

the method of guided imagery [211] to induce emotional states through a set of pre-

recorded verbal suggestions to the subjects. Their work employs ICA to decompose

brain activity into independent components, showing connections between emotional

valence and broadband high-frequency activity in these components.

The release of publicly available datasets that provide EEG data and affective an-

notations, such as DEAP [122], MAHNOB-HCI [206] and DREAMER [111], has played

a major role in the development of numerous works that tackle EEG-based affect re-

cognition using machine learning techniques. In the remaining part of this section

we present an overview of previous work and state-of-the-art architectures on affect

recognition.

Handcrafted features: As earlier mentioned in Section 1.2, traditional machine

learning methods cannot effectively handle EEG data in their raw form. A multitude

of works investigate ways of effectively leveraging information from different types of

handcrafted features. A systematic review on the strength of each feature type in emo-

tion recognition is presented in the study of Jenke et al. [102]. An analysis of different

feature types and dimensionality reduction methods is presented by Liu et al. [145]

with the goal of efficiently fusing a variety of features. It is shown that combining

supervised and unsupervised dimensionality reduction methods on the fused features,

can improve the performance of both random forest and SVM classifiers. Consider-

ing datasets with EEG signals from multiple electrodes that reflect inner processes of
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multiple cortical areas, it is reasonable to take this into account when developing af-

fect recognition methods. Many works rely on simple electrode-wise EEG features and

naive concatenations of them. Chen et al. [44] investigate shifting from electrode-wise

EEG features to features that can explicitly take into consideration the interactions

between different electrodes. Their idea is inspired by prior works indicating that cor-

tical areas cooperate in certain patterns instead of working separately [167]. Through

their proposed connectivity features between pairs of electrodes, interaction types such

as activation/deactivation and synchronization/desynchronization are captured. Wu et

al. [239] analyze frequency-specific brain functional connectivity patterns that are as-

sociated with emotions, identifying critical subnetworks.

Deep learning: The advent of deep learning has enabled a rapid progress in the

field of representation learning for affect recognition. A comparison between tradi-

tional machine learning techniques and a CNN architecture for affect recognition is

shown in [11]. A convolutional architecture for affect recognition, named TSception,

is presented by Ding et al. [63], exploitting the spatial assymetry of brain activity

during emotion elicitation. An important issue when dealing with EEG data in deep

networks, is the existence of domain shifts. In subject-independent evaluation settings,

the test data often have distributions that are distant from the distributions of the

training data, which leads to weak test performance. An unsupervised domain adapta-

tion (UDA) technique for visual data is originally proposed in [78]. The key idea is that

the features used for classification should not be discriminative with respect to the shift

between the source/target (i.e. train/test) domain. Unsupervised domain adaptation

is implemented by adding a domain classifier that is trained together with a “gradient

reversal layer” in order to confuse the domain classifier about the domain origin of the

features. The domain-invariant features that are obtained through this approach, are

the motivation for applying UDA in EEG data in the work of Jin et al. [106], achieving

performance improvements when combined with simple MLP deep architectures. Other

works that employ domain adaptation for affect recognition include [137] and [139].
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Subject-specific & subject-independent models: A major division in EEG-

based affect recognition is between works that build subject-dependent and subject-

independent models, as this selection plays a significant role on the generalization

capabilities of the trained models. Subject-dependent models utilize data originating

only from one subject, to achieve better adaptation to new trials of the same subject,

with the cost of limiting the available training samples. Subject-independent models

are trained on data from many subjects, achieving better generalization on unseen

subjects.

2.6 Datasets and evaluation metrics

In this section we provide details on the datasets and evaluation metrics that are used

in the experimental analyses of this thesis. We begin by describing the datasets and

metrics used on the task of motor imagery decoding and then continue by referring to

the task of affect recognition.

Datasets on motor imagery:

The first dataset that we use on the motor imagery decoding problem is “BCI

Competition IV Dataset 2a” (IV-2a1) [215]. The dataset contains EEG recordings

of 9 participants, collected over two different days for each subject (i.e. there are

two sessions per participant), having 25 electrodes (22 EEG and 3 electrooculographic

channels) and a sampling frequency of 250Hz. The classes of the dataset correspond to

4 different imaginary movement types that the subjects performed, namely left hand,

right hand, feet and tongue. Each session contains 72 trials of each class.

The protocol for collecting the IV-2a dataset is shown in Fig. 2.9. In the beginning

of each trial (i.e. t = 0sec), a fixation cross appears on the black screen and a short

acoustic warning tone is presented. Then, at t = 2sec a visual cue appears in the
1More details about IV-2a dataset are provided by the moabb library.
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screen for 1.25sec. This cue is an arrow pointing towards one out of four possible

directions (left, right, down or up) corresponding to one of the four classes (left hand,

right hand, foot or tongue). This cue indicates to the subjects which motor movement

they should imagine. Afterwards, the subjects imagine this movement. At t = 6sec

the fixation cross stops appearing on the screen and the subjects stop imagining the

motor movement. Each trial finishes with a short break of variable duration, where

the screen remains black.

Figure 2.9: Illustration of the protocol that was employed to collect the data of the
IV-2a motor imagery dataset. Figure taken from [215].

The second dataset that we use is “Physionet EEG Motor Movement/Imagery

Dataset” (Physionet2) [79, 200]. The dataset contains EEG recordings from 109 par-

ticipants, with trials that belong to 4 classes: left-hand, right-hand and feet imagery,

as well as rest. The data are recorded with 64 EEG electrodes at a sampling frequency

of 160Hz.

The third dataset that we use is OpenBMI3 [135]. The data of OpenBMI corres-

pond to trials of 2 classes (left-hand and right-hand imagery) collected from the EEG

recordings of 54 participants, with 62 electrodes at a sampling frequency of 1000Hz.

Each participant has data from two sessions and each session has two runs. The first
2More details about Physionet dataset are provided by the moabb library.
3More details about OpenBMI dataset are provided by the moabb library.
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run of each session is done in an offline manner, i.e. without feedback. The second run

is done in an online manner, providing real-time visual feedback to the user.

In all three aforementioned motor imagery datasets, we use classification accuracy

as our evaluation measure. We note that the class label distributions of these datasets

are not imbalanced.

Datasets on affect recognition:

The experimental protocol followed during the collection of EEG-based affective

datasets, has some general directions that remain similar across datasets. The parti-

cipants are initially equipped with all the necessary devices to measure their neuro-

physiological signals, and then the stimuli presentation process begins. There are three

periods during this process, namely the resting state (also called “baseline”) period, the

stimuli presentation (“trial”) period where the subjects are shown short videos as stim-

uli and the self-assessment period. The resting state serves as a period that the subject

remains neutral, and can act as a reference point to be compared with the trial period

where the emotions are elicited while the participant observes the stimulus. After each

stimulus is presented, the participant rates the emotion felt during the presentation,

either using an annotation graphical interface, or by filling an assessment form.

The annotation for each affective dimension of a video is a single label for the entire

duration (i.e., one Arousal label, one Valence label, etc.), prohibiting any reliable

attempt for temporally fine-grained emotion recognition. When dealing with video

stimuli that last tens or hundreds of seconds, it is reasonable to consider that the

emotions reported by participants for a single video, are not elicited constantly in the

same level for the whole duration of the stimulus. For this reason, early moments

of each trial, where the emotion-eliciting stimulus content might not have unfolded

sufficiently, are usually excluded from training/testing.
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The first dataset that we use on the affect recognition problem is “DEAP” 4) [122].

DEAP is a database for spontaneous emotion analysis, containing neurophysiological

signals of participants that watched and rated their emotional response to music video

clips. The emotions were rated along the scales of arousal, valence, and dominance. The

participants also rated the liking of and familiarity with the videos. The self-assessment

ratings of arousal, valence, dominance and liking are on a [1.0, 9.0] continuous scale,

and they can be mapped to the binary low/high values by thresholding them in the

middle value of 5.0. Typically, the evaluation of algorithms on DEAP is done on the

problems of binary (low versus high) classification for the target attributes of arousal

and valence, using the ratings of the participants as groundtruth. DEAP contains data

from 32 participants and 40 music video clips as stimuli, with a fixed duration of 60

seconds for each clip. The data are recorded with 32 EEG electrodes at a sampling

frequency of 512Hz.

The second dataset that we use on the affect recognition problem is “SEED” 5) [256].

SEED is a dataset for EEG-based emotion recognition, having 15 participants and 15

Chinese movie videos as stimuli, with varying duration for each clip (4 minutes in

average). The data collection was repeated three times, in different days, for each

subject (i.e. there are three sessions per participant). The data are recorded with 62

EEG electrodes at a sampling frequency of 1000Hz. The annotations are categorical,

belonging in three classes, namely “Positive”, “Neutral” and “Negative”. A single class

label is assigned to each video stimulus from the organizers of the experiment. That is,

the labels of SEED are not separately self-reported by each participant, but are rather

“global”, as defined by the researchers that conducted the study.

In both of the aforementioned affect recognition datasets, we use classification ac-

curacy and F1 score as our evaluation metric. The class label distribution of DEAP

is imbalanced, hence false conclusions might be drawn about the performance of the
4More details about DEAP dataset are provided in its official project page.
5More details about SEED dataset are provided in its official project page.
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developed models, when solely observing the accuracy measure.

2.7 Conclusions

In this chapter we began by providing an overview of the general fields of electroenceph-

alography analysis and brain-computer interfaces. Then we introduced the principles

of motor imagery decoding and discussed state-of-the-art methods that address it. We

followed by explaining the topics of emotion modelling, annotation and recognition and

then presented the state-of-the-art research works on emotion recognition. Finally, we

described the datasets and the evaluation metrics that are used in the experiments of

this thesis. In this section, we draw several important conclusions from our literature

review on the topics of motor imagery decoding and affect recognition.

Firstly, we identify gaps in the existing literature regarding the topic of motor im-

agery decoding, especially in cross-subject experimental settings. Existing ensemble

learning works that fall within the broad family of domain generalization techniques,

present three main disadvantages: (i) increased computational complexity, (ii) lengthy

model selection processes and (iii) less generic feature extractors. The ensemble learn-

ing technique proposed in Chapter 3 of this thesis, is a novel method that does not

inherit any of the three aforementioned negative aspects. Specifically, it is based on an

ensemble curriculum learning scheme that promotes feature diversity across multiple

models that act as feature extractors. Our architecture is a simplistic model ensemble

without bells and whistles, yielding strong performance with a compact model size.

This is in contrast to works that try to build diverse feature extractors through com-

plex architectures [67] (e.g. using multiple inception-based branches, different number

of filters per branch, different filter length per branch, etc.) or through training mul-

tiple subject-specific [233, 39] (thus also less generic) models. Our ensemble learning

method is also trained in an end-to-end manner and in a single phase, thus is a more

attractive alternative to works that require multiple hyperparameter tuning runs [64]
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to train each base model.

The method described in Chapter 4 of this thesis, called “CovMix”, is a novel regular-

ization technique that simultaneously performs data augmentation and data alignment

during training. Previous works that act as regularizers either on the input space (e.g.

MixUp [252]) or on the feature space (e.g. MixStyle [257]) of CNNs, are not motivated

by neuroscience-grounded principles. Applying such methods to regularize CNNs, in-

volves mixing feature statistical distributions in an inter-domain manner (i.e. across

training subjects). Due to the existence of inter-subject differences in the character-

istics of EEG signals, mixing statistics across subjects might not be helpful towards

learning meaningful representations. On the contrary, CovMix mixes statistics in an

intra-domain manner, by fusing trial-wise and session-wise statistics for each individual

subject. In essence, CovMix achieves regularization by transforming the original data

with a different spatial filtering operation in each training iteration. By doing so,

CovMix not only performs data alignment [89] that has been shown to help transfer

learning, but also performs data augmentation through its stochastic nature. To the

best of our knowledge, our work is the first to combine the steps of data alignment and

data augmentation in the same operation, for neural time-series decoding.

Regarding the topic of affect recognition, we note that the majority of works trans-

form the original affective annotations provided by datasets into classes that have a

nominal nature. By doing this, such methods disregard the existing ordinality in the

structure of emotions. Thus, they rely on plain classification approaches and cannot

exploit fine-grained information such as the relations between training samples with re-

spect to their original affective ratings. Our proposed affect recognition method that is

presented in Chapter 5 of this thesis, introduces a training methodology that combines

the tasks of classification and ranking during training. More specifically, apart from

the standard sample-wise classification task, we propose the task of pairwise ranking of

samples with respect to their affective ratings, as an additional training objective. In
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this way, we are able to learn representations that not only capture the coarse division

between classes (e.g. “high arousal” versus “low arousal”), but are also helpful towards

inferring pairwise ordinal relations between samples.
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3.1 Introduction

In this chapter, we consider the problem of cross-subject motor imagery decoding and

propose a method that presents robustness against several domain shifts (i.e. variations

of EEG signal characteristics [151] across individuals). As research efforts on the field

of BCIs are focusing on obtaining strong cross-subject performance, two families of

learning techniques have gained increasing interest: domain adaptation and domain

generalization. The major drawback of domain adaptation methods has been their

requirement of having available data from the test subjects during the training phase.
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Domain adaptation methods may require either unlabelled test data, or even a small

portion of labelled test data [93]. Domain generalization methods are rather easier to be

adopted by researchers, as they can be used without accessing the testing data during

training. There are several works on EEG-based domain generalization problems, that

do not explicitly attempt to address inter-subject differences by any means, thus equally

minimizing the loss over all training subjects simultaneously [12, 258, 176]. Hence

the limitation of such works is that they practically correspond to the trivial domain

generalization approach of Empirical Risk Minimization (ERM) [219]. Our proposed

method falls within the umbrella of domain generalization techniques and overcomes

this limitation by treating differently each training subject.

Our method is based on the concepts of model ensembling, curriculum learning and

knowledge distillation and is able to learn diverse feature representations that can lead

to improved cross-subject generalization. Existing works on model ensembling often

require independently training several individual models [64]. Apart from being time-

consuming, such training strategies impede jointly training multiple models in a single

phase. Joint single-phase training is necessary in order to measure and control the

diversity of feature representations across the multiple models, as training progresses.

Our method effectively addresses this need, through our novel two-stage model en-

semble architecture, built with multiple feature extractors (first stage) and a shared

classifier (second stage), that allows to be trained in a single phase. An overview of

our proposed two-stage architecture is shown in Fig. 3.1.

To promote feature diversity, we introduce an ensemble curriculum learning scheme,

that enforces each feature extraction model of our ensemble architecture to focus on

different subjects of the training set. This scheme is materialized through the first

subject-wise loss term that we use to train our architecture. When trained using this

loss term, our architecture covers a wide range of patterns through several models that

act as diverse feature extractors. Previous works have shown that there is a trade-off
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Figure 3.1: Overview of our proposed ensemble architecture during inference. First,
an input EEG trial is fed to multiple feature extractors that produce diverse feature
representations. Then, a single shared classifier predicts the class scores corresponding
to each feature representation, and these class scores are averaged to compute the final
prediction.

between diversity and generalization [28], which means that diversity is desired up to

a certain extent, further than which it can have a detrimental effect on generalization.

To regulate this trade-off, we introduce an intra-ensemble distillation loss term, that

controls the diversity within the ensemble. The combination of the two aforemen-

tioned loss terms helps balancing diversity and generalization, which indicates that our

second loss term acts complementary to the first one and leads to further performance

improvements.

Our contributions are the following:
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• We propose a simplistic and compact two-stage model ensemble architecture that

allows to be trained in a single phase, without requiring any model selection

process. All models of our ensemble are sufficiently generic feature extractors as

they are trained on the entire training set.

• We pair our architecture with a novel curriculum learning scheme that promotes

diversity across the models of the ensemble. Thus, each model specializes to a

different subset of training subjects. To our knowledge, curriculum learning has

not been previously explored for cross-subject MI decoding.

• We introduce an auxiliary loss term that is based on the concept of knowledge

distillation across models. Our proposed intra-ensemble distillation loss balances

the diversity-generalization trade-off of our architecture, leading to further per-

formance improvement.

• We conduct our experimental analysis on two large motor imagery datasets

(Physionet [79] and OpenBMI [135]) totalling more than 150 subjects. We com-

pare our method against state-of-the-art and standard ensembling techniques

showing superior results.

The rest of this chapter is organized as follows. in Section 3.2 we describe our method,

i.e. our proposed architecture along with the loss terms that are used to train it. In

Section 3.3 we present the results of our experimental analyses and ablation studies,

where we compare our work with other state-of-the-art works, ensembling techniques

and a single-model baseline as a reference. Lastly, in Section 3.4 we conclude the

chapter.

3.2 Proposed Method

In this section we describe the proposed methodology, which consists of a model en-

semble architecture, a curriculum training scheme and an intra-ensemble distillation
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loss. We provide an overview of the training pipeline for our proposed architecture

in Fig. 3.2 and present its individual components in the following subsections. Spe-

cifically, we begin by explaining our ensemble architecture in Subsection 3.2.1. Then,

we introduce the first loss term that materializes our curriculum learning scheme in

Subsection 3.2.2, as well as the second loss term that enables collaborative training

across the models of the ensemble, in Subsection 3.2.3.

SerifShow SVG Download SVG

Enter LaTeX

Show SVG Download S

\mathbf{Enter LaTeX

Average
Softmax

...
...

Show SVG Download SVG

Distillation loss

...

...

Su
bject 

#1

Su
bject 

#2

Su
bject 

#N

...Set of training subjects

Subject-specific 
information

1 2 K
Split into K subsets:

pseudo-label

SerifShow SVG Download SVG

\texttt{F}\mathrm{k}Enter LaTeX

Show SVG Download SVG

\texttt{F}\mathEnter LaTeX

Show SVG

Enter LaTeX

Legend

Serifhow SVG Download SVG

Classifier

Shared layers

k-th feature extractor

Serifhow SVG Download SVG

\texttt{F}\mathrm{k}nter LaTeX

Stop gradients

Cross-entropy loss

prediction

intra-ensemble
distillation loss

SerifShow SVG Download SVG

\mathbf{\hat{y}}\mathrm{k}Enter LaTeX SerifShow SVG Download SVG

\mathbf{\tilde{y}}\mathrm{k}Enter LaTeX
SerifShow SVG Download SVG

\mathcal{L}\mathrm{distill }^{ \Enter LaTeX

SerifShow SVG Download SVG

Cross-entropy loss

prediction

groundtruth
label

subject-weighted loss

SerifShow SVG Download SVG

\mathcal{L}\texttt{CE }^{ \mathEnter LaTeX

SerifShow SVG Download SVG

\mathbf{\hat{y}}\mathrm{k}Enter LaTeX SerifShow SVG Download SVG

\mathbf{y}Enter LaTeX

Input EEG trial

SerifShow SVG Download SVG

\mathbf{\hat{y}}\mathrm{k}Enter LaTeX SerifShow SVG Download SVG

\mathbf{x}Enter LaTeX

prediction from k-th network

pseudo-label for k-th network

groundtruth label

SerifSerifShow SVG Download SVG

\mathbf{\tilde{y}}\mathrm{k}Enter LaTeX

SerifShow SVG Download SVG

\mathbf{y}Enter LaTeX

Training progress

Epochs
Max.

epoch

1

0
0

Serifhow SVG Download SVG

1 - \alphater LaTeX

Subject-weighted loss

prediction

SerifShow SVG Download SVG

\texttt{CE}( \mathbf{\hat{y}}\maEnter LaTeX

pseudo-label
computed using

SerifShow SVG Download SVG

\{ \texttt{F}\mathrm{i} \}\matEnter LaTeX

SerifShow 
SVG

Download SVG

\mathrm{i} \neq \mathrm{k}Enter LaTeX

Figure 3.2: Our proposed architecture has K first stage models and a shared classifier
in the second stage. The input trial x is separately passed to each one of the first stage
models, obtaining the feature vectors [f1, f2, . . . , fK] (Eq. 3.3). For the k-th model,
the class-wise scores ŷk are computed by forwarding fk to the shared classifier of the
second stage (Eq. 3.4). In an ensembling scenario where the architecture is trained
without curriculum learning, we compute the individual model losses Lk

CE (Eq. 3.5)
and minimize the loss Ltotal

CE (Eq. 3.6) for all models. In the ensemble curriculum
learning scenario, we compute the individual subject-weighted losses Lk

subj (Eq. 3.9) and
minimize the loss Ltotal

subj (Eq. 3.10) for all models. When also performing collaborative
training, we additionaly compute the losses Lk

distill (Eq. 3.12) and minimize the total
loss Ltotal (Eq. 3.14) for all models.
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3.2.1 Architecture

Single model

In this work, we use the well-established EEGNet [133] architecture as our strong single-

model baseline. The selection of EEGNet is justified from the fact that it achieves

compelling performance, with a reasonably small number of trainable parameters and

a simple network design (e.g. without streams of varying kernel lengths, or band-wise

processing streams). In the task of MI decoding, the time-series signals x ∈ RC×T of

an EEG trial with C electrodes and T samples in the temporal dimension, are fed as

input to EEGNet. The class-wise scores ŷ ∈ RNC (where NC is the number of classes)

are obtained as output, while the groundtruth label y ∈ RNC is represented in the form

of a one-hot vector. Thus, in the case of EEGNet the output scores are computed as

ŷ = EEGNet(x), (3.1)

and the network is optimized by minimizing the cross-entropy (CE) loss LCE = CE(ŷ,y),

given by

CE(ŷ,y) = −
NC∑
i=1

yi log
(
softmax(ŷi)

)
, (3.2)

where yi and ŷi are the i-th elements of y and ŷ respectively. The detailed architecture

of EEGNet is shown in Table 3.1.

Model ensemble

Our proposed model ensemble architecture, shown in Fig. 3.2, uses EEGNet as its

elementary component and consists of two stages. The first stage contains multiple

feature extraction networks having exactly the same design, with each network pro-

ducing a feature vector. Considering the EEGNet architecture that is presented in

Table 3.1, each first stage network contains all the layers up to (and including) the

feature flattening layer of EEGNet. We use Fk(·) and fk to denote the k-th feature

extractor and its output feature vector. The output feature vectors from the first stage,
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Table 3.1: Architecture of a single EEGNet model. The input of the model has a shape
of B× 1×C×T, where B is the batch size, C is the number of EEG electrodes and T
is the number of samples in the temporal dimension. The output of the model has a
shape of B× 2, in the case of two output classes.

Layer Input shape Output shape
Dropout (p=0.4) B× 1× C× T B× 1× C× T

Temporal Convolution, 8 filters
kernel=(1, 64), stride=(1, 1), pad=(0, 32) B× 1× C× T B× 8× C× T

Spatial Convolution, 16 filters
kernel=(1, C), stride=(1, 1), pad=(0, 0)
max. weight norm=1.0

B× 8× C× T B× 16× 1× T

Temporal Pooling
kernel=(1, 4), stride=(1, 4), pad=(0, 0) B× 16× 1× T B× 16× 1× T

Batch Normalization 2D B× 16× 1× T/4 B× 16× 1× T/4

ELU activation B× 16× 1× T/4 B× 16× 1× T/4

Dropout (p=0.1) B× 16× 1× T/4 B× 16× 1× T/4

Separable Convolution Depthwise,
16 filters, 16 groups
kernel=(1, 16), stride=(1, 1), pad=(0, 8)

B× 16× 1× T/4 B× 16× 1× T/4

Separable Convolution Pointwise,
16 filters, 16 groups
kernel=(1, 1), stride=(1, 1), pad=(0, 0)

B× 16× 1× T/4 B× 16× 1× T/4

Batch Normalization 2D B× 16× 1× T/4 B× 16× 1× T/4

ReLU activation B× 16× 1× T/4 B× 16× 1× T/4

Temporal Pooling
kernel=(1, 8), stride=(1, 8), pad=(0, 0) B× 16× 1× T/4 B× 16× 1× T/32

Flatten B× 16× 1× T/32 B× T/2

Fully Connected B× T/2 B× 2

are computed as

[f1, f2, . . . , fK] = [F1(x),F2(x), . . . ,FK(x)]. (3.3)

The second stage has a single shared classification head G(·), that computes the class-

wise prediction scores for each feature vector originating from the first stage. Based on

the EEGNet layers that are presented in Table 3.1, the second stage of our architecture

corresponds to the last layer of EEGNet, i.e. a single fully connected layer that performs

classification. We use ŷk to denote the scores corresponding to the k-th feature vector

fk. The scores are computed as

[ŷ1, ŷ2, . . . , ŷK] = [G(f1),G(f2), . . . ,G(fK)]. (3.4)
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In the simple scenario where no curriculum learning occurs, this architecture is trained

by minimizing the sum of the individual losses for the predictions of each model. The

loss Lk
CE for the predictions ŷk of the k-th model, and the total loss Ltotal

CE , are computed

as

Lk
CE = CE(ŷk,y) (3.5)

Ltotal
CE =

K∑
k=1

Lk
CE. (3.6)

In the inference phase, to classify an input sample x we fuse the model-wise scores

through a simple average operation and obtain a final score vector ŷens as follows:

ŷens =
1

K

K∑
k=1

ŷk. (3.7)

To this end, the described architecture is purely subject-agnostic, having no subject-

specific layers (both in the first and second stage). In the following subsection we

propose an ensemble curriculum learning scheme that is applied during training and

changes the nature of the first stage layers. Our curriculum provides a strong alternative

to the typical subject-agnostic layers, that can be adopted in ensemble learning.

3.2.2 Ensemble curriculum learning

Our goal is to make each feature extractor to specialize on a specific subset of subjects.

That is, we want to induce local (i.e. focused on a subset of the entire training set)

feature extraction power to each model in the first stage. Let D = {D1,D2, . . . ,DN}

be a dataset with the data of N subjects, where Dn denotes the sub-dataset containing

the trials of the n-th subject. For an ensemble with K models (K ≥ 2), we split D

into K non-overlapping subsets S: D = {S1, . . . ,SK}. We do this splitting process by

randomly assigning the sub-dataset of each subject to one of the K subsets, with a

uniform probability for all subsets. Therefore, we have
⋃K

k=1 Sk = D and Si ∩ Sj = ∅

for i ̸= j. Each subset Sk corresponds to the k-th model and contains the sub-datasets

of the subjects on which we drive the k-th model to specialize.
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To achieve this specialization, we design a subject-weighted loss function where we

inject subject-specific coefficients to weigh the contribution of each subject to the loss

of each model. Considering the subject-weighted loss Lk
subj that is used to train the k-th

model, the subject-specific coefficients linearly decay over epochs the loss contribution

of the subjects that do not belong to Sk. Effectively, this makes the k-th model to

focus more on the subjects of Sk that have a non-decaying loss contribution. We scale

the contribution of a training sample x to the loss Lk
subj through the coefficient β(x, k).

If trial x corresponds to a subject that belongs in Sk (hence x ∈ Sk), then we keep

β(x, k) = 1 throughout the whole training process. Otherwise (x /∈ Sk), we decay

β(x, k) from 1 to 0 while training progresses, that is:

β(x, k) =

 1 , if x ∈ Sk

α , if x /∈ Sk

, (3.8)

where α = 1 − epoch
Nepochs

∈ [0, 1] represents the progression of training, as Nepochs is the

maximum number of training epochs and epoch is the current epoch. The loss Lk
subj

of the k-th model and the total subject-weighted loss Ltotal
subj are computed as follows:

Lk
subj = β(x, k)︸ ︷︷ ︸

subject-specific

coefficient

·Lk
CE (3.9)

Ltotal
subj =

K∑
k=1

Lk
subj. (3.10)

To allow a better understanding of the coefficient β(x, k) that is involved in Eq. 3.9,

we show an overview of our curriculum learning scheme in Fig. 3.3. Specifically, we

consider an example where we are provided with a dataset D containing EEG data

from 10 human subjects and our proposed model ensemble architecture consists of

K = 3 models. The dataset D = {D1,D2, . . . ,D10} containing the sub-datasets of 10

subjects is split into K = 3 non-overlapping subsets: S1, S2 and S3. Our curriculum

learning scheme aims to make the k-th model to specialize on the subjects belonging

to subset Sk of D, while still training on the whole dataset D. This is done using
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the coefficient β(x, k) that controls the loss contribution of a training sample x on the

weight updating process for the k-th model. To achieve specialization on the samples

of Sk, when x ∈ Sk, we set β(x, k) = 1 throughout the training process. We also want

to train the k-th model on the rest of the subjects of D (i.e. those that do not belong to

Sk), albeit with a progressively decreasing loss contribution over time. For this reason,

when x /∈ Sk we set β(x, k) = α, with α decaying from 1 to 0 while training progresses.

Figure 3.3: Indicative illustration of our curriculum learning scheme. In this example,
we are provided with a dataset D containing EEG data from 10 human subjects and
our proposed model ensemble architecture consists of K = 3 models.
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3.2.3 Intra-ensemble distillation for collaborative training

In this subsection we propose a collaborative training scheme which helps to regulate

the diversity-generalization trade-off in our model ensemble. In order to classify a

sample, we extract its first stage representations, feed them to the shared classifier

of the second stage and average the individual scores across models. The diversity

between the first stage representations of a sample can make the classifier to compute

inconsistent class scores across models. This, in turn, can negatively affect the final

prediction scores, as they will be the result of fusing multiple contradicting predictions.

We observe that, although feature diversity is a desirable property of our ensemble, it

can also have an adverse effect on the generalization capabilities.

To overcome this phenomenon, we introduce a loss term that promotes consistency

across the multiple model predictions, in order to improve the performance of the entire

ensemble. We design our proposed intra-ensemble distillation loss to operate on the

predicted scores of the second stage, instead of operating on the features extracted from

the first stage. An overview of our distillation loss is shown in Fig. 3.2. Considering

each prediction ŷk of the k-th model, our loss pushes it closer to the softmaxed average

of the predictions from all the other models (which is the pseudolabel in our distillation

loss). Specifically, we compute the pseudolabel ỹk for the k-th model as:

ỹk = softmax

(
1

K− 1

K∑
i=1,i ̸=k

ŷi

)
, (3.11)

and use the cross-entropy loss between the prediction ŷk and the pseudolabel ỹk. We

note that we apply a stop-gradient [45] operation on the pseudolabels, as shown in

Fig. 3.2. We do this in order to ensure that only the weights of the k-th model are

updated based on this loss term, while the other models remain unaffected. For the

k-th model, we opt to not apply this loss on the samples of Sk. This is done through

a binary mask that zeroes out the distillation loss of these samples. We do so, as the

k-th model is sufficiently trained on the samples of Sk through their groundtruth labels

y.
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We note that it is necessary to scale the contribution of the intra-ensemble distil-

lation loss to the total loss of the architecture, in accordance with the progress of

training. In the beginning of the training process, the weights of the architecture are

randomly initialized. Hence, penalizing the distance of model predictions from the de-

rived pseudolabels is not so meaningful in the early epochs. As training proceeds, each

feature extractor progressively focuses on a subset of subjects and feature diversity in-

creases. As shown later in the experiments, our distillation loss indirectly controls this

emerging feature diversity by bringing closer the class scores computed from various

first stage features. We linearly increase the contribution of the distillation loss to the

total loss, across training epochs, by multiplying it with the scalar 1−α that quantifies

the training progress.

The distillation loss Lk
distill of the k-th model, and the total distillation loss Ltotal

distill

are computed as follows:

Lk
distill = (1− α) · 1(x /∈ Sk)︸ ︷︷ ︸

subject-specific

mask

·CE(ŷk, ỹk) (3.12)

Ltotal
distill =

K∑
k=1

Lk
distill. (3.13)

We compute the total loss Ltotal of our architecture as:

Ltotal = λsubj · Ltotal
subj + λdistill · Ltotal

distill, (3.14)

where we empirically set λsubj = K and λdistill = 0.7.

3.3 Experimental results

3.3.1 Datasets

We apply our method on the problem of motor imagery decoding and work on two

large datasets: Physionet [79, 200] and OpenBMI [135]. A brief description of these
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datasets was provided in Chapter 2.6. In the experiments that we conduct on Physionet

dataset, we use the signals from all 64 electrodes. Regarding our experiments on Open-

BMI dataset, when not otherwise stated, we use a subset of 20 electrodes and we use

the data from the two offline runs (i.e. the first run of the first and second session)

for each participant, following the default settings of the MOABB [100] benchmark.

Our preprocessing steps for both datasets are the following: (i) we remove the 50Hz

component through notch filtering (60Hz for OpenBMI) (ii) we perform bandpass fil-

tering (4Hz-38Hz) (iii) we resample the signals to 100Hz and (iv) for each trial, we

crop a temporal window of 4 seconds, starting from its onset event. Upon obtaining

the cropped trials, we use the session-wise covariance matrices of the EEG signals and

perform Riemannian Alignment on the time-series of each trial, as in [259].

3.3.2 Comparison with other works and baseline

We compare our proposed method with four state-of-the-art techniques that provide

their source code, namely Adaptive Transfer Learning (ATL) [253], EEGSym [176],

TIDNet [126] and MIN2Net [12]. In order to fairly judge the impact of our proposed

methodology, we also implement three additional methods: a single model baseline and

two ensembling techniques using the EEGNet architecture.

EEGNet-Single: The baseline method (mentioned as “EEGNet-Single”) is a single

EEGNet model, that serves as a reference for the performance of an EEGNet architec-

ture without ensembling.

EEGNet-Ensemble: We implement the first ensembling method by training mul-

tiple individual EEGNet models in the entire training set. During inference, we fuse

their predictions through a simple averaging operation to obtain the final prediction.

In essence, this ensembling method (mentioned as “EEGNet-Ensemble”) represents a

post-training model ensemble.

EEGNet-Bagging: We implement the second ensembling method by training mul-
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tiple individual EEGNet models in random subsets of the training set. Specifically, we

train each individual EEGNet model on 85% of all the available training subjects. We

choose the subjects to be kept for training in each experiment, by simply performing

random subsampling. During inference, we fuse the predictions of all models through

an averaging operation to obtain the final prediction. This method (mentioned as

“EEGNet-Bagging”) represents the well-known ensembling technique of bootstrap ag-

gregating [33].

3.3.3 Evaluation settings

We perform evaluation in two ways: (i) in a 5-fold cross-validation (CV) manner and (ii)

in a Leave-One-Subject-Out (LOSO) manner. In the 5-fold CV scenario, we split the

subjects of our dataset into 5 disjoint folds and run 5 experiments. In each experiment,

we use a different fold as our test set and then assign 3 folds to our training set and

the 1 remaining fold to our validation set. In the LOSO scenario for a dataset with N

subjects, we run N experiments where in the n-th experiment we use the data of the

n-th subject as our test set. In each experiment, we split the remaining N− 1 subjects

into our training and validation set. Specifically, we assign 80% of these subjects to

the training set and the rest 20% to the validation set of the experiment. In both CV

and LOSO scenarios, the reported accuracy is the average of the test accuracies across

all experiments.

3.3.4 Training details

We train all models (i.e. our proposed method, the single model baseline and the

model ensembling methods) for 120 epochs with a batch size of 64. We use a Stochastic

Gradient Descent (SGD) optimizer, setting the momentum to 0.9 and weight decay to

0.01. We initialize the learning rate at 0.01 for the first 60 epochs and then decrease

it to 0.002 for the remaining 60 epochs.
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3.3.5 Results (5-fold cross-validation)

In the first part of our experimental analysis we evaluate against methods that provide

source code, under a 5-fold cross-validation scenario, without any model adaptation

on test data or pretraining on external datasets. We note that these experiments

are performed using exactly the same train, validation and test splits, the same trial

length and the same number of electrodes for all methods (except for the method of

EEGSym [176] that has an architectural requirement of 16 electrodes). Having the

same experimental settings enables us to fairly judge the performance of all methods.

Table 3.2 shows the results of the methods trained on Physionet dataset with 5-fold

cross-validation. Concerning our baseline method, we observe that a single EEGNet

model achieves an accuracy of 82.09%. The standard model ensembling technique of

EEGNet-Ensemble reaches an accuracy of 84.56% when fusing eight individual EE-

GNet models, while EEGNet-Bagging performs slightly better reaching an accuracy

of 84.81%. Our proposed method presents a substantial boost of +1.80% over the

standard ensemble scenario, reaching an accuracy of 86.36% when we use seven mod-

els at the first stage of our architecture. The model of EEGSym [176] achieves an

accuracy of 83.91%, using ∼ 10× more trainable parameters than the best perform-

ing architecture of our proposed method. EEGSym without pretraining on external

data, performs worse than both our method and the standard model ensemble. Re-

garding the method of TIDNet [126], the accuracy of 82.19% is similar to that of our

EEGNet-Single baseline model.

Table 3.3 shows the results of our 5-fold cross-validation experiment on OpenBMI for

various methods. The baseline model of EEGNet-Single achieves an accuracy of 78.31%

and the method of EEGNet-Ensemble provides a small boost of +0.67% when using

eight individual EEGNet models, leading to an accuracy of 78.98%. The ensembling

method of EEGNet-Bagging performs slightly better than the standard ensembling.

Our proposed method performs superiorly, yielding an accuracy of 79.73% when using
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three first stage networks. The method of MIN2Net [12] has a low performance, with

an accuracy of 69.44%. Regarding the method of ATL [253], the accuracy of 77.52%

falls behind the results of both our proposed method and our baseline, using ∼ 60×

more trainable parameters than our proposed method. Our results show that a simple

ensemble architecture trained with a curriculum learning scheme and an auxiliary loss

can achieve high cross-subject generalization, without any adaptation on test data or

complex model architecture.

Regarding the reported results of our proposed method in Table 3.2 and Table 3.3,

we note that the optimal number of first stage feature extractors K is inferred from the

accuracy on the validation set. We provide more details about the impact of K on the

performance of our architecture in Subsection 3.3.7 (Table 3.6 and Table 3.7). Similarly,

regarding the reported results of the EEGNet-Ensemble and EEGNet-Bagging methods

in Table 3.2 and Table 3.3, the optimal number of individual EEGNet models within

an ensemble is chosen based on the validation accuracy.

Table 3.2: Performance of various methods on Physionet dataset, under 5-fold CV
evaluation settings. The best accuracy is highlighted with bold.

Method Parameters Accuracy (%)
EEGNet-Single 2.5K 82.09
EEGNet-Ensemble, 8 models 20.0K 84.56
EEGNet-Bagging, 8 models 20.0K 84.81
EEGSym [176] 147.8K 83.91
TIDNet [126] 694.2K 82.19
Ours, K=7 15.7K 86.36

Table 3.3: Performance of various methods on OpenBMI dataset, under 5-fold CV
evaluation settings. The best accuracy is highlighted with bold.

Method Parameters Accuracy (%)
EEGNet-Single 1.8K 78.31
EEGNet-Ensemble, 8 models 14.3K 78.98
EEGNet-Bagging, 7 models 12.6K 79.28
MIN2Net [12] 37.1K 69.44
ATL [253] 278.8K 77.52
Ours, K=3 4.6K 79.73
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3.3.6 Results (LOSO)

In this experiment, we compare our method against other state-of-the-art works that

report LOSO results on Physionet and OpenBMI. We note that we mention the results

of these methods as reported in their original works, ensuring that they do not utilise

labelled data from the test subjects.

The results on Physionet dataset are shown in Table 3.4. The method of EEGSym

achieves state-of-the-art performance reaching an accuracy of 88.56%. EEGSym per-

forms transfer learning by pretraining on four external datasets, which proves to be

highly valuable. Our proposed method is the best performing model among the works

that do not train on external data. We outperform the method of [21] that trains

separate convolutional layers for each training subject. This further validates the ex-

istence of more efficient and accurate alternatives to complex deep architectures and

the incorporation of subject-specific components.

The results on OpenBMI dataset are shown in Table 3.5. Our method presents state-

of-the-art performance, scoring an accuracy of 85.07% when using all 62 electrodes of

OpenBMI and having K = 4 first stage models. We outperform all other techniques,

including the method of EEGSym that employs pretraining on external data. The

geometric deep learning technique of TSMNet [121] and the algorithm of [130] that

trains a convolutional architecture on spectral-spatial inputs, present an accuracy gap

of more than ∼ 10% from the methods of ATL, EEGSym and our technique. This

indicates that deep architectures operating on covariance matrices of EEG time-series

(e.g. [121] and [130]), are generally less suitable for cross-subject MI decoding, com-

pared to architectures that operate on raw EEG time-series.

3.3.7 Ablation studies

In our ablation studies we conduct experiments to observe the performance of both

our proposed architecture and the two model ensembling methods against which we
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Table 3.4: Comparison with other state-of-the-art methods on Physionet dataset with
LOSO evaluation settings. The best accuracy is highlighted with bold.
*: pretrained on external data

Method Parameters Accuracy (%)
OPS [243] - Human Neurosc. 2020 N/A 67.00
Causal Viewpoint [21] - ICLRW 2022 N/A 83.90
EEGSym* [176] - TNSRE 2022 147K 88.56

Ours, K=7 15.7K 85.82

Table 3.5: Comparison with other state-of-the-art methods on OpenBMI dataset with
LOSO evaluation settings. The best accuracy is highlighted with bold.
*: pretrained on external data

Method Parameters Accuracy (%)
MIN2Net [12] - TBME 2022 37.1K 72.03
Mutual Inf. [103] - TNNLS 2021 N/A 73.32
Spectral-Spatial [130] - TNNLS 2019 77M 74.15
TSMNet [121] - NeurIPS 2022 4.5K 74.60
ATL [253] - Neural Networks 2021 305K 84.19
EEGSym* [176] - TNSRE 2022 147K 84.72
Ours, K=4 8.7K 85.07

compare.

Proposed architecture

We investigate the impact of three factors on the performance of our ensemble archi-

tecture. The first factor is the number of first stage models K in the architecture. The

second component is the loss Ltotal
subj , that materializes our curriculum learning scheme.

The third component is the distillation loss Ltotal
distill that enables collaborative training.

We concurrently explore the effects of all these component choices, performing a sweep

over the hyperparameter K and trying combinations of our loss terms.

Our first set of experiments (denoted as “LCE”) corresponds to the scenario of training

a model ensemble architecture (as described in Section 3.2.1), i.e. without curriculum

learning and without our distillation loss. In our second set of experiments (denoted as

“Lsubj”) we train our architecture with ensemble curriculum learning, as described in

Section 3.2.2, i.e. without our distillation loss. In the third experimental run (denoted
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as “Ltotal”) we apply our entire method (i.e. using both subject-weighted loss and

intra-ensemble distillation loss), training our architecture with the loss of Eq. 3.14. All

experiments are performed with a 5-fold cross-validation setting.

The results of our ablation study on Physionet dataset are shown in Table 3.6.

We observe a general trend of increasing accuracy for all our experimental sets, as

K increases up to the value of 7 (further increasing K does not yield performance

improvements). The only exception is the case where we train our architecture without

curriculum learning (i.e. first row in Table 3.6), where the accuracy saturates at K = 6.

This indicates that training multiple feature extractors by equally fitting them to the

entire training set, is a suboptimal approach of training on multiple source domains.

Thus, applying our curriculum learning scheme through Lsubj to induce diversity in

the feature extractors, is a straightforward step. The results of the second row in

Table 3.6 verify the positive impact of curriculum learning in our ensemble architecture.

In some cases (i.e. when K = 3, K = 4 and K = 6) curriculum learning provides

negligible accuracy gains. When further incorporating our distillation loss in the total

optimization objective of our architecture (i.e. third row in Table 3.6), we get additional

accuracy boosts, except for the cases of K = 2 and K = 4. The beneficial effect of

regulating the balance between feature diversity and model generalization through

our distillation loss, is higher in the cases of K = 6 and K = 7 where the accuracy

boosts are +0.42% and +0.68% respectively. This finding is particularly interesting,

showing that the combination of our two loss terms can increase the performance of

model ensembles, even when using many feature extraction models. On the contrary,

an ensemble architecture trained solely with the standard cross-entropy loss, is more

prone to performance saturation.

The results of our ablation study on OpenBMI dataset are shown in Table 3.7.

The standard ensemble architecture trained without curriculum learning (i.e. first row

in Table 3.7) achieves a maximum accuracy of 79.24% when K = 5. By using our
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Table 3.6: Ablation study on Physionet dataset with 5-fold CV evaluation set-
tings. Rows correspond to experiment sets done with different optimization objectives.
Columns correspond to the number of first stage models (K) in our architecture. The
best accuracy of each row is highlighted with bold.

Loss terms Accuracy (%)
K=2 K=3 K=4 K=5 K=6 K=7

LCE 83.34 84.70 84.97 84.93 85.53 85.34
Lsubj 84.38 84.72 85.10 85.40 85.62 85.68
Ltotal 83.76 84.78 85.02 85.48 86.04 86.36

Table 3.7: Ablation study on OpenBMI dataset with 5-fold CV evaluation set-
tings. Rows correspond to experiment sets done with different optimization objectives.
Columns correspond to the number of first stage models (K) in our architecture. The
best accuracy of each row is highlighted with bold.

Loss terms Accuracy (%)
K=2 K=3 K=4 K=5 K=6 K=7

LCE 79.15 79.08 78.96 79.24 78.94 79.20
Lsubj 79.02 79.58 79.13 79.15 79.01 79.31
Ltotal 79.25 79.73 79.53 79.46 79.10 79.66

curriculum learning scheme, we improve the accuracy of our architecture in four out of

six cases, achieving a maximum accuracy of 79.58% when K = 3. The incorporation of

our distillation loss term in the total loss of our architecture (i.e. third row in Table 3.7)

provides consistent improvements in all cases. Our best model has an accuracy of

79.73% when K = 3, with a boost of 0.65% over its corresponding standard ensemble

model.

Model ensembling methods

In the experiments of Section 3.3.5 we compared our proposed method against our

single model baseline as well as two model ensembling methods, under a 5-fold cross-

validation scenario. We note that these experiments are performed using exactly the

same train, validation and test splits. Here we provide additional results, presenting the

performance of the EEGNet-Ensemble and EEGNet-Bagging methods as the number

M of individual EEGNet models varies.

EEGNet-Ensemble: In Table 3.8 we show the cross-subject performance of EEGNet-
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Ensemble on Physionet dataset under a 5-fold cross-validation scenario, when using

from 2 to 9 EEGNet models. The best accuracy (84.56%) is achieved when fusing

the predictions from 8 EEGNet models. In Table 3.9 we show the cross-subject per-

formance of EEGNet-Ensemble on OpenBMI dataset under a 5-fold cross-validation

scenario, when using from 2 to 9 EEGNet models. The best accuracy (78.98%) is

achieved when fusing the predictions from 8 EEGNet models.

Table 3.8: Performance of EEGNet-Ensemble on Physionet dataset with 5-fold cross-
validation evaluation settings. Columns correspond to the number of individual EE-
GNet models (M) that we use. The best accuracy is highlighted with bold.

Accuracy (%)
M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9
82.99 84.01 84.10 84.21 84.04 84.26 84.56 84.47

Table 3.9: Performance of EEGNet-Ensemble on OpenBMI dataset with 5-fold cross-
validation evaluation settings. Columns correspond to the number of individual EE-
GNet models (M) that we use. The best accuracy is highlighted with bold.

Accuracy (%)
M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9
78.95 78.91 78.86 78.93 78.91 78.95 78.98 78.97

EEGNet-Bagging: In Table 3.10 we show the cross-subject performance of EEGNet-

Bagging on Physionet dataset under a 5-fold cross-validation scenario, when using from

2 to 9 EEGNet models. The best accuracy (84.81%) is achieved when using the predic-

tions from 8 EEGNet models. In Table 3.11 we show the cross-subject performance of

EEGNet-Bagging on OpenBMI dataset under a 5-fold cross-validation scenario, when

using from 2 to 9 EEGNet models. The best accuracy (79.28%) is achieved when using

the predictions from 7 EEGNet models.

Table 3.10: Performance of EEGNet-Bagging on Physionet dataset with 5-fold cross-
validation evaluation settings. Columns correspond to the number of individual EE-
GNet models (M) that we use. The best accuracy is highlighted with bold.

Accuracy (%)
M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9
83.05 84.22 84.17 84.49 84.68 84.73 84.81 84.74
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Table 3.11: Performance of EEGNet-Bagging on OpenBMI dataset with 5-fold cross-
validation evaluation settings. Columns correspond to the number of individual EE-
GNet models (M) that we use. The best accuracy is highlighted with bold.

Accuracy (%)
M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9
78.99 79.00 79.18 79.26 79.20 79.28 79.07 79.11

3.4 Conclusions

In this chapter we propose a method for cross-subject motor imagery decoding that

leverages the combined strengths of model ensembling, curriculum learning and collab-

orative training. We design an ensemble architecture that is trained end-to-end in a

single phase. We show that our curriculum training scheme can induce diversity to the

feature extraction models of our architecture, improving its performance over stand-

ard ensembling. Our method also benefits from the exchange of knowledge between

the models of our ensemble, that occurs through our auxiliary distillation loss. We

conduct experiments on the datasets of Physionet [79] and OpenBMI [135], totalling

more than 150 participants, and demonstrate state-of-the-art results. Our proposed

method outperforms other approaches that try to tackle MI decoding using complex

networks [253, 126], multi-task learning [12], geometric deep learning [121], subject-

specific layers [21] or pretraining on multiple external datasets [176].
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Covariance Mixing Regularization

for Motor Imagery Decoding
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4.1 Introduction

In the previous chapter, we proposed an ensemble learning method for cross-subject

motor imagery decoding that belongs in the broad family of domain generalization

techniques. In this chapter, we further study the problem of motor imagery decoding

and explore a combination of two other approaches for domain generalization, namely

domain-invariant representation learning and data augmentation [229].

Approaches that enable domain-invariant representation learning have led to re-

markable improvements in the field of EEG-based BCIs, with the most common such
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technique being data alignment using covariance statistics [89]. Initially, data align-

ment was intended to be applied on covariance matrices, to improve the performance of

Riemannian classification frameworks (e.g. MDRM classifiers [19]). However, recently

data alignment has also been directly applied on EEG time-series [126], improving the

performance of CNN-based classification models. As explained in [126], data alignment

can be seen as a way of learning domain-invariant representations. This is supported by

the fact that the aligned EEG signals of each subject have close to identity covariance

matrix, enabling better transfer learning across subjects.

Alignment is typically performed using covariance statistics that are session-wise,

i.e. computed based on an entire set of EEG trials that may have a duration of several

minutes. Specifically, in both training and testing phases, each trial is transformed

using its corresponding session-wise covariance matrix. A basic property of EEG sig-

nals is their non-stationarity [248], hence their statistics vary across time. That is, the

covariance statistics within shorter time windows are different from the session-wise

statistics. Exploiting information from trial-wise covariance statistics within alignment

approaches has remained unexplored, thus we focus on this issue and propose adapting

the standard alignment process to take into account trial-wise statistics. A straightfor-

ward way of doing this adaptation, is to perform interpolation between the session-wise

and trial-wise covariance matrices. Due to the nature of covariance matrices (i.e. ly-

ing on the Riemannian manifold of SPD matrices), this is done through Riemannian

interpolation, avoiding treating them as having a Euclidean nature.

Building on the benefits of CNN-based learning and covariance-based alignment, we

propose a method called “CovMix”, that mixes session-wise and trial-wise covariances to

concurrently perform data alignment and augmentation on EEG time-series. Instead

of the standard alignment during training, we suggest aligning each trial choosing

randomly an SPD matrix that lies on the geodesic between the session-wise and the

trial-wise covariance matrices. Afterwards, the aligned trials are fed to a CNN model
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that is trained to classify them. Along the training process, the CNN model will receive

each trial as input multiple times, yet aligned using different SPD matrices. However,

all the augmented versions of each original trial, will be lying on the same geodesic.

Effectively, this regularizes the CNN model by feeding it with various transformations

of each training sample. Inference is performed using the standard alignment, to keep

the process being deterministic.

Our contributions are summarized as follows:

• We propose CovMix, a method that mixes session-wise and trial-wise covariance

matrices to jointly perform EEG signal alignment and data augmentation during

training.

• CovMix is performed before feeding the data to the classification network, thus

it can be used in any method that employs CNNs for motor imagery decoding.

• We evaluate networks trained on BCI Competition IV-2a dataset [215] with cross-

subject settings, showing that adding CovMix acts as regularization to the classi-

fication network, yielding stronger generalization results compared to the stand-

ard covariance-based alignment and other techniques.

The rest of this chapter is organized as follows. In Section 4.2 we briefly refer to the

standard alignment technique and in Section 4.3 we describe our proposed approach.

In Section 4.4 we provide details about our evaluation setup and present results of our

method on cross-subject experiments, comparing it with other techniques. Finally, in

Section 4.5 we conclude the chapter.

4.2 Preliminaries

Before delving into the description of our proposed method, we first provide some

general details on the concept of covariance-based time-series alignment. Let SX =
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{X1, . . . ,Xn} be the set of n band-pass filtered EEG trials that a recording session

contains. Let Xi ∈ RC×T be the i-th EEG trial of the session, where C is the number

of EEG channels and T is the number of samples in the dimension of time. The

covariance matrix Pi of trial Xi is calculated as Pi = XiX
T
i . The set of all trial-wise

covariance matrices of the session is SP = {P1, . . . ,Pn}.

To compute the session-wise SPD matrix, i.e. the Riemannian mean of all trial-

wise covariance matrices in the set SP, we need to define the concept of Riemannian

distance. Covariance matrices lie on the space of SPD matrices with dimension C,

denoted as P(C), which is a Riemannian manifold. Considering two points (i.e. two

SPD matrices) P1 and P2 on P(C), the Riemannian distance metric [26] is defined in

Eq. 4.1:

δ(P1,P2) =
( n∑

i=1

log2λi

) 1
2
, (4.1)

where λi are the eigenvalues of P−1
1 P2.

The session-wise covariance matrix is computed as the Riemannian mean P of the

set {P1, . . . ,Pn} of trial-wise covariance matrices. There is no closed-form solution for

the computation of the SPD matrix P, thus it is solved as an optimization problem,

i.e. minimizing the Riemannian distance between P and all the trial-wise covariances,

according to Eq. 4.2:

P = argmin
P∈P(C)

n∑
i=1

δ(Pi,P) (4.2)

Riemannian Alignment: Typically, alignment [89, 243] on EEG signals is per-

formed separately within each session, applying the same session-specific transforma-

tion to all trials. Considering the session-wise SPD matrix P and the trial-wise signals

Xi, the aligned signals X̂i in this method are computed as:

X̂i = P
− 1

2Xi (4.3)
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4.3 Proposed method

CovMix Alignment: We propose an alternative method of alignment, that trans-

forms each trial differently over multiple training steps. We use various transformation

matrices to align each trial, that are obtained by traversing the geodesic connecting

the reference state (i.e. the session-wise SPD matrix P) and the trial-wise covariance

matrix Pi (instead of deriving it directly from P). Having the reference state as start-

ing point, ensures that the finally computed SPD matrices are still relevant to the

session-wise statistics. The computation of the transformation matrices by travers-

ing geodesics, ensures that our method respects the Riemannian nature of covariance

matrix space.

We mix (i.e. interpolate) the session-wise SPD matrix P with that of the i-th trial

Pi, obtaining the mixed SPD matrix Pmix. An illustration of performing interpolation

on the Riemannian manifold is provided in Fig. 4.1. We use a scalar α, 0 ≤ α ≤ 1,

which we call covariance mixing coefficient, to control the distance between Pmix and

P. More specifically, we sample α from a uniform distribution U ∼ [0, 1], and compute

the weighted Riemannian average [26] between matrices P and Pi as shown in Eq. 4.4,

so that δ(Pmix,P) = α · δ(Pi,P).

Pmix = P
1
2

(
P

− 1
2PiP

− 1
2

)α
P

1
2 (4.4)

We can control the regularization induced to the classification network by CovMix,

by restricting the range of values that are sampled for α. To do so, we use the hy-

perparameter αmax to set the maximum value of α, and sample from the distribution

U ∼ [0, αmax]. CovMix is applied only during the training phase, similarly to data

augmentation methods, aligning the signals as follows:

X̂i = P
− 1

2
mixXi (4.5)
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4.3. Proposed method

Figure 4.1: Mixing two covariance matrices, by traversing their geodesic on the Rieman-
nian manifold. The point corresponding to matrix C, lies on the shortest path that
connects A and B.

During the inference phase, we apply the Riemannian alignment and transform the

signals using Eq. 4.3.

Let us note that our transformation matrix is not an arbitrary deep learned matrix,

but an SPD matrix obtained by traversing on particular geodesics of the Riemannian

manifold, that connect session-wise and trial-wise covariances. This ensures that the

transformation matrix is close to the reference matrix for each domain, to facilitate

training on multiple source domains as in [126]. Moreover, our transformation matrix

does not aim to suppress noise on EEG trials, as [17] does. Having done the covariance

mixing in the Riemannian space, we perform data augmentation in the Euclidean

space of EEG time-series. This allows us to use classifiers such as CNN models, unlike

the method of [109] that generates augmented data points that require Riemannian

classifiers.

4.3.1 CNN architecture

We opt to use a modified version of EEGNet [133] as our CNN architecture for motor

imagery classification. Specifically, we remove the batch normalization layer at the
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Figure 4.2: Overview of our proposed method. CovMix mixes session-wise and trial-
wise covariance statistics following Eq. 4.4 and performs alignment by multiplying the
EEG signals with the inverse square root of the mixed matrix using Eq. 4.5. In the
inference phase we do not mix covariance statistics and alignment is performed using
Eq. 4.3. Finally, the transformed EEG signals are fed to EEGNet to be classified.
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temporal convolution stage, and use 3 fully connected (FC) layers at the classification

head.

The pipeline of performing CovMix, along with the components of the CNN archi-

tecture, are shown in Fig. 4.2.

4.4 Experimental results

Dataset: Our EEG preprocessing pipeline has the following steps: 1) bringing the

EEG signals into the measurement unit of uV (microvolts) 2) keeping only the channels

of 22 EEG electrodes, discarding the EOG electrodes 3) notch filtering to remove the

50Hz component 4) bandpass filtering in the range 4-38 Hz and 5) resampling signals

to 100Hz. We crop the temporal window [0.0, 4.0] seconds of each trial, where t = 0

is the event onset. The size of each input sample is C × T, where C=22 (number of

EEG channels) and T=400 (number of time samples). Evaluation is performed in a

Leave-One-Subject-Out (LOSO) manner, using both sessions for all subjects.

Comparison to other methods: We compare CovMix with three other meth-

ods, namely Riemannian Alignment (RA) [89], MixUp [252] and MixStyle [257]. We

implement RA as in [243], using the Riemannian mean of covariances and transform-

ing the EEG signals instead of re-centering the covariances. For MixUp, considering

two data samples xi, xj and their labels encoded as one-hot vectors yi, yj we create

the augmented samples as x′ = λxi + (1 − λ)xj and y′ = λyi + (1 − λ)yj , where

λ ∼ Beta(2.0, 2.0). We also evaluate the method of MixStyle, which is a state-of-the-

art domain generalization technique that can be plugged in between CNN layers. For

MixStyle, let x be a batch of samples, and x̃ be the randomly shuffled version of x

across the batch dimension. First, the feature statistics γmix = λσ(x) + (1 − λ)σ(x)

and βmix = λµ(x)+(1−λ)µ(x) are computed, using the operators of µ(·) (mean value)

and σ(·) (standard deviation) along the temporal dimension, with λ ∼ Beta(0.1, 0.1).

Then, MixStyle is performed with a probability of 50% on training batches, computing
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x′ = γmix
x−µ(x)
σ(x) + βmix and detaching the operators of µ(·) and σ(·) from the gradient

computation. Upon attempting to plug MixStyle in several convolutional stages of

EEGNet, we find that using it after the third convolutional layer is the most effective

choice, and report results with this setting. We also report results of a baseline EE-

GNet model trained without any signal aligning (mentioned as “Baseline”), to serve as

a reference for evaluating the benefits of alignment.

Training hyperparameters: Batch size is set to 64 and training is conducted for

120 epochs. The cross-entropy loss is used as the criterion for MI classification, where

the targets are 4 classes. Stochastic Gradient Descent is selected as the optimizer

(momentum=0.9, weight decay=0.01). We set the dropout probability of EEGNet to

0.1.

Results: Table 4.1 shows the results of all methods on the IV-2a dataset. Compared

to the baseline model that is trained without any alignment on the EEG signals, the

Riemannian Alignment (RA) method provides an accuracy boost of +4.48% (from

53.45% to 57.93%). Training EEGNet with CovMix using the default setting (i.e.

αmax = 1.0, denoted as “CovMix” in Table 4.1), further increases the performance by

+3%. The regularization method of MixUp improves the accuracy only by +0.70%

compared to RA, while the domain generalization approach of MixStyle gives a more

considerable increase of +2.83% over RA. Overall, CovMix yields the highest accuracy

of 60.93% outperforming all other methods.

Considering the regularization effect of MixUp, we find it to be insufficient. One

drawback of applying MixUp in EEG signals, is the existence of large inter-subject

differences on the channel-wise statistics. Thus, directly mixing signals from different

domains on the input space (i.e. the time-series) may be detrimental for multi-source

training. An indirect solution to this issue, is to scale the signal values of each trial in

the range [−1,+1] as in [126], before applying MixUp. Nevertheless this scaling is not

consistent within each session, as it depends on trial statistics. In contrast to MixUp
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Table 4.1: Evaluation of several methods on the motor imagery classification problem,
using the dataset of BCI Competition IV-2a. The dataset contains 9 participants, and
columns S01-S09 correspond to the accuracy of LOSO evaluation on one participant
each time. All the numbers reported in this table are the average of 3 runs.

Method S01 S02 S03 S04 S05 S06 S07 S08 S09 Avg.
Baseline 68.98 38.02 71.47 45.02 36.34 38.54 45.19 67.99 69.50 53.45
RA 75.80 35.36 81.25 49.13 45.08 44.09 49.24 70.08 71.35 57.93
MixUp 75.63 34.14 79.11 48.67 46.70 46.81 52.54 74.24 69.79 58.63
MixStyle 76.09 42.36 80.20 55.84 45.71 47.97 58.39 67.18 73.09 60.76
CovMix 76.21 41.72 82.46 54.40 44.73 47.16 57.17 73.20 71.35 60.93
CovMix∗ 78.12 43.86 83.68 58.33 45.54 47.51 60.53 75.34 72.91 62.87

Figure 4.3: The amount of regularization induced to the network by CovMix, is con-
trolled through the hyperparameter αmax. The achieved performance obtained using
CovMix, improves as we increase αmax from 0.1 up to 0.7.

that transforms batch samples on the input space, MixStyle is done on the space of

intermediate layer features. Thus, it is less prone to cross-domain differences on the

80



4.5. Conclusions

input space. Yet for MixStyle to be effective, it needs to be plugged in to early layers

of CNNs, where features mostly reflect domain-related information (while late layers

are expected to be increasingly related to class label information). Differently from

MixUp and MixStyle, CovMix does not involve mixing information stemming from

different domains. The results show that regularization can be effectively induced in

an intra-domain manner.

Ablation study: To examine the impact of hyperparameter αmax on the perform-

ance of CovMix, we do an ablation study and run experiments setting αmax from 0.1

to 1.0 with a step of 0.1. Smaller values of αmax induce smaller regularization to the

network. The results of our sweep are shown in Fig. 4.3. We observe that the per-

formance of CovMix does not fall below that of RA, for any value of αmax. Tuning

αmax leads to even better performance compared to the default setting of αmax = 1.0,

reaching a maximum accuracy of 62.87% when αmax = 0.7 (denoted as “CovMix∗” in

Table 4.1). The test subjects benefit differently from the values of αmax. In six out

of nine subjects (specifically subjects 1, 3, 5, 7, 8 and 9), we achieve the highest test

accuracies when setting αmax between 0.6 and 0.8. However, for the rest three subjects

(2, 4 and 6) the highest test accuracies occur when αmax is in the range of 0.1 to 0.3.

Visualization of augmented SPD matrices: In Fig. 4.4, we provide a t-SNE [218]

visualization of the covariances corresponding to trials, and the SPD matrices gener-

ated using CovMix with randomly sampled values of α. We can see that the points

corresponding to interpolated SPD matrices mainly occupy the space between the bary-

center of the entire session (i.e. all trials from all classes) and the points of trial-wise

covariance matrices.

4.5 Conclusions

In this chapter we discuss the problem of EEG-based MI decoding in transfer learn-

ing scenarios. Alternatively to methods that extract handcrafted features from EEG
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Figure 4.4: Visualization of t-SNE embeddings from the trial-wise covariance matrices
and the mixed SPD matrices that were obtained by performing random interpolations
with CovMix. We use EEG signals from the second session of subject 9. Notice also
the Riemannian barycenter of all trials (plotted with marker “⋆”).

signal time-series, we use a CNN model as feature extractor. Through our proposed

method, we concurrently perform alignment on the EEG signals and regularization

on the CNN, applying different signal transformations during the training phase. We

use a Riemannian framework to derive the transformation matrices, mixing trial-level

and session-level covariance statistics. We conduct experiments on BCI IV-2a data-

set for MI classification, showing that CovMix performs superiorly against the tradi-

tional Riemannian Alignment, the regularization method of MixUp and the domain

generalization method of MixStyle. Our results indicate the potential of leveraging

covariance-based alignment as a means towards regularization of deep neural networks.
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Pairwise Ranking Network for

Affect Recognition
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5.1 Introduction

In the previous two chapters we explored the topic of EEG-based motor imagery decod-

ing, where the groundtruth labels are given as discrete classes, representing imagined

movements of human limbs. Two uncontrolled factors affecting the correspondence

between the inputs (i.e. the EEG data) and the targets (i.e. the groundtruth class)

when training a DNN on motor imagery decoding, are inter-subject variability and

the so-called “BCI illiteracy” phenomenon, that we briefly mentioned in Section 1.5.

That is, the inability of subjects to operate an MI-based BCI system, as well as their

individual characteristics, are reflected on the EEG data distribution of each subject,

in the form of covariate shift [184].
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In this chapter we study the topic of EEG-based affect recognition, where several

stimuli are presented to each subject in order to be subjectively rated in terms of

their affective content. In the majority of affect recognition works, the issue of “BCI

illiteracy” is not a concern, as the task simply demands from the subjects to observe the

audiovisual stimuli, without depending on the manifestation of particular oscillatory

rhythms. This is a major difference between the motor imagery BCI paradigm and

affect recognition studies. Unarguably, inter-subject variability not only remains an

issue in EEG-based affective research, but also in many cases it impedes applying

cross-subject and cross-dataset transfer learning approaches [183].

An additional factor that renders emotion recognition a challenging problem, is the

presence of label subjectiveness. Each subject assigns affective ratings to multimedia

content in a different way, that depends on several things, including personal biases (e.g.

music “taste”), personality traits [112], current mood, familiarity with the stimuli and

affective content of previously encountered stimuli, among others. This subjectiveness

is rarely taken into consideration when designing machine learning approaches for affect

recognition. One common option to reduce the impact of label subjectiveness, is to

train subject-specific models, thus overcoming the need to account for inter-subject

differences in the annotation of affective experiences. However, even in the case of intra-

subject affect recognition models, problems related to the subjectiveness of emotion

annotations persist.

During emotion data labelling, typically humans assign a value in a continuous range,

for each emotional experience. These values are assumed to be on an absolute scale

(i.e. as opposed to being on a relative scale), however even for a single annotator the

perception of the rating scale may change across time [153]. Works inspired from the

adaptation level theory of Helson [91], suggest that human judgments of presented stim-

uli are relative to the context [196], including previously encountered stimuli, rather

than absolute. Therefore emotions can be expressed in relative terms, i.e. through
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comparisons between different affective state levels. Labelling emotions by assigning

relative values has been an alternative path to the traditional scheme of absolute la-

bels [246, 147]. This means that annotating emotions involves comparison of the human

affective states between past and forthcoming experiences. Therefore, one possible way

of inferring such ordinal relations between affective states, is through machine learning

models that can explicitly compare them.

We study the problem of affect recognition on datasets where annotations are provided

in the form of sample-wise labels. Typically, plain regression or classification ap-

proaches are applied on such datasets. In the case of regression, the inherent biases

of continuous affect annotations described above, are harmful for the training process

thus also for model performance [247]. Other problems arise when adopting classi-

fication approaches as a remedy to the shortcomings of regression. Discrete classes

cannot express the compoundness of emotions. Transforming ratings of ordinal nature

into nominal classes results in information loss regarding the structure of ratings. Fur-

thermore, the class splitting criteria defined by researchers, do not always accurately

reflect the manifestations of affect [153]. Hence, a more suitable approach is preference

learning [77], that involves comparing emotions. The superiority of preference learn-

ing methods over classification algorithms for affect recognition, has been previously

studied by Melhart et al. [156]. We follow an alternative direction, investigating the

utilization of preference learning as an auxiliary objective to improve the performance

of deep neural networks on classification.

Despite the exciting results of deep learning methods on affective computing prob-

lems, the possibility of building deep networks that can compare samples correspond-

ing to different affective states, has remained mostly unexplored. Refraining from

using solely a sample-wise classification objective, we propose employing an addi-

tional pairwise objective, namely the emotional rating comparison. Considering a

pair of data samples and their affective labels, the comparison task infers the ordinal
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ranking relation between the labels of the samples (i.e. higher/similar/lower arousal,

higher/similar/lower valence). We use a shared deep feature extractor along with

separate network heads that infer the affective state level of each sample and perform

pairwise ranking between samples. Our experiments show that the former task benefits

from the latter, as treating the data in a pairwise manner enables better representation

learning. The main contributions of our method are the following:

• We propose a deep architecture that is jointly trained on sample-wise classifica-

tion and pairwise ordinal ranking.

• We conduct experiments on two EEG-based affect recognition datasets, showing

performance gains from the incorporation of a ranking objective in the training

process.

5.2 Proposed method

The main motivation of our work is to investigate meaningful combinations of clas-

sification and ordinal ranking through deep neural networks, in the field of affective

computing. In contrast to typical network architectures that operate on affective data

solely in a sample-wise manner, we aim to additionaly perform pairwise operations

between samples, learning the ordinal relation between their corresponding affective

ratings. Our goal is to boost the classification performance of emotion recognition

models, leveraging the additional supervision of a ranking task only during training.

Traditional preference learning systems such as RankNet [35] train a function that

maintains a higher score for the preferred option. The preference decision is a fixed op-

eration on sample-wise preference scores, without involving any trainable parameter.

Our method differs from such systems, as it learns the ordinal relation through a

trainable module. Considering that the emotion label space has an inherently ordinal

structure, we avoid disregarding such knowledge, by further exploiting it through the

ranking task. To achieve this, we utilise the provided affective state annotations to
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form rank-based labels, and construct a deep architecture that can handle both the

end-goal task of classification, as well as the additional task of pairwise ranking. In the

following paragraphs, we explain various aspects of our method.

5.2.1 Methodology

Pairwise ordinal ranking: The proposed methodology that derives pairwise rank-

ing labels is applicable on datasets having as annotations either continuous affective

ratings or categorical labels of ordinal nature. Firstly, we explain its functionality on

continuous labels that are defined on a bounded scale. Considering a pair of samples

x1 and x2 (with corresponding affective rating labels y1 and y2), the goal of the ranking

task is to infer the ordinal relation between the labels y1 and y2. In previous works

this is addressed by establishing a preference of the sample with the higher rating over

the other sample, i.e. x1 ≻ x2 or x1 ≺ x2. The symbols of “≺”/“≻” denote preced-

ing/succeeding order of the samples with respect to their ratings y1 and y2, i.e. by

using these symbols we do not imply a comparison on the raw feature values of x1 and

x2. A minimum difference value between the compared ratings is often used to discard

unclear comparisons. To avoid posing very strict constraints over pairs of ratings with

small difference, we opt to add a third case of rank, namely the case x1 ∼ x2, if x1

and x2 have similar ratings [173]. We define a hyperparameter ϵ > 0, called “rank

tolerance”, such that x1 ∼ x2 holds true when |y1 − y2| ≤ ϵ. Thus, x1 ≻ x2 when

x1 has a higher rating than x2 under the condition y1 > (y2 + ϵ), and x1 ≺ x2 when

y1 < (y2 − ϵ). The ordinal relations for continuous ratings are shown in Table 5.1 as

well as in Fig. 5.1.

Relation Condition
x1 ≻ x2 y1 > (y2 + ϵ)

x1 ∼ x2 |y1 − y2| ≤ ϵ

x1 ≺ x2 y1 < (y2 − ϵ)

Table 5.1: List of ordinal ranking relations and their corresponding conditions, when
performing a comparison operation over continuous ratings.
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Figure 5.1: Illustration of the ordinal relations defined over a bounded continuous
rating scale.

Joint training - combining classification and ranking: Our method is simple

and can be integrated into existing affect recognition architectures. In essence, every

deep neural network operating on an end-goal task of affect classification, consists of

a backbone that extracts feature representations and a classification head that maps

these representations to class scores. We suggest adding an extra supervisory signal by

imposing a pairwise ranking objective on the intermediate representations learned by

the backbone, leveraging the knowledge around the ordinal nature of emotions. The

ranking task is performed by a ranking head that is stacked on top of the backbone

network, receiving two feature representations and inferring their ordinal relation with

respect to the affective ratings of their corresponding samples. The processing pipeline

for classification remains intact and the total architecture is trained in an end-to-

end manner. We fully backpropagate the gradients of both the classification loss and

ranking loss to the backbone, updating its weights based on both loss terms. The

backbone network benefits from the additional ranking supervision, extracting features

that enable better generalisation on the end-goal task. Both the classification and

ranking loss are computed using a cross-entropy criterion.
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5.2.2 Network architecture

We aim to build an architecture that operates on affective data inputs to perform

sample-wise classification of emotions, as well as a pairwise comparison operation (or-

dinal ranking) with respect to the emotional ratings for a pair of samples. Regarding

the implementation of deep networks that accomodate pairwise operations, our work

builds on the concept of Relation Networks [212] that have been used for few-shot

image recognition. In the context of Relation Networks, a relation module refers to a

mechanism that learns to compare feature embeddings for a pair of samples, to determ-

ine whether they have the same class label or not. We adapt the framework of Relation

Networks to suit the purposes of pairwise ranking. We propose using a ranking module

that learns to perform ordinal ranking on the feature embeddings of a pair of samples,

by inferring the ordinal relation between their affective ratings. Note that the inputs

of our ranking module are pairwise feature embeddings, formed by concatenating the

sample-wise embeddings obtained from a backbone feature extractor, for each pair of

samples. Our architecture, named Pairwise Ranking Network (“PRNet”), is shown in

Fig. 5.2. A detailed explanation of its consisting modules is provided below.

Embedding module: The embedding module is the backbone of our architecture,

serving as a feature extractor. The batch samples are fed as inputs to the embedding

module and a feature embedding is computed for each sample. The produced em-

beddings are to be further processed for the tasks of classification and ranking by the

corresponding modules.

Classification module: The classification module receives as input the features

produced by the embedding module, and predicts the affective state for each sample.

The groundtruth targets are discrete emotion classes (e.g. “low”/“high” arousal, “low”/“high”

valence). We denote the classification predictions as ŷcls and the corresponding groundtruth

values as ycls. Note that ŷcls contains probabilities obtained by passing the outputs of

the classification module through a softmax layer, while ycls contains one-hot encodings
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Figure 5.2: The architecture of a Pairwise Ranking Network that accomodates joint
training on classification and ranking tasks.

of the labels and kcls denotes the number of classes. The classification loss term Lcls is

computed as follows:

Lcls = −
kcls∑
i=1

yi
cls log(ŷ

i
cls). (5.1)

Ranking module: The ranking module operates on pairwise feature representations

that correspond to sample pairs, and infers their ordinal relation with respect to their

affective ratings. To form the pairwise feature representation of two samples, we get

the feature vectors extracted from the embedding module for both samples, and we

concatenate them across the channel dimension. To form multiple pairs of sample

embeddings during training with a batch size of Nb, we split each batch into two sub-

batches of size Nsub = Nb
2 . Every sample of each sub-batch is compared against all

samples of the other sub-batch, yielding (Nsub)
2 pairs in total. Denoting the softmaxed
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ranking predictions and one-hot groundtruth values as ŷrank and yrank respectively, the

ranking loss term Lrank is defined as follows:

Lrank = −
krank∑
i=1

yi
rank log(ŷ

i
rank), (5.2)

where krank = 3 denotes the number of possible ordinal relations for a pair of samples.

The total loss that is used to optimize the Pairwise Ranking Network is the sum of

the loss on the end-goal task and the ranking loss. We use a coefficient α to weight the

contribution of the ranking loss to the total loss, i.e. Ltotal = Lcls+αLrank, setting the

value of α equal to 1 when not stated otherwise.

Architecture details: In our proposed architecture, the embedding module consists

of two fully-connected (FC) layers with 128 nodes each, receiving 100-dimensional

feature vectors as inputs. The classification module consists of one FC layer for each

of the targets (i.e, Arousal, Valence), with kcls output nodes, where kcls is the number

of classes. The ranking module consists of one FC layer for each of the targets, having

krank = 3 output nodes. The baseline model for our experiments is the composition of

the embedding and classification modules, i.e. a simple model with a feature extractor

and a classifier.

5.3 Experimental results

We apply our method on the problem of affect recognition, aiming to exploit the

ordinality of emotions through our analysis. Specifically, we study the datasets of

DEAP [122] and SEED [256] where the original affective annotations are inherently

ordinal. A brief description of these datasets was provided in Chapter 2.6. Each

dataset has been annotated through a different process and is evaluated on a different

end-goal task. An overview of the datasets used in our study is shown in Table 5.2.
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Dataset Annotation
process

Annotation
values

End-goal
task

DEAP [122] -Self-assessment reports
-Varying per participant

Arousal, Valence
Range: [1.0, 9.0]

Classification:
Low/High Arousal
Low/High Valence

SEED [256]
-Determined from
the study’s authors
-Fixed for all participants

3 discrete classes:
Negative
Neutral
Positive

Classification:
Negative
Neutral
Positive

Table 5.2: Details regarding the affective annotations and evaluation tasks on the
datasets used in our work.

5.3.1 Dataset details

DEAP dataset: DEAP [122] is a dataset for EEG-based emotion recognition, having

32 participants and 40 music video clips as stimuli, with a fixed duration of 60 seconds

for each clip. Groundtruth labels for arousal and valence are given as self-assessment

ratings in the continuous range of [1.0, 9.0]. The end-goal task on DEAP is the clas-

sification of “Low”/“High” affective states, defined by thresholding the rating scale in

the middlepoint of 5.0. The classification head of our deep architecture predicts class

scores for these two outputs on arousal and valence.

In the case of DEAP dataset, the original labels are continuous ratings that are

quantized to obtain the final classification labels, thus their initial ordinality is lost.

Moreover, collapsing entire ranges of the rating scale into single classes leads to models

that cannot reason about intra-class sample differences. The application of a ranking

approach on the original ratings is straight-forward, following the ordinal relations that

are shown in Table 5.1.

SEED dataset: SEED [256] is a dataset for EEG-based emotion recognition, hav-

ing 15 participants and 15 Chinese movie videos as stimuli, with varying duration for

each clip (4 minutes in average). The labels are categorical, belonging in three classes,

namely “Positive”, “Neutral” and “Negative”. The end-goal task of SEED is the classi-

fication of these three states. The discrete class annotations of SEED are traditionally
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treated as being nominal, ignoring the evident ordinality. The classes of SEED practic-

ally correspond to three ordered levels of valence, therefore inferring ordinal relations

between them is plausible. We adopt the convention that the “Positive” class corres-

ponds to higher valence compared to “Neutral” and “Negative”, and that the “Neutral”

class corresponds to higher valence compared to “Negative”. These ordinal relations

that are used on SEED dataset are shown in Table 5.3.

y1

y2 Negative Neutral Positive

Negative x1 ∼ x2 x1 ≺ x2 x1 ≺ x2
Neutral x1 ≻ x2 x1 ∼ x2 x1 ≺ x2
Positive x1 ≻ x2 x1 ≻ x2 x1 ∼ x2

Table 5.3: The ordinal relations that are adopted in our work, for the categorical labels
of SEED dataset to be rendered useful in the pairwise ranking task.

5.3.2 Experiments

EEG data preparation: To perform training on DEAP and SEED, we represent

each input sample in the form of a feature vector. Among the most well-established

EEG signal features for emotion recognition, are Power Spectral Density (PSD), Power

Spectral Asymmetry (PSA) and Differential Entropy (DE). For the signal of each elec-

trode, these features are computed in a specific frequency band and for a short time

window (2 seconds on DEAP, 1 second on SEED). We use 5 frequency bands for fea-

ture extraction, namely theta band (4 − 8 Hz), alpha band (8 − 12 Hz), slow alpha

band (8 − 10 Hz), beta band (12 − 30 Hz) and gamma band (30 − 45 Hz). PSD

features characterize the spectral content of each signal, while PSA features measure

the asymmetric hemisphere activation occuring in the brain through pairs of laterally

corresponding/symmetric electrodes. We compute PSD and PSA as in [122], using the

method of Welch [234]. The DE features measure the complexity of the signal across

time [68]. On DEAP dataset, we use the PSD and PSA features, concatenating their

feature vectors. On SEED, we use the precomputed DE features that are provided

in [256]. On both datasets, to discard features of negligible discriminability, feature

93



5.3. Experimental results

selection is applied using Fisher’s linear discriminant, similarly to [122], keeping the

100 most discriminative features. Afterwards, a zero-mean and unit-variance normal-

ization procedure is applied on each of the remaining features, using the statistics of

the train set.

Training details: Training is done for 20 epochs with a batch size of 40, using

a Stochastic Gradient Descent (SGD) optimizer with a learning rate of 0.001, a mo-

mentum of 0.9 and weight decay set equal to 0.0005. For DEAP dataset, the ordinal

ranking operation is performed setting ϵ = 0.25 and following Table 5.1. The training

process is a subject-dependent 10-fold cross validation. For each subject the 40 avail-

able trials are split into 10 folds (each fold containing 4 trials), keeping 9 folds as the

train set and 1 fold as the test set. For SEED dataset, the ordinal ranking operation

is performed following Table 5.3. The training process is subject-dependent and the

train-test splits are done in the same way with [256]. On both datasets, evaluation

is done by computing the classification accuracy and F1 score. Especially on DEAP

where there is significant class imbalance, the F1 score is a more representative measure

of model performance.

Our experiments explore the impact of joint training on the model classification

performance. As a baseline method, a plain MLP network (with 2 FC layers in its

embedding module and 1 FC classification layer) is trained only on the classification

task. We train our proposed architecture jointly on the classification and ranking

tasks. From the results of Table 5.4 and Table 5.5 we can see that joint training

improves the accuracy and F1 score both on DEAP and SEED. Considering the F1

scores, the performance improvement of the proposed method over the baseline is

statistically significant on DEAP (p < 0.01 for both arousal and valence), but not on

SEED (p = 0.058).

The results verify our motivation of forming and learning pairwise relations utilising

the available affective annotations. On DEAP, we notice that collapsing fine-grained
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Model Arousal Valence
Acc. F1 Acc. F1

Classification loss 60.49 51.94 57.69 54.61
Proposed method:

Classification + ranking loss 60.60 53.25* 58.42 55.57*

Table 5.4: Accuracy (%) and F1 score on DEAP dataset. Stars indicate statistical
significance of the F1-score distribution over subjects, according to Student’s t-test
(∗ = p < 0.05)

Model 3-class problem
Acc. F1

Classification loss 74.80 72.79
Proposed method:

Classification + ranking loss 76.98 75.51

Table 5.5: Accuracy (%) and F1 score on SEED dataset.

affective rating information into discrete classes, is harmful for the training process.

Incorporating the ranking supervision through the ordinal relation labels derived by

the original continuous ratings, we boost the performance of our model. Similarly, the

fact that our approach considers the ordinality of the classes on SEED, shows that our

method can be beneficial even in cases where the original annotations are discrete.

5.4 Conclusions

The findings of our method highlight that exploring the ordinality of emotions through

deep neural networks that accomodate pairwise ranking comparisons, is beneficial for

affect recognition models. The proposed method is evaluated on two EEG datasets

with different affective annotation processes, showing consistent performance gains.

We believe that our study provides a promising direction on training robust emotion

recognition models, through tasks that abide to the ordinal nature of emotions.
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6.1 Results and contributions

In this thesis we explored the development of deep learning techniques for the EEG-

based problems of MI decoding and affect recognition. We started by studying the

issue of domain shifts in cross-subject MI decoding, showing that the combination of

model ensembling, curriculum learning and collaborative training can effectively in-

crease model robustness. Furthermore, we investigated a data augmentation technique

for CNN regularization and proposed an adaptation of the covariance-based data align-

ment process for EEG time-series. Finally, regarding the problem of affect recognition,

we developed a training method that can exploit the inherent ordinality of emotions,

towards learning better representations.
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In the first main chapter of this thesis we started by considering the challenges that

arise when training on multi-subject EEG datasets for MI decoding. Specifically, we

identified the several factors of variation that lead to domain shifts across subjects and

described the inter-subject differences in terms of spatial, temporal and spectral EEG

characteristics. We discussed the possible directions of research that can be used to

tackle the issue of domain shifts, and opted to focus on the development of a domain

generalization technique. Specifically, we aimed to build a method employing diverse

feature extractors to avoid the issue of negative transfer learning due to domain shifts.

The category of ensemble learning techniques has been well-known for accomodating

diverse feature learning, however existing ensemble learning works presented several

drawbacks. These included high computational costs, length model selection processes,

requirement for hyperparameter tuning and dependence on subject-specific compon-

ents, among others.

We framed our proposed approach as a model ensembling method combined with

an ensemble curriculum learning strategy and a collaborative training scheme through

intra-ensemble distillation. Both curriculum learning and knowledge distillation have

been largely unexplored in deep learning methods for EEG-based tasks. We showed

that curriculum learning promotes feature diversity across the multiple feature extract-

ors of a model ensemble. Nevertheless, controlling the extent of diversity within our

ensemble architecture was necessary, as we observed a trade-off between the properties

of diversity and generalization. We also showed that this trade-off can be effectively

regulated via collaborative training, that is materialized through an intra-ensemble

distillation objective in the training process.

We evaluated our proposed approach on two large MI datasets comprising more than

150 subjects, achieving superior results against state-of-the-art works and standard

ensembling methods. Additionaly, we conducted ablation studies to investigate the

impact of each component of our method. Our findings indicated the strong potential
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of domain generalization techniques as a tool for overcoming inter-subject differences

in motor imagery decoding.

Further studying the problem of MI decoding, in the second main chapter of this

thesis we focused on EEG data alignment techniques that have presented remark-

able benefits towards learning domain-invariant representations. Considering the non-

stationarity of EEG signals across time, we investigated the incorporation of short-time

(i.e. trial-wise) statistics in the alignment process, instead of solely using the session-

wise statistics. Our goal was to obtain multiple alignment transformations of each

sample (i.e. trial) during training, in order to regularize a CNN model that performs

MI decoding. We adapted the standard alignment process by performing Riemannian

interpolation between SPD matrices that contained trial-wise and session-wise statist-

ics. Moreover, we inserted a stochastic component in our method, by opting to mix

trial-wise and session-wise statistics with a random proportion in each training itera-

tion. The adapted alignment framework was employed during training, while standard

alignment was used during testing to keep the process being deterministic. Building on

the benefits of CNN-based learning and covariance-based alignment, our developed ap-

proach concurrently performed data alignment and augmentation on EEG time-series.

We conducted experiments on a MI dataset and compared our method against standard

alignment as well as other domain generalization techniques, showing superior results.

Finally, in the last main chapter of the thesis, we explored the topic of affect re-

cognition. Affective datasets typically contain emotion annotations that are obtained

through self-assessment ratings. Firstly, considering such ratings as a form of annota-

tion, we discussed related works that describe their ordinality as well as the factors

that render them highly subjective. We also explained why we considered human emo-

tional judgments as being relative to the context, rather than absolute. Moreover, we

provided details about the biases and the loss of information that occur when trans-

forming originally continuous annotations into discrete classes, from works that adopt
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plain classification approaches for affect recognition. Based on this analysis, we sugges-

ted expressing emotions in relative terms, i.e. through pairwise comparisons between

affective states. We derived the pairwise ordinal relations than can be inferred using

the original annotations of affective datasets and we formulated a ranking task. This

task was then additionaly employed during training, along with the standard classific-

ation task. To achieve this, we designed a neural network architecture consisting of a

shared backbone feature extractor and two task-specific heads, namely a classification

head and a ranking head. The goal of our proposed training methodology was to obtain

feature representations capturing not only the nominal labels of the classification task,

but also the ordinal structure of emotions. In this way, we exploited knowledge from

the original continuous annotations that led to feature representations of higher qual-

ity. We conducted experiments on two datasets, comparing models that were jointly

trained on the tasks of classification and ranking, against models that were trained only

on the classification task. Our results showed that incorporating the ranking task in

the training process is beneficial to model performance. Thus, developing deep learn-

ing techniques that abide to the ordinal nature of emotions is a plausible direction of

research towards obtaining robust affect recognition models.

6.2 Wider implications

The study presented in Chapter 3 of this thesis provided valuable insights on how to

design and train robust deep neural networks in multi-domain datasets, exploiting the

power of learning diverse representations through model ensembling. The effectiveness

of this approach has broader repercussions on the pursued directions in the field of BCIs.

The rapid adoption of deep learning techniques within several BCIs involving decoding

tasks, has been a result of their capability to: i) accomodate multi-subject training and

ii) generalize on unseen subjects. Yet the exploration of deep learning methods that can

operate under various domain shifts, has been restricted to ERM-based approaches that

equally minimize the training loss across all source domains. While such approaches
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have been proven to yield satisfactory cross-subject performance, they also come with a

cost. Specifically, the phenomenon of negative transfer learning that has been observed

in several neuroimaging modalities [233, 95], partially limits the generalization potential

of ERM-based techniques. Our proposed method was able to alleviate to an extent

this effect, due to its unique training methodology where each base model within an

ensemble, is trained so as to specialize to a different subset of the source domains (i.e.

training subjects). Hence the models comprising the ensemble are less exposed to the

detrimental effects of domain shifts. This finding sheds light on the importance of the

optimization objectives when training deep networks on multi-domain neuroimaging

datasets.

Departing from the traditional idea of ERM-based training that leads to pure subject-

agnostic layers, we introduced a training methodology that leads to layers combining

both subject-agnostic and subject-specific properties. CSP-based approaches [148, 46]

have explored the feasibility of selecting multiple relevant source subjects that could

provide good subject-to-subject transferability, through appropriately formed optim-

ization problems. These early works have served as inspiring examples of handcraf-

ted multi-domain training techniques that differ from standard ERM-based methods.

However, since the adoption of deep learning approaches for BCIs, similar research dir-

ections have remained relatively unexplored, with most efforts focusing on alternative

deep network architecture designs. Existing works trying to design deep architec-

tures that are capable of extracting diverse representations, have followed several ap-

proaches, apart from the standard model ensembling. These include using multi-branch

networks with a varying number of filters [8] or varying filter length [67], feeding multi-

view representations as inputs through band-specific filtering [152] and subject-specific

branches [233]. Such details of the network architectures do not suffice to account for

the multiple aspects of domain shifts and inter-subject variability.

We argued that further unleashing the potential of deep learninng methods for rep-
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resentation learning on neural signals, requires to jointly consider the design of network

architectures and training objectives. Subsequently, we built an ensemble architecture

and paired its training methodology with two ensemble-oriented loss terms that pro-

mote both feature diversity and generalization at the same time. The ablation studies

on the contribution of each one among the two novel proposed training objectives,

validated that both are helpful towards better cross-subject decoding and proved their

usefulness for our architecture. This finding can serve as a starting point for further

research on several modalities beyond EEG, where there are no well-established domain

generalization techniques.

Previous research on domain generalization has mostly focused on the visual mod-

ality, where it has been shown that strong backbone models have a beneficial role [83]

in generalization. There has been very little cross-fertilization between domain gen-

eralization algorithms for visual and EEG data, and up to now a systematic study

on the methods that work well on both of these two modalities has not been repor-

ted. One major reason is that many domain generalization works for visual data [140]

rely on models pretrained on large vision datasets (e.g. ResNet [90] pretrained on Im-

ageNet [128]). Among other choices, the strength (i.e. the accuracy on the test set of

the external dataset) of these models affects the performance on the final task [249].

The lack of off-the-shelf pretrained models for EEG data, means that domain gener-

alization algorithms benefit less from the power of transfer learning. This makes it

difficult for researchers to draw parallels from visual to EEG data, and to be inspired

from techniques that are tailored to visual data, adapting them on EEG data. We

hope that our findings will prove of great interest to researchers studying cross-subject

decoding techniques for various neural signal modalities.

In Chapter 4 we introduced a novel approach for MI decoding, called “CovMix”, that

draws inspiration from domain-invariant representation learning and data augmenta-

tion techniques. One implication of our method is that it highlighted the importance of
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designing neuroscientifically plausible transformations for data augmentation. Previous

works on data augmentation for EEG time-series signals have adopted transformations

that yield non-interpretable changes in the content of EEG [119]. On the contrary, our

work explored the application of spatial transformations on EEG signal alignment and

augmentation, where the employed spatial filters have a direct association to the stat-

istics of a particular trial. This is an important aspect of data augmentation techniques

for various biosignal modalities where often it is desirable that the applied transform-

ations result in data which maintain the physical properties of these biosignals. In

the case of CovMix, we showed that it is possible to exploit subject-specific trial-wise

information in order to generate new EEG signals that maintain a spatial covariance

matrix corresponding to an individual. A second implication of our method is that com-

mon knowledge about the non-stationarity of EEG signals [248] should be considered

when designing novel alignment approaches. The statistics (e.g. inter-channel spatial

correlations) of EEG signals change constantly and experimental conditions such as

task difficulty, audio/visual stimuli and feedback type can cause further changes [197].

Exploring alignment techniques that take into account this non-stationarity can yield

data-driven methods that are more robust both to intra-session and cross-session vari-

ations of EEG signal statistics. Thus, a favourable ability of CovMix is that it can lead

to trained models which present increased robustness when deployed in test sessions

where the conditions are different than those in the training data. This aspect has

remained unexplored in previous works that studied the design of alignment or data

augmentation techniques without considering the non-stationarity of EEG signals.

In Chapter 5 we introduced a method for EEG-based affect recognition, where the

task of pairwise ordinal ranking with respect to affective ratings was proposed as an

auxiliary training objective, along with the standard cross-entropy loss for the task of

classification. Previous works have focused on directly employing typical classification

objectives, collapsing continuous affective attributes such as arousal and valence into

discrete classes. A broader consequence of this work is the importance of exploiting
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fine-grained affective label information, which often comes in abundance in affective

datasets.

6.3 Strengths and limitations

Sample sizes: The size of the datasets that were used in Chapter 3 is a strength

of the presented work. Specifically, PhysioNet [79, 200] dataset contains 109 subjects

while OpenBMI [135] dataset contains 54 subjects, being among the largest datasets

on the task of motor imagery decoding. The dataset of BCI Competition IV-2a [215]

that was used in Chapter 4 has a small size, containing only 9 subjects. This limits

the reliability of the findings, requiring further investigation using datasets with larger

sample sizes. Regarding the task of affect recognition, the utilized datasets had a

moderate size, with DEAP [122] containing 32 subjects and SEED [256] containing 15

subjects. Apart from the datasets of DEAP and SEED that were used in this thesis,

other existing datasets for EEG-based affect recognition [207, 228, 159, 4, 50, 171]

contain from 10 to 40 subjects, restricting the ability to conduct thorough studies.

Cross-subject generalization: The works presented in Chapter 3 and Chapter 4

were evaluated in cross-subject scenarios, either in Leave-One-Subject-Out or in k-fold

cross-validation (with each fold containing multiple subjects) experimental settings.

This is a strength of these works, since we demonstrated that achieving robust cross-

subject generalization is possible without utilizing data from the test subjects during

training. The work presented in Chapter 5 was restricted to an intra-subject analysis,

hence the findings may not apply to cross-subject affect recognition scenarios.

Aging effects: The effects of aging on the ability of humans to effectively perform

motor imagery, have been investigated in a plethora of works [108, 161, 138]. One

important aspect of building EEG-based models for BCIs, is the validation of their

functionality across age groups. The motor imagery datasets of PhysioNet [200, 79]

and BCI IV-2a [215], that were used in Chapter 3 and Chapter 4 respectively, did not

103



6.3. Strengths and limitations

provide the age of each subject as accompanying information. This was a limiting factor

of the presented analyses, as without knowing the age distributions of the subjects in the

training and test sets, no certain conclusions could be drawn regarding generalization

across age groups. On the contrary, the motor imagery dataset of OpenBMI [135] that

was used in Chapter 3, provided the age distribution of its subjects (24−35 years old).

Regarding the datasets that were used in Chapter 5, DEAP [122] had an age range of

19−37 years old (mean age 26.9), while SEED [256] dataset reported that the mean age

was 23.2± 2.3 years old. The age ranges of OpenBMI, DEAP and SEED were limited

to young people, which on the one hand might affect the potential for generalization

on elderly people, but on the other hand allowed for coherent performance analyses on

this specific age group.

EEG data form: Another strength of the works presented in Chapter 3 and

Chapter 4 is that they operated on minimally preprocessed EEG time-series signals,

building on the capability of CNNs to learn representations from raw waveforms. This

provided interpretability to the behaviour of the trained CNN models, as their tem-

poral filters define the spectral content of the filtered signals and their spatial filters

define the importance of each EEG electrode in the spatial mixing process. On the

contrary, the architecture presented in Chapter 5 operated on handcrafted features of

EEG signals, such as power spectral density and differential entropy. These features

were separately computed for each EEG electrode and each frequency band. Hence two

limitations of this work are the following: i) there was no ability to capture spectral

content in frequency ranges different than those of the pre-specified bands (delta, theta,

alpha, beta and gamma) and ii) there was no ability to jointly learn the spatial mixing

along with the temporal filtering process. This highlights the imminent need for EEG-

based affect recognition methods that are capable of processing raw EEG waveforms

and providing interpretable results.

EEG montage density: The density of an EEG montage is a factor that has a
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significant impact in the performance that can be obtained while operating an EEG-

based BCI system. Dense EEG montages generally provide higher accuracies, due to

their high spatial resolution and wide spatial coverage, that allow inferring a more

complete estimate of the neural activity inside the brain [205]. Investigating the feas-

ibility of low-density EEG montages is of great value for bringing BCIs into real-world

scenarios using portable, consumer-grade EEG devices that typically have low-density

montages. The works presented in this thesis kept the full EEG montage of each data-

set while analyzing the data of each task. In more detail, regarding the MI datasets of

PhysioNet, OpenBMI and BCI IV-2a, we used their full montages which contained 64,

62 and 22 electrodes respectively. Additionaly, a part of our experimental analysis on

the dataset of OpenBMI involved a reduced montage with a subset of 20 electrodes,

which can still be considered as a medium-density montage. Furthermore, regarding

the affective datasets of DEAP and SEED, we used their full montages containing 32

and 62 electrodes respectively. Thus, the fact that low-density EEG montages were not

explored as potential options for MI decoding and affect recognition, is a limitation of

the presented works.

Label subjectiveness and uncertainty: It is widely known that affective experi-

ences are highly subjective [55] and also that cross-cultural differences have an impact

on the perception of affective stimuli across individuals [54]. Affective datasets often

employ self-reporting methods [122, 158], letting the participants to annotate their

perceived emotions. While self-reported labels are valuable when considering person-

alized experiences, they also reflect the annotation biases of each subject [153]. For

example, music/movie genre preferences can lead to highly different affective ratings

across subjects for a given stimulus. Moreover, several affective datasets employ videos

as stimuli, with their duration usually ranging between 1-5 minutes [122, 256]. Each

stimulus video may contain arbitrary scenes, without restrictions on the diversity of

the audiovisual content within shorter temporal segments of the video. In such cases,

assigning a single affective rating that corresponds to the entire duration of each stimu-
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lus, may not suffice to describe the emotional experience of an individual. Determining

the particular moments within a stimulus that led a subject to assign a given label, is

a challenging problem due to the inherent uncertainty of human judgments. Hence, a

limitation of the work presented in Chapter 5, is that it does not study the subjective

biases and the label uncertainty that are task of affect recognition.

6.4 Potential applications

The power of deep learning techniques for EEG brainwave decoding, along with the

portability of EEG devices, enable the widespread usage of EEG-based BCI systems

in out-of-the-lab settings. Indicative applications of brain-computer interfaces that are

relevant to the tasks studied in this thesis encompass the sectors of healthcare, gaming

and multimedia services.

The methods that were developed in Chapter 3 and Chapter 4 of this thesis, are

related to the area of neuro-rehabilitation [186], where EEG-based BCIs have found a

variety of applications. Neuro-rehabilitation is based on the principle of neuroplasti-

city [114], i.e. the potential of the brain to reorganise, building new neural pathways

that have a positive impact in the restoration of motor skills. EEG-based neurofeed-

back has been incorporated as a component of rehabilitation systems, helping people

who experience motor weakness following a stroke, brain injury or other neurological

conditions such as Parkinson’s disease and multiple sclerosis. Motor imagery exercises

are an essential part of neuro-rehabilitation systems for motor skill training, suitable

for patients in all rehabilitation phases, i.e. acute, subacute and chronic [170]. Real-

time feedback [57] can be given to the patients while they practise motor imagery

training, based on the output of machine learning models trained on the task of MI

decoding. This feedback can be beneficial by closing the loop between motor inten-

tions and virtual reality (VR) environments [226, 227]. Furthermore, the BCI-derived

feedback can be utilized to apply functional electrical stimulation (FES) [231, 27] in
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order to engage weakened muscles of the extremities. Other application scenarios of

neuro-rehabilitation involve BCIs that provide vibrotactile feedback [81] and BCIs that

control soft robotic gloves [47] or digital therapy devices [117].

The task of EEG-based affect recognition that was studied in Chapter 5 of this

thesis, is related to the area of affective BCIs (aBCIs) [238]. A recent application of

aBCIs involves monitoring the emotional states of users during multimedia presenta-

tion. For example, considering the case of audio-based multimedia content, the BCI-

derived feedback of music-induced emotions can be used to create personalized song

playlists [41] or to adaptively select the songs of a music stream in an online man-

ner [69]. Moreover, in the case of video content such as advertisements, aBCIs can be

used for neuromarketing [116] applications, e.g. for evaluating preferences of products

and commercials [230, 85]. Another interesting application of aBCIs is that of discov-

ering correlates of mental health disorder biomarkers from EEG responses to affective

stimuli. An indicative application relates to anhedonia [146], a symptom of depres-

sion, where lack of pleasure can be observed in the responses to presented pleasurable

stimuli. Machine learning techniques that can quantify the affective experiences of in-

dividuals during multimedia stimuli [96] can serve as powerful tools in the exploration

of EEG-based correlates of mental health biomarkers.

6.5 Directions for future research

The results presented in this thesis open up new research directions that can be pur-

sued to further build deep learning techniques for EEG-based brain-computer inter-

faces. The family of domain generalization techniques that are tailored to EEG data is

still under-explored, with several works resorting to domain adaptation methods [106]

that require access to data from the target domain during training. Building found-

ation models [56] for EEG data is an essential part of this process, similarly to the

field of visual data analysis where strong backbone models have been proven to be
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highly beneficial within domain generalization frameworks [83]. Moreover, the frame-

work developed in Chapter 3 only investigated the scenario of randomly splitting a

dataset into subsets of subjects. Exploring other options for dataset splitting is an in-

teresting research direction. For example, using measures that are related to the brain

anatomy of each subject (e.g. functional connectivity of EEG signals) or measures

that quantify the “BCI illiteracy” or data quality of each subject (e.g. the separability

between classes for each subject), are some indicative and meaningful alternatives for

dataset splitting. Another useful direction is that of adapting generic (i.e. subject-

agnostic) models to personalized ones [22] by calibrating with a minimal number of

trials from a candidate target subject. Furthermore, including EEG data collected

during executed movements (e.g. using PhysioNet [79, 200] dataset that contains EEG

data from both executed and imagined movements), can inform the training process

of deep learning models for decoding imagined movements. Moreover, studying the

impact that EEG non-stationarity levels have on the ability of users to voluntarily con-

trol BCIs by modulating their sensorimotor rhythms, is an unexplored problem which

is highly related to the study that was presented in Chapter 4 of this thesis. Recent

works from the field of neuroscience that provide a more accurate description of the

motor cortex [80], augmenting the long-existing “Penfield Homunculus” [175], can also

inspire the development of novel EEG-based BCIs for decoding movements from brain

activity.

Regarding the task of affect recognition, one future direction could be the collection

and analysis of reliable datasets with a more precise and clear relation between the

affective ratings and the content of lengthy audiovisual stimuli (e.g. introducing more

dense annotations for short temporal segments). This would bridge the gap between

works studying affect elicitation in short ERP-based data from static image stimuli [96]

and works that analyze emotions elicited from video stimuli [158]. Additionaly, dense

temporal annotations would render the task of continuous EEG-based tracking of af-

fective states more realistic, compared to the currently prevalent practice of inferring

108



6.5. Directions for future research

affective states corresponding to entire videos. Another important issue that deserves

further research relates to the impact that internal context (e.g. the content of tem-

porally neighboring stimuli) has on human judgments, when individuals self-report

their affective states. Evidence shows that humans form an internal context [203] from

previously encountered stimuli that act as reference points when evaluating forthcom-

ing experiences [246]. Investigating whether and how this context affects the perceived

emotions and the collected annotations, could help improving the design of psychology-

informed experimental paradigms for affective BCIs. Finally, the topic of identifying

the EEG electrode locations that are essential for affect recognition should be investig-

ated thoroughly, as this would enable bringing affective BCIs in out-of-the-lab settings

using sparse EEG montages and consumer grade devices.
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