
Evolving Spatial and Frequency Selection Filters for
Brain-Computer Interfaces

Ricardo Aler, Inés M. Galván, and José M. Valls

Abstract— Machine Learning techniques are routinely ap-
plied to Brain Computer Interfaces in order to learn a classifier
for a particular user. However, research has shown that classifi-
cation techniques perform better if the EEG signal is previously
preprocessed to provide high quality attributes to the classifier.
Spatial and frequency-selection filters can be applied for this
purpose. In this paper, we propose to automatically optimize
these filters by means of the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES). The technique has been tested
on data from the BCI-III competition, because both raw and
manually filtered datasets were supplied, allowing to compare
them. Results show that the CMA-ES is able to obtain higher
accuracies than the datasets preprocessed by manually tuned
filters.

I. INTRODUCTION

The aim of EEG-based Brain-Computer Interfaces (BCI)
is to detect patterns in user EEG signals in order to control
a computer or an external device [1], [13], [6], [10]. As
an example, patterns corresponding to motor imagery (the
user imagines that one of his body parts is moving), object
rotation imagery or thinking of words, can be recognized in
the EEG signal. The high variability of EEG patterns among
different subjects makes machine learning classification tech-
niques the tool of choice [3]. Thus, classifiers can be trained
from user-generated data by means of supervised machine
learning techniques [4]. The classifier can then be used to
detect patterns on real-time EEG data.

It is very difficult to learn classifiers from the raw EEG
data for two reasons. First, the number of attributes is too
large and second, it is known that patterns are best detected
on the frequency-domain rather than in the time-domain of
the original raw data. Therefore, the raw EEG signal is
usually preprocessed before the training stage. Three kinds
of transformations are commonly used [4]: spatial filters, the
Fourier Transform (to convert to the frequency domain), and
band-pass filters. Spatial filters are useful because the signal
detected at one electrode can come from different parts of
the brain. Spatial filters can generate a more localized signal
for every electrode. For instance, a common approach is
to subtract the average of surrounding electrodes from each
electrode, thus highlighting the signal generated just below

Ricardo Aler is with the Department of Computer Sciences, Universidad
Carlos III de Madrid, Avenida Universidad 30, 28911 Leganés, Spain; email:
aler@inf.uc3m.es).

Inés M. Galván is with the Department of Computer Sciences, Universi-
dad Carlos III de Madrid, Avenida Universidad 30, 28911 Leganés, Spain;
email: igalvan@inf.uc3m.es).

José M. Valls is with the Department of Computer Sciences, Universidad
Carlos III de Madrid, Avenida Universidad 30, 28911 Leganés, Spain; email:
jvalls@inf.uc3m.es).

that particular electrode. Once the signal has been spatially
filtered, it can be transformed to the frequency domain by
means of the Fast Fourier Transform. Moreover, it is known
that the patterns of interest are located in particular frequency
bands. As an example, motor imagery is accompanied by
increase/decrease of amplitude in the frequency band from
8Hz to 15Hz and can be easily observed in the frequency-
domain signal (this phenomena is called event-related desyn-
chronization (ERD) and event-related synchronization (ERS)
[16]). Therefore, it is important to use attributes from the
frequency domain. But in order to reduce the number of
attributes supplied to the classifier, it is also crucial to select
the right frequency-bands, bearing in mind that different
users will display ERD/ERS phenomena on slightly different
bands. Frequency-selection filters are used in this paper for
that purpose.

An appropriate preprocessing of the signal is acknowl-
edged to be very important in order to get high classification
accuracy. Filters are typically adjusted by hand, following a
process of trial and error. This requires some experience on
building and adjusting filters that at the end, may turn out not
to be optimal. There are also some approaches to compute
filters automatically. Most work have been carried out on
computing spatial filters by common spatial patterns (CSP)
[5], [4]. This approach allows to determine data projections,
represented by linear transformations, that maximize the
variance of signals of one class and minimize the variance of
signals of the other class. There are some extensions to CSP
that allow to also learn band-pass (or spectral) filters [11], [2],
[17]. Maximizing the variance of one class while minimizing
that of the other clearly increases the discriminability of the
two classes, so it is expected that most classifiers will obtain
high accuracies on the filtered data. But CSP and its variants
do not directly optimize the accuracy of the classifier on the
data.

In this paper, we propose to optimize simultaneously
both spatial and frequency-selection filters by means of
Evolution Strategies (particularly, the CMA-ES algorithm
[14], [9]). Evolution Strategies are able to optimize functions
without making strong assumptions about it. Therefore, given
a classifier, our approach tries to find the optimal filters
that maximize the accuracy of the algorithm, instead of
using surrogate measures (like CSP does) to determine the
separability of the classes.

This paper is structured as follows. Section II explains how
to learn a classifier from filtered data. Section III describes
how filters can be evolved by CMA-ES. The approach is
empirically tested in Section IV. Finally, Section V summa-

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/30043156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

rizes what has been achieved and proposes new avenues of
research.

II. LEARNING A CLASSIFIER FROM FILTERED RAW EEG
DATA: SPATIAL AND FREQUENCY-SELECTION FILTERS

A m-class classifier is a function
C : Rn → {c1, c2, . . . , cm} that assigns a class ci to
an instance (a1, . . . , an) ∈ Rn. The ai are the instance’s
attributes. Classifiers can be learned from a set of labeled
instances called the training data. Labeled data contain
an additional attribute indicating the class of the instance:
(a1, . . . , an, c). Before raw EEG data can be used as
training instances it has to be preprocessed by computing
the instances’s attributes from the raw signal. This Section
will explain in detail how to get from raw EEG to the
classifier, by filtering the acquired data with spatial and
frequency-selection filters.

Learning a classifier can be carried out in three steps:
1) Acquiring the raw EEG data for training purposes
2) Preprocessing the raw data in order to create the

attributes for the training instances. Spatial and
frequency-selection filters are employed

3) Training the classifier by means of supervised learning
techniques

A. Data acquisition

In order to train a classifier, an acquisition session has to
be carried out to capture data from the user. We will describe
now the setting for the type of acquisition sessions used in
this paper. This setting corresponds to what is usually called
“classification of continuous EEG without trial structure” in
the literature.

The EEG signal is recorded from c electrodes (or chan-
nels) located at different places on the scalp of the user.
The continuous signal at the electrodes is discretized with
sampling frequency f . If the acquisition session lasts for
s seconds, then a temporal series of f ∗ s data points (or
time instants) will be generated for each of the c channels.
Therefore, a session can be represented as a (f∗s)×c matrix,
that will be named Session. A session is made of periods.
In each period, the user is instructed to achieve a particular
mental state. Examples of mental states are imagining left-
hand movement or imagining right-hand movement. Thus,
every time instant will be associated with a particular mental
state. The sequence of mental states in a session can be
represented by a (f ∗ s)× 1 column vector. It will be named
the Class vector, because it actually contains the classes
required by the supervised learning method that will be used
later.

B. Generating the set of training instances

It is from the Session matrix that the training data for the
classifier has to be generated. The training set will be made
of many training instances. Each training instance, denoted
by In, is computed from a submatrix S extracted from the
Session matrix1. In fact, S is a window that spans for t

1S stands for “signal”.

time instants. Thus, the first training instance will be ob-
tained from a submatrix S1 = Session(1 : t, 1 : c), the next
training instance from S2 = Session(1 + δt : t + δt, 1 : c),
and so on. The nth instance will be generated from
Sn = Session(1 + (n− 1) ∗ δt : t + (n− 1) ∗ δt, 1 : c). It
is important to remark that if Sn is located in the tran-
sition between two mental states (two different thoughts),
then the training instance is discarded in order to avoid
noisy instances. However, this processing is performed only
when generating the training set but but not for the testing
instances, because in the later case, it is not known when the
mental state changes.

Notation (1 : t, 1 : c) means that the submatrix contains all
time instants from 1 to t and all channels from 1 to c. This is
a typical Matlab notation. So, each instance is obtained from
a window S that moves in steps of size δt. If δt = t, then
there is no overlap between the windows, otherwise there
will be some overlap. Supervised training techniques require
that all instances have been labeled. The class corresponding
to Sn is stored in Class(t + (n− 1) ∗ δt).

In summary, the algorithm to generate the set of instances
is:

Algorithm 1 Generation of the Training Instances
1: begin← 1
2: end← t
3: n← 1
4: while Session has not been processed do
5: Sn ← Session(begin : end, 1 : c)
6: In ← GenerateInstance(Sn)
7: TrainingSet← TrainingSet

⋃
(In,Class(end))

8: begin← begin + δt
9: end← end + δt

10: n← n + 1
11: end while
12: Return(TrainingSet)

The procedure GenerateInstance will be described in
the next Section.

C. Generating a Single Training Instance: applying spatial
and frequency-selection filters

Now, the process to generate a training instance In from
submatrix Sn will be described. It has three steps:

1) Apply the spatial filter L (a linear transformation of
the training data)

2) Apply the Fast Fourier Transform (FFT)
3) Apply the frequency-selection filter B

There are many kinds of spatial filters (Common Average
Referencing, Laplace Filtering, PCA, ICA, etc.), but most
of them can be represented by a linear transformation on the
original data. Therefore, our spatial filters are c×c′ matrices,
denoted by L, and the result of filtering is just the matrix
product shown in Eq. 1

S′
n = Sn ∗ L (1)

The filtered matrix S′
n is a t × c′ matrix. If c′ = c, then

S′
n has the same dimensions as the original matrix Sn. If

c′ < c, then the number of channels of S′
n is reduced. In

some sense, the spatial filter L transforms c channels into c′

channels.
The application of the Fast Fourier Transform to the

spatially filtered data is given by Eq. 2.

S′′
n = |FFT (Sn ∗ L)| (2)

where operator | | computes the modulus of each one
of the components of the matrix resulting from FFT. FFT
returns complex numbers, with phase and modulus, but most
research on BCI deal with the modulus only [4], therefore the
phase will be ignored here. S′′

n in Eq. 2 is also a t×c′ matrix,
but now the rows of the matrix belong to the frequency
domain.

After the FFT transformation, rows from 1 to t/2 repre-
sent the frequency band (0Hz, (f/2)Hz) (where f is the
sampling frequency), with a resolution of δf = (f/t)Hz.
The frequency bands contained in the matrix are (0, δf),
(δf, 2∗δf), etc. Sometimes, the resolution δt is smaller than
necessary, so it is convenient to work with wider frequency-
bands. This can be achieved by averaging several consecutive
frequency-bands.

A training instance can then be constructed by flattening
S′′

n and concatenating all its components as shown in Eq. 3.

In = (S′′
n(1, 1), . . . , S′′

n(t/2, 1), S′′
n(1, 2), . . . , S′′

n(t/2, 2),

. . . , S′′
n(1, c′), . . . , S′′

n(t/2, c′)) (3)

where S′′
n(i, j) represents frequency-band i ∈ {1 . . . t/2}

at channel j ∈ {1 . . . c′}. This results in a large num-
ber of attributes (t/2 ∗ c′), with many of them containing
no physiological information. Classification problems with
many irrelevant attributes usually lead to overfitting.

Frequency-selection filters can be learned to select the
most appropriate frequency-bands for every user. In the
classification context this amounts to attribute selection. In
this paper, the frequency-selection filter is represented by a
binary vector shown in Eq. 4.

B = (b1,1, . . . , bt/2,1, b1,2, . . . , bt/2,2, . . . , b1,c′ , . . . , bt/2,c′) (4)

where bi,j = 1 means that the attribute that represents
frequency band i and channel j is to be selected, otherwise
to be removed.

We can summarize the process of creating training instance
In from Sn as:

In = B(flatten(|FFT(Sn ∗ L)|)) (5)

where flatten is the flattening of the matrix (concatenat-
ing all of its components) and B is the application of the
frequency-selection filter.

Figure 1 shows the basic steps of the instance generation
procedure as explained before.

Spatial filter
L

FFT

S’n=Sn * L
(t × c’)

Sn
(t × c)

Frequency-selection
B

S’’n=|FFT(Sn * L)|

(t/2 × c’)

Training instance

Raw
data

Processed data

In

Fig. 1. Instance generation procedure

D. Training the classifier

Once the training set is available, many supervised classi-
fication techniques can be used to train classifier C: Support
Vector Machines, Neural Networks, etc. Preliminary experi-
ments showed that linear classifiers worked better than non-
linear ones. We have chosen two linear classifiers: Linear
Discriminant Analysis (LDA a.k.a. the Fisher Discriminant
or FD) and linear-kernel Support Vector Machines (SVM).
Both classifiers will be used in different contexts in the rest
of the paper.

III. EVOLUTION OF SPATIAL AND

FREQUENCY-SELECTION FILTERS

The goal of this paper is to evolve spatial and frequency-
selection filters that are optimal for some classifier C. From
the previous sections, we have seen that in this work:

• Learning the spatial filter is equivalent to constructing
a t× c′ matrix L.

• Learning the frequency-selection filter is equivalent to
constructing a binary vector B

In this Section, it will be explained how the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) has been
used to optimize L and B for a FD classifier. CMA-ES
(Covariance Matrix Adaptation Evolution Strategy) is one of
the best evolutionary techniques for continuous optimization
in difficult non-linear domains [14], [9]. CMA-ES is an
Evolution Strategy where search is guided by a covariance
matrix, which is adjusted and updated during the search
process. CMA-ES works well in both local and global
optimization tasks. An interesting feature of CMA-ES is that
it requires almost no tuning of its parameters.

In order to specify the problem to CMA-ES, both the
representation of candidate solutions (the chromosome) and
the function to be optimized, must be described. In this work,
CMA-ES is used to solve a minimization problem.

A. The chromosome

The chromosome contains the parameters to be optimized.
In this case, these are the frequency-selection filter (B) and
the spatial filter matrix L. CMA-ES evolves real numbers,
so a flattened L matrix can be directly encoded in the
chromosome. On the other hand, B contains binary values.
They have been encoded as real numbers, but decoded as
“0” if the integer part is odd and “1” if even.

B. The fitness function

In order to evaluate the quality of filters (B,L) encoded
in a chromosome, a classifier C is built on the training data
filtered by L and B, as explained in Section II. In this case,
we have chosen C to be the Fisher Discriminant (FD). Next,
C is applied on the same training data and the resulting
classification error is computed. Although FD is linear, some
overfitting was observed because the number of parameters
in (B,L) to be adjusted by CMA-ES is high. To prevent
overfitting, regularization measures were taken in order to
minimize the number of components set to 1 in vector B
in Eq. 4, which in turn determines the number of attributes
of the training instances. This number has been normalized
to [0, 1] and is denoted by |B|. Eq. 6 displays the fitness
function to be minimized.

fitness(B,L) = Error + λ|B| (6)

where Error ∈ [0, 1] is the classification error on the
training data and λ is the regularization parameter.

FD has been chosen because preliminary experiments have
shown that linear classifiers are the best options for the data.
As the fitness function is evaluated for every chromosome,
its computation must be fast, and FD satisfies this require-
ment. Although linear-kernel SVM usually achieves higher
accuracy, it is much slower. SVM can still be used at the end
of the run, once the best (B,L) pair has been obtained. The
rationale is that if a (B,L) pair works well for FD, similar or
better results could be obtained with a better linear classifier
(SVM). Of course, this will be tested experimentally.

IV. EXPERIMENTAL VALIDATION

A. Data sets description

In this paper three datasets acquired in the IDIAP Research
Institute will be used [12]. They have been previously tested
in the 2005 BCI-III competition.2 Each dataset contains data
from a different subject during 4 non-feedback sessions. 32
electrodes were located on the subjects’s scalp. There are 3
mental tasks, so this is a three-class classification problem:

• Imagination of repetitive self-paced left hand move-
ments

• Imagination of repetitive self-paced right hand move-
ments

• Generation of words beginning with the same random
letter

All 4 sessions of a given subject were acquired on the
same day, each lasting 4 minutes with 5-10 minutes breaks in
between them. The subject performed a given task for about
15 seconds and then switched randomly to another task at
the operator’s request. EEG data is not splitted in trials since
the subjects are continuously performing any of the mental
tasks. Data was provided by the competition organizers in
two ways: raw EEG signals with 32 electrodes, and data
with precomputed features with 8 selected electrodes. In this
paper, we use both versions of the datasets: our method to
evolve filters is applied on the former while the later is used
for comparison purposes.

The dataset with precomputed features provided by the
competition organizers had been obtained by the following
procedure. First, the raw EEG potentials were spatially fil-
tered by means of a manually tuned surface Laplacian. Then,
16 times per second the power spectral density (PSD) in the
band 8-32 Hz was estimated over the last second of data with
a frequency resolution of 2 Hz. Additionally, physiological
knowledge was used to select 8 centro-parietal channels (C3,
Cz, C4, CP1, CP2, P3, Pz, and P4) out of the 32 original
electrodes. As a result, an EEG sample is a 96-dimensional
vector (8 channels times 12 frequency components).

B. Experimental Testing

As explained before, there are 4 sessions for each one
of the three subjects. The three first sessions were available
for training, while the last one was used for testing the
classifiers designed by the participants of the competition.
The parameters of our system have been adjusted to mimic
the competition conditions. These are:

• Sampling frequency f = 512 Hz
• 1 second of data is used to construct every training

instance, therefore t = 512
• Training instances are sampled 16 times per second,

therefore δt = 512
16 = 32

• The number of electrodes is c = 32
Similarly to the competition precomputed features

datasets, frequency bands outside the (8, 32) Hz range have

2http://www.bbci.de/competition/iii/results/index.html#martigny.

been removed because they contain no physiological infor-
mation. Also, the frequency-band width considered by the
frequency-selection filter B has been set to 2Hz, as in the
competition. This means, that the frequency-bands are (8, 10)
Hz, (10, 12) Hz, . . . , (28, 30) Hz, (30, 32) Hz. Therefore, B
is made of 12 binary values. Our spatial filter L is a (c× c′)
matrix: it transforms c channels into c′ channels. It is known
that imagination of left (right) hand movements is related to
a certain part of the right (left) hemisphere [4]. If we had
only these two classes, it would be reasonable to set c′ = 2.
In this problem there is a third class (imagination of random
words), therefore we have also tested c′ = 3, finding that
results are similar. Hence, c′ has been set to 2 for the rest
of experiments. Also, after some preliminary experiments λ
has been set to 0.2.

In order to avoid overfitting, a stopping criterion that uses a
validation set has been imposed on CMA-ES for all datasets.
The validation set is obtained by mixing and randomizing the
training instances from sessions 1, 2, and 3. 80% of data is
selected for fitness computation and 20% for the validation-
based stopping criterion. The validation classification error
is measured at each iteration and evolution is stopped when
the validation error becomes almost stable (more specifically,
when it changes less than 0.005% for 30 iterations).

Next, results of the system run on every of the three
subjects will be described. First, Figures 2,3 and 4 display a
graphical evolution of the classification error on the training,
validation, and the test sets for subject 1, 2 and, 3. It can
be seen that evolution stops before the onset of overfitting.
Every iteration in Figures 2,3 and 4 take approximately 3
minutes (in a computer with a 2.5Ghz CPU and 4Gb RAM).

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 50 100 150 200 250 300 350

C
l
a
s
s
i
f
i
c
a
t
i
o
n

e
r
r
o
r

Generation

Error evolution. Subject 1

Training
Validation

Test

Fig. 2. Error evolution. Subject 1

Table I shows some details about the CMA-ES runs: the
number of generations carried out, the number of frequency-
bands selected by the best B filter, and the FD classification
rate for the test data (session 4) for each subject. The
Table also includes the test classification rate obtained with
a linear SVM.3 This SVM implementation solves multi-
class problems by means of pairwise classification. SVM are

3Weka’s SMO implementation has been used [8].

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 100 200 300 400 500 600 700 800 900

C
l
a
s
s
i
f
i
c
a
t
i
o
n

e
r
r
o
r

Generation

Error evolution. Subject 2

Training
Validation

Test

Fig. 3. Error evolution. Subject 2

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 50 100 150 200 250 300 350

C
l
a
s
s
i
f
i
c
a
t
i
o
n

e
r
r
o
r

Generation

Error evolution. Subject 3

Training
Validation

Test

Fig. 4. Error evolution. Subject 3

generally better than FD because they return the maximal
margin hyperplane which shows very good generalization
capabilities. SVM have not been used for fitness compu-
tation during the evolutionary process because of the large
computational cost involved: FD are much faster. But linear
SVM can be used at the end of CMA-ES on the filtered data,
once the best (B,L) pair has been found, with the aim of
improving results further.

TABLE I

RESULTS OF FILTERS (B, L) EVOLVED BY CMA-ES: NUMBER OF

GENERATIONS INVOLVED, NUMBER OF FREQUENCY-BANDS SELECTED,

AND TESTING ACCURACY (PERCENT) BY FD AND SVM.

Subject 1 Subject 2 Subject 3
Generations 344 824 308
Frequency-bands selected 3 2 2
Test Accuracy (FD) 74.20 71.52 56.65
Test Accuracy (SVM) 77.96 71.36 56.76

It can be observed in Table I that only a few frequency-
bands have been selected (3 for subject 1 and 2 for subjects
2 and 3). Also, it can be seen that SVM provides better
classification rates only for subject 1. For the rest of subjects,
FD and SVM perform similarly.

First, the classification rates obtained by the evolved filters
will be compared to the datasets with precomputed features
supplied to the organizers of the competition. Let us remem-
ber that the later dataset was obtained by applying a carefully
hand-adjusted surface Laplacian spatial filter and select-
ing the physiologically appropriate channels, as explained
in Section IV-A. The features obtained by this manually
tuned filter were high quality, as demonstrated during the
competition: the best results were achieved by using these
precomputed features rather than the raw signal dataset.4

Table II compares the dataset filtered by the evolved filters
with the precomputed features dataset. In both cases, SVM
was applied to the filtered datasets (training was carried out
with session 1, 2, and 3 and testing with session 4, for each
subject). Given that the number of frequency-bands selected
by the evolved filters is very small, we have also applied
a WEKA attribute selection algorithm to the precomputed
features dataset [8]. Different algorithms were tested and
showed similar results. The selected algorithm uses a best-
first search mechanism together with an information gain
measure to evaluate sets of attributes [15]. It can be seen
that results tend to improve when attributes are selected (at
least, for subjects 1 and 2). In any case, results obtained by
the evolved filters are better than the ones for precomputed
features. This is true for all three subjects. For subject 1,
the improvement is near to 3%. For subjects 2 and 3 the
improvement is more that 5%.

TABLE II

COMPARISON BETWEEN THE CLASSIFICATION SUCCESS RATE USING

PRECOMPUTED FEATURES DATA (WITH AND WITHOUT ATTRIBUTE

SELECTION) AND RAW DATA FILTERED BY THE EVOLVED FILTERS.

Subject 1 Subject 2 Subject 3
SVM and precomputed features 72.71 60.71 50.14
SVM and precomputed features + 75.25 65.29 48.42
Attribute Selection 7 2 3

SVM and evolved filters 77.96 71.36 56.76
Frequency-bands selected 3 2 2

Our results are also competitive with those obtained in the
BCI-III Competition. One of the requirement of the compe-
tition was to provide the average of 8 consecutive samples
(instances) in order to get a response every 0.5 seconds, be-
cause input vectors were computed 16 times per second. This
smoothing process tends to improve results. Results shown in
previous Tables I and II had been computed by considering
all instances. In order to compare with competition results,
all classification rates will be calculated by averaging every
8 consecutive instances. Table III displays these results. The
first row shows the evolved filters results. The second row
corresponds to the winner of the competition. Those results
were been obtained from the precomputed dataset provided
by the organizers but including extra capabilities such as

4See http://www.bbci.de/competition/iii/results/index.html#martigny. The
first 8 best results used the precomputed features (column marked with
PSD=Y). The best result obtained directly from the raw data comes only at
9th place (PSD=N))

detection transitions between mental states [7]. This helped to
increase classification rates significantly. The third row shows
the results obtained by Shiliang Sun5 in the competition.
These figures are relevant because they used the raw EEG
data (just like our evolving filters approach does), instead of
the precomputed data. They applied a multiclass Common
Spatial Patterns filter, among other preprocessing tools and
a SVM classifier.

TABLE III

COMPETITION SUCCESS RATE CLASSIFICATION

Subject 1 Subject 2 Subject 3
Evolved Filters (SVM) 79.97 75.11 57.76
Competition Winner 79.60 70.31 56.02
(preprocessed Data)
Best competition result 74.31 62.32 51.99
on raw data

According to Table III, evolved filters are competitive with
the winner of the competition (that used precomputed data).
This is remarkable, given that it used a mental task transi-
tion detector in addition to preprocessing and classification
algorithms. Also, evolved filters perform better than the best
competition approach that worked on raw data.

V. CONCLUSIONS

This work has presented an evolutionary approach based
on CMA-ES to create simultaneously both spatial and
frequency-selection filters, in order to improve classification
rates for brain-computer interfaces. This research started as a
way to automatically adjust spatial filters, instead of having
to follow a trial-and-error manual tuning process. By using
spatial filters only, we obtained a large number of frequency-
bands which are in turn the attributes for the classifier.
Given that having a large number of attributes usually results
in overfitting and that many of them are known to be
physiologically irrelevant, the system evolves simultaneously
the spatial filters and selects the most appropriate frequency-
bands for each channel. The system allows to find both
spatial and frequency-band selection filters adapted for every
particular subject.

Results show that the evolved filters are better than those
manually tuned. We have also compared our results with the
winners of the BCI-III competition. On the one hand, our
classification rates are similar to the winner who used the
precomputed features and additionally a mental-task transi-
tion detector. We achieve similar results by only filtering the
data. On the other hand, our results are significantly better
than the best results in the competition that, as our system
does, start from the raw EEG data.

ACKNOWLEDGMENT

This work has been funded by the Spanish Ministry
of Science under contract TIN2008-06491-C04-03 (MSTAR
project)

5http://www.bbci.de/competition/iii/results/index.html#martigny

REFERENCES

[1] E.A. Curran and M.J. Stokes. Learning to control brain activity: a
review of the production and control of eeg components for driving
braincomputer interface (bci) systems. Brain Cognition, 51, 2003.

[2] G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio, and
K. R. Muller. Combined optimization of spatial and temporal filters
for improving braincomputer interfacing. IEEE Transactions on
Biomedical Engineering, 53(11):2274–2281, 2006.

[3] Guido Dornhege, Matthias Krauledat, Klaus-Robert Muller, and Ben-
jamin Blankertz. Toward Brain-Computer Interfacing, chapter General
Signal Processing and Machine Learning Tools for BCI Analysis,
pages 207–234. MIT Press, 2007.

[4] Guido Dornhege et al. (eds.). Towards Brain-Computer Interfacing,
chapter General Signal Processing and Machine Learning Tools for
BCI Analysis, pages 207–234. MIT Press, 2007.

[5] K. Fukunaga. Introduction to statistical pattern recognition. Academic
Press, 1990.

[6] C. Neuper G. Pfurtscheller and N. Birbaumer. Motor Cortex in
Voluntary Movements, chapter 14, pages 367–401. CRC Press, 2005.

[7] Ferran Galán, Francesc Oliva, and Joan Guardia. Using mental
tasks transitions detection to improve spontaneous mental activity
classification. Medical and Biological Engineering and Computing,
45(6):1741–0444, 2007.

[8] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The weka data mining software: An
update. SIGKDD Explorations, 11(1):10–18, 2009.

[9] N. Hansen and A. Ostermeier. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation,
9(2):159–195, 2001.

[10] Andrea Kubler and Klaus-Robert Muller. Toward Brain-Computer
Interfacing, chapter An Introduction to Brain-Computer Interfacing,
pages 1–26. MIT Press, 2007.

[11] S. Lemm, B. Blankertz, G. Curio, and K. R. Muller. Spatio-spectral
filters for improved classification of single trial eeg. IEEE Transactions
on Biomedical Engineering, 52(9):1541–1548, 2005.

[12] J. del R. Millán. On the need for on-line learning in brain-computer
interfaces. In Proceedings of the International Joint Conference on
Neural Networks, Budapest, Hungary, July 2004. IDIAP-RR 03-30.

[13] Mourino J Millan J del R, Renkens F and W. Gerstner. Noninvasive
brain-actuated control of a mobile robot by human eeg. IEEE Trans
Biomed Eng, 51, 2004.

[14] A. Ostermeier, A. Gawelczyk, and N. Hansen. A derandomized
approach to self-adaptation of evolution strategies. Evolutionary
Computation, 4(2):369–380, 1994.

[15] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer
Problem Solving. Addison-Wesley, 1984.

[16] G. Pfurtscheller and F. H. L. da Silva. Event-related synchronization of
mu rhythm in the eeg over the cortical hand area in man. NeuroScience
Letters, 174, 1994.

[17] R. Tomioka, G. Dornhege, G. Nolte, B. Blankertz, K. Aihara, and
K. R. Muller. Spectrally weighted common spatial pattern algorithm
for single trial eeg classification. Technical Report 40, Department of
Mathematical Engineering, University of Tokyo, Japan, 2006.

