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Trends in EEG signal feature
extraction applications

Anupreet Kaur Singh* and Sridhar Krishnan

Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto,

ON, Canada

This paper will focus on electroencephalogram (EEG) signal analysis with an emphasis

on common feature extraction techniques mentioned in the research literature, as

well as a variety of applications that this can be applied to. In this review, we cover

single andmulti-dimensional EEG signal processing and feature extraction techniques

in the time domain, frequency domain, decomposition domain, time-frequency

domain, and spatial domain. We also provide pseudocode for the methods discussed

so that they can be replicated by practitioners and researchers in their specific areas

of biomedical work. Furthermore, we discuss artificial intelligence applications such

as assistive technology, neurological disease classification, brain-computer interface

systems, as well as their machine learning integration counterparts, to complete the

overall pipeline design for EEG signal analysis. Finally, we discuss future work that can

be innovated in the feature extraction domain for EEG signal analysis.
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1. Introduction

Electroencephalogram (EEG) signals play an important role in understanding the electrical
activity associated with brain functioning and brain-related disorders. A typical EEG signal
analysis pipeline is as follows: (1) data acquisition, (2) data pre-processing, (3) feature extraction,
(4) feature selection, (5) model training and classification, and (6) performance evaluation.
Signal analysis, when applied to the EEG, is of particular interest as the entire body’s condition,
as well as brain status can often be recognized when digital signal processing (DSP) and machine
learning (ML) methods are applied (Sanei and Chambers, 2021).

Carlo Matteucci and Emil Du Bois-Reymond were the first individuals to establish
neurophysiology, and were the first to record and display brain activity. Later, Hans Berger
discovered alpha wave activity in the brain, and he was the first to use scalp electrodes to
record brain activity in the form of electrical signals in the 1870s. Berger was ultimately credited
with inventing and measuring the EEG signal. Kornmüller, through his research, focused on
multichannel recordings, their importance, and did so by widening the brain region covered
by using a higher degree of electrodes. Since its discovery, EEG analysis has brought about
significant advancements in studies of diagnosis and treatment of various neurological brain
conditions and the overall health of the central nervous system (CNS). It can also be used to
drive home-based technologies (telehealth), prosthetics and even in the world of virtual reality
and gaming (Sanei and Chambers, 2021).

EEG systems used for signal acquisition consist of electrodes, differential
amplifiers, filters and pen-type registers. A 10–20 EEG electrode placement method
is commonly used (refer to Figure 1). EEG signals are also sampled, quantized and
encoded to convert them to digital form. Since the effective bandwidth of EEG
signals is ∼100Hz, a minimum frequency of 200Hz (to satisfy Nyquist criterion) is
typically enough to sample the EEG for most applications (Sanei and Chambers, 2021).
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FIGURE 1

10–20 electrode setup for EEG (Sanei and Chambers, 2021).

1.1. Challenges in EEG analysis and
applications

There are many applications that EEG signal analysis allows for;
anywhere from disease diagnosis to even brain-computer interfaces
(BCIs). A popular disorder studied heavily through EEG signal
analysis is epilepsy.

Epilepsy is characterized by frequent seizures and is classified
as a chronic neurological disorder. The EEG is used to identify the
onset of seizures as well as for the diagnosis of epilepsy, however,
this process is long and manual. Due to the manual nature, it is also
subjective and thus can lead to very different diagnoses from various
epileptologists. This has led to innovations in the technological realm
to develop automated methods of seizure detection (Bourien et al.,
2021).

EEG signal analysis is also being applied to the BCI domain,
which is a rapidly growing field of research; it is an interesting field
because it allows for a communication bridge between the external
world and the human brain. It has been applied to assistive devices
which have been used to restore movement to patients, as well
as retraining patients to regain motor functionality. BCI systems
function by analyzing the incoming brain waves from the EEG and
converting the signal into appropriate action. There are, however,
many challenges in this domain in terms of usability, training,
information transfer rate, as well as technical challenges (Abdulkader
et al., 2015).

Other applications of EEG include, but are not limited to,
motor imagery classification, emotional classification, drug effects
diagnosis, mental task diagnosis, and sleep state classification.
Since large numbers of EEG channels are collected during data
acquisition for these applications, there is a need for channel
redundancy. There are algorithms that have been developed to
assist with the channel selection of EEG signals. Channel selection

assists with the reduction of computational complexity, reduce
overfitting from redundant channels to improve performance,
and reduce setup time in some applications. Some channel
selection techniques are as follows: (1) filtering methods in which
evaluation criteria are used to “filter” channels, (2) wrapping
methods in which a classification algorithm is used, (3) embedded
methods that select channels based on criteria generated during
the learning process of classifiers, and (4) hybrid methods
which combine filtering and wrapper techniques (Alotaiby et al.,
2015).

1.2. Evolution of EEG feature extraction
methods

Feature extraction is the natural next step after signal
preprocessing, and is a vital step of biomedical signal analysis.
It has become increasingly common to be working with big data,
especially in the medical domain due to multi-hour acquisition as
well as multiple channels, as is the case in EEG signal acquisition. Due
to this, one of the basic goals of feature extraction is dimensionality
reduction and data compaction. Essentially, this would allow one to
represent their data with a smaller subset of features. This facilitates
the efficient use of machine learning (ML) and artificial intelligence
(AI) algorithms for classification and diagnosis applications (Subasi,
2019). Note that not all features are useful for given applications;
“useful” features should, in theory, have the ability to represent
the underlying signal accurately (Krishnan and Athavale, 2018;
Krishnan, 2021).

Furthermore, it is important to note that EEG signals carry
properties that complicate the feature extraction and signal analysis
process. EEG signals are: (a) non-stationary, (b) non-linear, (c) non-
Gaussian, and (d) non-short form (Alotaiby et al., 2015; Krishnan,
2021). These properties need to be accounted for in the feature
extraction process for a robust end-to-end pipeline.

Feature selection is performed after feature extraction. As
previously mentioned, note all features are useful for given
applications, thus through the selection process, said features can
be removed. Moreover, different combinations of features yield
different results for pipelines; they can either affect the performance
of the following ML models negatively or positively. For example,
if inappropriate/inefficient features are chosen to train the model,
which overall does not represent the underlying signals very well,
the performance of the model would degrade. A good rule of thumb
is to choose application-dependent features to represent a signal vs.
generic features; this would ensure that the features would capture
the patterns and behaviors of interest (Krishnan and Athavale, 2018;
Subasi, 2019).

Overall, feature extraction and feature selection saves on
hardware and software resources, computational time, and reduces
complexity, all of which can be used to apply to the world of ML and
AI-based connected healthcare and telehealth (Krishnan, 2021).

In this paper, we will review common feature extraction
methodologies that have been applied to EEG signals over the
years (refer to Figure 2). This will be organized by one-dimensional
feature extraction methods, vs. multi-dimensional feature extraction
methods. At a high level, we will go through the following (refer to
Figure 2):
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FIGURE 2

Basic feature extraction and machine learning pipeline showing the evolution of biomedical signal feature extraction techniques (Subasi, 2019).

(a) One-dimensional feature extraction techniques

(i) Time domain.
(ii) Frequency/spectral domain.
(iii) Decomposition domain.

(b) Multi-dimensional feature extraction techniques

(i) Joint time-frequency domain.
(ii) Spatial domain.

Note that the techniques reviewed in this paper are by no means
an exhaustive list; this review serves as a starting point for analysis
of EEG signals, as well as potential applications. The review work
has been organized as follows: In Section 2, the authors will discuss
the significance of features for machine learning. Section 3 will
delve further into applications of EEG feature analysis. Section 4
will discuss common one-dimensional feature extraction techniques
from the time, frequency, and decomposition domains. Section 5 will
discuss multi-dimensional feature extraction methods from the joint
time-frequency domain and the spatial domain. Finally, in Section
6, we will conclude the review with critical discussions, as well as
potential recommendations toward future work.

2. Significance of features for machine
learning

Following feature extraction and selection, the features are
inputted and applied toMLmodels. TheseMLmodels are customized
for specific applications, such as for classification (disease diagnosis).
ML is a subset of the overall AI domain and can help with the
optimization of features selected. This is done by the developer as

they identify which features have a positive/negative effect on the
model, and use that information to optimize the overall pipeline
(Krishnan and Athavale, 2018).

The chosen application/problem must be taken into account

when choosing an appropriate ML algorithm to implement. This

is due to the fact that some models perform better than others for

specific applications. One must also account for the inherent pros
and cons of the available ML models for example some are more
computationally extensive, which may not be feasible for real-time
design. There are some general criteria to consider when selecting
an ML algorithm: (1) Type of bio-signal, (2) Size of Feature Matrix,

and (3) Availability of labeled data, just to name a few (Krishnan and

Athavale, 2018). Refer to Figure 2 for a simple end-to-end feature
extraction ML pipeline.

The developer can choose to either have a supervised or

unsupervised ML model. Typically for medical applications,
supervised models are chosen. Supervised learning refers to the
availability of labeled data provided by domain experts in the field; the

labeled data act as ground truth for the models to learn from during
the training process.

Unsupervised learning refers to the lack of expert labeled data,
where instead the algorithm studies the data to find patterns

to distinguish between different classes. This type of learning is

typically not used for biomedical signal data though. This is because

biomedical signals are better analyzed in short-duration segments; in

supervised learning, this allows for the labels to be applied to the
individual segments. However, in unsupervised learning, the ML-
predicted label would be applied to the full-duration signal; this is
not desirable especially if there are regions-of-interest (ROIs) that
require local feature extraction, not global (Krishnan and Athavale,
2018).
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As previously mentioned, different sets of features yield different
performance results, thus making the ML selection and training a
lengthy process. The reader should be aware that the number of
appropriate features is also a key point of consideration; this can lead
to either model over-fitting or under-fitting issues.

3. Applications: Assistive technology
and disease diagnosis

BCI systems can be applied to a variety of industries including
medical and entertainment. In this paper, we will be focusing on
potential medical applications, specifically under the umbrellas of
assistive technology and disease classification. These applications can
span anywhere from BCI-based prosthetics, BCI-based wheelchair
control, automated disease diagnosis, assistive cursor control, and
wearable devices (Rashid, 2020).

Robotic arms are one of the more common forms of BCI-based
prosthetics. There are challenges that exist for disabled individuals,
however, such as their loss of motion capacity that can hinder their
control of these prosthetics; studies are underway to mitigate these
challenges. In ideal situations, the user would be able to control in
arm in all dimensions as well as carry out grasp operations (Rashid,
2020).

Brain-controlled wheelchairs (BCWs) are state-of-the-art
assistive technology under neuro-rehabilitation, allowing disabled
users to control a wheelchair without facing issues of fatigue, and
providing them with the independence to move through various
environments. BCWs allow for an improved quality of life for these
users as well. This is achieved through the acquisition and analysis of
the EEG signal (Fernández-Rodríguez et al., 2016).

The evaluation and diagnosis of brain diseases through the
analysis of the EEG signal is another growing field. Epilepsy is the
more common disease classified, but there are other neurological
diseases that the EEG signal, in combination with the right features,
has the potential of diagnosing. For example, brain tumors have been
found to be diagnosed with the help of EEG signals, analysis of
anesthesia-induced patients, as well as the locations of stoke (Song
et al., 2021).

Cursor control is another popular application, allowing users that
struggle to use conventional modes of cursor control an efficient
alternative. Commonly, motor imagery signals are used to convey
left/right/up/down operations of the cursor. Performance accuracy
ranges from 70 to 95% with the use of different features (Rashid,
2020).

4. One-dimensional features

4.1. Time-domain feature extraction

Time-domain feature extraction is one of the more primitive
techniques, in which the signals/data are analyzed with respect to
time. This allows one to quantify how a signal is changing over
time. This is especially important in an EEG signal, as they are
often recorded over multi-hour timeframes. Typically, windowing
and segmentation of the signal are desirable for time-domain feature
extraction. This way, each window will have a local feature extracted,
and the researchers will be able to view how the features change over

1. Result: AR model coefficients
2. Import and preprocess the EEG signal
3. Segment the signal using method of choice
4. Use Equation (1) to recursively solve for the AR coefficients
5. Form the feature vector

Algorithm 1. AR modeling feature extraction (Lawhern et al., 2012; Zhang

et al., 2015; Chai, 2017).

each window.Windowing and segmentation are especially important
for physiological signals as they are non-linear and non-stationary
in nature (Krishnan and Athavale, 2018). In this section, various
time-domain techniques specific to EEG will be explored.

4.1.1. Autoregressive modeling
Autoregressive (AR) modeling uses earlier observations to create

a linear regression model (Algorithm 1). When using AR modeling
for feature extraction, the signal is represented by AR coefficients,
which form the feature vector. This is one of the most popular forms
of feature extraction in the time-dmain, and is also used in EEG-
based BCI systems. This is because the technique is very conducive
for data compression and low-power applications (Lawhern et al.,
2012; Zhang et al., 2015; Rashid, 2020). Furthermore, AR coefficients
remain invariant even in the presence of scaling changes in the
data (Lawhern et al., 2012). There are however challenges with
determining model order; if the order is low, it will not represent the
data accurately, but if it is too high, noise increases (Rashid, 2020).

One case study focused on the analysis of EEG signals through
AR modeling to evaluate driver fatigue. EEG is widely considered
as a reliable method of fatigue detection. The dataset used in this
study consisted of data from 43 healthy participants from ages 18–55.
Baseline EEG and subjective levels of fatigue assessment were taken,
which were followed by a simulated driving task, after which another
EEG measure and post-subjective levels of fatigue were measured
(Chai, 2017).

ˆs (t) =
P

∑

k=1

a
(

k
)

ŝ
(

t − k
)

+ e(t), (1)

where ˆs (t) represents the segmented EEG data, P is the order of the
model, e(t) is the white noise, and a(k) represents the AR coefficients
to be estimated (Chai, 2017).

4.1.2. Fractal dimension via Higuichi algorithm
Another interesting application of EEG signal analysis is for

emotion classification in BCI systems (Algorithm 2). Specifically, in
this study, calm, angry and happy emotional states were studied.
The data was collected from 10 subjects in real time. Video clips
of 2min each were taken while the subjects were undergoing
different emotions. Fractal dimension (FD) is an index that measures
signal complexity through mathematical means. The Higuichi FD
algorithm is outlined in the following equation (Kaur et al., 2018):

FDjt =
(
∑A−jt

i−1

∣
∣X

(

j+ it
)

− X
(

j+ (i− 1)∗ t
)∣
∣)A−1

A−j

t
, (2)
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1. Result: FDjt feature vector
2. Import and preprocess the EEG signal
3. Segment the data into 1-s intervals
4. Apply Equation (2) to apply the Higuchi FD algorithm to the
EEG signal
5. Form the feature vector from FDjt

Algorithm 2. Fractal dimension (FD) viaHiguchi algorithm (Kaur et al., 2018).

where X(1):X(N) are the finite time-series samples, and j=1:t denotes
the initial time to the interval time (Kaur et al., 2018).

4.1.3. Statistical features
Statistical feature extraction is by far one of the lesser complex

methods in the time-domain (Algorithm 3). With the growing
popularity of statistical programming languages, this becomes even
easier with the use of native, built-in functions.

One application of statistical feature extraction with EEG signals
is embedding emotional intelligence into machine intelligence
human-computer interaction (HCI) systems. One such study focused
on classification of emotional states (subject-specific) and did so by
collecting EEG data from singular subjects overmultiple weeks. Thus,
this is a subject-specific classification that can be expanded upon for
person-independent analysis. The proposed features in the study are
as follows (Picard et al., 2001):

1. Mean (raw signal)

µX = 1

N

N
∑

n=1

Xn, (3)

where Xn represents the value of the nth sample of the raw signal and
n= 1:N data points in the raw signal.

2. Standard deviation (STD) (raw signal)

σX = (
1

N − 1

N
∑

n=1

(Xn − µX)
2)

1
2

(4)

3. Mean of absolute values of first differences (raw signal)

δX = 1

N − 1

N−1
∑

n=1

|Xn+1 − Xn| (5)

4. Mean of absolute values of first differences (normalized signal)

δ̃X = 1

N − 1

N−1
∑

n=1

∣
∣X̃n+1 − X̃n

∣
∣ = δX

σX
, (6)

where X̃n is the normalized signal.

FIGURE 3

DFA process (Mumtaz et al., 2015).

5. Mean of absolute values of second differences (raw signal)

γX = 1

N − 2

N−2
∑

n=1

|Xn+2 − Xn| (7)

6. Mean of absolute values of second differences
(normalized signal)
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1. Result: Statistical feature vector
2. Import and preprocess the EEG signal
3. Segment the signals
4. Use Equations (3–8) to extract the local statistical features from
each EEG segment
5. Form the feature vector

Algorithm 3. Statistical feature extraction (Picard et al., 2001).

1. Result: DFA feature vector
2. Import and preprocess the EEG signal
3. Remove EEG artifacts using EEGLAB
4. Segment the signal into 1-min epochs in both EO and
EC conditions
5. Apply Equation (9) to obtain the scaling exponents
6. Form the feature vector

Algorithm 4. Detrended fluctuation analysis (Mumtaz et al., 2015)

γ̃X = 1

N − 2

N−2
∑

n=1

∣
∣X̃n+2 − X̃n

∣
∣ (8)

4.1.4. Detrended fluctuation analysis
Disease diagnosis is a huge domain in the signal analysis realm

(Algorithm 4). Popularly, epilepsy is studied with the use of EEG
signals, but there are other neurological diseases where EEG signal
analysis can come in handy for analysis, major depressive disorder
(MDD) being one of them (Mumtaz et al., 2015).

The data acquired included eyes closed (EC) and eyes opened
(EO) conditions from both healthy and MDD patients from the
Hospital Universiti Sains Malaysia (HUMS). The data was amplified
by a 24 E amplifier, sampling rate of 256Hz was used and a bandpass
filter for 0.5–70Hz was applied. A notch filter was also used to remove
the powerline interference. Detrended fluctuation analysis (DFA)
was performed at the feature extraction stage to obtain the scaling
exponents; refer to Figure 3 for the outlined DFA process. DFA is
used to observe the presence or absence of long-range temporal
correlations (LRTC) in the EEG data. DFA is computed as follows
(Mumtaz et al., 2015):

F (n) =

√
√
√
√

1

N

N
∑

k=1

[

y
(

k
)

− yn(k)
]2
, (9)

where N is the length of the time-series signal, y(k) is the cumulative
sum of the signal, and yn(k) is the resultant piecewise sequence of
straight-line fits (Mumtaz et al., 2015).

4.2. Frequency-domain feature extraction

The frequency domain analysis techniques focus on features
that can be extracted from the sinusoids that make up the data.
This is typically done by conversion from the time-domain to the
frequency domain first, before further analysis can be done. Please

1. Result: FFT feature vector
2. Import and preprocess the EEG signal
3. Segment the signal into equally-timed epochs (i.e. 30 s epochs)
4. Generate the frequency spectra of each epoch using the FFT
5. Form the feature vector

Algorithm 5. Fourier transform (Delimayanti et al., 2020).

1. Result: PSD feature vector
2. Import and preprocess the EEG signal
3. Filter the signal to within the frequency range of: 16Hz (low cutoff
frequency) and 24Hz (high
cutoff frequency)—refer to Figure 5
4. Extract the power spectrum features of the filtered signal
5. Form the feature vector

Algorithm 6. Power spectral density (Chakladar and Chakraborty, 2018).

refer to Figure 4 for a visual of a time domain signal with its
frequency domain counterpart. In this section, various frequency-
domain techniques specific to EEG will be explored.

4.2.1. Fourier transform
It has been found that the alpha, delta, theta, and beta bands of the

EEG signal operate within specific frequency bands (Algorithm 5).
Thus, the analysis of the frequency spectrum of an EEG signal
is important as it can help identify these bands, and classify the
brainwaves. One way to do this is through fast Fourier transform
(FFT) feature extraction. The data used in this study was taken from
the Sleep-EDF dataset, which consists of two channels of data. 3000
FFT features were extracted (Delimayanti et al., 2020).

4.2.2. Power spectral density
The power spectral density (PSD) is a very powerful tool in the

frequency domain; from both the PSD and the normalized PSD, a
variety of other features can be extracted (Algorithm 6). Some such
features are the intensity weightedmean frequency (IWMF), intensity
weighted bandwidth (IWBW), the spectral edge frequency (SEF), and
more (Boonyakitanont et al., 2020).

One case study using this method of feature extraction is focused
on the application of cursor movement in BCI systems. It was
shown that PSD techniques led to an increased accuracy compared
to previous methods of cursor movement. Some of the data used in
this study was taken from Kaggle which consisted of data from 12
subjects, in which motor imagery EEG data was collected. Thirty-
two channels were used, and the signals were sampled at 500Hz
(Chakladar and Chakraborty, 2018).

4.2.3. Band power
Another popular EEG-BCI application is wheelchair control

(Algorithm 7). Each of these systems require a feature extraction stage
to function. One research group studied the detection of stimulus
frequencies through the total band power (BP) of the steady-state
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FIGURE 4

EEG signals in the time and in the frequency domain. Taken from Delimayanti et al. (2020).

FIGURE 5

PSD analysis of the filtered brain signal. Taken from Chakladar and

Chakraborty (2018).

visual evoked potentials (SSVEPs). The band power for each stimulus
frequency is estimated as follows (Mandel et al., 2009):

P̂k,l =
∥
∥
∥XT

k sl

∥
∥
∥

2
, (10)

where X is an SSVEP model with noise excluded, and sl is the lth
channel signal (Mandel et al., 2009).

After the power is estimated, a linear classifier is applied to classify
the frequency of which the subject was focusing on. The minimum
accuracy achieved with this system was 93.61% during wheelchair
movement. It was also found that stressful situations for the subject
did not hinder the performance significantly (Mandel et al., 2009).

FIGURE 6

Time-frequency representation of a signal using the ST.

1. Result: Band power feature vector
2. Import and preprocess the EEG signal
3. Perform segmentation for each of the channels into
individual SSVEPs
4. Apply Equation (10)
5. Form the feature vector

Algorithm 7. Band power (Mandel et al., 2009).

4.2.4. Hilbert-Huang transform
Although epilepsy is one of the more common diseases studied

through the use of EEG, there are various others that are promising
to further the development in the EEG-disease diagnosis realm
(Algorithm 8). Schizophrenia is a brain disorder in which there is still
a lack of overall understanding, which also makes diagnosis difficult.
However, it has recently been shown that, for patients suffering
schizophrenia, their left hemispheres of the brain show impairment.
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1. Result: HHT feature vector
2. Import and preprocess the EEG signal
3. Perform empirical mode decomposition to decompose the data
into the
intrinsic mode functions (IMFs)—sifting process
4. Apply Equation (11) to find the instantaneous frequencies from
the IMFs (apply to each).
5. Perform the Hilbert spectrum
6. Form the feature vector

Algorithm 8. Hilbert-Huang transform (Azlan and Low, 2014).

This became a starting ground for EEG diagnostic research (Azlan
and Low, 2014).

Some feature extraction techniques have been studied for this
application, but the one this paper will review is the Hilbert-Huang
transform (HHT). Essentially, the FFT of the input signal is taken.
Then, the FFT coefficients that correspond to negative frequencies
are zeroed, and then the inverse FFT is taken. The general definition
of the Hilbert Transform (HT) is as follows (Azlan and Low, 2014):

y (t) = 1

π
PV

∫ ∞

−∞

x(t′)

t − t′
dt, (11)

where PV is the Cauchy Principal Value (Azlan and Low, 2014).
The data used in this study was obtained from the UCI ML

repository for genetic predisposition to alcoholism. Five subjects were
taken from the control group and the alcoholic group, for a total of
10 (Azlan and Low, 2014).

4.3. Decomposition-domain feature
extraction

Decomposition feature extraction is useful as it allows for
simultaneous filtering of the signal as well. The basic premise is as
follows: (1) decompose the signal using a method of choice, (2) select
the desired components, and (3) reject the undesirable components.
This also leads to data compaction, making it ideal for more modern
applications. In this section, various decomposition methods specific
to EEG applications will be reviewed.

4.3.1. Adaptive Hermite decomposition
Adaptive Hermite decomposition (AHD) uses Hermite functions

to find the applications for analysis of signals, in this case EEG
signals (Algorithm 9). In this study, the Hermite functions (HFs) in
question are adaptively selected for the EEG signals with the use of
evolutionary optimization algorithms (EOAs). Many road accidents
are caused by impaired driving due to drowsiness. Thus, a quick and
efficient drowsiness detection test has been of interest. This case study
focuses on an ML drowsiness detection mechanism using AHD and
Hermite functions (Taran and Bajaj, 2018).

The data was taken from the MIT/BIH polysomnographic
database from 16 subjects. A sampling rate of 250Hz. Supervised
learning was employed as an expert labeled the epochs at each 30-s
interval (Taran and Bajaj, 2018).

1. Result: HC-based statistical feature vector
2. Import and preprocess the EEG signal
3. Perform AHD using Equations (12), (13)
4. Extract the statistical features from the HCs (first quartile,
range, median and energy)
5. Form the feature vector

Algorithm 9. AHD algorithm (Taran and Bajaj, 2018).

1. Result: LCSD-based feature vector
2. Import and preprocess the EEG signal
3. Use Equation (14) to decompose the signal into ISCs
4. Extract frequency domain features from the ISCs
5. Form the feature vector

Algorithm 10. LCSD algorithm (Liu et al., 2017).

The dilation factor, p, and the kth order HF, denoted as fk,p (t), is
defined as follows (Taran and Bajaj, 2018):

fk,p (t) =
1

√

p2kk!
√
π

e
−

(

t2

2p2

)

hk(
t

p
), (12)

ck =
〈

x, fk,p
〉

=
∫ ∞

−∞
x (t) fk,p (t) dt,

{

0 ≤ k ≤ n− 1
}

, (13)

where hk(
t
p ) is the dilated form of hk (t), a Hermite polynomial, and

ck are the Hermite coefficients (HCs) that will be used as the basis of
the features. From the HCs, statistical measures will be taken as the
features; the first quartile, median, range and energy are the statistical
features that will be extracted (Taran and Bajaj, 2018).

4.3.2. Local characteristic-scale decomposition
Local characteristic-scale decomposition (LCSD) works to

disintegrate the raw EEG data, and creates segments that convey
the properties of the original signal (Rashid, 2020) (Algorithm 10).
The signal is decomposed into various intrinsic scale components
(ISCs), in which the instantaneous frequency of each ISC has high
significance. The decomposition is performed as follows (Liu et al.,
2017):

x (t) =
n

∑

p=1

ISCp (t)+ un(t), (14)

where x(t) is the original signal and un(t) is the residue (Liu et al.,
2017).

The data in this case study was taken from Graz University from
their 2008 BCI competition dataset. The dataset includes imagination
movements from the left hand, right hand, both feet and tongue.
A sampling rate of 250Hz was used and the signals were bandpass
filtered between 0.5 and 100Hz. A 50Hz notch filter was also used to
remove the powerline interference. In this case study, it’s feasibility of
use in a real-time BCI systemwas tested as well, showing its capability
(Liu et al., 2017).
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1. Result: CWT feature vector
2. Import and preprocess the EEG signal
3. Downsample the EEG signals from each channel to 256Hz
4. Partition the EEG signal into non-overlapping epochs of
5 s duration
5. Compute the CWT (Equation 15) of each epoch, projecting
them into the time-frequency domain. Use the Mexican hat mother
wavelet function
6. Average the epochs from each channel to form a signal
average epoch in time-frequency representation (TFR)
7. Further partition the epochs in the five EEG rhythms; delta
band, alpha1 and alpha2 bands, theta band and beta band
8. From each EEG sub-band, extract the mean, STD,
skewness, kurtosis and entropy
9. Form the feature vector

Algorithm 11. CWT algorithm (Ieracitano et al., 2020).

4.3.3. The wavelet transform
The wavelet transform (WT) is a popular method of

decomposition as it allows for effective use with signals that
are non-stationary (Ieracitano et al., 2020). There are two versions
of the WT, continuous and discrete. The following sections will
review sample applications of both versions, as well their advantages
and disadvantages.

4.3.3.1. The continuous wavelet transform

The continuous wavelet transform (CWT) allows for a signal to
be projected into the time-frequency domain (Algorithm 11). It is
continuous because the translation and scale parameters of wavelets
are varying continuously. The CWT can be used as an effective feature
extraction technique for classification of EEG signals.

Alzheimer’s disease (AD) accounts for about 60% of all dementia
cases. The intermediate stage between healthy aging and AD is
coined amnestic Mild Cognitive Impairment (MCI). Typically, an
MCI patient that develops AD will also develop dementia in about
a seven-year timeline. The detection of this disorder onset remains
a challenging task that researchers are looking to automate using
feature extraction and ML techniques. In this study, CWT features
were used to classify AD and MCI patients from the healthy controls
(healthy elderly subjects). A sampling frequency of 1024Hz was used
for the EEG signals collected, and a notch filer was applied at 50Hz to
remove the powerline interference. A bandpass filter was also applied
between 0.5 and 32Hz. The CWT is defined as follows (Ieracitano
et al., 2020):

CWT
(

a, b
)

= 1√
a

∫

s(t)ψ∗(
t − b

a
), (15)

where a is the dilation factor, b is the shifting factor, ψ is the mother
wavelet function, and CWT

(

a, b
)

represents the wavelet coefficients
(Ieracitano et al., 2020).

4.3.3.2. The discrete wavelet transform

Another WT-based case study is focused on the development of
BCI systems that would allow users to output desired characters to
their computer screens through their P300 event-related potential
(ERP) in their EEG signals (Algorithm 12). The L-level coefficients of

1. Result: DWT feature vector
2. Import and preprocess the EEG signal
3. Determine and set the following parameters: mother wavelet,
wave level, and feature number in a single channel
4. Apply Equation (16) to obtain the l-level DWT coefficients
5. Divide the data segments into the target group and
non-target group
6. Compute the between-class and within-class distances for the
two groups
7. Apply the Fisher criterion. Sort the output in descending order
8. Form the feature vector

Algorithm 12. DWT algorithm (Guo et al., 2015).

the DWT, dks, of the signal, f ks, are computed as follows (Guo et al.,
2015):

dks = Wxf ks, (16)

where k denotes the channel, s represents the trial number, andW is
the transformation matrix. The data in this study was recorded with a
sampling rate of 1,000Hz. 800ms long epochs were extracted starting
from stimulus onset (Guo et al., 2015).

4.3.4. Empirical mode decomposition
The empirical mode decomposition (EMD) method of

decomposing a signal allows for effective preprocessing and
artifact removal (Algorithm 13). This is an important step in EEG
signal analysis as EEG signals are heavily impacted by noise sources
such as powerline interference and EMG noise. EMD is an ideal
method to do this as it retains much of the target characteristics of
the original signal (Zhang et al., 2008).

During the EMD procedure, the EEG signal is split into levels of
intrinsic mode functions (IMFs), which are related to the frequency
distribution in the signal. The IMFs are computed through a “sifting”
process (Zhang et al., 2008).

An IMF is classified as an IMF if it meets the following
requirements (Zhang et al., 2008):

1. count (local extrema)= count (zero crossings)± 1.
2. average (envelope)= 0 at all time points.

5. Multi-dimensional feature extraction

5.1. Joint time-frequency domain feature
extraction

Spectral and time characteristics of signals alone for feature
extraction are oftentimes ineffective due to the absence of their
counterparts as they neglect one another. To overcome the
limitations of single domains, time-frequency analysis leverages both
(Rashid, 2020). This section will review some well-known time-
frequency feature extraction techniques for EEG analysis.
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1. Result: IMFs
2. Import the EEG signal
3. Identify the local maxima and local minima in the signal
4. Connect the local maxima via a cubic spline curve; this
becomes the upper envelope denoted as xu(t)
5. Connect the local minima by a spline curve; this becomes
the lower envelope denoted as xl(t)
6. Calculate the mean value at every point of the envelope:

m1 (t) =
xu (t)+ l(t)

2
(17)

7. Obtain the first “prototype” IMF, h1 (t) . This is the
“sifting” process:

h1 (t) = x (t)− m1 (t) (18)

8. Continue repeating the sifting process, replacing x(t) each
time with the previous IMF. In this way, the IMFs act as the
original data. For example:

h11 (t) = h1 (t)− m11 (t) (19)

9. Repeat the sifting process until you have formed an IMF,
h1k (t), and denote it as c1

c1 = h1k (t) = h1(k−1) (t)− m1k (t) (20)

10. Confirm that c1 meets the IMF criteria
11. Subtract the IMF from the original signal to find
the residual signal

r1(t) = x(t)− IMF (21)

12. Repeat steps 7–11, using the previous residual function as
the original signal x(t). Repeat until the residual function
found is a monotonic function
13. BONUS: This is not done in the case study, but feature
extraction can be performed at this stage. For example, you
can extract spectral and statistical features from the IMFs of
the signal, and form a feature vector to train an ML model for
applications such as classification

Algorithm 13. EMD algorithm (Zhang et al., 2008).

5.1.1. Short-time Fourier transform
There is much work being done to improve the performance

of motor imagery based BCIs (Algorithm 14). This is difficult
as motor imagery EEGs are typically inconsistent and distorted.

1. Result: STFT 2D images
2. Import and preprocess the EEG signal
3. Select the desired windowing function
4. Apply Equation (22) with an overlap size of 100, and window size
of 128
5. Extract the vectors within the frequency range between mu
and beta waves
6. Form the 2D images

Algorithm 14. STFT algorithm (Ha, 2019).

One study looks to enhance this with the use of the short-time
Fourier transform (STFT) to convert EEG signals into 2D images,
and then use the images to train and test a capsule network
(Ha, 2019).

The sensorimotor rhythm (SMR) brainwave is observed after
attempted or executed tasks, hence it is the brainwave most
commonly used for motor imagery-based BCIs (Ha, 2019).

The STFT algorithm converts the 1Dmotor imagery signals from
each EEG electrode into a 2D image in the time-frequency domain.
The STFT is defined as follows (Haddad, 1993; Ha, 2019):

STFT (τ ,w) =
∫

x(t)w(t − τ )e− jwtdt, (22)

where w(t) is the window function, and x(t) is the EEG signal to be
transformed. Windowing functions such as the Hann and Gaussian
can be used. This allows for 2D spectrogram images to be extracted
(Ha, 2019).

The data used in this study was taken from the BCI competition
IV 2b dataset, which was obtained from nine subjects during left-
hand and right-hand motor imagery tasks. A sampling frequency
of 250Hz was used, and the signals were bandpass filtered between
0.5 and 100Hz. A notch filter was also applied at 50Hz. The
results from this study outperformed that of standard convolutional
neural network (CNN) based methods, and show feasibility for this
approach to be used for classification of motor imagery EEG signals
(Ha, 2019).

5.1.2. S-transform
Continuing on the theme of EEG signal classification, it has been

found that the use of the S-transform (ST) as a feature extraction
technique has been effective as well (Algorithm 15). In this study,
data taken from theWard of Neurology and Strokes of the Provincial
Hospital of Zielona Gora is taken. They were acquired using 16
channels, and form a complete database of neuro-disorders. This
study focused on epileptic and non-epileptic subjects. A sampling
frequency of 500Hz was used and the signals were low-pass filtered
with a cutoff frequency of 35Hz. Supervised learning was employed
as an expert labeled each record as epileptic or normal (Rutkowski
et al., 2013). For Figure 6 the time-frequency representation of an
epoch to which the S-transform has been applied.

The S-transform can be considered a generalization of the
previous STFT, but instead of a constant sized window, a scalable
Gaussian window is used. The S-transform is computed as follows
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1. Result: ST feature vector
2. Import and preprocess the EEG signal
3. Filter the signals to the frequency range 0–100Hz
4. Apply Equations (23), (24)
5. Use a sampling rate of 10 to achieve 11 components (each
with 1,500 samples) of each channel
6. Extract the following features: mean, STD, median, mode,
component energy, and component entropy, giving a total of
880 attributes
7. Form the feature vector

Algorithm 15. ST algorithm (Rutkowski et al., 2013).

1. Result: Feature vector of weights an and atoms gn(t)
2. Import and preprocess the EEG signal
3. Find the atom with the largest inner product with the signal
4. Subtract the contribution from this atom from the signal
5. Repeat steps 3–4 until the signal is decomposed
6. Use Equation (25) to confirm that the MP algorithm is complete
7. Form the feature vector

Algorithm 16. MP algorithm (Rutkowski et al., 2013).

(Rutkowski et al., 2013):

S
(

t, f
)

=
∫ ∞

−∞
x(τ )g(τ − t)e−j2πf τdτ , (23)

where g(τ−t) is the Guassian function at τ = t defined as (Rutkowski
et al., 2013):

g(τ − t) =
∣
∣f

∣
∣ e−π(τ−t)2f 2 (24)

5.1.3. Matching pursuit
Similar to the S-transform case study, this study used data taken

from the Ward of Neurology and Strokes of the Provincial Hospital
of Zielona Gora (Algorithm 16). The signals were acquired using 16
channels, and form a complete database of neuro-disorders. This
study focused on epileptic and non-epileptic subjects. A sampling
frequency of 500Hz was used, and the signals were low-pass filtered
with a cutoff frequency of 35Hz. Supervised learning was employed
as an expert labeled each record as epileptic or normal (Rutkowski
et al., 2013).

The matching pursuit (MP) method works to identify the best
matching projections of data onto a dictionary, D. A commonly used
dictionary is based onGabor functions. However, this method is quite
greedy and computationally expensive. MP allows the signal to be
represented as combination of weighted sums as follows (Rutkowski
et al., 2013):

x (t) =
∞
∑

n=0

angn(t), (25)

where an are the weights and gn(t) are the atoms (Rutkowski et al.,
2013).

5.2. Spatial domain feature extraction

Spatial domain feature extraction, AKA spatial filtering, is one
of the most popular classification techniques for EEG signals;
specifically, the common spatial pattern (CSP), a supervised spatial
filter, is used. A spatial filtering method converts the brain waves
into a unique space. In this unique space, the variance of one group
is magnified, and a lower variance is seen in the remaining group.
However, there are limitations with the pure CSP technique; due
to the subject-specific optimal frequency band, it cannot achieve an
ideal performance. Due to this, researchers have been developing
variations of the CSP to overcome the limitations. This section will
look at some of the changes that have been proposed and tested
(Reddy et al., 2019; Rashid, 2020).

5.2.1. Common spatio-spectral pattern
The common spatio-spectral pattern (CSSP) approach builds

on the pure CSP approach by simply combining an FIR filter
with the CSP algorithm (Algorithm 17). It has been shown to
have improved performance vs. the purse CSP on its own (Rashid,
2020).

This particular study looked at extending the CSP algorithm
to EEG state-space through fuzzy time delay, and is a novel
approach. The data in this study was collected over a 5-month
period, and was supposed by the National Chiao Tung University,
Taiwan. This method was shown to improve the overall signal
quality. In this method, a spatial filter is applied (Reddy et al.,
2019):

x =
∑

i

wixi, (26)

where x is the EEG signal after spatial filtering has been
applied, wi are the spatial filter weights, and xiis a row vector
that contains the EEG signal from channel i prior to spatial
filtering. The CSSP algorithm is defined as follows (Reddy et al.,
2019):

Zk =
2

∑

τ=0

µ(τ )W
(τ )∗(δτXk) =

[

W(0) W(1) W(2)
]






µ0X
(k)

µ1X
(k−1)

µ2X
(k−2)




 ,(27)

where δτ is the delay operator, µ(τ ) is the fuzzy membership value
for τ , W(τ ) is the optimized fuzzy CSSP weights matrix, and Xk

is the preprocessed EEG recording of the kth trial (Reddy et al.,
2019).

After the CSSP algorithm is applied, features can be further
extracted for the purposes of EEG-based Regression Problems in
BCIs (Reddy et al., 2019).

5.2.2. Common sparse spatio-spectral patterns
An extension of the aforementioned CSSP method, the

common sparse spatio-spectral patterns (CSSSP) algorithm
is a comparatively more advanced procedure in which an
investigation is carried out as to where the common spectral
patterns across EEG channels are located (Rashid, 2020)
(Algorithm 18).
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1. Result: The spatial filter matrices:
[

W(0) W(1) W(2)
]

2. Import and preprocess the EEG signal
3. Bandpass filter the signal to remove the mean from 1 to 20Hz
4. Downsample the data to 250Hz
5. Compute the thresholds of the Gaussian membership
functions for each of the fuzzy classes
6. Compute Xi:

Xi =
∑Ni

k=1 µk,iX
k

Ni
, (28)

where Ni is the number of trials in the ith fuzzy class.

7. Compute the covariance matrix for each fuzzy class using:

∑

i

= X
i
X
iT
, (29)

where T denotes the transpose operation

8. Normalize the covariance matrices:

∑

i

=
∑

i

Tr(
∑

i)
, (30)

where Tr denotes the trace matrix operation.

9. Compute the spatial filters matrixW. Note thatW must
satisfy the following:

W
∑

i

WT = Di (31)

M
∑

i=1

Di = INxN (32)

10 Obtain:
[

W(0) W(1) W(2)
]

Algorithm 17. CSSP algorithm (Reddy et al., 2019).

This case study focusses on a technique that allows for
optimization of spatial and spectral filters together, which enhance
the discriminability rates of the multichannel EEG trials. The CSSSP
algorithm will be capable of learning a global spatial-temporal FIR.
Each class will have a frequency band filter and a pattern. Sparsity
is introduced to restrict the complexity of the frequency filter. The
CSSSP algorithm looks to find a real valued sequence b1,. . . ,T with
b(1)= 1 (Dornhege et al., 2006):

si,b = si +
∑

τ=2,...,T

bτ s
τ
i , (33)

where si is the signal, and sτi is the signal delayed by τ time points
(Dornhege et al., 2006).

1. Result: Sequence: b1,. . . ,T with b(1)= 1
2. Import and preprocess the EEG signal
3. Apply a casual bandpass filter from 7 to 30Hz, containing the
µ- and β- rhythms
4. Extract 500–3,500ms after the visual stimulus was presented
5. Solve the CSSP algorithm—see Equation (33)—to obtain
the sequence
6. Form the feature vector

Algorithm 18. CSSSP algorithm (Dornhege et al., 2006).

FIGURE 7

Frequency ranges of filters within the filter bank. Note that the

overlapping frequencies minimize information loss. Taken from Khan

et al. (2019).

5.2.3. Sub-band common spatial patterns
The sub-band common spatial patterns (SBCSP) algorithm

consists of first filtering the EEG signal at various sub-bands,
which is followed by the calculation of traditional CSP features
for each of the sub-bands (Khan et al., 2019; Rashid, 2020)
(Algorithm 19).

The data in this study was sampled at a rate of 128Hz.
The 10–20 electrode system was used to acquire the EEG
signals. The results showed that the SBCSP algorithm
showed a 7% increase in accuracy when compared to other
methods (Khan et al., 2019).
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5.2.4. Regularized CSP
Regularized CSP (RCSP) is arising as another CSP method that

allows for feature extraction from selected channels (Rashid, 2020)
(Algorithm 20). This method also allows for the optimization of
motor imagery features, and improves classification accuracy (Jin
et al., 2019).

This algorithm differs from the traditional CSP method by
the introduction of two regularization parameters, α and β ,
which are used to create regularized average spatial covariance
matrix (Jin et al., 2019):

Cclass
i = EiE

T
i

trace(EiETi )
, (36)

where Cclass
i is the normalized covariance matrix (Jin et al., 2019).

︷︸︸︷

C
class

i = cov(ETi ) (37)

where
︷︸︸︷

C
class

i is the pairwise covariance matrix (Jin et al., 2019), and
cov is the function to calculate the pairwise covariance of each channel
(Jin et al., 2019).

Pclass (α) = (1− α)
∑Ntr

i=1 C
class
i +α

∑Ntr
i=1 Ĉ

class
i

Ntr
(38)

Qclass (α,β) = (1− β) Pclass + β

Ns
trace(Pclass)I (39)

6. Discussions and conclusions

Through this review, we have studied and analyzed various
techniques of EEG feature extraction from the time domain,
frequency domain, decomposition domain, joint time-frequency
domain and the spatial domain. Signal representation is best
in the decomposition and joint time-frequency domains, when
compared to the results from the time and frequency domains
independently; however, various papers conclude that the spatial
domain is ultimately the most powerful when it comes to EEG
analysis and feature extraction (Dornhege et al., 2006; Jin et al., 2019;
Khan et al., 2019; Reddy et al., 2019; Rashid, 2020).

In each review, the applications in ML, BCI-technology, assistive
technology, disease diagnosis and more were also discussed. It has
been thoroughly shown that the features extracted from EEG signals
can be used and integrated into ML-pipelines successfully. The
reader should note, however, that when developing a robust feature
extraction pipeline, it must generate robust features and perform
dimensionality reduction of the data prior to integration with an ML
model (Krishnan and Athavale, 2018).

The review starts by analyzing one-dimensional feature
extraction domains. Well-known methods in the time domain like
the AR modeling, FD via Higuchi algorithm technique, statistical
feature extraction, and detrended fluctuation analysis were reviewed.
Time domain methods are commonly used as they are shown to have
fast processing,

however they do not always yield the most relevant and robust
features. Most time domain methods are also computationally
inexpensive, like the extraction of statistical features from
EEG signals. This means that they don’t typically optimize the

FIGURE 8

Summary of EEG feature extraction techniques.
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1. Result: SBCSP feature vector
2. Import and preprocess the EEG signal
3. Apply a filter bank containing different bandpass filters

for different frequency bands

a. Refer to Figure 7 for the frequency bands

4. Apply the traditional CSP to each bandpass filtered signal
to extract features

a. Extract the maximum ration of variances
b. Compute the composite spatial covariance matrix E

E =
MN∑

j=0

Ej,nE
T
j,n, (34)

whereMN represents all the trials in “n” classes

c. Apply Equation (35) to find transformed data variance
between multiclass data

max
x

W (s) = sTEc1s

sTEc2s
s.t. ‖s‖2 = 1, (35)

whereW(s) represents the Rayleigh quotient maximization, s is
the spatial filter, ‖s‖2 is the n2 normal, and Ec1 and Ec2 are
the covariance matrices of classes 1 and 2

5. Apply linear discriminant analysis (LDA) to each sub-band
to acquire scores that show the classification capability of each band

6. Form the feature vector

Algorithm 19. SBCSP algorithm (Khan et al., 2019).

representation of the underlying EEG signals. This is also true for
most frequency domain methods as well. This is because the time
domain and frequency domain alone cannot capture sufficient detail

1. Result: RCSP feature vector
2. Import and preprocess the EEG signal
3. Apply Z-score normalization to the signals to normalize

the mean of all the data to zero and the standard deviation to 1
4. Compute correlation coefficients between the channels.

Use Pearson’s correlation coefficient, as defined in Equation (40)

0 < P (X,Y) = 1

n− 1

n
∑

i=1

(
Xi − X

σX

) (
Yi − Y

σY

)

< 1, (40)

where X and Y are the observable variables, n is the number
of observations, X and Y are the means of the observable
variables, and σY and σX are the standard deviations of the
variables (Jin et al., 2019)

5. From the correlation coefficient matrices, extract the
means from each row

6. Locate the row with the highest mean, and denote it as row
i. This row is important as it is highly correlated with other
channels

7. Select the channels that appear most often to move
forward with

8. Apply Equations (36–39) to extract the RCSP features
9. Form the feature vector

Algorithm 20. RCSP algorithm (Jin et al., 2019).

and information in their features independently while ignoring the
other domain. This comes back to the non-linear and non-stationary
characteristics that EEG, and physiological signals as a whole, carry
(Krishnan, 2021).

In the frequency domain, the FT, PSD, BP and HHT methods of
feature extraction were studied and evaluated. High accuracies
were shown to be achieved with these methods, like with
band power analysis, however they can be computationally
expensive (Mandel et al., 2009). Furthermore, these methods

TABLE 1 Summary of time-domain feature extraction methods for EEG.

Method Sample applications Advantages Disadvantages

AR modeling (Lawhern et al., 2012;
Zhang et al., 2015; Chai, 2017)

EEG artifact classification
Mental task classification
Driver fatigue classification

Models peak spectra which are
characteristic of EEG signals (high
spectral resolution)
All-pole model, meaning it is efficient
for resolving sharp changes in the
spectra

Challenging to choose model order; if
too low, it will not represent the data
well, and if it is too high, it will include
noise

Fractal dimension (FD) via
Higuchi algorithm (Kaur et al.,
2018)

Emotion identification Efficient method of feature extraction
for non-stationary and non-linear data

The accuracy of this method has not
been optimized

Statistical features (Picard et al.,
2001)

Enhancement of BCI-machine
intelligence systems with emotional
intelligence

Simple implementation and
computationally inexpensive

Statistical features can be extracted for
many types of data, and may not always
be the best choice for physiological
signals

Detrended fluctuation analysis
(Mumtaz et al., 2015)

Classification of patients with MDD Efficiently discriminates MDD patients
from healthy controls, allowing for
diagnosis based on EEG data only

There is a small sample size constraint
such that the results should not be
generalized to a wider population
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TABLE 2 Summary of frequency-domain feature extraction methods for EEG.

Method Sample applications Advantages Disadvantages

Fourier transform (Delimayanti
et al., 2020)

Sleep-stage/brainwave classification Easy to implement, computationally
inexpensive, and fast

Does not have excellent spectral
estimation and cannot be used for the
analysis of short EEG signals

Power spectral density (Chakladar
and Chakraborty, 2018;
Boonyakitanont et al., 2020;
Delimayanti et al., 2020)

Cursor movement in BCI systems Computationally inexpensive
Versatile features available for increased
accuracy

Difficulty examining non-stationary
signals

Band power (Mandel et al., 2009) BCI wheelchair control High accuracy achieved Computationally extensive as the feature
extraction and classification need to be
repeated for every 0.1 s of the EEG signal

Hilbert-Huang transform/Hilbert
transform (Azlan and Low, 2014)

Schizophrenia disease detection Has the ability to determine
instantaneous frequency and power of a
signal
Ability to analyze nonlinear and
nonstationary signals
Retains the time information from
time-frequency analysis

Tendency to generate uncertain results
when there are sudden shifts in
frequency in the time-series signal

TABLE 3 Summary of decomposition-domain feature extraction methods for EEG.

Method Sample applications Advantages Disadvantages

Adaptive Hermite decomposition
(Taran and Bajaj, 2018)

Drowsiness detection Adaptive method, allowing for a more
accurate detection

Challenge to find the optimal selection
of order and dilation factor

Local characteristic-scale
decomposition (Liu et al., 2017)

Motor imagery EEG signal classification Efficient in redundant feature reduction Time consumption is an on-going issue

Continuous wavelet transform
(Ieracitano et al., 2020)

Automatic classification of
EEG—dementia patients

High classification accuracy
Provides information on how the
frequency content changes over time

Computationally slower than the DWT

Discrete wavelet transform (Guo
et al., 2015)

P300 event-related potential (ERP)
Detection for BCIs

Optimal resolution in both the time and
frequency domain
Improved computational speed

Adaptive mother wavelet identification
required for subject-to-subject analysis

Empirical mode decomposition
(Zhang et al., 2008)

EEG denoising and preprocessing Adaptive and highly efficient
Results in an improved spectrum
resolution
Well suited for non-stationary and
non-linear signals

Choosing the correct features to extract
from the IMFs is challenging and
requires more data-driven research

become less reliable when there are sudden shifts in frequency,
which are characteristic of EEG signals (Azlan and Low,
2014).

In the decomposition domain, classical methods like the
wavelet transform and empirical mode decomposition were studied,
alongside other lesser-known methods like the AHD and LCSD.
These methods are more adaptive (Taran and Bajaj, 2018), efficient
and accurate (Liu et al., 2017; Ieracitano et al., 2020), but can be
computationally slower (Liu et al., 2017; Ieracitano et al., 2020).
The DWT was shown to have time-varying scale (inversely related
to frequency) representation, overcoming the previously discussed
limitation in the independent time and frequency domains. This is
further overcome in the joint time-frequency domain, when multi-
dimensional feature extraction begins.

The joint time-frequency domain looks at the features from both
the time and frequency domains, hence extracting more detail and
information from the EEG signals. This leads to higher efficiency
like with the STFT method (Haddad, 1993) and better performance
accuracy (Rutkowski et al., 2013), like in the MP method. However,
with these methods, a balance must be found for time and frequency
resolution, as there is an evident tradeoff between the two; as one

increases, the other decreases (Haddad, 1993; Rutkowski et al., 2013;
Ha, 2019).

The spatial domain, thought of as the most relevant domain for
EEG feature extraction (Rashid, 2020), allows for the conversion
of the brainwaves into a unique space for variance analysis
(Reddy et al., 2019; Rashid, 2020). The broader method, CSP,
has had many advancements proposed that were reviewed in
this paper such as the CSSP, CSSSP, SBCSP, and the RCSP
method. Each of these methods outperform the traditional CSP
method, improve accuracy, and overcome CSP limitations; however,
majority of these methods are computationally expensive (Dornhege
et al., 2006; Jin et al., 2019; Khan et al., 2019; Reddy et al.,
2019). All methods have been summarized in Figure 8 for quick
reference purposes.

Each method summarized in Figure 8 has its own sets
of pros and cons (refer to Tables 1–5), which will need to
be weighed by the reader during implementation and testing.
Based on the analysis of the various methods, it is clear that
decomposition, time-frequency, and spatial domains provide the
best representation on average of EEG signals, however it still
is important to consider the methods in the other domains
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TABLE 4 Summary of time-frequency domain feature extraction methods for EEG.

Method Sample applications Advantages Disadvantages

Short-time Fourier transform
(Haddad, 1993; Rutkowski et al.,
2013; Ha, 2019)

Motor imagery EEG signal
classification for BCIs

Efficient detection of modal frequencies
of linear time-invariant systems and
their time localization

Cannot represent various resolutions
due to the fixed window length Poor
time-frequency resolution

S-transform (Rutkowski et al.,
2013)

Classification of EEG
signals—epilepsy

Uses a variable-length Gaussian window
Acts as a phase-corrected wavelet
transform

High computation complexity Lower
degree of clarity that other
distribution functions

Matching pursuits (Rutkowski
et al., 2013)

Classification of EEG
signals—Epilepsy and other
neurological disorders

Method is flexible when compared to
other leading approaches
High discrimination performance

Greedy and computationally expensive
method

TABLE 5 Summary of spatial-domain feature extraction methods for EEG.

Method Sample applications Advantages Disadvantages

Common spatial pattern (Reddy
et al., 2019; Rashid, 2020)

Oscillatory activity-based BCIs Contributed to the improvement of
Oscillatory Activity (OA)-BCI
performance

Neglects the frequency information that
is necessary for OA
Due to the subject-specific optimal
frequency band, it cannot achieve an
ideal and efficient performance
Performance suffers when
non-discriminative rhythms with
overlapping frequencies interfere

Common spatio-spectral pattern
(Reddy et al., 2019)

EEG-based regression problems in BCIs Overcomes the limitations the pure CSP
algorithm faces

Computationally expensive

Common sparse spatio-spectral
patterns (Dornhege et al., 2006)

Improvement of brain-computer
interfacing

For the most part, the CSSSP algorithm
outperforms its predecessor, the CSSP
algorithm

With increasing T, the complexity (of
the frequency filter) must remain under
control to avoid overfitting

Sub-band common spatial patterns
(Khan et al., 2019)

Multiclass EEG motor-imagery
classification

Increased accuracy Further research required for optimal
channel selection

Regularized common spatial
pattern (Jin et al., 2019)

Channel selection for motor imagery
based BCI systems

Shown to improve classification
accuracy through selection of relevant
channels
Minimized time complexity and
maximized efficiency of feature
extraction

Computationally expensive

depending on the application or problem that you are trying
to solve.

7. Future work

There is much room for improvement in the methods discussed.
Much of them only provided an accuracy in the range of 70%−80%
which is not always sufficient depending on the application. Thus,
the methods can be enhanced, and expanded upon for the use of
real-time BCI applications, including assistive technology and disease
diagnosis systems. As the health-technological revolution continues,
we will be required to innovate in this regard. The real-time systems
need to be improved so that the accuracy of the results rival that of the
more robust yet computationally expensive methods such that they
can be clinically accepted methods in the future. Furthermore, EEG
signals are multi-channel signals due to the method of acquisition
(refer to Figure 1). This leads to a higher degree of data. There
are some methods discussed in this paper that went into optimized
channel selection. If channel selection is further introduced into
the methods discussed, it very well may increase the efficiency
and accuracy of the systems, while reducing computation time and
complexity. This would greatly benefit the domain of BCI systems,
assistive technology and neurological disease diagnosis.
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