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Summary VII

Summary

A Brain-Computer Interface (BCI) is a communication system which enables its users to

send commands to a computer using only brain activities. These brain activities are generally

measured by ElectroEncephaloGraphy (EEG), and processed by a system using machine learning

algorithms to recognize the patterns in the EEG data.

In the first part of the thesis, theoretical foundations of Brain Computer Interfaces are intro-

duced. The specific focus of the study, which is using adaptive machine learning techniques for

BCI in order to improve Information Transfer Rates (ITR), is also specified. We attempt to im-

prove the ITR by improving classification accuracies and by increasing the number of different

motor imagery tasks classified. Classification in BCI is made more challenging due to the inher-

ent non-stationarity of the EEG data. Therefore, adaptive methods were applied to overcome the

problems caused by non-stationarity in EEG.

First, a new multi-class Common Spatial Patterns (CSP) algorithm based on Joint Approxi-

mate Diagonalization (JAD) is proposed for feature extraction in multi-class motor motion im-

agery BCI. The current standard, over-versus-rest (OVR) implementation of simultaneous diag-

onalization limits the ITR in the multi-class classification setting. The proposed fast Frobenius

diagonalization based multi-class CSP is able to jointly diagonalize multiple covariance matrices,

thus overcoming the bottleneck created by OVR implementation.

Consequently, a classifier ensemble with a novel adaptive weighting method is proposed to

improve the classification accuracies under non-stationary conditions. The proposed classifier

ensemble is based on clustering with a novel weighting technique for classifier combination.

The optimal classifier combination method used in a stationary setting will not give the best

classification results in non-stationary EEG classification. Therefore, clustered training data was
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used to train classifiers on specific groups of training data. When test data is presented, the

similarities to the existing clusters are evaluated to estimate the classification accuracies of the

individual classifiers. This estimated classification accuracy measures are used to adaptively

weigh the classifier decisions for each test sample.

Error entropy based Kernel adaptation for adaptive classifier training is also proposed. The

error entropy criterion accounts for the amount of information in the error distributions. There-

fore, the minimization of error entropy considers the error distributions rather than just the error

values. The error entropy criterion is used to adapt the width of the Gaussian kernel of the SVM

classifier. A subset of data from the subsequent session is used as adaptation data to estimate an

error entropy based cost function which is minimized by adapting the kernel width.

Towards the end, adaptation of feature extraction models using feedback training data is pro-

posed, as it is difficult to address the non-stationarity issue only by adapting classifiers. The

proposed supervised learning method is able to construct a more appropriate feature space using

data from the feedback sessions. The proposed method attempts to account for the underlying

complex relationship between feedback signal, target signal and EEG, using a mutual informa-

tion formulation. The learning objective is formulated as a kernel-based mutual information

maximizing estimation with respect to the spatial-spectral filters. A gradient-based optimization

algorithm is derived for the learning task.

In conclusion, the future research directions of the proposed methods are unveiled. Possible

direct application of the proposed methods to other areas in BCI, such as subject independent

EEG classification, and possible extensions to general machine learning applications are out-

lined.
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Chapter 1

Introduction

1.1 Brain Computer Interfaces

A Brain Computer Interface (BCI) facilitates online communication between the human

brain and peripheral devices. BCI’s allow users to by-pass the natural neural pathways to motor

neurons and muscles which can be employed to communicate with locked-in patients [1]. Wol-

paw [2] has defined a BCI as, a system that measures central nervous system activity and converts

it into artificial output that replaces, restores, enhances, supplements, or improves natural central

nervous system output and thereby changes the ongoing interactions between the central nervous

system and its external or internal environment.

Most BCI’s rely on electrical measures of brain activity, and rely on sensors placed over the

head to measure this activity. Electroencephalography (EEG) refers to recording electrical activ-

ity from the scalp with electrodes. Other types of sensors have also been used for BCI [2]. Mag-

netoencephalography (MEG) records the magnetic fields associated with brain activity, Func-

tional magnetic resonance imaging (fMRI) measures small changes in the blood oxygenation

level-dependent (BOLD) signals associated with cortical activation. Similar to fMRI, near in-

frared spectroscopy (NIRS) also measures the hemodynamic changes in the brain. NIRS mea-

sures the changes in optical properties caused by different oxygen levels of the blood. MEG and

1
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fMRI usually come in very large devices and are very expensive. NIRS and fMRI have poor

temporal resolution compared to EEG. Therefore, EEG has remained the most popular choice

for BCI solutions [2].

EEG equipment is inexpensive, lightweight, and comparatively easy to apply. Temporal reso-

lution, which is the ability to detect changes within a certain time interval, is very good. However,

the spatial (topographic) resolution and the frequency range of EEG are limited. EEG signals are

also susceptible to artefacts caused by other electrical activities such as eye movements or eye

blinks (electrooculographic activity, EOG) and muscles movements (electromyographic activity,

EMG). External electromagnetic interferences such as the power line can also contaminate the

EEG signals.

It has been found that execution or imagination of limb movements generate changes in

rhythmic EEG activity known as sensorimotor rhythms (SMR) [3]. BCI based on SMR extract

features and translate the changes in EEG associated with motor imagery tasks and use the re-

sulting output to control BCI applications [4].

There is a rapidly growing interest in modelling and analysis of the brain activities through

capturing the salient properties of the brain signals in the machine learning community. BCI

techniques are useful in a wide spectrum of brain signal related application areas in bio-medical

engineering such as epilepsy detection, sleep monitoring, biofeedback and BCI based rehabilita-

tion. Life-sustaining measures such as artificial respiration and artificial nutrition can consider-

ably prolong the life expectancy of locked-in patients. However, once the motor pathway is lost,

any natural ways of communication with the environment is lost. BCI’s offer the only channel

of communication for such locked-in patients.

A block diagram of an EEG based BCI system with feedback and adaptation is shown in

figure (1.1). The acquisition of EEG signals involves an electrode cap and cables that transmit



Chapter 1. Introduction 3
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Figure 1.1: A Comprehensive Block Diagram of an EEG based BCI System

Electrode cap measures the electrical changes on the scalp of a user, these signals are converted to digital signals by

the amplifier. The acquired EEG signal is pre-processed to filter noise. Feature extraction algorithms and feature

selection algorithms are applied to extract and select discriminative features to build a classifier. The classification

decision is normally conveyed to the user through a monitor. Adaptation can occur at feature extraction and/or

classifier training parts of the system. In systems where the user’s brain changes are also considered, co-adaptive

learning could take place.

the signals from the electrodes to the bio-signal amplifier. The amplifier converts the EEG signals

from analog to digital format.

The acquired EEG signals are pre-processed to filter out the noise and to improve the signal.

Temporal and spatial filtering is carried out to enhance the useful components in the signal.

Temporal filters such as low-pass or band-pass filters are generally used in order to restrict the

analysis to specific frequency bands that are believed to contain the neurophysiological signals.

Temporal filters can also remove various undesired effects such as slow variations in the EEG

signals and power-line interferences. Spatial filters are also used to isolate the relevant spatial

information embedded in the EEG signals and to reduce local background activity.

Feature extraction algorithms and feature selection algorithms are applied to extract and
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select useful information to build a classifier. There are a number of temporal, frequential and

hybrid feature extraction methods used to extract informative features from EEG signals. These

are discussed in detail in the next chapter. The goal of classification is to assign a class to the

previously extracted features. A wide variety of classification methods are used in BCI’s. These

will also be considered in detail in the following chapter. The classification decision is usually

conveyed to the user via a visual display unit.

In adaptive systems, changes to the feature extraction and classification steps can take place

based on the feedback from the system. In systems where the user’s brain changes are also

accounted for, co-adaptive learning could take place. Such co-adaptive systems need to ensure

the stability of the adaptation process by monitoring the changes closely.

1.2 Motivation and Problem Statement

Wolpaw has identified the central task of BCI research as, to determine which brain signals

users can best control, to maximize that identified control, and to translate it accurately and

reliably into actions that accomplish the users’ intentions [6]. BCI operation depends on the

interaction of two adaptive controllers: The Central Nervous System (CNS) and the Computer

System. The management of this complex interaction between the adaptations of the CNS and

the concurrent adaptations of the BCI is among the most difficult problems in BCI [2]. In the

ideal case, new users will undergo a one-time calibration procedure and proceed to use the BCI

system. The system’s performance slowly adapts to the user’s brain patterns, reacting only when

he or she intends to control it. At each repeated use, the system recalls parameters from previous

sessions, so recalibration is rarely, if ever, necessary [7].

Three computational challenges for non-invasive BCI have been identified by Blankertz et

al in [7]. Improving information transfer rate (ITR) achievable through Electroencephalography
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(EEG), addressing the BCI deficiency problem and integrating an “idle” or “rest” class. The BCI

deficiency problem concerns the 20% of population who are not able to generate motor-related

mu-rhythm variations capable of driving a BCI system [7]. ITR corresponds to the amount of

information reliably received by the system. It is defined as,

ITR = number of decisions
duration in minutes ·

(
p log2(p) + (1 − p) log2

( 1−p
N−1

)
+ log2(N)

)
,

where p is the accuracy of a subject in making decisions between N targets.

Other major challenges in BCI have been broadly categorized by Vaadia [8], to be related to

theories that explain brain signals and those concerning data acquisition and interpretation. More

comprehensive theoretical models of the brain are also needed to explain brain functionality and

to decipher the meaning of measured signals. Data acquisition and interpretation methods must

also be improved to better listen to the brain. Finding the minimum number of calibration trials

needed to achieve moderate performance has also been specified as a secondary challenge in

BCI.

Wolpaw has also highlighted that current BCI systems have a relatively low ITR (for most

BCI this rate is equal to or lower than 20 bits/min) [2]. This means that with such BCI systems,

users need relatively longer time periods in order to send a smaller number of commands. As low

ITR is a very important challenge in current BCI systems the focus of this study is to research

machine learning techniques to improve ITR. Two aspects can be considered to increase the ITR:

increasing the recognition rates and increasing the number of classes used in current SMR based

BCI systems.

Increasing the recognition rates

The performances of current systems remain modest, with percentage accuracies of mental

states correctly identified rarely reaching 100 %, even for BCI using only two classes (i.e., two

kinds of mental states) [6]. A BCI system which makes less mistakes would be more convenient
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for the user and would provide a higher information transfer rate. Less mistakes from the system

would indeed lead to more efficient BCI systems that require less time to correct the mistakes.

The task of increasing ITR rates of current BCI’s are impeded by the non-stationarity of the

EEG signals. In machine learning, non-stationarity refers to a change in the class definitions over

time, which therefore causes a change in the distributions from which the data are drawn [9].

Consider the Bayesian posterior probability of a class ω given instance x belongs, P (ω|x) =

P(x|ω)·P(ω)
P(x) , non-stationarity is defined as any scenario where the posterior probability changes

over time, i.e., Pt+1 (ω|x) , Pt (ω|x), where ω is the class to which the data instance x belongs.

The non-stationarity of EEG signals is caused by factors such as, changes in the physical

properties of the sensors, variabilities in neurophysiological conditions, psychological parame-

ters, ambient noise, and motion artefacts. Two main factors contributing to non-stationarity as

reported in [10,11] are: the differences between the samples extracted from a training session and

the samples extracted during an online session, and the changes in the users brain activity during

online operation. As a result, the general hypothesis that the signals sampled in the training set

follow a similar probability distribution to the signals sampled in the test set from a different

session is violated [12]. Therefore, increasing the ITR is a very challenging machine learning

problem. Adaptive machine learning techniques provide tools to overcome the issues posed by

non-stationarity to improve ITR.

Increasing the Number of Classes

The number of classes considered for classification is generally very small for BCI. Most cur-

rent BCI’s are limited to only two class classification. Designing algorithms that can efficiently

recognize a larger number of mental states would enable the subjects to use more commands

leading to higher information transfer rates [13,14]. However, to significantly increase the infor-

mation transfer rate, the classification accuracy, (percentage of correctly classified mental states),
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should also be at a healthy rate while classifying a higher number of classes.

1.3 Objectives and Contributions

This study is focused on developing several machine learning algorithms to improve the in-

formation transfer rate. The main contributions lie in the following aspects: joint approximate

diagonalization based multi-class common spatial patterns algorithm, a novel adaptive weighting

of classifier ensemble in presence of non-stationarity, kernel adaptation by error entropy mini-

mization and adaptive feature selection using feedback training data in self-paced BCI.

Joint approximate diagonalization (JAD) based multiclass common spatial patterns algorithm

attempts to overcome the bottleneck created by the one-versus-rest application of two class com-

mon spatial patterns algorithm for feature extraction in multiclass class EEG classification. ITR

can be increased by increasing the number of effectively classified classes as well as by improv-

ing the classification accuracies.

Adaptive BCI mechanisms, where feature selection and classifiers are adapted have been

attempted to improve the recognition rates [15]. Adaptive machine learning techniques for BCI

are proposed in this study in order to improve classification accuracies and the overall ITR while

addressing the non-stationarity problem of the EEG signals. The proposed adaptive weighting of

classifier decisions in an ensemble classifier, adaptive training of kernel classifiers and adaptive

feature extraction in self-paced BCI all address adaptation at different machine learning tasks

associated with the BCI system, with the final objective of increasing the ITR.

The analyses and results presented in this thesis are based on the experiments done on a

publicly available dataset and two datasets recorded in the Neural Signal processing laboratory

of Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore.

All data collections at the Institute for Infocomm Research, Agency for Science, Technology and
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Research were carried out in accordance to criteria approved by the Institutional Review Board

of the National University of Singapore. The publicly available datasets is BCI Competition IV

dataset 2A consisting of right hand, left hand, tongue and foot motor imagery trials.

1.4 Organization of Thesis

(1). In Chapter 2, a review of relevant literature is presented. Explanations of sub-systems of a

typical BCI system and state of the art in improving ITR in BCI’s are also discussed.

(2). In Chapter 3, joint approximate diagonalization based multi class common spatial patterns

algorithms, based on fast Frobenius approximate diagonalization and Jacobi angle methods are

presented.

(3). In Chapter 4, a novel adaptively weighted classifier ensemble method for non-stationary

BCI is presented.

(4). In Chapter 5, a kernel adaptation approach for adaptive training of SVM classifiers in order

to address the non-stationarity in EEG signals is proposed.

(5). A novel supervised learning method that learns from feedback training data for self-paced

BCI is presented in Chapter 6.

(6).In conclusion, possible future directions for the applied methods are discussed in Chapter 7.



Chapter 2

Literature Survey

Brain Computer Interfaces measure brain activity, process it, and produce control signals that

reflect the users’ intent. In this chapter an overview of how brain activity is measured and types

of brain signals that are utilized for BCI are discussed. Later in the chapter, current literature on

the areas of adaptation and ensemble methods for non-stationary EEG signals are reviewed.

2.1 General Definitions

Several types of different BCI systems can be found in literature. Among these, we will

first consider a few contrasting categories. Researchers notably contrast dependent BCI to in-

dependent BCI, invasive BCI to non-invasive BCI as well as synchronous BCI to asynchronous

(self-paced) BCI. In the following sub-sections, these categories in the general field of BCI are

introduced.

2.1.1 Dependent versus independent BCI

One distinction which is generally found in BCI literature concerns dependent BCI versus

independent BCI [5]. A dependent BCI is a system which requires a certain level of motor control

from the subject whereas an independent BCI does not require any motor control. For instance,

some BCI’s require the user to control his or her gaze [3]. In order to assist and help severely

9
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disabled people who do not have any motor control, a BCI must be independent. However,

dependent BCI’s are very interesting for healthy persons, in applications such as video games [4].

Furthermore, such dependent BCI’s have been found to be more comfortable and easier to use

than the independent BCI’s [4].

2.1.2 Invasive versus non-invasive BCI

A BCI system can be classified as invasive or non-invasive according to the manner in which

the brain activity is measured [1, 16]. If the sensors used for measurement are placed within

the brain, i.e., under the skull, the BCI is said to be invasive. On the contrary, if the sensors

used for measurement are placed outside the brain, e.g., on the scalp, the BCI is known to be

non-invasive.

2.1.3 Synchronous (cue-based) versus Asynchronous (self-paced) BCI

Another distinction that is often found in literature concerns synchronous and asynchronous

BCI. It has been recommended to denote asynchronous BCI as “self-paced” BCI in [17, 18].

With a synchronous BCI, the user can interact with the targeted application only during specific

time periods, imposed by the system [1, 19, 20]. Hence, the system informs the user about the

time periods during which he/she must interact with the application. The user should perform

mental tasks during these periods only. If mental tasks are performed outside the specified time

periods, the system will not respond.

In a self-paced BCI system, the user can produce a mental task in order to interact with the

application at any time [21–24]. The subject can also choose not to interact with the system, by

not performing any of the mental states used for control. Self-paced BCI’s are the most flexible

and comfortable for the user. However, it should be noted that designing a self-paced BCI is

much more difficult than designing a synchronous BCI.



Chapter 2. Literature Survey 11

Most of the existing BCI systems found in literature are synchronous [1, 25]. Designing an

efficient self-paced BCI is presently one of the biggest challenges in BCI and a growing number

of groups have started to address this topic [18, 21–23].

2.2 Basic BCI System Framework

The steps involved in classification of EEG data involve a few machine learning techniques.

The figure (2.1) shows a block diagram of the basic machine learning tasks in a simple BCI

system without any feedback or adaptation.

Signal
 Acquisition

Pre-processing
Feature

 Extraction
Classification

Figure 2.1: Machine Learning Tasks in a Basic BCI System

The first task associated with a BCI system is acquisition of appropriate signals from the

brain. After acquiring the signals, the preprocessing step is useful to filter out the noise and

improve the signal. The next step of feature extraction is vital for the successful operation of the

system as the classifier will be trained on the selected features. Each of these tasks are discussed

later in this chapter.

One feature of current BCI systems is the use of highly complex feature extraction algo-

rithms compared to the relatively simple (usually linear) classification methods. All forms of

available prior knowledge are used to tweak the feature extractors in most practical implemen-

tations. Therefore, many different algorithms have been developed for the selection of spatial

filters, spectral bands and to extract features.
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2.3 Signal Acquisition

The first step required to operate a BCI consists of measuring the subject’s brain activity.

Up to now, a few different types of brain signals have been identified as suitable to drive a BCI

system. These brain signals must be easily observable and controllable in order to drive a BCI

effectively [1]. Some of these signals are, MagnetoEncephaloGraphy (MEG) [27,28], functional

Magnetic Resonance Imaging (fMRI) [29], Near InfraRed Spectroscopy (NIRS) [30], Electro-

CorticoGraphy (ECoG) [31] and implanted electrodes, placed under the skull [16]. However, the

most popular brain signal is ElectroEncephaloGraphy (EEG) [25]. As this study considers only

the BCI systems driven with EEG signals, the rest of the chapter will focus on steps associated

with EEG signal processing.

EEG is relatively cheap, non-invasive, portable and provides good time resolution. Conse-

quently, most current BCI systems use EEG in order to measure brain activities. EEG measures

the electrical activity generated by the brain using electrodes placed on the scalp [32]. EEG

measures the sum of the post-synaptic potentials generated by thousands of neurons having the

same radial orientation with respect to the scalp.

Signals recorded by EEG have weak amplitudes, in the order of microvolts. It is thus nec-

essary to strongly amplify these signals before digitizing and processing them. Typically, EEG

signal measurements are performed using a number of electrodes which varies from 1 to about

256, these electrodes being generally attached using an elastic cap. The contact between the

electrodes and the skin is generally enhanced by the use of a conductive gel or paste [39]. BCI

researchers have recently proposed and validated dry electrodes, which do not require conductive

gels [40].

Electrodes are generally placed and named according to a standard model, called the 10-20

international system [33]. This system has been initially designed for 19 electrodes, however,
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Figure 2.2: The International standard 10:20 montage for electrode placement.

Sub-figure A shows the subdivision of arcs on the scalp starting from craniometric reference points: Nasion (Ns),

Inion (In), Left (PAL) and Right (PAR) pre-auricular points. The intersection of the longitudinal (Ns-In) and lateral

(PAL-PAR) is named the Vertex. Sub-figure B shows the original 19 electrode positions. Sub-figure C shows the

extended version for 70 electrode positions.

extended versions have been proposed to deal with larger number of electrodes [34]. The figure

(2.2) shows the positions of electrodes according to the International 10-20 system. It is based on

an iterative subdivision of arcs on the scalp starting from craniometric reference points: Nasion

(Ns), Inion (In), and Left (PAL) and Right (PAR) pre-auricular points. The intersection of the

longitudinal (Ns-In) and lateral (PAL-PAR) is named the Vertex.

The “10” and “20” refer to the fact that the actual distances between adjacent electrodes
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are either 10% or 20% of the total front-back or right-left distance of the skull as it divides the

distance from the nasion and the inion into 10% and 20% segments. The skull perimeters are

measured in the transverse and median planes from the nasion and inion points [34]. Each elec-

trode position has a letter to identify the lobe and a number to identify the hemisphere location.

The letters F, T, C, P and O stand for frontal, temporal, central, parietal, and occipital lobes,

respectively. Note that there exists no central lobe; the “C” letter is only used for identification

purposes only. A “z” (zero) refers to an electrode placed on the midline. Even numbers (2,4,6,8)

refer to electrode positions on the right hemisphere, whereas odd numbers (1,3,5,7) refer to those

on the left hemisphere [32].

2.4 Brain Rhythms

EEG signals are composed of different oscillations named “rhythms” [32]. These rhythms

have distinct properties in terms of spatial and spectral localization. There are six classical brain

rhythms as shown in figure (2.3) : Alpha, Mu, Delta, Gamma, Beta and Theta with different

oscillating frequencies.

• Alpha rhythm: These are oscillations, located in the 8-12 Hz frequency band, which appear

mainly in the posterior regions of the head (occipital lobe) when the subject has closed eyes

or is in a relaxation state.

• Beta rhythm: This is a relatively fast rhythm, belonging approximately to the 13-30 Hz

frequency band. It is a rhythm which is observed in awake and conscious persons. This

rhythm is also affected by the performance of movements, in the motor areas [35].

• Delta rhythm: This is a slow rhythm (1-4 Hz), with a relatively large amplitude, which is

mainly found in adults during deep sleep.
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Figure 2.3: Brain Rhythms

• Gamma rhythm: This rhythm mainly concerns frequencies above 30 Hz. This rhythm is

sometimes defined as having a maximal frequency around 80 Hz or 100 Hz. It is associated

with various cognitive and motor functions.

• Mu rhythm: These are oscillations in the 8-13 Hz frequency band, located in the motor

and sensorimotor cortex. The amplitude of this rhythm varies when the subject performs

movements. Consequently, this rhythm is also known as the “sensorimotor rhythm”.

• Theta rhythm: This a slightly faster rhythm (4-7 Hz), observed mainly during drowsiness
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and in young children.

2.5 Neurophysiological Signals in EEG for BCI

Various signals in EEG have been studied and some of them have been identified as relatively

easy to be controlled by the user. These signals have been divided into two main categories as

evoked signals and spontaneous signals [1, 36].

• Evoked signals are generated unconsciously by the subject when he/she perceives a spe-

cific external stimulus. These signals are also known as Evoked Potentials (EP).

• Spontaneous signals are voluntarily generated by the user after an internal cognitive pro-

cess without any external stimuli.

2.5.1 Evoked potentials

The main advantage of evoked potentials is that, contrary to spontaneous signals, evoked

potentials do not require a specific training for the user, as they are automatically generated

by the brain in response to a stimulus. As such, they can be used efficiently to drive a BCI

since the first use [1, 36]. Nevertheless, as these signals are evoked, they require using external

stimulations, which can be uncomfortable, cumbersome or tiring for the user.

In the category of evoked potentials, the main signals that are used in BCI are the Steady

State Evoked Potentials (SSEP) and Event Related Potentials (ERP) [1, 36].

Steady State Evoked Potentials

Steady State Evoked Potentials (SSEP) are brain potentials that appear when the subject

perceives a periodic stimulus such as a flickering picture or a sound modulated in amplitude.

SSEP are defined by an increase of the EEG signal power in the frequencies being equal to the
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stimulation frequency or being equal to its harmonics and/or sub-harmonics [3, 37, 38]. Various

kinds of SSEP are used for BCI, such as Steady State Visual Evoked Potentials (SSVEP) [3,

39–41], which are by far the most used, somatosensory SSEP [38] and auditory SSEP [37].

SSEP appear in the brain areas corresponding to the sense which is being stimulated, such as the

visual areas when a SSVEP is used. Not requiring training and ability to have large number of

commands make it an attractive research area in BCI [42–47].

Event Related Potentials

An event related potential (ERP) is a measured response that is directly the result of a sensory,

motor, or cognitive event. Figure (2.4) shows several ERP components associated with visual

stimuli. P1 and N1 components are generated when information flows along the visual system

and visual analysis. Attention to peripheral targets in the visual field evokes N2 components. N2

and P300 (P3) components are associated with categorization of the visual stimulus, indexing

and maintaining working memory encoding.

Other than these ERP’s, elicited during the selection and preparation of the motor response

the process continues even after the motor response. Components such as error-related nega-

tivity could be triggered if the subject realizes that an error has occurred during the trial and

lateralized-readiness potential(LRP) components which are associated with preparation for mo-

tor movement.

ERPs are calculated by averaging the EEG signals over multiple trials. The minimum number

of trials needed to average out the noise is different for each component. Generally, to get a good

measure of P1 and N1 ERP’s 300-1000 trials per condition are required. However, P300 (P3)

requires only around 30 trials per condition; therefore it is a very useful type of ERP component.

The P300 (P3) consists of a positive waveform appearing approximately 300 ms after a rare

and relevant stimulus (see Figure (2.4)) [48]. It is typically generated through the ”odd-ball”
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paradigm, in which the user is requested to attend to a random sequence composed of two kinds

of stimuli with one of these stimuli being less frequent than the other. If the rare stimulus is

relevant to the user, its actual appearance triggers a P300 observable in the user’s EEG. This

potential is mainly located in the parietal areas. P300 is quite attractive as it is consistently

detectable, is elicited by precise stimuli and is evoked in nearly all subjects. Due to these reasons

P300 has become a very popular ERP signal to drive Brain Computer Interfaces. The P300 is

mostly used in speller applications [48–52].

Figure 2.4: ERP generated for a visual stimuli

2.5.2 Spontaneous signals

Under the category of spontaneous signals, which are voluntarily generated by the user with-

out any external stimuli, the most used signals are the sensorimotor rhythms (SMR).

Motor and sensorimotor rhythms

Sensorimotor rhythms are brain rhythms related to motor actions, such as arm movements.

These rhythms, which are mainly located in the µ (≈ 8 − 13Hz) and β (≈ 13 − 30Hz) frequency

bands, over the motor cortex, can be voluntarily controlled by a user. The role of feedback is
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essential in operant conditioning type of learning, as it enables the user to understand how he/she

should modify his/her brain activity in order to control the system. Generally, in BCI based

on operant conditioning, the power of the µ and β rhythms in different electrode locations are

linearly combined in order to build a control signal which will be used to perform 1D, 2D or 3D

cursor control [53, 54].

Motor imagery

A user performing motor imagery involves imagining movements of his/her own limbs or

muscles (hands, feet or tongue for instance) [17, 20, 53]. The resultant signals generated by

performing or imagining a limb movement have very specific temporal, frequential and spatial

features, which makes them relatively easy to recognize automatically [17,56,57]. For instance,

imagining a left hand movement is known to trigger a decrease of power, known as, Event

Related Desynchronisation (ERD) in the µ and β rhythms, over the right motor cortex [58].

In motor imagery based BCI, the motor imagery task is associated with a specific command

such as controlling a cursor etc. [20,59,60]. Using a motor imagery-based BCI generally requires

a few runs of training before being efficient enough for test classification [16]. However, using

advanced signal processing and machine learning algorithms enables the use of such BCI with

almost no training [61, 62, 105].

2.5.3 Pre-processing

Most BCI systems use simple spatial or temporal filters as pre-processing steps in order to

increase the signal-to-noise ratio of the EEG signals. Temporal filters such as low-pass or band-

pass filters are generally used in order to restrict the analysis to specific frequency bands that

are believed to contain the neurophysiological signals. Temporal filters can also remove various

undesired effects such as slow variations in the EEG signals and power-line interferences. Tem-
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poral filters that are used in general include, Direct Fourier Transforms (DFT), Finite Impulse

Response filters (FIR) and Infinite Impulse Response filters (IIR).

In DFT, the signal is first converted into the frequency domain. All coefficients S ( f ) that

do not correspond to target frequencies are set to zero. Then the signal is represented as a sum

of oscillations at different frequencies f . The signal is then transformed back to time domain

by inverse DFT. DFT is also known as Fast Fourier Transform (FFT) due to its fast execution

speed [64].

Finite Impulse Response (FIR) filters use a few last samples of a raw signal in order to

determine the filtered signal [65]. On the other hand, Infinite Impulse Response filters (IIR) are

linear, recursive filters. In addition to a last few samples as used in FIR, the IIR make use of the

outputs of a few last filters also. IIR filters can perform filtering with a much smaller number of

coefficients than FIR filters.

Spatial filters are also important pre-processing tools in processing EEG signals. Various

spatial filters are used to isolate the relevant spatial information embedded in the EEG signals.

This is achieved by selecting or by weighting the contributions from the different electrodes [65].

Popular spatial filters include Common Average Reference (CAR) and Surface Laplacian (SL)

filters [65]. These spatial filters can also reduce local background activity.

Common Spatial Patterns

A very popular spatial filtering method in BCI is Common Spatial Patterns (BCI). The Com-

mon Spatial Patterns (CSP) algorithm was first presented by Koles [66] as a method to extract

the abnormal components from EEG, using a set of patterns that are common to both the nor-

mal and the abnormal recordings and have a maximally different proportion of the combined

variances. Later CSP was used to create features for classification in EEG caused by imagined

movements. The first and last few CSP components (the spatial filters that maximize the differ-
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ence in variance) are selected as features to classify the trials. CSP is currently considered as the

gold standard for ERD based BCI [7]. It has been extended to multi-class problems in [211], and

further extensions and robustifications using simultaneous optimization of spatial and frequency

filters have been proposed in [123, 124, 138].

The CSP algorithm computes the transformation matrix W to yield features whose variances

are optimal for discriminating 2 classes of EEG measurements by solving the eigen value de-

composition problem

Σ1W = (Σ1 + Σ2) W∆, (2.1)

where Σ1 and Σ2 are estimates of the covariance matrices of band-pass filtered EEG measure-

ments of the respective motor imagery actions, and ∆ is the diagonal matrix that contains the

eigen values of Σ1. Spatial filtering is performed by linearly transforming the EEG measure-

ments using

Zi = WT Ei, (2.2)

where Ei ∈ R
ch×t denotes the single-trial EEG measurement of the ith trial, Zi ∈ R

ch×t denotes

Ei after spatial filtering, W ∈ Rch×ch denotes the CSP projection matrix, ch is the number of

channels, t is the number of EEG samples per channel, and T denotes transpose operator.

The CSP features of the ith trial are then given by

xi = log
diag

(
W̄T EiET

i W̄
)

tr
[
W̄T EiET

i W̄
] , (2.3)

where xi ∈ R
2m are CSP features, W̄ represents the first m and the last m columns of W, diag(·)

returns the diagonal elements of the square matrix, and tr[·] returns the sum of the diagonal

elements in the square matrix.
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2.5.4 Feature Extraction

Measuring brain activity through EEG leads to the acquisition of a large amount of data.

EEG signals are generally recorded with a large number of electrodes varying from 8 to 256.

Sampling frequencies ranging from 100Hz to 1000Hz are normally used in collecting data. In

order to ensure satisfactory performances under these conditions it is necessary to work with a

smaller number of values that include the most informative parts of the signals. These values

are known as “features”. Such features can be, for instance, the power of the EEG signals in

different frequency bands. Features are generally aggregated into a vector known as “feature

vector”. Thus, feature extraction can be defined as an operation which transforms one or several

signals into a feature vector.

Identifying and extracting good features from signals is a crucial step in the design of a re-

liable BCI system. If the features extracted from the EEG are not relevant and do not describe

the corresponding neurophysiological signals adequately, the classification algorithm which de-

pends on such features will have trouble predicting the correct class of these features, i.e., the

mental state of the user. As a result, the recognition rates of mental states will be low, leading

to an inconvenient BCI system or even a system failure. Numerous feature extraction techniques

have been studied and proposed for BCI [68, 69, 72].

These feature extraction techniques can be divided to three main groups. Firstly, there are

methods that exploit the temporal information embedded in the signals [70, 71, 75]. The Sec-

ond type of methods is based on frequential information [35, 76, 77]. Finally there are hybrid

methods that are based on time-frequency representations. These hybrid methods exploit both

the temporal and frequential information [78, 79].
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Temporal Feature Extraction Methods

Temporal methods for feature extraction use variations of the signal time series. These meth-

ods are particularly useful to identify specific neurophysiological signal components with precise

time signatures such as the P300 or ERD [70,75]. Amplitude of raw EEG signals, auto-regressive

parameters and Hjorth parameters [80] can be identified under temporal methods for feature ex-

traction.

Frequential Feature Extraction Methods

Frequential methods used for feature extraction make use of the specific oscillations in the

EEG known as rhythms. Performing a given mental task (such as motor imagery or another

cognitive task) makes the amplitude of these different rhythms vary. Moreover, signals such as

steady state evoked potentials are defined by oscillations with frequencies synchronized with the

stimulus frequency. Band power features and power spectral density features are used to extract

features under this category.

Hybrid Feature Extraction Methods

Other than the above two major categories of feature extraction methods, hybrid methods

combining both time and frequency domains are available. Time-frequency representations are

able to can catch relatively sudden temporal variations of the signals, while still keeping frequen-

tial information. These methods include short-time Fourier transform and wavelets [81, 82].

2.5.5 Classification

The third key step in processing neurophysiological signals is translating the features into

commands [69, 73]. The goal of classification is to assign a class to the previously extracted

feature vectors. This end can be achieved using a few different techniques. A wide variety of
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classification methods are used in BCI’s. Prevailingly, Linear classifiers, Bayesian classifiers,

neural networks, nearest neighbour classifiers and combined classifiers are the main groups of

classifiers currently used in BCI research [226]. In addition to these classifiers, in this study we

considered the k-nearest neighbour classifier and the Classification and Regression Tree (CART)

classifier.

Linear Classifiers

Linear classifiers are discriminant algorithms that use linear functions to distinguish classes.

They are probably the most popular algorithms for BCI applications. Two main kinds of linear

classifiers have been used for BCI design, namely, Linear Discriminant Analysis (LDA) and

Support Vector Machines (SVM).

LDA Classifier

The aim of LDA is to use hyperplanes to separate the data representing the different classes

[81]. The separating hyperplane is obtained by seeking the projection that maximizes the dis-

tance between the means of the two classes and minimizes the interclass variance [81]. This can

be achieved by maximizing the ratio of between-class scatter to within class scatter given by Eq.

(2.4),

J(w) =
wT S Bw
wT S Ww

, (2.4)

S B = (m1 − m2) (m1 − m2)T , (2.5)

S W = S 1 + S 2, (2.6)

where S B is the between class scatter matrix for two classes as shown in Eq. (2.5), S W is the

within class scatter matrix for two classes given in Eq. (2.6), w is an adjustable weight vector or
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projection vector.

The low computational cost of this method makes it suitable for online BCI systems. LDA

has been used in a number of BCI systems such as motor imagery based BCI, P300 speller,

multi-class and asynchronous BCI [59, 78]. The main drawback of LDA is its linearity which

could sometimes give rise to poor results when handling complex non-linear data.

SVM Classifier

SVM also uses a discriminant hyperplane to separate the classes [83]. In SVM, the selected

hyperplane is the one that maximizes the margins, i.e., the distance from the nearest training

points. For a linear SVM, the large margin (i.e. the optimal hyperplane w) is realized by mini-

mizing the cost function on the training data

J(w, ξ) =
1
2
‖w‖2 + C

n∑
i=1

ξi, (2.7)

under the constraints,

yi(wT xi + b) ≥ 1 − ξi, ξi ≥ 0, ∀i = 1, · · · , n, (2.8)

where x1, x2, · · · , xn are the training data, y1, y2, · · · , yn ∈ [1,+1] are the training labels, ξ1, ξ2, · · · , ξn

are the slack variables, C is a regularization parameter that controls the trade-off between the

complexity and the number of non-separable points, and b is a bias. The slack variables measure

the deviation of data points from the ideal condition of pattern separability. The parameter C can

be user-specified or determined via cross-validation.

Maximizing the margins is known to increase the generalization capabilities [83, 86]. SVM

classifier has been successfully applied to a relatively large number of BCI applications [85].

SVM inherently have slow speeds of execution due to its high complexity.
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Neural Networks

A Neural Network (NN) is an assembly of several artificial neurons that are able to produce

non-linear decision boundaries [86]. Multi Layer Perceptron (MLP) is the most widely used NN

in BCI. An MLP is composed of several layers of neurons: an input layer, possibly one or several

hidden layers, and an output layer [86]. However, MLP’s are sensitive to overtraining. The

problems are intensified with noisy and non-stationary EEG data. Therefore, careful selection of

architecture and regularization is critical to avoid overtraining when using NN classifiers [83].

Other types of NN architectures are also used in the field of BCI. Learning Vector Quantiza-

tion (LVQ) Neural Networks, Fuzzy ARTMAP Neural Network [88], Finite Impulse Response

Neural Network (FIRNN) [89], the Time-Delay Neural Network (TDNN) or the Gamma Dy-

namic Neural Network (GDNN), Radial Basis Function (RBF) Neural Network , Bayesian Lo-

gistic Regression Neural Network (BLRNN), Adaptive Logic Network (ALN) and Probability

estimating Guarded Neural Classifier (PeGNC) have also been attempted in the last decade for

classification of EEG signals [90].

Bayesian Classifiers

Bayesian classifiers are an important class of classifiers used in BCI. The decision bound-

aries generated by Bayesian classifiers are non-linear. Two major classification algorithms can

be found under this category: Bayes quadratic and Hidden Markov Model. In Bayes quadratic

classification the Bayes rule is used to compute a posterior probability of a feature vector belong-

ing to a given class [86]. Using the Maximum A Posteriori (MAP) rule and these probabilities,

the class of this feature vector can be estimated. This has been applied with success to motor

imagery and mental task classification [91, 92].
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Hidden Markov Models

Hidden Markov Models (HMM) is a probabilistic automaton that can provide the probability

of observing a given sequence of feature vectors [93,94]. HMM are quite suitable for the classi-

fication of time series. As EEG components used to drive BCI have specific time courses, HMM

have been applied to the classification of temporal sequences of BCI features [80] and even for

classification of raw EEG [96].

k-Nearest Neighbour Classifier

The k-Nearest Neighbour (k-NN) is a classifier that assigns the class label for new data based

on the class with the most occurrences in a set of k nearest training data points usually computed

using a distance measure such as the Euclidean distance [136].

Classification and Regression Tree

Classification and Regression Tree (CART) is a classifier which uses symbolic tree like rep-

resentations of finite sets of if-then-else questions that are natural, intuitive and interpretable.

They are multi-stage decision systems in which classes are sequentially rejected until an accept-

able class is found. The feature space is split into unique regions, corresponding to the classes, in

a sequential manner. Upon the arrival of a feature vector, the searching of the region to which the

feature vector will be assigned is achieved via a sequence of decisions along a path of nodes of

an appropriately constructed tree. Such schemes are usually advantageous when a large number

of classes are involved [83].

Recent Trends in Classification

Recent trends in BCI research is reaching for subject independent and co-adaptive classifiers

[97]. Relatively simple linear classifiers are optimized adaptively for each user. Supervised and
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unsupervised adaptation of LDA classifier parameters has been attempted [97]. Another novel

approach is to combine pre-processing, feature extraction, feature selection, feature combination

and classification all into one regularized discriminative framework [98].

2.6 Adaptive BCI to Address Non-stationarity

Adaptive methods in BCI has been studied quite extensively in literature. The current trends

in BCI is towards adaptations at all possible levels of a BCI system such as, feature extraction,

feature translation, classification and user interfaces.

Schlogl et al [95] has identified adaptation as a method to overcome non-stationarity in EEG.

Two types of non-stationarities have been identified in [95] as short-term changes and long-term

changes. The short-term changes have been found to be related to different mental activities such

as hand movements, mental arithmetic, etc. Long term changes have been described as related

to fatigue, changes in the recording conditions, and effects of feedback training.

Non-stationarities arising from short-term changes can usually be addressed in the feature

extraction step. Short-term changes that are unrelated to the motor imagery task could cause

reduction in classification accuracies. These components are often mixed with white noise in the

background. Therefore, these are not specifically addressed here. The non-stationarities caused

by long-term changes such as feedback training effect, fatigue, changed recording conditions

must be addressed in the classification step. Feedback training can modify the subject’s EEG

patterns, that would require an adaptation of the classifier, which might again cause the feed-

back to change. The possible difficulties of such a circular relation have been known as the

“manmachine learning dilemma” [23, 56].

A few methods, such as, Bayesian transduction, active learning and distribution matching

have been suggested to address the non-stationarity issue [106, 131–133]. Stationary Subspace
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Analysis (SSA) [134] is another unsupervised learning method that finds subspaces in which

data distributions stay invariant over time.

Segmentation-type approaches such as, extracting features from short data segments (e.g.

FFT-based Bandpower [56,57,119], AR-based spectra in [120], slow cortical potentials by [121],

or CSP combined with Bandpower [7,122–124] have also been used to address non-stationarities.

Classifiers obtained and retrained from specific sessions or runs have also been attempted [7,56].

Modelling the non-stationarity of densities where the conditional probability P (ω|x) stays stable

while the densities P(x) exhibit variation has been successful in modelling the covariate shift

[12].

Segmentation approaches can cause sudden changes from one segment to the next. Adaptive

methods are able to avoid such sudden changes by continuously updating to the new situation.

Therefore, adaptive methods can react faster, and have a smaller deviation from the true system

state [95]. Sliding window approaches where segmentation is combined with overlapping win-

dows also provide a similar advantage as adaptation. But, it has been shown that sliding window

methods have much higher computational costs than adaptive methods in general [95].

Adaptive estimators for statistics such as mean, variance and covariance have been proposed

in literature [95, 97]. Adaptive Inverse Covariance Matrix Estimation by adaptively estimat-

ing the inverse of the extended covariance matrix facilitates construction of adaptive LDA and

Quadratic Discriminant Analysis (QDA) classifiers [95, 97].

To ensure the robustness of the system in the presence of co-adaptation of the user and

the system, most adaptive methods use small update coefficients. The results from [97, 125–

127] prove that adaptive methods lead to robust BCI systems. However, theoretical analyses

are limited by the fact that the behaviour of the subject must also be considered. But since

the BCI control is based on deliberate actions of the subject, the subject’s behaviour cannot be
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easily described [95]. Therefore, it is difficult to analyse the stability of such adaptive systems

theoretically.

2.7 Ensemble Classifiers in BCI

Many ensemble methods have been attempted for BCI with the objective of improving ITR

and classification accuracy [143]. It is commonly accepted that classifier ensemble can outper-

form a single classifier under most conditions [144]. Here we briefly review the state of the art

in ensemble classifiers.

Ensemble classifiers have been known by several names in literature such as: combination of

multiple classifiers, classifier fusion, mixture of experts, consensus aggregation, voting pool of

classifiers, divide-and-conquer classifiers, stacked generalization, collective recognition methods

and composite classifier systems [168].

Stability of the classifier is an important factor in ensemble classifiers. Lotte [144] has de-

fined a stable classifier as one presenting a high bias and a low variance. An unstable classifier

usually results in a low bias and a high variance for training data [150].

Classifier ensembles have been described as being particularly efficient for synchronous BCI

[144]. They are capable of decreasing the error variance [158, 175]. Lotte [144] shows that the

classification error in BCI systems is formed by the three components, noise, bias, and variance.

Since the variability of EEG signals is large in BCI systems, the main component of the error

function is the variance. Therefore, decreasing the variance is very important for EEG signal

classification [144,174]. However, the effective improvements in terms of error variance depends

on the stability of the classifiers included in the ensemble. Therefore the combined classifiers

must be unstable in the sense described in [83, 144] in order to successfully decrease the error

variance. On the contrary if the combined methodologies are stable, i.e., they present a low
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variance, the resulting ensemble will probably present the same error, since the combination

mainly targets the variance error.

Another positive feature of ensembles is their capability to cope with high-dimensional data

with small training sets [185,187]. Larger the dimensionality of the feature space, more samples

have to be taken into account for training a classifier. This so-called “curse of dimensionality” is

caused by the increase of complexity in high-dimensional spaces when estimating the decision

surface, which is the surface in the feature space generated by training the classification proce-

dure for discriminating among classes [83]. A rule of thumb even advises 5to10 training samples

per class and per feature component [144, 162, 179]. The availability of high-dimensional data

in EEG warrants the use of ensembles in BCI.

The advantage of ensembles can be attributed to the fact that they divide the complexity of

the original decision surface estimation to simpler problems. This reduction even leads, in some

cases, to a reduction in the dimensionality of the feature space, e.g., in ensembles based on bag-

ging and feature sub-sampling. However, other re-sampling strategies like random sub-sampling

without replacement reduce the training data sets even more. Consequently, they should not be

applied on small training sets [143].

Another important issue in the application of ensemble classifiers is the number of compo-

nents to be generated [180]. Salvaris [181] has evaluated performance variation with respect to

the number of components with random sampling without replacement. In this case the optimal

number is four and performance decreases when augmenting it. The degradation in performance

is caused by the fact that, with each new classifier the number of samples to train is less because

of the chosen re-sampling strategy. However, Sun has shown that classifier ensembles are able

to make use of the time variability of EEG signals by partitioning data in the time domain [187].

Sun [187] advocates to increase the number of classifiers when data is partitioned in the time
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domain.

The first publication describing an ensemble classifier for BCI [177] has used a decision fu-

sion framework to combine the classification decisions from different Linear Vector Quantization

(LVQ) classifiers. Voting logic has been applied for fusing the decisions from each classifier in

order to arrive at the final classification decision. Feature integration approaches, where different

features are combined can be found in [153, 160]. Coyle [153] has carried out feature extraction

in the temporal, spatial, and frequency domains and has sequentially combined the features for

the ensemble. In [160], the features generated by setting up different configurations of a basic

processing chain are concatenated. The result from feature concatenation is delivered to a final

classifier, which compares the performance of a SVM and a logistic regression classifier [160].

Other interesting applications of ensembles for BCI include ensemble of SVM classifiers

[85]. Rakotomamonjy has used each SVM classifier to classify a group of channels selected

through accuracy analysis and has tuned it with a parameter set [85]. Ensemble of LDA’s has

been used in [181], where the feature extraction is carried out by wavelet coefficient computation

for different types of wavelets. Johnson et al has used an ensemble of stepwise Linear Discrim-

inant Analysis classifiers [164]. Different fusion operators are used in each approach and their

performances are compared in [164].

Density estimation to learn class conditional distributions has been attempted by Hastie et

al [205] for discriminant analysis of Gaussian mixtures. Using probability forecasting has been

extensively studied by Dawid et al. in [206] for probabilistic expert systems. Bayesian combi-

nation of classifiers has been extensively studied by Ghahramani et al in [207]. Recent advances

include a unifying framework for learning linear combiners for classifier ensembles [208] and

Bayesian combination of multiple imperfect classifiers proposed by Simpson et al in [209]. An

ensemble framework for constructing subject independent BCI classification has also been at-
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tempted by Fazli et al in [155]. For stationary data, the Bayesian optimal classifier combination

has been proposed by Kuncheva [102]. We later present how ensemble classifiers can be used to

improve ITR under non-stationary conditions.

This chapter presented an overview of EEG based BCI and reviewed related literature upon

which the current study is based. The subsequent chapters present the proposed methods to

increase ITR by improving classification accuracies.



Chapter 3

Joint Diagonalization for Multi Class

Common Spatial Patterns

3.1 Introduction

Usability of BCI’s in real world applications is hindered by the low ITR of BCI systems.

Therefore it is vital to improve the pattern classification framework driving the BCI systems in

order to achieve higher ITR that give more robust and reliable control. ITR can be increased by

increasing the number of different classes as well as by improving the classification accuracy.

Since every EEG electrode only measures a superposition of signals derived from various

sources in the brain, it is a difficult task to find the signal that originates at a specific scalp

location. One of the main problems in this context is the low signal to noise ratio (SNR) of the

recorded data. This has motivated research on spatial filters that are designed to extract those

components of the EEG/MEG data that provide most information on the intention of the BCI

user. Spatial Filters are tools for extracting specific sources, but they can also be used to alleviate

the influence of non-cerebral signals such as eye blinks or head movements.

One algorithm that is very frequently used for this purpose is the common spatial patterns

(CSP) algorithm. CSP is a technique to analyse multichannel data based on recordings from

34
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two classes (conditions). CSP was first proposed for the analysis of EEG/MEG in [66] and was

applied for classification of motor imagery in [210].

The CSP algorithm calculates optimal features for binary classification. The CSP algorithm

is capable of calculating spatial filters that maximize the ratio between the variances of data con-

ditioned on two classes, when the EEG/MEG data of two different classes are provided [136]. An

underlying limitation of CSP is that it can only handle two classes. This is because simultaneous

diagonalization, upon which CSP is based, can be carried out only for two matrices. There is no

canonical method for computing the relevant CSP patterns for multi-class classification [14].

A number of methods have been proposed to extend the CSP algorithm to multi-class paradigm

[193]. Performing two-class CSP on different combinations of classes is one method of extend-

ing CSP to multi-class case (e.g., by computing CSPs for all combinations of classes or by

computing CSP for one class versus all the other classes). An extension of CSP for multi-class

case has been proposed in [193] where it is decomposed into a set of binary problems. Spatial

patterns for each class against all others are calculated in this approach. Classification is then

performed on the variances of the projections of the EEG signals on all these CSP patterns [102].

However, the performance of one versus rest CSP in general is still limited [194].

Joint approximate diagonalization (JAD) provides a more intuitive alternative for multi-class

CSP (MCSP). Multiple matrices are simultaneously diagonalized using approximate optimiza-

tion methods in JAD. A linear Least Squares algorithm for joint diagonalization has been at-

tempted in [14]. CSP by joint approximate diagonalization has been shown to be equivalent to

independent component analysis (ICA) in [194]. By improving the diagonalization step, better

classifiers can be built, resulting in higher classification accuracies for multiple classes. Improved

accuracies for multi-class motor imagery BCI will lead to increased ITR of BCI systems.

Two implementations of multi-class CSP (MSCP) are proposed in this chapter. First method
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is based on fast Frobenius algorithm and the second method utilizes Jacobi angles for joint diag-

onalization.

This chapter is organized as follows. Section 3.2 provides descriptions of the proposed JAD

methods. In Section 3.3 the methodologies synthesizing MCSP and classifiers are described. The

Data and experimental paradigm are presented in Section 3.4, followed by comparative results

in Section 3.5. In Section 3.6, the conclusions are drawn up.

3.2 Methods

Proper preprocessing of data is vital for the ultimate success of a learning machine. Non-

informative dimensions of the data can be discarded and the features of interest for classification

can be selected through suitable preprocessing techniques. The figure (3.1) shows a schematic

diagram for the proposed method. First, the training data and test data are subjected to bandpass

filtering. Joint approximate diagonalization is applied on multiple covariance matrices for each

class resulting in a single projection matrix that is used to extract the bandpower features from

the data. The training data is projected and multiple discriminant analysis (MDA) is applied

to select the features for training the classifier. Test data is also projected and best features are

selected by MDA. Multi-class classifiers produce classification decisions on the test data.

In this section, two JAD methods are presented. The first method is based on Fast Frobenius

Algorithm and the second method is based on Jacobi angles for simultaneous diagonalization.

3.2.1 Fast Frobenius Algorithm for Joint Diagonalization

The fast algorithm for joint diagonalization (FFDIAG) is founded on the Frobenius norm

formulation. Frobenius norm formulation has been used in a few approaches for joint diagonal-

ization in literature [195, 196].
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Figure 3.1: Schematic Diagram.

The training data and test data are subjected to bandpass filtering. JAD method is applied to obtain the projection

matrix using the training data. The test data are projected using a single projection matrix to extract band power

features. Multiple discriminant analysis is applied on the extracted features to select the most informative features.

Selected features from training data are used to train multi-class classifiers. Multi-class classifiers produce

classification decisions on the test data.

Let, Fk = VCkVT denote the result of applying transformation V to matrix Ck. Joint diago-

nalization can be expressed as the following optimization problem:

minv∈RN×N
∑K

k=1 MD(Fk), where the diagonality measure MD is the Frobenius norm of the

off-diagonal elements in Fk:

MD(Fk) = o f f (Fk) =
∑
i, j

(
Fk

i j

)2
. (3.1)

The FFDIAG proposed in [197] is an iterative scheme to approximate the solution of the
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following optimization problem:

min
v∈RN×N

K∑
k=1

∑
i, j

((
VCkVT

)
i j

)2
. (3.2)

The invertibility of the matrix V is used as a constraint preventing convergence of the cost

function to the trivial solution of V = 0. Invertibility is implicitly assumed in many applications

of diagonalization algorithms, e.g. in blind source separation. Therefore making use of such a

constraint is very natural and does not limit the generality from the practical point of view [197].

Invertibility can be guaranteed by carrying out the update of V in multiplicative form as,

V(n+1) →
(
I + W(n)

)
V(n), where I denotes the identity matrix, the update matrix W(n) is con-

strained to have zeros on the main diagonal, and n is the iteration number. In order to maintain

invertibility of V it is sufficient to enforce invertibility of I + W(n).

According to the Levi-Desplanques Theorem, if an n × n matrix A is strictly diagonally-

dominant, then it is invertible [197]. An n× n matrix A is said to be strictly diagonally dominant

if, ‖aii‖ >
∑

j,i ‖ai j‖, for all i = 1, . . . , n, where ai j are elements of matrix A.

The Levi-Desplanques theorem can be used to control invertibility of I + W(n). The diagonal

entries in I + W(n) are all equal to 1. Therefore, it suffices to ensure that maxi
∑

j,i ‖Wi j‖ =

‖W(n)‖∞ < 1. This can be achieved by dividing W(n) by its infinity norm whenever the latter

exceeds some fixed θ < 1. An even stricter condition can be imposed by using a Frobenius norm

in the same way as, W(n) →
θ

‖W(n)‖F
W(n). To determine the optimal update W(n) at each iteration,

first-order optimality constraints for the objective (3.2) are used. A special approximation of the

objective function enables efficient computation of W(n).

Let Dk
(n) and Ek

(n) denote the diagonal and off-diagonal parts of Ck
(n), respectively. In or-

der to simplify the optimization problem we assume that the norms of W(n) and Ek
(n) are small,

i.e. quadratic terms in the expression for the new set of matrices can be ignored. Ck
(n+1) =(

I + W(n)
) (

Dk
(n) + Ek

(n)

) (
I + W(n)

)T , Ck
(n+1) ≈ Dk

(n) + W(n)Dk
(n) + Dk

(n)W
T
(n) + Ek

(n). With these sim-
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plifications, and ignoring the already diagonal terms Dk, the diagonality measure (3.1) can be

computed using expressions linear in W,

Fk ≈ F̃k = WDk + DkWT + Ek. (3.3)

The linearity of terms in (3.3) allows to explicitly compute the optimal update matrix W(n)

minimizing the approximated diagonality criterion, minW
∑K

k=1
∑

i j

((
WDk + DkWT + Ek

)
i j

)2
.

The FFDIAG algorithm is able to approximate the joint diagonal matrix owing to the sparse-

ness introduced by (3.3). If the N(N − 1) off-diagonal entries of the update matrix W are ar-

ranged as a vector w =
(
W12,W21, . . .Wi j,W ji, . . .

)T
, where the order of elements in w reflects

the pairwise relationship of the elements in W. If the KN(N1) off-diagonal entries of the ma-

trices Ek are also arranged as, e =
(
E1

12, E
1
21, . . . E

1
i j, E

1
ji, . . . , E

k
i j, E

k
ji..

)
. A large but very sparse,

KN(N − 1)N(N − 1) matrix J is built in the following form

J =


j1
...

jk

 with Jk =


Dk

12
. . .

Dk
i j

, where each Jk is block-diagonal, containing N(N1)
2

matrices of dimension 2 × 2. Dk
i j =

Dk
j Dk

i

Dk
j Dk

i

 , i, j = 1, . . . ,N, i , j, where Dk
i is a short-hand

notation for the iith entry of the diagonal matrix Dk.

The approximate cost function can be re-written as the linear least-squares problem L(w) =∑
k
∑

i, j

(
F̃k

i j

)2
= ( jw + e)T ( jw + e).

The solution to this problem is,

w = −
(
JT J

)−1
JT e. (3.4)

Using the sparseness of J and e to enable the direct computation of the elements of w in

(3.4), the matrix product JT J can be written as a block-diagonal matrix,

JT J =


∑

k

(
Dk

12

)T
Dk

12
. . . ∑

k

(
Dk

i j

)T
Dk

i j

 whose blocks are 2 × 2 matrices.
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Thus the system (3.4) actually consists of decoupled equations,Wi j

W ji

 = −

z j j zi j

zi j zii


−1 yi j

y ji

 , i, j = 1, . . . ,N, i , j,

where zi j =
∑

k Dk
i Dk

j and yi j =
∑

k Dk
j

Ek
i j+Ek

ji
2 =

∑
k Dk

jE
k
i j.

The matrix inverse can be computed in closed form, leading to the following expressions

for the update of the entries of W, Wi j =
zi jy ji−ziiyi j

z j jzii−z2
i j

and W ji =
zi jyi j−z j jy ji

z j jzii−z2
i j
. Therefore, only the

off-diagonal elements (i , j) need to be computed and the diagonal terms of W are set to zero.

This makes this algorithm faster than other JAD methods [197].

3.2.2 Jacobi Angles for Simultaneous Diagonalization

Another approach for joint approximate diagonalization (JAD) is known as Jacobi angles for

joint diagonalization. This method is based on the Jacobi technique which is a joint diagonality

criterion optimized iteratively under plane rotations [195].

Consider a set, C = {Ck|k = 1, . . . ,K} of K, N × N matrices. The off-diagonal elements of C

can be defined as,

o f f (C) =
∑

1≤i, j≤N

‖ci j‖
2 (3.5)

where ci j denotes the (i, j)th entry of matrix C. Simultaneous diagonalization can be obtained

by minimizing the composite objective K
k=1o f f

(
UCkUH

)
, by a unitary matrix U where the su-

perscript H denotes the Hermitian transpose. The extended Jacobi technique for simultaneous

diagonalization constructs U as a product of plane rotations globally applied to all the matri-

ces in C. A plane rotation in the (i, j)-plane is a unitary matrix R = R(i, j, c, s) defined as

R = I + (c − 1)eieT
i − seieT

j + se jeT
i + (c − 1)e jeT

j where c, s ∈ C and ‖c‖2 + ‖s‖2 = 1. It is

desired for each choice of i , j, finding complex angles c and s that minimize the following

objective function: O(c, s) =
∑K

k=1 o f f
(
R(i, j, c, s)CkRH(i, j, c, s)

)
. For a given pair of indices

(i, j), a 3 × 3 real symmetric matrix G is defined as G = Real
(∑K

k=1 hH(Ck)h(Ck)
)
.
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Jacobi angles can be computed for any set of N × N matrices using the theorem shown in

equation (3.6). Under the constraint ‖c‖2 + ‖s‖2 = 1, the objective function, O(c, s) is minimized

at,

c =

√
x + r
2r

, s =
y − iz
√

2r(x + r)
and r =

√
x2 + y2 + z2 (3.6)

where [x, y, z]T is any eigenvector associated with the largest eigenvalue of G. Proof of this

theorem can be found in [195].

Thus, the minimization of O(c, s) under the constraint ‖c‖2 + ‖s‖2 = 1 is equivalent to max-

imization of real 3 × 3 quadratic form under unit norm constraint. The solution is given by unit

norm eigenvector of G associated with the maximum eigenvalue. More theoretical analysis of

this method can be found in [199].

When Ck is a set of real symmetric matrices, the rotation parameters c and s become real.

The last component of each vector h(Ck) then is zero and G is reduced to a 2 × 2 matrix by

deleting the last row and the last column.

3.3 Synthesized Methods

We investigated the use of the FFDIAG algorithm and Jacobi angles method for approximate

diagonalization to develop multi-class common spatial patterns.

The first algorithm was implemented by utilizing the FFDIAG method to jointly diagonalize

M number of covariance matrices. The Frobenius norm of covariance matrices Ck are calcu-

lated according to (3.1) and the minimization problem shown in (3.2) is iteratively deduced as

explained in the section (3.2.1). The resulting eigenvectors are employed to spatially filter the

covariance matrices.

The second method based on Jacobi angles also takes the multiple covariance matrices as

inputs. This corresponds to the matrix C in equation (3.5). The real part of the resulting diago-
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nalized matrix is used to spatially filter the covariance matrices.

Multiple discriminant analysis (MDA) is carried out in order to select the most discriminating

features from the filtered covariance data. Thirteen features were selected in order to distinguish

the four classes. These selected features were used to train the classification algorithms and the

10 × 10 cross-validation accuracies were calculated.

The performances of the implemented spatial filters were compared with one another and

one versus rest multi-class CSP using three multi-class classifiers. K-Nearest Neighbour, Clas-

sification and Regression Trees, and Support Vector Machine classifiers were implemented and

the performances were compared.

Classifier boosting with Adaboost and Stagewise Additive Modelling using a Multi-class

exponential loss function (SAMME) algorithm was also investigated to analyse the effects of

boosting to improve classification accuracy.

3.3.1 Adaboost

Adaboost algorithm stands for adaptive boosting. Boosting is related to the general problem

of producing a very accurate prediction rule by combining rough moderately inaccurate rules

of thumb [113]. The general idea of boosting is to develop a team of classifiers incrementally,

adding one classifier at a time.

The classifier that joins the ensemble at a given step is trained on a data set selectively

sampled from the training set. The sampling distribution begins with a uniform distribution

giving all training data equal chance to be selected. In later steps, the training data points which

are harder to classify are given higher likelihood to be chosen.

The Adaboost.M1 algorithm which is the multi-class extension of the Adaboost algorithm

was implemented in this work. The base classifier in this implementation was SVM classifier, as

other classifiers did not satisfy the minimum accuracy of 50% to be used as base classifier. 20
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weak learners were combined in the implementation.

3.3.2 Stagewise Additive Modelling using a Multi-class exponential loss function

AdaBoost.M1 is a trivial extension of AdaBoost to the multi-class classification problem,

in which the only modification is that the component classifiers must be capable of multi-class

classification. However, the component classifiers are still required to have accuracies greater

than 50%. This requirement places an undue constraint on the type of classifiers that can be

boosted. Several approaches have been designed to lift this restriction [102].

Stagewise Additive Modelling using a Multi-class exponential loss function (SAMME) is

a natural extension of AdaBoost to the multi-class case. A major difference is that component

classifiers are no longer required to have accuracies greater than 50%. They are needed only

to be better than random guessing. SAMME was proposed in [103]. Empirical tests conducted

show that performance to be comparable, if not slightly better, than that of AdaBoost [103].

The SAMME algorithm was employed to boost the classifiers whose performances were not

good enough to be boosted using Adaboost.M1.

3.4 Data and Experimental Procedure

The data set 2A of the BCI Competition IV [142] considered in this study, is comprised of

EEG data collected from 9 subjects. The data has been recorded during two sessions on separate

days for each subject. Four different motor imagery tasks: left hand (class 1), right hand (class

2), both feet (class 3), and tongue (class 4) has been considered in this dataset. Each session is

comprised of 6 runs separated by short breaks, each run comprised 48 trials (12 for each class),

amounting to a total of 288 trials per session.

The subjects have been seated on an armchair in front of a computer screen and at the be-

ginning of a trial (t = 0s), a fixation cross has appeared on the black screen. Short acoustic
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Figure 3.2: BCI Competition IV Data Set 2A: Timing Scheme
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Table 3.1: Comparative classification accuracy: k-NN classifier
Subject 1 2 3 4 5 6 7 8 9 Avg.

FFDIAG 49.3 40.3 49.4 49.3 48.6 49.3 48.2 50.1 49.2 48.2

Jacobi 29.1 27.4 28.9 29.2 28.7 29.4 27.9 32.1 29.1 29.1

CSP (OVR) 26.3 25.1 26.2 25.1 26.9 24.3 26.1 27.0 25.8 25.9

warning tones have also been presented at the start of the trial. After two seconds (t = 2sec),

a cue has been presented. This cue has been in the form of an arrow pointing either to the left,

right, down or up (corresponding to one of the four classes left hand, right hand, foot or tongue).

The cue has appeared and stayed on the screen for 1.25 seconds and the subjects were supposed

to perform the corresponding motor imagery task. The subjects have been instructed to carry

out the motor imagery tasks until the fixation cross disappeared from the screen at t = 6sec.,

without any feedback on their performance. A short break had been given before the next trial.

This procedure has been repeated for each of the 6 runs in a session. The timing scheme of this

paradigm is depicted in figure (3.2). For more details on the protocol please refer to [142].

3.5 Results and Discussions

Cross-validation results obtained for the proposed methods of multi-class CSP based on FF-

DIAG and Jacobi angles with k-NN classifier are depicted in table (3.1). One over rest applica-

tion of the binary CSP is also presented in order to compare the performances.

Table (3.2) shows the cross validation results obtained for the same multi-class CSP methods

where the classification is carried out by Classification and Regression Trees (CART) algorithm.
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Table 3.2: Comparative classification accuracy: CART classifier
Subject 1 2 3 4 5 6 7 8 9 Avg.

FFDIAG 43.8 35.6 44.2 43.4 43.1 43.5 41.9 44.7 43.9 42.7

Jacobi 25.4 24.7 25.2 26.5 25.1 26.7 24.8 29.6 25.3 25.9

CSP (OVR) 26.1 24.8 25.9 24.5 26.3 24.1 25.4 26.8 25.3 25.5

Table 3.3: Comparative classification accuracy: SVM classifier
Subject 1 2 3 4 5 6 7 8 9 Avg.

FFDIAG 63.2 58.8 64.2 42.1 39.4 42.6 56.3 69.3 45.9 53.6

Jacobi 33.4 30.9 31.2 33.7 32.4 33.1 31.8 35.3 33.5 32.8

CSP (OVR) 26.9 23.3 28.9 27.6 27.8 28.1 28.9 29.5 29.8 27.8

Results obtained for the classification by Support Vector Machines (SVM) is presented in table

(3.3).

Table (3.4) shows the results yielded for FFDIAG with the k-NN classifier boosted by SAMME

algorithm. Table (3.5) and table (3.6) depict the results of FFDIAG method boosted by SAMME

with CART algorithm and SVM classifiers as the base classifiers respectively.

The results of the Adaboost.M1 algorithm applied to the FFDIAG method with SVM as the

base classifier is presented in table (3.7). The Adaboost.M1 cannot be applied to one versus rest

CSP method because the base classifier does not meet the performance requirement of 50% for

the considered data set.

The highest average classification accuracy of 54.1% is recorded by the JAD method based on

FFDIAG when the classification is carried out by SVM classifier boosted by SAMME algorithm.

SVM boosted by Adaboost.M1 yields an average accuracy of 53.8% for FFDIAG method. Aver-

age accuracies of 53.6%, 48.2% and 42.7% are yielded under multi-class SVM, k-NN and CART

Table 3.4: Comparative classification accuracy: k-NN classifier Boosted with SAMME
Subject 1 2 3 4 5 6 7 8 9 Avg.

FFDIAG 50.4 42.2 49.9 49.6 49.2 49.9 49.3 52.1 49.4 49.1

CSP (OVR) 29.1 26.6 27.9 26.3 27.2 26 27.8 28.7 26.9 27.3
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Table 3.5: Comparative classification accuracy: CART classifier Boosted with SAMME
Subject 1 2 3 4 5 6 7 8 9 Avg.

FFDIAG 45.7 36.4 48.2 46.8 43.8 46.4 42.1 47.2 45.3 44.6

CSP (OVR) 28.7 26.7 28.8 27.2 29.3 26.5 25.9 30.4 26.5 27.7

Table 3.6: Comparative classification accuracy: SVM classifier Boosted with SAMME
Subject 1 2 3 4 5 6 7 8 9 Avg.

FFDIAG 63.6 58.5 61.2 46.3 38.8 42.7 58.8 66.6 50 54.1

CSP (OVR) 27.2 26.9 29.5 27.2 28 29.1 29.2 31.4 30.6 28.8

classification methods respectively for the same diagonalization method. FFDIAG method with

the classifiers boosted using SAMME yield 49.1% and 44.6% under the k-NN and CART as base

classifiers. The classification accuracies of 10 × 10-fold cross-validation indicate that the JAD

method based on FFDIAG performs better than the one versus rest CSP. The Jacobi angles based

method slightly outperforms the one versus rest binary CSP.

Support Vector Machines (SVM) outperforms the other two classifiers. The best average per-

formance is produced by the SAMME boosting algorithm. The average classification accuracy

for one versus rest CSP boosted by SAMME using the CART as the base classifier is almost the

same as the accuracy yielded by SVM without boosting.

This observation can be attributed to the instability of the CART classifier in the presence of

noise. Unstable base classifiers generate sufficiently different decision boundaries even for small

perturbations in their training parameters [83]. Therefore it can be inferred that the performance

of CART classifier is boosted more by the SAMME algorithm than k-NN classifier. However,

the SVM classifier gives more robust classification results overall than the other classifiers con-

sidered.

Table 3.7: Comparative classification accuracy: SVM classifier Boosted with Adaboost.M1
Subject 1 2 3 4 5 6 7 8 9 Avg.

FFDIAG 60.4 58.1 62.2 46.9 43.3 44.3 54.5 59.8 54.7 53.8
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3.6 Conclusion

In this chapter a blind source separation approach based on JAD methods was proposed for

multi-class Common Spatial Patterns for processing EEG measurements in multi-class motor

imagery-based BCI. MCSP extends the binary CSP technique to a truly multi-class paradigm

and proves to be better than one versus rest application of the binary CSP.

The proposed JAD method was compared on the BCI Competition IV for dataset 2a. Exper-

imental results showed that the proposed MCSP based on FFDIAG yields superior classification

accuracy compared to the one versus rest CSP method.

In the analysis carried out on the three classification algorithms and the two boosting algo-

rithms, it was identified that SVM algorithm consistently gives a higher accuracy than the other

two classification methods. The SAMME algorithm for boosting slightly outperforms the Ad-

aboost.M1 algorithm for multi-class boosting with SVM as the base classifier. However due to

the complexity of the considered dataset none of the other classifiers reached the required per-

formance to be boosted using Adaboost.M1. The results of k-NN and CART classifiers boosted

using SAMME algorithm did not yield satisfactory results as the SVM classifier.

In the next chapter, we will present the adaptively weighted ensemble classification technique

for addressing the non-stationarity in EEG.



Chapter 4

Adaptively Weighted Ensemble

Classification

4.1 Introduction

A major challenge for BCI research is the non-stationarity in the brain activity occurring

continuously in association with diverse behavioural and mental states [200]. Non-stationarity

refers to a change in the class definitions over time, which therefore causes a change in the

distributions from which the data are drawn [9]. Consider the Bayesian posterior probability of

a class ω given instance x, P (ω|x) =
P(x|ω)·P(ω)

P(x) , non-stationarity is defined as any scenario where

the posterior probability changes over time, i.e., Pt+1 (ω|x) , Pt (ω|x), where ω is the class to

which data instance x belongs.

The non-stationarity of EEG signals is caused by factors such as, changes in the physical

properties of the sensors, variabilities in neurophysiological conditions, psychological parame-

ters, ambient noise, and motion artefacts. Two main factors contributing to non-stationarity as

reported in [10, 11] are: the differences between the samples extracted from a training session

and the samples extracted during an online session, and the changes in the user’s brain activ-

ity during online operation. As a result, the general hypothesis that the signals sampled in the

48
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training set follow a similar probability distribution to the signals sampled in the test set from a

different session is violated [12].

Kaplan has studied fast dynamics of quasi-stationary episodes in EEG signals and has identi-

fied different operating modes in the EEG time series [201]. Several machine learning techniques

have been attempted recently to address the non-stationarity issue in BCI [202–204]. Robust

PCA has proposed to visualize spatial patterns with the most prominent variability in the data

to automatically identify and reject outlying non-informative signals [202]. Stationary LDA at-

tempts to find a direction in feature space which is both discriminative and stationary [203].

Stationary sub-space analysis is an unsupervised learning method that finds sub-spaces in which

data distributions stay invariant over time [204]. Methods such as Bayesian transduction, transfer

learning, active learning, and distribution matching has also been proposed to address the non-

stationarity issue [106]. Even though it would be interesting to study the application of these

methods, it exceeds the scope of the current study.

Density estimation to learn class conditional distributions has been attempted by Hastie et

al. [205] for discriminant analysis of Gaussian mixtures. Using probability forecasting has been

extensively studied by Dawid et al. in [206] for probabilistic expert systems. Bayesian combi-

nation of classifiers has been extensively studied by Ghahramani et al in [207]. Recent advances

include a unifying framework for learning linear combiners for classifier ensembles [208] and

Bayesian combination of multiple imperfect classifiers proposed by Simpson et al in [209].

In this chapter we propose an Adaptively Weighted Ensemble Classification (AWEC) frame-

work to cluster features extracted using Common Spatial Patterns (CSP), and build an ensemble

of multiple classifiers on the clustered features in order to address the session to session non-

stationarity in the EEG data for the operation of a BCI. Clustering the features extracted after

CSP filtering facilitates the identification of different modes in the EEG. Classifiers trained on
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the clustered features offer complimentary decisions. Improved accuracies can be achieved by

appropriately combining the decisions from an ensemble of multiple classifiers. An ensemble

framework for constructing subject independent BCI classification has also been attempted by

Fazli et al in [155].

For stationary data, the Bayesian optimal classifier combination has been proposed by Kuncheva

[102]. This work extends the concept of Bayesian optimal combination for non-stationary data.

Since the underlying distribution of the test data is unknown, classification accuracies for each

classifier need to be re-estimated. Particularly, we consider each test sample to adaptively es-

timate the classification accuracy based on the relative location of samples with respect to the

clusters.

The remainder of this chapter is organized as follows: Section 4.2 provides the synthesized

materials followed by methods in Section 4.3. Section 4.4 presents comparative results and

discussion. Finally, section 4.5 concludes the chapter.

4.2 Materials

Two datasets were evaluated using the proposed method. Publicly available BCI Competition

IV dataset 2A [142] and motor imagery dataset collected in-house from 12 healthy subjects.

The BCI Competition IV Dataset 2A is comprised of EEG data collected from 9 subjects that

were recorded during two sessions on separate days for each subject. The data has been collected

on four different motor imagery tasks: left hand (class 1), right hand (class 2), both feet (class

3), and tongue (class 4). Each session is comprised of 6 runs separated by short breaks, each run

comprised 48 trials (12 for each class), amounting to a total of 288 trials per session. Only the

two class classification between left hand and right hand motor imagery was considered for this

study. For more details on the protocol please refer to [142]. The motor imagery data from the
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first session were used to train the classifiers, and motor imagery data from the second session

were used as test data.

The EEG data collected in the laboratory in Institute for Infocomm Research was collected

using a Nuamps EEG acquisition hardware (http://www.neuroscan.com) with unipolar Ag/AgCl

electrodes, digitally sampled at 250 Hz with a resolution of 22 bits for voltage ranges of ±130mV .

EEG signals from 22 scalp positions, mainly covering the primary motor cortices bilaterally were

recorded. The sensitivity of the amplifier was set to 100µV . 12 healthy subjects were recruited

for the study. Two subjects chose to perform left hand motor imagery while the remaining 10

subjects chose to perform on the right hand. The subjects were instructed, in the form of visual

cues displayed on the computer screen, to perform kinaesthetic motor imagery of the chosen

hand, and rest during the background rest condition.

The EEG data were collected in two sessions for this study from each subject on two different

days. In the first session, two runs of EEG data were collected from a subject while performing

motor imagery of the chosen hand and background rest condition. In the second session on an-

other day, three runs of EEG data were collected while performing motor imagery of the chosen

hand and background rest condition. Each run lasted approximately 16 minutes that comprised

of 40 trials of motor imagery and 40 trials of background rest condition. The motor imagery data

collected during the first session were used to train the classifiers, and motor imagery data from

the subsequent sessions were used as test data.

4.3 Methods

The proposed framework consists of two steps: training and testing. In the training step,

the EEG data used for training were subjected to pre-processing and feature extraction. In this

experiment, EEG data were bandpass filtered at 8-30Hz and spatially filtered using the CSP algo-
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rithm. The extracted features of each class were subjected to clustering separately. The clustered

features were subsequently used to train an ensemble of multiple classifiers by combining all

possible clusters from each class.

In the testing step, the EEG data used for testing were subjected to pre-processing and feature

extraction similar to the training data. In this experiment the EEG data used for testing were

bandpass filtered at 8-30Hz and spatially filtered using CSP filter trained during the training step.

The extracted features were then evaluated by the ensemble of multiple classifiers. The decisions

from the classifiers in the ensemble were adaptively combined using a weighted majority voting

method based on a similarity measure computed from the distance of the test data to each cluster

centre of each classifier.

The following subsections provide a more detailed description of the proposed framework.

The figure (4.1) summarizes the processes involved in the proposed method.

4.3.1 Feature Extraction

EEG signals resulting from motor imagery have been found to contain specific temporal,

frequential and spatial features, that enables them to be recognized automatically [17]. For ex-

ample, imagining a left hand movement is known to trigger a decrease of power known as Event

Related De-synchronisation (ERD) in the µ and β rhythms, over the right motor cortex [17].

Increase of band power that occurs after the motor imagery is known as Event Related Synchro-

nisation (ERS) [17].

The Common Spatial Patterns (CSP) algorithm was used to extract the features from the EEG

data, which is effective in computing spatial filters for detecting ERD/ERS effects [66,210]. It has

been extended to multi-class problems in [211], and further extensions and robustifications using

simultaneous optimization of spatial and frequency filters have been proposed in [123,124,138].
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Figure 4.1: Schematic Diagram.

The training data and test data are pre-processed and features are extracted. Training data are clustered and multiple

classifiers are trained on clustered features. The decisions from multiple classifiers are adaptively weighted to arrive

at the final classification decision.

4.3.2 Clustering of EEG with Minimum Entropy Criterion

Since the features extracted using the CSP algorithm are the solutions of a generalized eigen-

value problem, a multiple of the extracted feature vector is again a solution to the eigenvalue

problem. In order to compare the extracted features it should be noted that the feature space is

inherently non-Euclidean. An appropriate comparison between two feature vectors x1 and x2 in

this non-Euclidean space is the angle between these two vectors, given by the cosine distance,

d (x1, x2) = 1 −
(

x1·xT
2

|x1 |·|x2 |

)
. Clustering EEG data using the angle distance between the feature

vectors extracted by CSP has been shown to yield correct source signals in high dimensional

data [105].
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In this work, the features extracted from the training data were initially clustered using k-

means algorithm with cosine distance measure. The resulting initial clusters were optimized

using minimum entropy criterion [115]. The normalized information distance measures were

used to quantify the amount of information shared between clusters.

In the minimum entropy criterion, given a spatially filtered features set X = {x1, . . . , xT } of T

items in Rn, a partitional clustering C = {c1, . . . , cK} is a way to divide X into K non-overlapped

subsets. If C is the space of all possible K−cluster partitions of X, the optimal clustering C∗ ∈ C

would have maximum mutual information between the data and the clustering:

C∗ = arg max
c∈C

{I (c; X)} . (4.1)

The entropy relation of (4.1) can be expressed as:

C∗ = arg minc∈C {H (X|c)} .

The minimum entropy criterion is based on the argument that the optimal clustering would

maximize the information shared between the clustering and data. It has been shown that, by us-

ing Havrda-Charvats structural entropy measure the conditional entropy can be estimated without

any assumptions about the distribution of the data. Havrda-Charvats structural entropy is defined

as:

Hα =
(
21−α − 1

)−1
 K∑

k=1

pαk − 1

 , α > 0, α , 1, (4.2)

where α is the structural dimension, K is the number of partitions and pαk is the probability of a

sample being included in kth partition in the α-dimension [212].

The equation (4.2) can be simplified by discarding the constant coefficient and with α = 2 to

give: H2 = 1 −
∑K

k=1 p2
k .
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The conditional quadratic Havrda-Charvats entropy of X given C can be defined as:

H2 (X|C) =

K∑
k=1

p (ck) H2 (X|C = ck) . (4.3)

With the measure of conditional entropy (4.3) , the objective function (4.4) can be expressed as:

C∗ = arg min
c∈C

 K∑
k=1

p (ck) H2 (X|c = ck)

 . (4.4)

Estimating the conditional entropy without information about the underlying probability distri-

butions is difficult. A solution is to use Parzen window [213] method for density estimation

as suggested in [214]. Principe et al have used Parzen window method in conjunction with

quadratic Renyis entropy for density estimation [215]. In a similar manner we use the Parzen

window [213] to estimate the conditional entropy. Given that a Gaussian kernel in n-dimensional

space is

G
(
x − a, σ2

)
=

1

(2πσ)
n
2

exp


−

∥∥∥∥∥x − a
∥∥∥∥∥2

2σ2

 , (4.5)

whereσ is the kernel width parameter, and a is the center of the Gaussian window; the probability

density estimation of x ∈ X can be expressed as

p (x) =
1
T

T∑
i=1

G
(
x − xi, σ

2
)
. (4.6)

The quadratic entropy of features X can then be estimated by

H2 (X) = 1 −
∫

x
p2 (x) dx

= 1 −
1

T 2

∫
x

 T∑
i=1

G
(
x − xi, σ

2
)

2

dx. (4.7)

Since convolving two Gaussians yield a Gaussian, equation (4.7) can be expressed as
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H2 (X) = 1 −
1

T 2

T∑
i=1

T∑
j=1

G
(
xi − x j, 2σ2

)
. (4.8)

In a similar manner, the conditional quadratic entropy can be estimated as

H2 (X|C = ck) = 1 −
1
t2
k

∑
xi∈ck

∑
x j∈ck

G
(
xi − x j, 2σ2

)
, (4.9)

where tk is the number of the data items in cluster ck. Given the estimate in equation (4.9), the

objective function (4.4) can be written as

C∗ = arg max
c∈C


K∑

k=1

p (ck)
1
t2
k

∑
xi∈ck

∑
x j∈ck

G
(
xi − x j, 2σ2

) . (4.10)

Here the probability of encountering the cluster ck in C is tk
T . Therefore the conditional entropy

ε based objective function becomes

C∗ = arg max
c∈C

ε (C) , (4.11)

where,

ε (C) =

K∑
k=1

1
tk

∑
xi,x j∈ck

exp


−

∥∥∥∥∥xi − x j

∥∥∥∥∥2

4σ2

 . (4.12)

Therefore, by maximizing ε (C), the conditional entropy criterion is minimized.

4.3.3 Base Classifier

The class-wise training data partitioned to clusters were used to train the ensemble. Individ-

ual SVM classifiers that make up the ensemble were trained independently.

SVM has been found to yield highest classification accuracies for synchronous BCI experi-

ments [216]. Dara et al [217] has shown that classification performance of a single SVM clas-

sifier can be surpassed by using an ensemble of SVM classifiers. It has also been shown that

a combination of different SVM classifiers expands the regions of test samples resulting in im-

proved classification. If there are L different SVM classifiers in an ensemble that has been trained
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independently on different training samples, then each SVM classifier would have different gen-

eralization performances [84].

The SVM classifier has been known to show good generalization performance with easy to

learn exact parameters for the global optimum [84]. Considering all these factors, SVM classi-

fiers with linear kernels were used as the base classifiers in the ensemble.

4.3.4 Adaptively Weighted Ensemble Classification (AWEC) Method for Non-

stationary Data

A classifier is any function Λ : Rn → Ω, that maps a given object x ∈ Rn, where Rn is the

feature space to a class label ω. Let the class label ω be a random variable that can take values

in the set of class labels Ω = {ω1, ..., ωΓ} , where Γ is the number of classes. The class with the

highest posterior probability is the most natural choice for a given object x ∈ Rn, where Rn is

the feature space. In the canonical model of a classifier [83] a set of Γ discriminant functions

G = {g1 (x) , . . . , gΓ (x)} , gi : Rn → R, i = 1, . . . , c, each yielding a score for the respective

class. The final output class label of the classifier is determined according to the maximum

membership rule. Maximum membership rule can be given as Λ (x) = ωi∗ ∈ Ω ↔ gi∗ (x) =

max

k = 1, . . . ,Γ
{gi (x)} . In an ensemble consisting of L such classifiers where each classifier Λ j,

produces a class label s j ∈ Ω where j = 1, . . . , L. Thus for any object x ∈ Rn to be classified, the

outputs from the L classifiers produce a vector s = [s1, . . . , sL]T ∈ ΩL.

The Bayesian optimal weighted majority voting for combining an ensemble of classifiers

has been defined in [102]. The label outputs produced by each classifier in the ensemble are

represented as degrees of support for each class in the following manner:

λ j,k =


1, if Λ j labels x in class ωk

0, otherwise.

The discriminant function for classωk obtained through weighted voting is gk (x) =
∑L

j=1 b jλ j,k,

where b j is a coefficient for classifier Λ j. Thus the value of the discriminant function would be
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the sum of the coefficients for these members of the ensemble whose outputs for x are ωk. In this

context, the optimal set of discriminant functions based on the outputs of the L classifiers is

gk (x) = log P (ωk) P (x|ωk) , k = 1, . . . ,Γ.

Kuncheva [102] has shown that in an ensemble of L classifiers with individual training accuracies

p1, . . . , pL the optimal set of discriminant functions can be achieved by weighted majority voting

with individual weights

b j ∝ log
p j

1 − p j
, (4.13)

where p j is the training accuracy of the jth classifier where j = 1, . . . , L.

The equation (4.13) is applicable only for stationary data, where the distribution of the train-

ing data is similar to the distribution of test data. In the presence of non-stationarity, using

equation (4.13) with training accuracies would not lead to the optimal set of discriminant func-

tions. Therefore under non-stationarity, the accuracies for each test sample should be considered

individually to reach the optimal set of discriminant functions.

Since the performances of classifiers are not known for the test samples, the weights b j are

actively calculated for each test sample based on estimated individual accuracies of classifiers in

the ensemble in the proposed method. An estimate for classification accuracy of each classifier

is adaptively calculated based on the distances from test sample to the centres of the clusters

consisting of training data.

In the proposed method the training data is partitioned by clustering the features of the two

classes separately. Let U and V be the number of clusters of class 1 and class 2 respectively. Let

the clusters of class 1 be denoted by c1u, where u = 1, . . . ,U and clusters of class 2 be c2v, where

v = 1, . . . ,V. Then, the distances from the sample to the cluster center c1u be du and distance

to cluster center c2v be dv. Let the ratio between the two distance measures be denoted by duv ,

where, duv =
du
dv
.
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A function to estimate the probability of correct classification based on the distance measures

to centres of clusters c1u and c2v consisting of training samples for the classifier is defined as

puv
(
~xt
)

= 1 −
1
2

exp
(
−

1
ψ2

uv
(log (dtu) − log (dtv))2

)
(4.14)

where t = 1, . . . ,T denotes the index of the training samples in the vector ~xt and puv is the

estimated accuracy of the classifier made from clusters c1u and c2v.

This function to estimate classification accuracy satisfies the following limits: puv → 1,

when duv → 0 and puv → 0, when duv → ∞. It should also be noted that puv ∈ [0.5, 1] .ψkm is

a parameter whose optimal value should be found by optimizing the objective function given in

equation (4.15) on the training data given by

f (ψuv) =

 1

T

 T∑
t=1

puv
(
~xt
) − p j


2

(4.15)

where p j is the training accuracy of jth classifier where j = 1, . . . , L. In order to find an exact

solution for the ψuv parameter by optimizing the objective function given in equation (4.15), it

must be monotonically decreasing. It can be shown that

∂puv

∂ψ2
uv

= −
1
2

exp

 1
ψ2

uv

(
log

(
dtu

dtv

))2 (log
(
dtu

dtv

))2 (
ψ2

uv

)−2
6 0. (4.16)

Equation (4.16) implies
∂ 1

T

[∑T
t=1 puv(~xt)

]
∂ψ2

uv
6 0. Therefore an exact solution for the ψuv parameter

can be found by optimizing equation (4.15). After optimal ψuv parameter is found, the accuracy

can be estimated by substituting the ψuv parameter value in equation (4.14). Next, the weights

for the jth classifier can be calculated as, b j = log puv(~xt)
1−puv(~xt) . Figure (4.2) summarizes the steps

involved in the Adaptively Weighted Ensemble Classification Method.
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Input

• Training data Train with correct labels ωi ∈ Ω = {ω1, ..., ωΓ} representing Γ classes.

• Integer K specifying number of clusters.

• Test data Test

Output

• Predicted class labels s ∈ Ω for Test.

Training

1. Cluster training data of each class into K clusters.

2. Train classifiers on clustered training data.

Test- Given a test instance x ∈ Test

1. Evaluate distances du and dv from the cluster centres to sample x.

2. Optimize objective function based on distance ratio to find suitable ψuv parameter.

3. Calculate weights for each classifier in ensemble.

4. Choose the classifier decision that receives the highest weighted majority vote.

Figure 4.2: Adaptively Weighted Ensemble Classification Method.

The inputs to the algorithm are training data and the number of clusters to partition. Training step consists of

clustering and training classifier ensemble. In the testing step a previously unseen instance is presented to the

classifier ensemble.

4.4 Results & Discussions

The proposed AWEC method was tested on publicly available BCI Competition dataset 2A

[7] and data collected from 12 healthy subjects. For both data sets single-trial EEG data were

extracted for training the CSP algorithm. Three pairs of CSP features in the 8-30Hz band-pass
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filtered EEG measurements, extracted at the time segment of 0.5-2.5s after the onset of the visual

cue were used.

The number of component classifiers in the ensemble depends on the number of clusters as

too many clusters will result in smaller partitions leading to over fitting and lower generalization

accuracies for unseen data. Therefore only two to seven clusters, resulting in four to forty nine

individual classifiers respectively, were investigated.

4.4.1 Classification Accuracies

The proposed AWEC method was evaluated on the dataset 2A of BCI Competition IV. Six

separate ensembles of classifiers were developed consisting of four to forty nine individual clas-

sifiers. Their performances were compared against a single SVM classifier. The empirical results

for the dataset 2A of BCI Competition IV are shown in Table (4.1).

The highest classification accuracies for each subject are in boldface. A series of pairwise

t-tests were carried out between the baseline results and each of the clustering approaches. It

can be seen that the optimal number of clusters yielded a statistically significant improvement

over the baseline result (p=0.048). However, the ensemble of classifiers resulting from 3 clusters

yielded the best overall classification accuracy (81.5%). A t-test between the ensemble built with

3 clusters and the ensemble built with 7 clusters revealed that the two ensemble classifiers are not

statistically different (p=0.93). This could be attributed to over-training of component classifiers

and lack of sufficient training data as the sample numbers for training is reduced when more

clusters are created.

The results obtained for the data collected from 12 healthy subjects are shown in Table (4.2).

The training data was clustered only to 3 clusters based on the previous results. A pairwise t-test

was carried out at a confidence level of 0.05 and the increase over the baseline results obtained

with a single SVM classifier was found to be statistically significant (p=2.67 × 10−5).
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Table 4.1: Results of BCI Competition Dataset 2A.

The baseline results produced by a single SVM classifier are compared against ensembles created by combining

multiple classifiers trained on clustered training data for the BCI Competition IV Dataset 2A. The two sample Student

t-test is used to assess the statistical significance of the improvement at a confidence level of 0.05.

Number of Clusters Training Data is Partitioned

Subject Baseline

Acc.

2 3 4 5 6 7

A1 87.3 95.2 95.4 94.8 94.4 94.8 94.6

A2 56.8 63.8 64.2 64.1 62.5 63.9 63.4

A3 93.1 96.9 96.8 96.2 96.5 95.2 95.9

A4 63.6 66.7 67.3 66.7 66.8 66.4 65.5

A5 54.8 75.9 75.9 75.6 75.4 75.7 75.6

A6 62.6 64.9 65.2 63.6 65.8 63.8 64.5

A7 77.1 78.1 78.1 77.9 78.1 78.5 78.7

A8 94.2 96.1 96.1 96.4 95.2 95.7 95.6

A9 93.8 92.6 93.2 92.8 93.25 92.8 93.2

Mean 75.9 81.3 81.5 81.0 80.9 80.8 80.9

Std. Dev. 16.6 14.3 14.2 14.4 14.1 14.1 14.4

p value 0.039 0.032 0.047 0.047 0.059 0.048
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Table 4.2: Results of Data Collected from 12 Healthy Subjects.

This Table compares the baseline accuracy given by a single SVM classifier against the ensemble classifier trained

on 3 clusters of training data for the data collected from 12 healthy subjects. The two sample Student t-test is used to

assess the statistical significance of the improvement at a confidence level of 0.05.

Subject Baseline Acc. Acc. from AWEC with 3 Clusters

1 60.7 65.0

2 62.1 65.2

3 52.7 57.5

4 69.4 70.7

5 67.2 69.3

6 82.2 87.9

7 81.1 84.3

8 95.2 97.5

9 73.0 75.0

10 57.2 61.9

11 49.4 56.6

12 82.7 84.7

Mean 69.4 73.0

T test (P value) 2.67 × 10−5
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4.4.2 Addressing Non-stationarity

The presence of non-stationarity in session to session data can be clearly identified by the

clustering analysis. Figure (4.3) highlights the presence of non-stationarity in the data set 2A. A

classifier trained on the first session will not be able to classify the data from subsequent sessions

due to the presence of this non-stationarity.

Figure (4.4) shows two examples that are correctly classified only by the proposed method.

Three base classifier hyperplanes are shown in the figure in dashed lines. The classifier L11 is

trained on cluster 1 of class 1 and cluster 1 of class 2. L22 is trained on cluster 2 of class 1 and

cluster 2 of class 2 and L33 is trained on cluster 3 of class 1 and cluster 3 of class 2. The baseline

ensemble without adaptive weighting is also shown as a dashed line. The black dots represent

features from the second session. Test sample x1 belongs to class 1, but it is classified wrongly

to class 2 by classifiers L22 and L33, however L11 classifies it correctly and because the decision

of L11 is magnified by the weighting method, the effective hyperplane of the ensemble for x1

shown as EL1 correctly classifies the sample x1 in class 1.

Test sample x2 also belongs to class 1, but it is incorrectly classified to class 2 by classifiers

L11 and L33, however L22 classifies it correctly and because the decision of L22 is magnified by

the weighting method, the effective hyperplane of the ensemble for x2 shown as EL2 correctly

classifies the sample x2 in class 1.

A further analysis was carried out on the BCI Competition dataset 2A to ascertain whether

the proposed AWEC method is capable of accounting for non-stationarity in EEG data. In this

study, a part of the test data was also included in the training data. The hypothesis, that the

clustering based classifier ensemble is capable of accounting for non-stationarity when there is

more variability in the data was statistically analysed for significance. Table (4.3) summarizes

the results of the analysis.
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Table 4.3: Comparison of Effects of Including Data from Second Session.

Case 1: Train classifiers on all training data and test on half of test data, Case 2: Train with half of training data and

half of test data and test on the other half of test data, Case 3: Train on all training data and test on half of test data,

Case 4: Train with half of training data and half of test data and test on the other half of test data.

P1 compares the significance between baseline cases (test 1 and test 3) against the corresponding approaches with

ensemble built by 3 clusters (Case 2 and Case 4). P2 statistic compares the case where half of the test samples were

included for training without the proposed classifier combination method (Case 2) against the case where classifiers

are trained with only the training data and tested on half of test data (Case 3).

Methods

Baseline Without Clustering AWEC With 3 Clusters

Subject Case 1 Case 2 Case 3 Case 4

A1 87.49 90.06 96.17 97.42

A2 56.85 60.24 66.08 68.51

A3 93.25 96.91 97.13 98.47

A4 63.64 64.99 68.72 70.34

A5 55.03 57.09 76.39 78.47

A6 64.75 64.87 68.87 69.17

A7 77.11 78.35 78.82 80.17

A8 94.27 96.34 97.95 98.11

A9 93.92 95.71 95.01 96.59

Mean 76.26 78.51 82.79 84.14

Std

Dev

16.47 16.57 13.65 13.41

P1 - - 0.013 0.031

P2 - 0.068 -
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Two baseline cases were considered in the analysis (Case 1 and case 2). In the first case, the

classifiers were trained with all the training data similar to the standard procedure and evaluated

only on half of the randomly chosen test data. In the second set-up (case 2), half of the test

data was randomly selected to be incorporated into the training data and was tested on the other

half of test data. Clustering based ensemble was also trained in a similar manner and tested on

randomly chosen half of the original test samples.

Two statistical tests were carried out to compare the mean results of this study. First, the

baseline cases without ensemble classifiers were compared against the corresponding cases with

the ensembles. The probability values of the pairwise t-tests are denoted as P1 in Table (4.3). The

tests suggest that the proposed AWEC method results in statistically significant improvements

over the respective baseline cases under both settings (P1=0.013 and 0.031).

The second comparison was carried out between the case where half of the test samples were

included for training without the proposed classifier combination method against the case where

classifier ensemble was trained with only the training data and tested on half of the test data. The

test indicates that the mean accuracies resulting from the two cases are not different at a 0.05

level of significance (P2=0.068).

4.4.3 Complexity Analysis

The complexity of the proposed framework depends on the complexities of the main com-

ponents: CSP algorithm, clustering mechanism, classifier ensemble and optimal weights calcu-

lation.

Pre-processing and feature extraction steps depend mostly on the complexity of the CSP

algorithm. The CSP algorithm needs to compute covariance matrices, which is in the order

O(N∗ch3) ,where N is the dimensionality of data and ch is the number of components (channels).

The complexity of the clustering algorithm depends on the initialization step and the iterative
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Figure 4.3: Session-to-session Non-stationarity in BCIC IV Data Set 2A Subject A1.

updates. The initialization step costs O(T 2 ∗ N) as the complete kernel matrix needs to be set

up. Finding the best target cluster for each datum costs O(K) time and the update procedure

costs O(T ) time. K is the number of clusters and T is the number of data samples. The cost

of the main loop of the algorithm is therefore O(I ∗ T (K + µ ∗ T )) where I is the number of

iterations and 0 < µ < 1 is the expected ratio of data items that change membership. The

number of membership changes is large for the first few iterations, then quickly reduces as the

algorithm converges. Overall, the time complexity of clustering is dominated by the quadratic

cost of computing the kernel matrix. The maximum number of iterations was set to 50 to increase

efficiency.

The complexity of the ensemble depends partly on the number of SVM classifiers and on the

SVM classification algorithm. The complexity of one SVM classifier depends on the number of

features and support vectors. When a linear kernel is used, the time complexity depends only on
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Figure 4.4: Examples of Two Test Samples from in-house dataset subject 3.

3 clusters of each class are combined resulting in 9 classifiers. Only three classifier hyperplanes L11, L22 and L33

are shown in the figure. The baseline classifier hyperplane is also shown in a dashed line. The chosen test samples

are shown as black dots are correctly classified by the proposed method but misclassified by other combination

methods. The effective hyperplanes, resulting from adaptive weighting, for each of the test samples are shown as

solid lines EL1 and EL2. The dashed arrows perpendicular to the classifier hyperplanes indicate the direction of

class 1 by each classifier.

the feature dimensionality [84]. Therefore, the complexity for one SVM classifier is in O(N) ,

where N is the dimensionality of data. The complexity of the whole ensemble is O(N ∗ K2).

The calculation of optimal weights involves O(K2) distance measures and their optimiza-

tion. The optimization function is smooth and convex with complexity of O(K2). Each gradient

computation complexity is also O(K2), so if all of them have to be computed during an iteration

that adds O(K4). if the total number of iterations for the optimization is I the complexity of

optimization adds upto O(I ∗ K4).

4.5 Conclusion

In this chapter, we proposed a novel method to partition EEG data using clustering, and

multiple classifiers were trained using the partitioned datasets. The final decision of the classifier



Chapter 4. Adaptively Weighted Ensemble Classification 69

ensemble was then obtained by weighting the classification decisions of individual classifiers. A

combination method based on the distances from the test sample to the constituent cluster centres

that form the specific classifier was subsequently used to weigh the classifier decisions. The

proposed AWEC method was applied on publicly available dataset 2A from BCI Competition IV

and data set collected from 12 healthy subjects. Classification accuracies obtained showed that

the proposed method yielded statistically significant improvements. The analysis carried out in

section 4.4.2 showed that the proposed AWEC approach can be used to address non-stationarity

in the EEG data.



Chapter 5

Error Entropy Based Kernel

Adaptation for Adaptive Classifier

Training

5.1 Introduction

Brain-Computer Interfaces (BCIs) are communication systems that enable subjects to send

commands to computers using only their brain activity [121]. Non-stationarity arising from high

variability of EEG signals is a major obstacle in EEG-based BCI systems. Non-stationarity has

been found to be linked to various factors such as, changes in the physical properties of the

sensors, variability in neurophysiological conditions, psychological parameters, ambient noise

and motion artifacts [131, 132, 134, 244].

The importance of addressing session to session non-stationarity has been widely recog-

nized in the BCI community. Various signal processing and learning methods such as, Bayesian

transduction, active learning and distribution matching have been proposed [106, 131, 133, 134].

Stationary Subspace Analysis (SSA) [134] is another unsupervised learning method that finds

subspaces in which data distributions stay invariant over time. Current research addressing non-

70
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stationarity also includes methods that adapt the classifiers using the knowledge from empirical

data [15, 245, 246]. These methods include adaptation of LDA and SVM classifiers which are

the commonly used classification methods in BCI [74]. Adaption of LDA involves updating the

statistical parameters such as mean, covariance and bias [15]. Adaptive SVM methods include

least square based methods with various penalty functions [245, 246].

All these adaptive methods use minimization of error, based on the classification output to

optimize some parameter in the classifiers [15, 226, 245, 246]. In this type of adaptations, the

error is under the control of the parameters of the adaptive system because the error depends on

the true labels which is a function of the parameters that are adapted. Error entropy criterion

takes into account the amount of information in the error distributions. Therefore, minimization

of error entropy considers the error distributions rather than error values. Error entropy based

adaptive systems have been applied in designing adaptive filters [215, 247, 248]. However, the

use of the error entropy for the adaptation of kernel classifiers has not been attempted. In this

work we propose to use the error entropy to adapt the width of the Gaussian kernel of the SVM

classifier. A subset of data from the later session is used as adaptation data to estimate the error

entropy based cost function which is minimized by adapting the kernel width. Positive results

were obtained for the proposed method on motor imagery EEG data collected on different days.

5.2 Materials

Two datasets were evaluated using the proposed method. Publicly available BCI Competition

IV dataset 2A [142] and motor imagery dataset collected in-house from 12 healthy subjects.

The BCI Competition IV Dataset 2A is comprised of EEG data collected from 9 subjects that

were recorded during two sessions on separate days for each subject. The data has been collected

on four different motor imagery tasks: left hand (class 1), right hand (class 2), both feet (class
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Figure 5.1: Block Diagram of Proposed Method

3), and tongue (class 4). Each session is comprised of 6 runs separated by short breaks, each run

comprised 48 trials (12 for each class), amounting to a total of 288 trials per session. Only the

two class classification between left hand and right hand motor imagery was considered for this

study. The data from the first session were used as training data for learning CSP spatial filters

and the initial classifier, and the first half of data from the later session was used as adaptation

data. The second half of motor imagery data from the later session was used as the test data. For

more details on the protocol please refer to [142].

The in-house motor imagery data used for the analysis were collected using a Nuamps EEG

acquisition hardware (http://www.neuroscan.com) with unipolar Ag/AgCl electrodes, digitally

sampled at 250 Hz with a resolution of 22 bits for voltage ranges of 130mV. EEG signals from

22 scalp positions, mainly covering the primary motor cortices bilaterally were recorded. The

sensitivity of the amplifier has been set to 100µV.
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A total of 12 healthy subjects were recruited for the study. Ethics approval and informed

consent were obtained. Two subjects chose to perform left hand motor imagery while the re-

maining 10 subjects chose to perform on the right hand. The subjects were instructed, in the

form of visual cues displayed on the computer screen, to perform kinaesthetic motor imagery of

the chosen hand, and rest during the background rest condition.

EEG data were collected without feedback in two sessions from each subject on separate

days. In the first session, two runs of EEG data were collected from a subject while performing

motor imagery of the chosen hand and background rest condition. In the second session, three

runs of EEG data were collected on another day while performing motor imagery of the chosen

hand and background rest condition. Each run lasted approximately 16 minutes that comprised

40 trials of motor imagery and 40 trials of rest condition. The motor imagery data collected

during first session were used as training data for learning CSP spatial filters and the initial

classifier, and first half of motor imagery data from the later session was used as adaptation data.

The second half of motor imagery data from the later session was used as test data.

5.3 Methods

The data from the initial session was used first to generate an initial model for the classifier

after the basic preprocessing steps of bandpass and spectral filtering. Adaptation data from the

subsequent session was used to optimize the kernel width parameter.

Figure (5.1) summarizes the proposed method. The pseudo-code of the proposed method

is shown in Figure (5.2) for further clarification. The initial training data from the first session

and the adaptation data from later session were subjected to pre-processing steps of bandpass

filtering at 8-30Hz. Initial training data were spatially filtered by the Common Spatial Patterns

(CSP) method [138, 210]. Adaptation data on the other hand, used the CSP projection matrix
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Inputs

• Initial Training data Train with correct labels

• Adaptation data Adapt with correct labels

Output

• Classification model.

Algorithm

1. Band-pass filter Initial Training data

2. Spatial filter Initial training data

3. Extract initial features

4. Train initial classification model

5. Band-pass filter Adaptation data

6. Extract features from Adaptation data

7. Feed features to classifier

8. Calculate error entropy

9. Calculate cost function value

10. Adapt the Kernel width of Kernel

11. Repeat steps 7:10 until all adaptation data are used

Figure 5.2: Pseudo-code of the proposed method.

created on the initial data.

The initial classifier model was trained only on the training data from the first session. The

adaptation data was used to iteratively update the classifier kernel based on the error function.

The error function indicates the error margin of the SVM classifier.

The KL divergence based cost function measures the difference in the estimated error and

the actual error. We studied the effect of adaptively training the classifier on the adaptation data

from the second session by optimizing the kernel width of the parameter to minimize the KL

divergence based cost function.
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5.3.1 Error Entropy Criterion

The goal of adaptation using error entropy criterion (EEC) is to remove as much uncertainty

as possible from the error signal [247]. This can be achieved by calculating the entropy of the

error and minimizing it with respect to the free parameters. The error entropy minimization can

be achieved using information theoretic estimators. Principe et al. [215] developed estimators

of information theoretic quantities based on Information Potential (IP), which is the mean of the

probability density function of data and happens to be the integrand of Renyi’s quadratic entropy.

Renyi’s quadratic entropy of the error is defined as H2(e) = −logV(e), where V(e) = E[p(e)] is

the expected error. Hence, Renyi’s quadratic entropy is a monotonic function of the negative

of V(e). The logarithm is dropped as it does not change the location of the stationary point of

the cost function for optimization. The minimization of entropy corresponds to maximization

of V(e). An efficient method to maximize V(e) is to use estimators of information theoretic

quantities. Minimizing the Kullback-Leibler divergence (KL) between the true and estimated

probability distribution functions of error, denoted f (e) and f̂σ(e), as a function of the kernel

width σ [248].

5.3.2 Minimizing Kullback−Leibler Divergence for Kernel Width Adaptation

The estimators of information theoretic quantities like entropy are based on Parzen kernels.

Therefore, a kernel needs to be selected to estimate the pairwise interactions between samples. In

this criterion, kernel width controls the smoothing introduced by a kernel function used for non-

parametric estimation of the probability density function from samples, as in Parzen windows

[213]. The kernel width is considered as a parameter that can be adapted in a way that the

discriminant information or the Kullback-Leibler loss between the estimated density (using the

kernel) and the true density is minimized. In other words, the kernel width is adapted with its own
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cost function in a way that the estimated error distribution resembles the true error distribution

as closely as possible, based on Kullback-Leibler divergence.

Singh et al [248] proposed to minimize the KL divergence between the true and estimated

probability distribution functions of error, denoted f (e) and f̂(e), as a function of the kernel width

σ. The objective is to minimize

DKL
(

f ‖ f̂σ
)

=

∫
f (e) log

(
f (e)

( f̂σ (e)

)
de, (5.1)

where the subscript σ denotes the dependency of estimated probability distribution function f̂σ

on the kernel width. The equation (5.1) can be re-written as,

DKL( f ‖ f̂σ)

=

∫
f (e)log( f (e))de −

∫
log( f̂σ(e)) f (e)de

=

∫
f (e)log( f (e))de − E[log( f̂σ(e))], (5.2)

where E [·] is the expectation operator over the true distribution of errors e. The first term in

equation 5.2 is independent of the kernel width. Therefore, minimizing DKL( f ‖ f̂σ) with re-

spect to σ is equivalent to maximizing the second term E[log( f̂σ(x))]. Which can be interpreted

as the cross-entropy of the estimated probability distribution function, and the true probability

distribution function. Using the sample estimator for the expectation operator for a Gaussian

Kernel the objective function becomes

ĴKL(σ) =
1
N

N∑
i=1

 1
(N − 1)

N∑
j=1, j,i

(
Gσ(ei − e j)

) , (5.3)

where N is the window of samples used to estimate density of the error, for a Gaussian kernel

with width σ. Taking the derivative of objective function in equation 5.3 with respect to kernel
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width σ results in,

(
∂JKL(σ)
∂σ

)

= E

 (∂ f̂σ(e)
∂σ )

f̂σ(e)


= E


∑n−1

i=n−L exp
(
−

(e−ei)2

2σ2

) (
(e−ei)2

σ3− 1
σ

)
∑n−1

i=n−L exp
(
−

(e−ei)2

2σ2

)
 . (5.4)

Using the equation (5.4) the update rule for kernel size can be formulated as,

σn+1

= σn +
γ (∂JKL(σ))

∂σ

= σn + γE


∑n−1

i=n−L exp
(
−

(e−ei)2

2σ2

) (
(e−ei)2

σ3− 1
σ

)
∑n−1

i=n−L exp
(
−

(e−ei)2

2σ2

)
 .

By evaluating the operand at the current sample of the error while dropping the expectation

operator results in an approximation of the gradient which can be used as an efficient update rule,

σn+1 = σn + γE


∑n−1

i=n−L exp
(
−

(en−ei)2

2[σn]2

) (
(en−ei)2

[σn]3 −
1
σn

)
∑n−1

i=n−L exp
(
−

(en−ei)2

(2[σn]2)

)
 . (5.5)

The update rule in equation (5.5) is iteratively applied until all adaptation samples are con-

sidered. The updated kernel is applied for classification of test samples.

5.4 Results & Discussions

The results obtained for the data collected from 12 healthy subjects are shown in Table (5.1).

The twelve subjects are denoted as A1 to A12. The mean accuracies and standard deviations

calculated for all the subjects are denoted as mean and S.D. in the table (5.1). The baseline

classification used an SVM classifier with a static Kernel. Half of the training data and the

adaptation data for was used for training the classifier. In the proposed method, half of the data
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Table 5.1: Comparative Classification Accuracy on the Data Collected from 12 Healthy Subjects.

P-value denotes the result of pairwise t-test against the baseline.

Subject Baseline Proposed Method Increment

A1 60.5 68.3 7.8

A2 58.3 67.5 9.1

A3 51.1 55.9 4.7

A4 63.9 79.4 15.5

A5 64.2 74.3 10.1

A6 83.3 88.7 5.4

A7 79.4 79.4 4.5

A8 93.6 93.6 0.0

A9 65.5 79.6 14.1

A10 54.7 61.9 7.1

A11 50.5 65.9 15.3

A12 79.7 85.0 5.3

Statistics

Mean 67.07 75.0

S.D. 13.82 11.33

P 0.00029

collected during the first session and the adaptation data were used to train the classifiers. The

second half of motor imagery data from the later session were used as test data.

The observed mean baseline accuracy was 67%. The baseline result was compared against

the results obtained using the proposed Kernel width adaptation method. Pairwise t-test was

carried out between the baseline results and the proposed method. The mean accuracies from the

proposed Kernel width adaptation method were found to be significantly higher than the baseline

at a confidence level of 0.05.

The increments made by the proposed adaptive method over the baseline are shown in the

fourth column of Table (5.1). Only one subject did not show any improvement in accuracy. All

the other subjects showed substantial increments in accuracy.

The results obtained for the BCI Competition IV data set 2A are shown in Table (5.2). The
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mean accuracies and standard deviations calculated for all the subjects are denoted as mean and

S.D. in the table (5.2). The baseline classification used an SVM classifier with a static Kernel and

used half of the training data and the adaptation data for training the classifier. In the proposed

method half of the data from the first session and the adaptation data were used to train the

classifiers. The second half of data from the later session was used as test data. The results

were compared with the results obtained for the AWEC method proposed in chapter 4 (see table

(4.3) for details). The AWEC method with 3 clusters also used half of the training data from

session 1 and the adaptation data for training a classifier ensemble. The second half of data from

the second session was used as the test data. The proposed method was compared against the

baseline as well as against the AWEC method in table (5.2).

The observed mean baseline accuracy was 78.51%. The baseline result was compared against

the results obtained using the proposed Kernel width adaptation method and that from the AWEC

method with 3 clusters. Pairwise t-tests were carried out between the baseline results and the

proposed methods. The mean accuracies from the proposed Kernel width adaptation method

were found to be significantly higher than the baseline at a confidence level of 0.05. However,

the AWEC method with 3 clusters produced much higher overall mean accuracy of 84.14%,

compared to the 82.73% resulting from the proposed Kernel width adaptation method. AWEC

based ensemble classifier showed increments over the baseline in all nine subjects, whereas the

proposed Kernel adaptation method showed increments only in 6 subjects.

5.5 Conclusion

In this study, a novel algorithm to adapt the Kernel width parameter of SVM classifier to

improve classification of non-stationary EEG data was proposed. In the proposed algorithm,

the width parameter of the Kernel of the classifier was iteratively adapted based on Information
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Table 5.2: Comparative Classification Accuracy on the BCI Competition Data Set 2A

P-value denotes the result of pairwise t-test against the baseline.

Subject Baseline AWEC with 3 clusters Proposed Method Increment over Baseline

1 90.06 97.42 92.87 2.81

2 60.24 68.51 69.35 9.11

3 96.91 98.47 96.91 0.0

4 64.99 70.34 74.28 9.29

5 57.09 78.47 64.47 7.38

6 64.87 69.17 72.62 7.75

7 78.35 80.17 82.04 3.69

8 96.34 98.11 96.34 0.0

9 95.71 96.59 95.71 0.0

Statistics

Mean 78.51 84.14 82.73

S.D. 16.57 13.41 12.96

P 0.031 0.011

theoretic cost function to minimize the KL divergence between the estimated and the actual error

distributions.

The proposed method was applied on publicly available BCI Competition dataset 2A and

data collected without feedback from 12 healthy subjects in two sessions on separate days. The

results using the proposed method yielded statistically significant improvements in classification

accuracies on non-stationary EEG data across sessions compared to the baseline without kernel

adaptation.

Future work based on this approach would include adaptation of Kernel mean and other

parameters to optimize the adaptation.



Chapter 6

Learning from Feedback Training Data

in Self-paced BCI

6.1 Introduction

Inherent changes in brain signals pose a critical challenge to EEG-based brain-computer

interface (BCI) research [1, 56, 218], and has recently attracted a surge of attention in the field

[11, 15, 125, 126, 219–223]. There has been a lot of interest in motor imagery (MI) based BCI

[56,136,224] which are driven by the imagination or mental rehearsal of a motor action without

any real motor output.

The underlying non-stationarity of EEG signals cause the distribution of electrical fields

on the scalp to large variations over time. This non-stationarity, as outlined in chapter 2, can

be caused by shifts in background brain activities, varying mental states, and individual users

changing their strategy for BCI control [220]. In feedback BCI applications this is further com-

plicated by activation of additional brain functions. Complex EEG phenomena such as error

potentials [225] and rhythmic power shifts over the scalp [11] have been observed in some feed-

back BCI studies.

The feature extraction and prediction models (e.g. a classifier) built on data from past BCI

81
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sessions may become ineffective as a result of non-stationarity. Therefore, there is a strong

need for new mathematical models capable of accurately predicting a user’s intentions from

his/her brain signals in session to session transfer. Adaptive BCI that can learn from new data, in

supervised, semi-supervised or unsupervised manner is a viable approach to solve this problem.

Most research on adaptive BCI have been focused on adapting the classifiers. Three super-

vised adaptation methods using labelled data has been investigated in [11]. These included a

simple bias adjustment technique, a linear discriminant analysis (LDA) retraining technique, and

a technique which retrains both LDA and common spatial pattern (CSP)-based feature extrac-

tion [210]. It has been reported that LDA-retraining approach has yielded the lowest error rate. A

covariance shift algorithm has been introduced for unsupervised adaptation of a linear classifier

in [12]. Li et al. [226], have combined a method for adaptation with a bagging approach which

has resulted in improved stability. Different adaptation methods have been extensively studied

using multiple BCI data sets in [15]. In these studies, bias adjustment methods have been more

promising than the generic covariance shift adaptation methods.

Online adaptation of Quadratic Discriminative Analysis (QDA) classifier after each trial in a

cue-based BCI setting has been presented in [125]. It has been demonstrated that the distribution

of EEG features significantly shift from one session to another. Further studies using adaptive

autoregressive features, band powers, and the combination of the two have been reported in

[126]. In [221], a classifier with band power features as input has been updated continuously,

where only non-feedback (i.e. calibration) sessions have been used for offline study.

However, little work has been carried out on adaptation of feature extraction models for

exploring feedback training data including idle state. There is evidence that the non-stationarity

may not be solved by adapting classifiers alone as indicated by experimental results in [125]

and [15]. Significant changes in brain signals, from calibration to feedback training sessions
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can make the feature space derived from calibration data ineffective, where little discriminative

information can be extracted.

The primary purpose of this work was to validate the feasibility and the importance of adapt-

ing feature extraction models, especially for self-paced MI BCI that allows continuous feedback

control [61,227–230,234]. Adapting feature extraction models has been found to be challenging

according to the unsatisfactory performance of retrained CSP models in [11].

A new self-paced BCI with idle class was developed and the performance of calibration and

feedback training was tested on three able-bodied, naı̈ve subjects. The empirical results demon-

strated the limitations of applying the feature space derived from calibration data to feedback

sessions. Hence, a novel supervised method that learns from feedback sessions to construct a

more appropriate feature space was proposed. Particularly, the method attempts to account for

the underlying complex relationships between feedback signal, target signal and EEG, using a

mutual information formulation. The learning objective was formulated as maximizing kernel-

based mutual information estimation with respect to the spatial-spectral filters. A gradient-based

optimization algorithm was derived to solve the learning task.

An experimental study was conducted using offline simulations. The results indicate that the

proposed method is capable of constructing effective feature spaces that capture more discrimi-

native information in the feedback sessions. Consequently, the classification accuracies can also

be significantly increased by using the new features.

The rest of the chapter is organized as follows. Section 6.2 describes the data collection with

a self-paced BCI, and the results of online training. Section 6.3 elaborates the new method for

learning effective spatial and spectral features from feedback session data. Section 6.4 presents

an extensive analysis, followed by discussions in Section 6.5. Section 6.6 finally concludes the

chapter.
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Figure 6.1: The Graphical User Interface for Calibration and Feed-back

GUI on left panel is for calibration and right panel for self-paced feedback training. The grey and blue color block

scrolls smoothly upwards in the background, and the red circle in the center serves as the eye-fixation point. During

feedback training, the horizontal position of the red circle serves as the feedback signal that updates every 40

milliseconds, while its trajectory over the background blocks is depicted by a red curve.

6.2 Materials

6.2.1 Feedback training data collection

Three BCI-naı̈ve adults were recruited as subjects for the data collection. Informed consent

was obtained according to criteria approved by the Institutional Review Board of the National

University of Singapore. The subjects were seated comfortably in an armed chair, with their

hands rested on the chair arms or on the table in front of them. A 20-inch widescreen LCD

monitor was placed on the table at a distance of approximately 1 meter from the subject. Subjects

were asked to remain comfortably but motionless to minimize motion artifacts.

EEG was recorded using Neuroscan NuAmps 40-channel data acquisition system, with elec-

trodes placed according to an extended international 10-20 system and a sampling frequency of

500Hz. A total of 30 channels were used, including F7, F3, Fz, F4, F8, FT7, FC3, FC4, FT8,

T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, O1, Oz, O2, PO1, PO2. The

reference electrode was attached to the right ear. A high-pass filter at 0.05Hz was applied in the
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Neuroscan’s data acquisition setting.

The subjects faced a graphic user interface displayed on the LCD monitor as illustrated in

Figure (6.1), which guided them through the following sessions.

• Calibration session. The calibration session consisted of 40 MI tasks; each was 4-seconds

long and followed by a 6-second idle state. The MI tasks were evenly and pseudo-

randomly distributed into left and right hand MI tasks. A graphical user interface, as

illustrated in the left panel of figure (6.1), guided the subjects through the session. The

red circle in the middle served as the eye fixation point. In the background, a sequence of

rectangular shapes were scrolling upwards, representing left/right hand MI tasks by blue

color boxes on the left/right side, and idle state tasks by grey bars. When the red circle

was in a grey-color bar, the subject should relax while minimizing physical movements;

when a blue-color box was on the left/right side of the red circle the subject was supposed

to imagine left/right hand movement.

The filter-bank CSP (FBCSP) [104, 231, 232] method was employed to build subject-

specific MI detection models. The method learnt two separate models from the calibration

data. One model was for differentiating between left-hand MI and idle state (hereafter

referred to as L-model), and the other model for differentiating between right-hand MI

versus idle state (hereafter R-model). For the L-model (or the R-model), each 2.5-seconds

long shift window of EEG with a step of 0.5 seconds was mapped to the label of the data:

0 if the time window ends in an idle state time period, 1 (or -1) if in a left-hand (or right

hand) MI period. The mapping parameters were obtained using the linear least-mean-

square method.

Since a user’s mental state could be uncertain and varying during the transition period

from one state to another, a grey region was defined as [-1 1] seconds with respect to the
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boundary of each idle/MI task. All EEG segments with centers in this grey region were

excluded from FBCSP learning.

• Feedback training sessions. After calibration, each subject participated in 4 sessions of

feedback training, i.e. 2 sessions of left-hand MI BCI training using the L-model and 2

sessions of right-hand MI training using the R-model. This arrangement allowed a subject

to concentrate on one particular MI task in each session. A training session consisted

of 20 MI tasks, each lasting 5-seconds, followed by a 6-seconds idle state. A graphical

user interface, as illustrated on the right panel of Figure (6.1) guided the user through the

session. The indications of the symbols were similar to that for calibration, except that the

red circle was moving horizontally as a feedback signal. The horizontal position of the red

circle was determined by the output of FBCSP output updated every 40-milliseconds.

During the feedback training sessions, the subjects attempted to move the red circle to the

left/right side as much as possible during left-hand/right-hand MI tasks. The subjects were

requested not to voluntarily control the feedback signal by any means during periods of

idle state as it would spoil EEG data corresponding to the idle state.

Short breaks were taken in-between the feedback training sessions. The first feedback train-

ing session started within 5 minutes after finishing the calibration session. The intervals between

consecutive feedback sessions were limited to 1 to 5 minutes. Special try-out sessions were car-

ried out right after the calibration, where each subject tried online feedback for a short while in

order to familiarize with the feedback signals and also to prepare for the actual training sessions.

These try-out sessions were not included in the analysis.
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Figure 6.2: Online performance of subjects in terms of mean square error between feedback

signal and target.

There is a strong bias shift (from calibration to feedback) in right motor imagery (MI) sessions in Subject 3, which

explains his particularly large error.

6.2.2 Data screening

The EEG data recorded during feedback training sessions were inspected visually using

MATLAB. Any EEG segments identified to contain EOG and EMG contaminations [233] were

rejected and excluded from the analysis. The grey regions were defined in a similar manner as

in the calibration sessions described above. Therefore, all EEG segments that were within [-1 1]

seconds window with respect to any MI task boundary were excluded from the analysis.

6.2.3 Online performance and initial data analysis

Online performance was assessed using the mean-square-error (MSE) measure between the

feedback signal and the target signal. Figure (6.2) shows a bar graph of MSE in each feedback

training session. The errors were apparently not significantly different between the first training

session and the second session in most cases. This actually indicates that online feedback training

in BCI can be a difficult task, since it was expected that the subjects would have gained better

control of the BCI over training sessions. This further substantiates the necessity of adapting
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models during session to session transfers.

The distribution of EEG feature vector samples produced by FBCSP are shown in Figure

(6.3), to further understand the feedback training data. Evenly re-sampled feature vector samples

were used for clarity, because the original samples amount to thousands. The MI class samples

and the idle class samples were easily separable in the calibration data as anticipated. However,

the discriminative information had disappeared in the same feature space in most of feedback

training sessions. This indicates that, either there was no effective separation between the two

classes, or the separation hyper-plane was severely altered (similar to some cases in [15, 125]).

Therefore, it was decided to first investigate the issue of ineffective feature space before

trying to adapt a classifier/regressor. A novel method to learn an effective feature space from

feedback data was proposed to address this issue. It should also be noted that compared to

the calibration data, online feedback training data poses more challenges to effective feature

extraction, because the feedback can involve more brain functions and produce more complex

EEG phenomena [11, 225].

6.3 The New Learning Method

6.3.1 Spatio-Spectral Features

The primary phenomenon of MI EEG is event-related desynchronization(ERD) or event-

related synchronization(ERS) [56, 136], where the rhythmic activity over the sensorimotor cor-

tex, generally in the µ (8-14 Hz) and β (14-30 Hz) rhythms either attenuates or increases, re-

spectively . The ERD/ERS can be induced by both imagined movements in healthy people or

intended movements in paralyzed patients [14, 194, 234].

Feature extraction of ERD/ERS is a challenging task due to its poor signal to noise ratio.

Therefore, spatial filtering in conjunction with frequency selection (via processing in either tem-
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Figure 6.3: Feature distributions during motor imagery (MI) calibration and feedback training

sessions

Left MI in the upper three rows and right MI in the lower three rows. The horizontal axis and the vertical axis are the

first and the second FBCSP features. Red circles represent motor imagery samples, while black crosses denote idle

state samples.
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poral domain or spectral domain) in multi-channel EEG is essential for increasing the signal to

noise ratio [7, 123, 124, 210, 232].

The spatial-spectral filtering in the spectral domain, for a nc-channel EEG segment with a

sampling rate of Fs-Hz can be described by an nc × n f matrix

X =


x11 · · · x1n f

...
. . .

...

xnc1 · · · xncn f

 , (6.1)

where xi j denotes the discrete Fourier transform of the i-th channel at frequency ω j =
j−1
2n f

Fs.

A joint spatial-spectral filter on X can be essentially represented by a spatial filtering vector

w ∈ Rnc×1 and a spectral filter vector f ∈ Rn f×1. The feature y0 is the energy of the EEG segment

after filtering:

y0 = diag
{
w̃T X

(
wT X

)}
f, (6.2)

where the wave line ˜ on the right side of the equation denotes the conjugate of a complex value,

and the diag() function stands for the diagonal vector of a matrix.

A general case in which multiple spatial filters are associated with one particular spectral

filter was considered in this study. Therefore, the feature extraction model was determined by

the matrix f and a vector W, the latter being the collection of spatial filters in columns:

W = [w1 . . . wnw] (6.3)

If the spectral filters in F are given (see the last paragraph of Section. 6.3.3 for details),

the following shorthand notation for the auto-correlation matrix of EEG processed by the k-th

spectral filter

X̂k =

n f∑
i

fiXX̃, (6.4)

can be used. The logarithmic feature vector can be represented as,

y =
[
log(w1X̂1wT

1 ), . . . , log(wnwX̂nwwT
nw

)
]T
. (6.5)
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6.3.2 Formulation of the objective function for learning

A mutual information based objective function for learning W and F was formulated to

capture the underlying complex structure of spatio-spectral data in ERD/ERS. Mutual informa-

tion [235], which stemmed from information theory, basically measures the reduction of uncer-

tainty about class labels due to the knowledge of the features [236–241].

A mutual information measure Î between the class labels and the EEG features as well as the

feedback signal was considered for feedback training data. The mutual information is measured

between the class label (i.e. the variable to be predicted) and the observations including both

the feedback signal and the EEG feature vector. Let the random variables of the label, the EEG

feature vector, and the feedback signal be C, Y and Z, respectively. The mutual information

measure can be expressed as

Î({Y,Z},C) = Ĥ(Y,Z) −
∑

c

P(c)Ĥ(Y,Z|c), (6.6)

where Ĥ denotes the entropy measure of a random variable.

A non-parametric approach for mutual information estimation was employed as in [239,241],

since it does not rely on the underlying distributions. Suppose the feedback training data was

comprised of l samples of EEG to be represented by the feature vectors yis and the concurrent

feedback signal zis (i ∈ [1, . . . , l]). The non-parametric approach computes each entropy in

Eq. 6.6 separately, e.g. Ĥ(Y,Z) by

Ĥ(Y,Z) = −
1
l

l∑
i=1

log

1
l

l∑
j=1

ϕy(yi, y j)ϕz(zi, z j)

 , (6.7)

where ϕy and ϕz are kernel functions and usually take a Gaussian form. For example,

ϕ(y, yi) = αexp
(
−

1
2

(y − yi)TΨ−1(y − yi)
)
. (6.8)

The coefficient α is discarded hereafter because it is cancelled out when Eq. 6.8 is substituted

in Eq. 6.7 and then substituted in Eq. 6.6. It should also be noted that the kernel size matrix Ψ is
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diagonal, and each diagonal element is determined by

ψk,k = ζ
1

l − 1

l∑
i=1

(yik − ȳk)2 . (6.9)

where ȳk is the empirical mean of yk, and we set the coefficient ζ =
(

4
3l

)0.1
according to the

normal optimal smoothing strategy [242].

The conditional entropy Ĥ(Y|c) in Eq. 6.6 can also be estimated similar to Eq. 6.7, but using

samples from class-c only. Using the maximum mutual information principle [236], the learning

task can be formulated as searching for the optimum spatial and spectral filters W and F that

satisfies

{W,F}opt = argmax
{W,F}

Î({Y,Z},C). (6.10)

The above formulation describes the inter-dependency between the target signal, the feed-

back signal and the EEG signal as a function over the feature extraction parameters in spatial-

spectral filters. It basically aims to maximize the information about the target signal to be pre-

dicted, contained in the extracted features in conjunction with feedback.

6.3.3 Gradient-based solution to the learning problem

A numerical solution to Eq. 6.10 was proposed by devising a gradient-based optimization

algorithm. A spatial filter vector wk was considered, where the gradient of the objective function

Î with respect to wk is

∇wk Î({Y,Z},C) = ∇wk Ĥ(Y,Z) −
∑
c∈C

P(c)∇wk Ĥ(Y,Z|c). (6.11)

Using Eq. 6.7, this can be simplified to

∇wk Ĥ(Y,Z) = −
1
l

l∑
i=1

βi
1
l

l∑
j=1

ϕz(zi, z j)
∂ϕy(yi, y j)

∂wk
, (6.12)

where

βi =

1
l

l∑
j=1

ϕz(zi, z j)ϕy(yi, y j)


−1

. (6.13)
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Using Eq. 6.8,

∂ϕy(yi, y j)
∂wk

= −
1
2
ϕy(yi, y j)

∂(yi − y j)T Ψ−1(yi − y j)
∂wk

. (6.14)

Let the quadratic function (yi − y j)T Ψ−1(yi − y j) be denoted by ϑi j, which can be further

decomposed to,

ϑi j =

do∑
k1=1

do∑
k2=1

ψ−1
k1k2

(yik1 − y jk1)(yik2 − y jk2). (6.15)

Hence, the gradient of ϑi j is

∂ϑi j

∂wk
=

do∑
k1=1

do∑
k2=1

∂ψ−1
k1k2

∂wk
(yik1 − y jk1)(yik2 − y jk2)

+ψ−1
k1k2

∂(yik1 − y jk1)(yik2 − y jk2)
∂wk

]
. (6.16)

Consider that (yik1 − y jk2)2 is a function of wk if and only if k1 = k and/or k2 = k, and ψ−1
k1k2

is

a function of wk if and only if k1 = k2 = k. Furthermore, ψ−1
k1k2

= 0 only if k1 , k or k2 , k. The

expression of the gradient above can be written as

∂ϑi j

∂wk
=
∂ψ−1

kk

∂wk
(yik − y jk)2 + ψ−1

kk
∂(yik − y jk)2

∂wk
(6.17)

From Eq. 6.9, we have

∂ψ−1
k,k

∂wk
= −

2ζ
ψ2

k,k(l − 1)

l∑
i′=1

(yi′k − ȳk)
∂ (yi′k − ȳk)

∂wk
(6.18)

where ȳk denotes the mean value of yi′ks, and its partial derivative w.r.t. wk can be expressed by

∂ȳk

∂wk
=

1
l

l∑
i′′

∂yi′′k

∂wk
(6.19)

It should also be noted that, X̂ki (the auto-correlation matrix for the i-th EEG sample pro-

cessed by the k-th spectral filter, see Eq. 6.4)) is conjugate symmetric, and

∂yik

∂wk
=

(X̂ki + X̂T
ki)wk

yik
=

2Re(X̂ki)wk

yik
(6.20)
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where Re() denotes the real part of a complex matrix. The derivatives of yi′k and y jk can be

computed the same way as above.

The above steps can be summarized as follows.

∇wk Ĥ(Y) = Awk, (6.21)

where

A =
2
l2

l∑
i=1

βi

l∑
j=1

ϕz(zi, z j)ϕy(yi, y j)

−ζ(yik − y jk)2

ψ2
k,k(l − 1)

·

l∑
i′=1

(yi′k − ȳk)

Re(X̂ki′)
yi′k

−
1
l

l∑
i′′

Re(X̂ki′′)
yi′′k

 +

ψ−1
kk (yik − y jk)

Re(X̂ki)
yik

−
Re(X̂k j)

y jk

 . (6.22)

For each conditional entropy Ĥ(Y|c), there is an equation similar to Eq. 6.21. The gradient

of the objective function I with respect to the spatial filter wk then becomes

∇wk Î({Y,Z},C) =

A −∑
c

P(c)Ac

 wk. (6.23)

However, the above equation does not suggest that the gradient is a linear function over wk,

since the multiplier term
(
A −

∑
c P(c)Ac

)
itself is a rather complicated function over {yi} which

in turn is a function of W.

The iterative optimization algorithm updates a spatial filter with the gradient information by

w(iter+1)
k = w(iter)

k + λ∇wk Î({Y(iter),Z},C), (6.24)

where λ is the step size. A line search procedure was used to determine the step size in each of

the iteration. It should be noted that all spatial filter vectors in W are updated together.

The implemented line search procedure tested a number of (tentatively 16) λ values in the

range of [-0.05 0.10]×ξ, and decreased ξ in a logarithmic scale until a local maximum of I was



Chapter 6. Learning from Feedback Training Data in Self-paced BCI 95

found except for at λ = 0. The λ for the local maximum was then used to update all the spatial

filters wks in Eq. 6.24, and then the optimization procedure proceeded to the next iteration.

Mutual information gain was used as the termination criterion. When mutual information

gain was less than 1e-5 the iterations were terminated.

The initial values for wk can be learnt by the CSP method [210] that maximizes the Rayleigh

coefficient

wk
∑l1

i=1 X̂kiwk

wk
∑l0

j=1 X̂k jwk
, (6.25)

where X̂ki denotes the i-th sample of motor imagery EEG while X̂k j the j-th sample of idle state

EEG.

A set of candidate spectral filters consisting of band-pass filters that cover the motor imagery

EEG spectrum was created for the selection of spectral filters for F similar to the filter banks

configuration used in [231]. In the experimental study introduced in the next section, the filter

banks configuration from [231] was implemented with 8 band-pass filters with central frequency

ranging from 4 to 32 Hz. After band-pass filtering in spectral domain, CSP was trained according

to Eq. 6.25 to extract discriminative energy features. Next, the optimum nw features were selected

from all the features using the robust mutual informatin based feature selection method proposed

in [231]. The spectral filters associated with the optimum features then comprised the matrix F.

6.4 Results

An offline simulation of the self-paced BCI using the online feedback training data was

conducted. The simulation was run in MATLAB, and the proposed method was implemented in

hybrid MATLAB and C code so as to improve computation and programming efficiency. The

EEG features together with the feedback signal z served as the inputs to a regressor, in order

to predict the target value of 0 (idle state), -1 (right-hand MI) or 1 (left-hand MI). A linear
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Figure 6.4: Optimization on the mutual information surface

An example with a spatial filter vector for three-channel EEG. See Section 6.4.1 for details.

support vector regression using the LibSVM toolbox [243] was employed. Other regression

methods such as Gaussian-kernel non-linear support vector regression, linear mean-square-error

regression were also attempted. However, no significant difference was found in the results.

Therefore, only the linear support vector regression results were considered for analysis.

Similar to the online feedback training described in Section 6.2, the offline simulation tested

left-hand MI BCI and right-hand MI BCI separately. For example, for the left-hand MI BCI, the

first left-hand MI training session was used to learn the optimum spatial-spectral filtering and

then the linear support vector regressor was trained. Next, the feature extraction and regression

was tested on the second left-hand MI training session. The simulation used a 2-second long

shift window with a step of 0.4 seconds.

6.4.1 Convergence of the Optimization Algorithm

The convergence of the optimization algorithm was analysed with a simple scenario which

included only three EEG channels (CP3,CPz,CP4) and one spatial filter. Since the mutual infor-

mation measure is always invariant to non-zero norm of the spatial filter, the norm of the spatial

filter was set to 1 without loss of generality. Therefore, the spatial filter can be represented by two
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variables in the spherical coordinate system: θ = acos(w3) and φ = atan( w2
w1

). This should not be

confused with the Euclidean space where the actual optimization takes place. The two-variable

spherical coordinate representation was used only for visualization purposes.

Figure (6.4) shows a typical example from the left-hand MI learning of Subject 2. The spatial

filter solution migrated in 4 steps from the initial point (generated by CSP) to approximately a

local maximum where the iteration converged (mutual information gain <1e-5).

The proposed algorithm was initialized using the method described in the previous section,

and then in most cases the proposed optimization algorithm converged within 7 iterations. Ran-

dom initialization of spatial filters was also considered and the iteration procedure generally

became longer but converged within 50 iterations in all 100 test runs.

6.4.2 Feature Distributions

The first feedback training session was used to learn 2 spatial-spectral filters by the proposed

method, and EEG features from the second feedback session were extracted. Figure (6.5) plots

the distribution of the features (as the original samples amount to thousands, evenly re-sampled

feature vector samples were used for clarity).

The new features appear to be more separable between the MI classes and the idle states

when comparing with the features produced by calibration models in Figure (6.3) (especially in

the bottom row for the same training session). The separability in terms of classification accuracy

was assessed by a linear support vector machine (using the same LibSVM toolbox from [243]).

The comparison of results on the original features and the new features are shown in Table (6.1).

The table (6.1) clearly indicates that the proposed method, which adapted both the classifier

and the feature extraction model, produced significantly better performance in terms of class

separability, than when only the classifier was adapted. This finding substantiates the argument

that the non-stationarity in EEG may not be solved only by adapting classifiers. Rather, it is
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Figure 6.5: Feature distributions by the proposed learning method for the left/right motor im-

agery (MI) feedback training session 2.

The horizontal axis and the vertical axis are respectively the first and the second features learnt by the learning

method. The graphs in the upper row are generated from left MI training data, while the lower row are from right MI

training data. Red circles represent motor imagery samples, while black crosses denote idle state samples.

advisable to adapt both the feature extraction model and the classifier so as to accurately capture

the variations of EEG over time.

6.4.3 Accuracy of Feedback Control Prediction

It was investigated whether the new features can generate better prediction of user state.

Since the classification hyperplane may have shifted from the first feedback session to the sec-

ond, the adaptation of the regressor was also tested. A supervised adaptation of the regressor

was carried out using a portion of data from second feedback session (adaptation data). The

regressor was re-trained using both the adaptation data and data from first feedback session, and

the models were tested on the remainder of the second feedback session (excluding adaptation

data). Different sizes for the adaptation data in terms of percentage of the whole session, ranging

from 0 (i.e. no adaptation) to 0.45 was investigated.

Filter bank CSP (FBCSP) was also evaluated using the same method for comparison. The
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Features Sub 1 Sub 2 Sub 3

Left MI
Original 73.7% 79.0% 66.9%

This Method 85.0% 84.8% 81.0%

Right MI
Original 67.9% 59.7% 78.1%

This Method 80.0% 69.6% 84.0%

Table 6.1: Class separability: new feature space (“This method”) versus original feature space

(“Original”).

Class separability is measured as the classification accuracy by a linear support vector machine

that is adapted to the data (feedback training session 2). Note “Original” uses adaptation of

classifier only, while “This method” adapts both the classifier and the feature extraction model.

The higher accuracy rates between the two feature spaces are shown in bold style.

comparative results are illustrated in figure (6.6). Apparently, both FBCSP and the proposed

method can learn a more accurate predictor from the first feedback session than the original BCI

that used only the calibration data. Furthermore, the prediction error was also effectively reduced

by the supervised adaptation. But, this improvement is not as significant as the improvement

observed from the original BCI to the proposed method. Furthermore, the proposed method also

consistently outperformed FBCSP, significantly in most cases.

The impact of the new method on the feedback signal curves was also examined. Figure

(6.7) illustrates a graph comparing the new feedback signal to the original feedback signal, for

Subject 2. The new feedback signal curve followed the target curve much more accurately than

the original feedback signal.

It was also investigated whether the proposed method works with a reduced set of channels.

Particularly, 15, 9 and 6 channels were tested for the proposed method and FBCSP, using the

same method described above (see Figure 6.6), and performed t-test to check whether the pro-
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Figure 6.6: Comparison of prediction error in terms of mean-square-error (MSE) by different

methods.

The horizontal axis denotes the percentage of the second feedback session being used for re-training the support

vector regression machine that maps EEG features to the target signal. The curves plot the average of MSE over the

three subjects, while the vertical line centered at the each point represents the standard deviation by its length.
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Figure 6.7: Comparison between target, original feedback signal and the new prediction by the

proposed method.

An example from Subject-2’s left motor imagery training session. The timing is in alternation between

approximately 5-second motor imagery (target=1) and 6-second idle state (target=0) except the first idle state period

which is slightly longer.
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Figure 6.8: Comparison of prediction error in mean-square-error (MSE) by different methods

using 9 EEG channels only.

#Ch Data
p-value

Channel Names
This vs FBCSP This vs Original

All
Left MI <0.01 <0.01

All 30 Channels (See Section 6.2).
Right MI <0.04 <0.01

15
Left MI <0.01 <0.01 F3,F4,FC3,FCz,FC4,T3,Cz,

Right MI 0.09 <0.01 C4,T4,CP3,CPz,CP4,P3,P4

9
Left MI <0.01 <0.01 FC3,FCz,FC4,C3,Cz,C4,CP3,

Right MI 0.86 <0.01 CPz,CP4

6
Left MI 0.48 <0.01

FC3,FC4,C3,C4,CP3,CP4
Right MI 0.93 <0.01

Table 6.2: Statistical paired t-test comparing the proposed method with FBCSP and the original

feedback training results, using different number of channels.

Significant results with p-value <0.05 are shown in bold.

posed method produced lower MSE with statistical significance compared to FBCSP and the

original feedback training result.

The results indicate that the proposed method significantly improved the performance in

terms of MSE in all the channel sets that were tested. The proposed method yielded significantly

lower MSE than FBCSP also with as few as 9 channels. In the case of 6 channels, the pro-

posed method and FBCSP produced comparable results, while both significantly outperformed

the original model constructed from calibration only.
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6.5 Discussions

The figure (6.6) gives clear evidence that the proposed method of using the new spatial-

spectral learning algorithm can significantly increase the prediction accuracy. The mean MSE

for left (or right) MI feedback training was effectively reduced from approximately 0.3(or 0.5) to

a slightly lesser value of 0.2 (or 0.25). The improved accuracy can also be seen in the prediction

curves in the example case shown in Figure (6.7), which actually showcases a reduction of MSE

from 0.24 to 0.13.

The increased accuracy can be largely attributed to the improved feature space shown in

figure (6.5) in contrast to the original feature spaces in figure (6.3). The original feature space

that was used in feedback training was built using the calibration data. The changes of feature

distributions in the original feature space have highlighted the effect of session-to-session trans-

fer, which is generally consistent with prior studies on adaptive BCI. Thus, during the feedback

sessions, the motor imagery EEG and idle-state EEG was predominantly non-separable. Even

if they were separable it was subjected to distribution shift. On the other hand, the new fea-

ture space was learnt from the feedback training data comprised of three sources of information,

namely, EEG, the target signal and the feedback signal. Therefore, it has been able to capture

essential information for user state prediction during online feedback training.

The new model uses a non-parametric formulation for learning, which aims to account for ar-

bitrary dependencies among EEG, target and feedback signals. It was shown in section 6.4.1 that

the proposed optimization algorithm, derived through the new formulation has good convergence

properties. Figure (6.4) showed that the objective function surface for the 3-channel EEG data

is smooth, which is a favourable condition for a greedy algorithm. However, the mutual infor-

mation surface can become far more complicated, especially for EEG data with a large number

of channels. Therefore, future research may investigate more advanced optimization techniques.
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However, such techniques would usually incur much heavier computational costs.

This work focused on the development and validation of a new learning method for adaptive

BCI, it would be interesting to investigate its performance during online training. Generally, a

large number of subjects would be required in order to draw statistically significant comparisons

between adaptive and non-adaptive BCI systems.

It would also be interesting to look into the formulation of objective formulation in Sec-

tion 6.3.2. As stated earlier, the goal is to maximize the information about the target signal to be

predicted, contained in the EEG features in conjunction with the feedback. Therefore, it is ad-

visable to include both the new EEG features and the prediction outputs of the current model as

inputs to the classifier or regression machine in the new model. Importantly, the feedback serves

two purposes: not only does it serve as a visual “stimulus” to the subject, but it also represents

the current prediction model that contains essential information extracted from earlier calibra-

tion/feedback sessions. The first rationale is that, feedback and its relative position to the target

signal may have an effect on brain activations to complicate motor imagery EEG. The second

function gives rise to multiple implications as explained below. First, the formulation considers

only the output of the current BCI model but not the internal mechanism of the model. Thus,

it can work with any BCI model and adapt them during new feedback training sessions. Sec-

ondly, if a user with a prediction model can control the feedback signal to match the target signal

satisfactorily during a feedback session, further re-adaptation of the prediction model might be

unnecessary as co-adaptation of user and machine has already been achieved. This can also be

viewed as a special case of the objective function Eq. 6.10: if the feedback variableZ in the ob-

jective function already carries essential information about the target signal C, re-adaptation of

BCI by including new EEG features would produce no significant gain in the objective function.

The proposed method works in a supervised learning fashion where it requires the data labels
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for adaptive learning. Unlike in unsupervised or semi-supervised online learning approaches,

this enables the learning system to measure the compliance of a subject to the BCI tasks, so as

to ensure the stability of the adaptation process.

The proposed method with the current solution may be more suited for offline adaptation

than for online adaptation. In online adaptation, both user training and machine adaptation take

place at the same time. While in offline adaptation, machine adaptation is performed after the

user finishes a training session. Although this method is applicable to online adaptation, the

expensive computation can be a serious concern for practical online use. The computational

complexity of computing the gradient by Eq. 6.23 and Eq. 6.22 was estimated to be on the order

of O(l2n2
c) and that of evaluating the objective function by Eq. 6.7 and Eq. 6.6 is O(l2nc). Here l

denotes the number of samples and nc the number of channels. In the experimental setup for the

results presented in Section 6.4, a learning code using hybrid MATLAB and C coding without

multi-threading was implemented. The code took approximately 130 seconds to complete one

iteration for nc = 30-channel EEG data, or 18 seconds for nc = 6-channel EEG data, both

of l = 2230 time segment samples on our test computer with a Xeon CPU at 2.93GHz. The

primary cause for high computational complexity is the non-parametric (kernel-based) nature of

the method that requires computations for each pair of samples. Therefore, a possible solution

to this problem would be to reduce the number of samples used for adaptation.

6.6 Conclusion

In this chapter the critical issue of session to session transfer in brain-computer interface

(BCI) was studied. While previous studies have often focused on adaptation of classifiers, the

importance and the feasibility of adapting feature extraction models within a self-paced BCI

paradigm was demonstrated. First, calibration and feedback training on able-bodied naı̈ve sub-
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jects using a new self-paced motor imagery BCI including idle state was conducted. The online

results suggest that the feature extraction models built from calibration data may not generalize

well to feedback sessions. Hence, a new supervised adaptation method that learns from feed-

back data was proposed to construct a more accurate model for feedback training. The learning

objective was formulated as maximization of kernel-based mutual information estimation with

respect to spatial-spectral filters, and derived a gradient-based optimization algorithm for the

learning task. An experimental study through offline simulations were conducted and the results

suggest that the proposed method can significantly increase prediction accuracies for feedback

training sessions.



Chapter 7

Conclusion and Future Work

In this chapter the results from the four methods that were proposed are summarized. An

overview of possible future work based on the presented methods are discussed at the end of the

chapter.

7.1 Summary of Results

This thesis presented multiple methods to improve the information transfer rate of current

brain computer interfaces. Information transfer rate can be improved by increasing the clas-

sification performance and by increasing the number of classes that are effectively classified.

However, even in multiclass classification the ITR is directly dependent on the performance of

classifiers. Increasing the classification accuracies is further complicated by the non-stationarity

of the EEG signals. Therefore, to address this issue, novel feature extraction and signal classifi-

cation methods were explored.

In Chapters 3, joint approximate diagonalization (JAD) for multiclass CSP was considered

to overcome the limitation of CSP algorithm for feature extraction. The current CSP algorithm

can only consider two classes for simultaneous diagonalization. Multiple covariance matrices

from different motor imagery signals from four classes can be simultaneously diagonalized with

106
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the proposed joint approximate diagonalization method.

Specifically, a fast Frobenius diagonalization (FFDIAG) based multiclass CSP was proposed

to deal with the limitation of current CSP algorithm. Several classifiers, k-NN, CART and SVM

were employed with the FFDIAG method for feature extraction. The results were compared

against the baseline of one versus rest CSP method and Jacobi angle based simultaneous diago-

nalization method. The effects of boosting the classifiers were also analyzed with the implemen-

tations of Adaboost.M1 and SAMME algorithm for multiclass classifier boosting. The results

showed significant improvements over the baseline classifiers. SVM classifier consistently gave

the highest classification accuracies. SAMME algorithm was more practical in boosting the weak

classifiers in the multiclass classification scenario as Adaboost algorithm needs a minimum per-

formance of 50% from each weak classifier. Results showed that the proposed FFDIAG method

effective in simultaneously diagonalizing more than two covariance matrices.

As another theoretical development, in Chapter 4, we developed an Adaptively Weighted

Classifier Ensemble with clustering. The underlying idea of this new approach was to weigh

the decisions from a classifier ensemble based on the closest cluster to a given test sample.

The clusters are found by clustering the training data with minimum Havrda-Charvat structural

entropy and cosine distance based clustering method.

The novelty of this approach is adaptively weighting the decisions from the component clas-

sifiers in the ensemble based on the measurement of distance from a given test to the clusters.

The classifiers that are trained on data nearer to the given test sample get higher weight under

this method. The proposed method is able to exploit the structural information contained in the

training data by the distance metric on the clusters. Results show that the proposed method is

able to handle session to session non-stationarity of EEG data. Another major advantage of the

proposed method is its low complexity, making it more efficient than other complex methods
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such as EM algorithm and Bayesian methods.

In Chapter 5, an algorithm for adaptive training of a SVM classifier was proposed to improve

classification accuracies under non-stationarity in EEG data. The proposed method adapts the

SVM kernel to training data from subsequent sessions. The kernel width parameter of the kernel

function of the SVM classifier was adapted using an information theoretic cost function based on

minimum error entropy (MEE). The novelty of the method is, using the distribution of the error

function rather than the error values to adapt the kernel width parameter to adaptively train the

classifier. Experiments were performed using the proposed method on EEG data collected from

12 healthy subjects in two sessions on separate days. The results using the proposed method

yielded significantly better classification accuracies compared to the baseline.

In Chapter 6, we applied the central idea of learning from feedback training data to a self-

paced BCI scenario. The feasibility and the effectiveness of adaptive feature extraction was

analysed by conducting calibration and feedback training on able-bodied naı̈ve subjects. A novel

self-paced motor imagery BCI including idle state was used in the experiments. The online

results suggest that the feature space constructed from calibration data may become ineffective

during feedback sessions due to non-stationarity issues. Therefore, a novel supervised method

that learns from feedback data was used to construct a more appropriate feature space, on the

basis of maximum mutual information principle between feedback signal, target signal and EEG.

Specifically, we formulated the learning objective as maximizing a kernel-based mutual in-

formation estimate with respect to the spatial-spectral filtering parameters. A gradient-based

optimization algorithm was then derived for the learning task. An experimental study was con-

ducted with offline simulations. The results suggest that the proposed method is able to construct

effective feature spaces to capture the discriminative information in feedback training data. Re-

sults indicate that classification accuracies can be significantly improved using these new fea-
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Table 7.1: Comparison of ITR of Implemented Methods

Dataset 2A Baseline FFDIAG AWEC MEE

Two Class Four Class

Accuracy 75.9 28.8 54.1 81.5 82.7

Duration (min.) 10.03 17.25 29.68 12.87 13.64

Number of Decisions 1296 2592 2592 1296 1296

ITR 26.25 0.81 24.22 31.11 31.93

tures. By improving the classification accuracies we have been able to improve the overall in-

formation transfer rate of the BCI system. The Table (7.1) summarizes the ITR for the three

synchronous BCI methods proposed. The computation times incurred for classifying 72 trials

from each class on an Intel Core i5 CPU with 3.2GHz and 4GB RAM running on 32-bit Win-

dows platform are shown. The baseline performances for two class and four class classification

are compared with the corresponding proposed methods. FFDIAG method for joint diagonaliza-

tion was tested on four class classification problem. The AWEC method for adaptive ensemble

weighting and Minimum Error Entropy Kernel Adaptation (MEE) was tested on two class clas-

sification of BCI Competition IV data set 2A.

The FFDIAG method for multi-class classification has improved the ITR to 24.22 compared

to the corresponding baseline ITR of 0.81 for four-class classification. The baseline for two-class

classification was calculated to be 26.25. Both AWEC and MEE methods has improved ITR for

the two-class classification at 31.11 and 31.93 respectively.

7.2 Real-time Implementation of Proposed Methods

Practical applications of BCI may be broadly classified into real-time and non-real-time im-

plementations. Non-real time applications can be identified as systems that process the collected

brain signals offline and output/use the results at a later time. Non-real time implementations are
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mostly found under laboratory conditions when testing new BCIs. Non-real time implementa-

tions are also found in a few gaming and disease diagnosis applications [249]. Systems that help

diagnose diseases such as Epilepsy, Sleep disorders, Brain tumors, Autism and Alzheimer [250]

by monitoring brain signals can also be categorized as non-real time implementations as process

the signals offline. However, if the BCI systems assist the management of the disease, such as

with cortical surface electrodes in the case of Epilepsy [251], then they are considered as real-

time BCI’s. BCI’s of this type can predict an oncoming seizure in real time and in some cases

prevent it by stimulating appropriate brain areas [252].

The associated computational issues for real-time BCIs can be identified at several stages

of the BCI system. The low-signal to noise ratio remains a major challenge for substantial

improvements in performance. Noise may include brain signals that are not associated with

brain patterns generated by the user’s intent, or signals added by the hardware used to acquire

the brain signals. The first two methods proposed in this thesis can be applied in real-time BCI

implementations. The computational costs of the methods are not very high as shown in Table

(7.1).

The FFDIAG method for joint diagonalization and AWEC method for adaptive ensemble

weighting can be easily implemented on a real-time BCI without much effect on run times.

The Kernel adaptation method (MEE) need some past test samples for adaptation. In a real-

time implementation stage-wise online adaptation of the Kernel width can be carried out after

a specific number of test samples. The method of learning from feedback training data in self-

spaced BCI was implemented in non-real time offline laboratory conditions because the method

uses supervised learning for adaptation. Real time extension is possible with unsupervised/semi-

supervised learning instead of the supervised learning mechanism. On the other hand, all of the

proposed methods can be adapted for non-real time offline analysis of EEG data.
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7.3 Suggestions for Future Work

Future research can transfer the methods proposed in this thesis to other similar scenarios,

such as the transfer of classifier parameters from subject to subject based on the methods devel-

oped for session to session non-stationarity. Although the variability across subjects can easily

be regarded within the same framework as the variability from session to session, it is out of the

scope of this work. However, with this approach, BCI research can be conceivable for a wider

range of applications, by reducing the calibration time for naive subjects.

Furthermore, it is a possible to apply these methods to other neurophysiological paradigms

and multi-class applications. Future research should strive for robustification of the non-stationary

EEG signal using machine learning methods to make BCI applications more usable.

The approximate joint daigonalization method proposed here can be extended to simultane-

ous diagonalization of more than two covariance matrices leading to more separable band power

features. This would require further mathematical research which is outside the scope of current

study.

The cluster based classifier ensemble framework can be extended to an adaptive classifier

ensemble which adds and removes clusters automatically according to incoming test data in an

online scenario. Such a system would be beneficial to long term users of a BCI system.

The idea of using error distribution parameters such as kernel width for adaptive training can

be extended to other classifiers with suitable parameters that can be manipulated based on the

error distribution.

Finally, the use of feedback training data in self-paced BCI can be extended to include error

potential signals also. Adaptation of the feature selection methods can be extended to unsu-

pervised and semi-supervised online adaptation. Online adaptation in the self-paced paradigm

would be immensely valuable to overcome practical limitations of current BCI’s.
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