31 research outputs found

    A Study of Archiving Strategies in Multi-Objective PSO for Molecular Docking

    Get PDF
    Molecular docking is a complex optimization problem aimed at predicting the position of a ligand molecule in the active site of a receptor with the lowest binding energy. This problem can be formulated as a bi-objective optimization problem by minimizing the binding energy and the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands. In this context, the SMPSO multi-objective swarm-intelligence algorithm has shown a remarkable performance. SMPSO is characterized by having an external archive used to store the non-dominated solutions and also as the basis of the leader selection strategy. In this paper, we analyze several SMPSO variants based on different archiving strategies in the scope of a benchmark of molecular docking instances. Our study reveals that the SMPSOhv, which uses an hypervolume contribution based archive, shows the overall best performance.Universidad de M谩laga. Campus de Excelencia Internacional Andaluc铆a Tech

    Parallel multi-objective algorithms for the molecular docking problem

    Get PDF
    International audienceMolecular docking is an essential tool for drug design. It helps the scientist to rapidly know if two molecules, respectively called ligand and receptor, can be combined together to obtain a stable complex. We propose a new multi-objective model combining an energy term and a surface term to gain such complexes. The aim of our model is to provide complexes with a low energy and low surface. This model has been validated with two multi-objective genetic algorithms on instances from the literature dedicated to the docking benchmarking

    Optimizaci贸n multi-objetivo en las ciencias de la vida.

    Get PDF
    Para conseguir este objetivo, en lugar de intentar incorporar nuevos algoritmos directamente en el c贸digo fuente de AutoDock, se utiliz贸 un framework orientado a la resoluci贸n de problemas de optimizaci贸n con metaheur铆sticas. Concretamente, se us贸 jMetal, que es una librer铆a de c贸digo libre basada en Java. Ya que AutoDock est谩 implementado en C++, se desarroll贸 una versi贸n en C++ de jMetal (posteriormente distribuida p煤blicamente). De esta manera, se consigui贸 integrar ambas herramientas (AutoDock 4.2 y jMetal) para optimizar la energ铆a libre de uni贸n entre compuesto qu铆mico y receptor. Despu茅s de disponer de una amplia colecci贸n de metaheur铆sticas implementadas en jMetalCpp, se realiz贸 un detallado estudio en el cual se aplicaron un conjunto de metaheur铆sticas para optimizar un 煤nico objetivo minimizando la energ铆a libre de uni贸n, el cual es el resultado de la suma de todos los t茅rminos de energ铆a de la funci贸n objetivo de energ铆a de AutoDock 4.2. Por lo tanto, cuatro metaheur铆sticas tales como dos variantes de algoritmo gen茅tico gGA (Algoritmo Gen茅tico generacional) y ssGA (Algoritmo Gen茅tico de estado estacionario), DE (Evoluci贸n Diferencial) y PSO (Optimizaci贸n de Enjambres de Part铆culas) fueron aplicadas para resolver el problema del acoplamiento molecular. Esta fase se dividi贸 en dos subfases en las que se usaron dos conjuntos de instancias diferentes, utilizando como receptores HIV-proteasas con cadenas laterales de aminoacidos flexibles y como ligandos inhibidores HIV-proteasas flexibles. El primer conjunto de instancias se us贸 para un estudio de configuraci贸n de par谩metros de los algoritmos y el segundo para comparar la precisi贸n de las conformaciones ligando-receptor obtenidas por AutoDock y AutoDock+jMetalCpp. La siguiente fase implic贸 aplicar una formulaci贸n multi-objetivo para resolver problemas de acoplamiento molecular dados los resultados interesantes obtenidos en estudios previos existentes en los que dos objetivos como la energ铆a intermolecular y la energ铆a intramolecular fueron minimizados. Por lo tanto, se compar贸 y analiz贸 el rendimiento de un conjunto de metaheur铆sticas multi-objetivo mediante la resoluci贸n de complejos flexibles de acoplamiento molecular minimizando la energ铆a inter- e intra-molecular. Estos algoritmos fueron: NSGA-II (Algoritmo Gen茅tico de Ordenaci贸n No dominada) y su versi贸n de estado estacionario (ssNSGA-II), SMPSO (Optimizaci贸n Multi-objetivo de Enjambres de Part铆culas con Modulaci贸n de Velocidad), GDE3 (Tercera versi贸n de la Evoluci贸n Diferencial Generalizada), MOEA/D (Algoritmo Evolutivo Multi-Objetivo basado en la Decomposici贸n) y SMS-EMOA (Optimizaci贸n Multi-objetivo Evolutiva con M茅trica S). Despu茅s de probar enfoques multi-objetivo ya existentes, se prob贸 uno nuevo. En concreto, el uso del RMSD como un objetivo para encontrar soluciones similares a la de la soluci贸n de referencia. Se replic贸 el estudio previo usando este conjunto diferente de objetivos. Por 煤ltimo, se analiz贸 de forma detallada el algoritmo que obtuvo mejores resultados en los estudios previos. En concreto, se realiz贸 un estudio de variantes del SMPSO minimizando la energ铆a intermolecular y el RMSD. Este estudio proporcion贸 algunas pistas sobre c贸mo nuevos algoritmos basados en SMPSO pueden ser adaptados para mejorar los resultados de acoplamiento molecular para aquellas simulaciones que involucren ligandos y receptores flexibles. Esta tesis demuestra que la inclusi贸n de t茅cnicas metaheur铆sticas de jMetalCpp en la herramienta de acoplamiento molecular AutoDock incrementa las posibilidades a los usuarios de 谩mbito biol贸gico cuando resuelven el problema del acoplamiento molecular. El uso de t茅cnicas de optimizaci贸n mono-objetivo diferentes aparte de aqu茅llas ampliamente usadas en las comunidades de acoplamiento molecular podr铆a dar lugar a soluciones de mayor calidad. En nuestro caso de estudio mono-objetivo, el algoritmo de evoluci贸n diferencial obtuvo mejores resultados que aquellos obtenidos por AutoDock. Tambi茅n se propone diferentes enfoques multi-objetivo para resolver el problema del acoplamiento molecular, tales como la decomposici贸n de los t茅rminos de la energ铆a de uni贸n o el uso del RMSD como un objetivo. Finalmente, se demuestra que el SMPSO, una metaheur铆stica de optimizaci贸n multi-objetivo de enjambres de part铆culas, es una t茅cnica remarcable para resolver problemas de acoplamiento molecular cuando se usa un enfoque multi-objetivo, obteniendo incluso mejores soluciones que las t茅cnicas mono-objetivo.Las herramientas de acoplamiento molecular han llegado a ser bastante eficientes en el descubrimiento de f谩rmacos y en el desarrollo de la investigaci贸n de la industria farmac茅utica. Estas herramientas se utilizan para elucidar la interacci贸n de una peque帽a mol茅cula (ligando) y una macro-mol茅cula (diana) a un nivel at贸mico para determinar c贸mo el ligando interact煤a con el sitio de uni贸n de la prote铆na diana y las implicaciones que estas interacciones tienen en un proceso bioqu铆mico dado. En el desarrollo computacional de las herramientas de acoplamiento molecular los investigadores de este 谩rea se han centrado en mejorar los componentes que determinan la calidad del software de acoplamiento molecular: 1) la funci贸n objetivo y 2) los algoritmos de optimizaci贸n. La funci贸n objetivo de energ铆a se encarga de proporcionar una evaluaci贸n de las conformaciones entre el ligando y la prote铆na calculando la energ铆a de uni贸n, que se mide en kcal/mol. En esta tesis, se ha usado AutoDock, ya que es una de las herramientas de acoplamiento molecular m谩s citada y usada, y cuyos resultados son muy precisos en t茅rminos de energ铆a y valor de RMSD (desviaci贸n de la media cuadr谩tica). Adem谩s, se ha seleccionado la funci贸n de energ铆a de AutoDock versi贸n 4.2, ya que permite realizar una mayor cantidad de simulaciones realistas incluyendo flexibilidad en el ligando y en las cadenas laterales de los amino谩cidos del receptor que est谩n en el sitio de uni贸n. Se han utilizado algoritmos de optimizaci贸n para mejorar los resultados de acoplamiento molecular de AutoDock 4.2, el cual minimiza la energ铆a libre de uni贸n final que es la suma de todos los t茅rminos de energ铆a de la funci贸n objetivo de energ铆a. Dado que encontrar la soluci贸n 贸ptima en el acoplamiento molecular es un problema de gran complejidad y la mayor铆a de las veces imposible, se suelen utilizar algoritmos no exactos como las metaheur铆sticas, para as铆 obtener soluciones lo suficientemente buenas en un tiempo razonable

    Gradient based optimization in ligand-receptor docking

    Get PDF
    In this work, we compared six global search heuristics and two scoring functions in the field of ligand-receptor docking. A new way for the gradient based minimization of a ligand whose position in space is defined by translation, orientation and a set of torsional flexible angles was implemented and thoroughly tested. The default local search method of a Lamarckian genetic algorithm was replaced by our novel gradient based approach and the new hybrid was compared to non-gradient global search heuristics. Finally, we present our docking program BALLDock, in which we incorporated our findings.In der vorliegenden Arbeit wurden sechs populationsbasierte Optmierungsheuristiken und zwei Scoring-Funktionen im Hinblick auf ihre Leistungsf盲higkeit im Bereich Ligand-Rezeptor Docking miteinander verglichen. Parallel dazu wurde eine neuer Ansatz entwickelt, der die lokale, gradientenbasierte Optimierung partiell flexibler Molek眉le, deren Position und Konformation durch Translation, Orientierung und eine Anzahl flexibler Bindungswinkel definiert ist, erlaubt. Danach wurde die gradientenfreie Methode zur lokalen Optimierung eines Lamarck genetischen Algorithmus durch das neuartige gradientbasierte Verfahren ersetzt und dessen Einfluss auf die Ergebnisse der globalen Suchheuristik analysiert. Abschlie脽end wird das Dockingprogramm BALLDock vorgestellt, in das die neu gewonnenen Erkenntnisse einflossen

    Constrained optimization applied to multiscale integrative modeling

    Get PDF
    Multiscale integrative modeling stands at the intersection between experimental and computational techniques to predict the atomistic structures of important macromolecules. In the integrative modeling process, the experimental information is often integrated with energy potential and macromolecular substructures in order to derive realistic structural models. This heterogeneous information is often combined into a global objective function that quantifies the quality of the structural models and that is minimized through optimization. In order to balance the contribution of the relative terms concurring to the global function, weight constants are assigned to each term through a computationally demanding process. In order to alleviate this common issue, we suggest to switch from the traditional paradigm of using a single unconstrained global objective function to a constrained optimization scheme. The work presented in this thesis describes the different applications and methods associated with the development of a general constrained optimization protocol for multiscale integrative modeling. The initial implementation concerned the prediction of symmetric macromolecular assemblies throught the incorporation of a recent efficient constrained optimizer nicknamed mViE (memetic Viability Evolution) to our integrative modeling protocol power (parallel optimization workbench to enhance resolution). We tested this new approach through rigorous comparisons against other state-of-the-art integrative modeling methods on a benchmark set of solved symmetric macromolecular assemblies. In this process, we validated the robustness of the constrained optimization method by obtaining native-like structural models. This constrained optimization protocol was then applied to predict the structure of the elusive human Huntingtin protein. Due to the fact that little structural information was available when the project was initiated, we integrated information from secondary structure prediction and low-resolution experiments, in the form of cryo-electron microscopy maps and crosslinking mass spectrometry data, in order to derive a structural model of Huntingtin. The structure resulting from such integrative modeling approach was used to derive dynamic information about Huntingtin protein. At a finer level of resolution, the constrained optimization protocol was then applied to dock small molecules inside the binding site of protein targets. We converted the classical molecular docking problem from an unconstrained single objective optimization to a constrained one by extracting local and global constraints from pre-computed energy grids. The new approach was tested and validated on standard ligand-receptor benchmark sets widely used by the molecular docking community, and showed comparable results to state-of-the-art molecular docking programs. Altogether, the work presented in this thesis proposed improvements in the field of multiscale integrative modeling which are reflected both in the quality of the models returned by the new constrained optimization protocol and in the simpler way of treating the uncorrelated terms concurring to the global scoring scheme to estimate the quality of the models

    Investigation of Cyclobenzaprine Interactions with P450 Cytochromes CYP1A2 and CYP3A4 through Molecular Docking Tools

    Get PDF
    Cyclobenzaprine (CBP) is a centrally acting muscle relaxant whose myriad of therapeutic applications imply the need of better understanding its pharmacokinetics and thermodynamics. Henceforth, this work was concerned with an in silico investigation of CBP main metabolizers in the human organism, namely CYP1A2 and CYP3A4. For this purpose, computational methods were employed, such as molecular docking and other semi-empirical approaches. Results evidenced that the model herein depicted for CBP-CYP1A2 may not reproducibly represent the physiological interaction between CBP and this enzyme. Moreover, CBP-CYP3A4 docking results evidence thermodynamic feasibility of the molecular docking model and were further corroborated by literature, what may reproducibly represent a possible interaction between CBP and this macromolecule

    Evolutionary Computation and QSAR Research

    Get PDF
    [Abstract] The successful high throughput screening of molecule libraries for a specific biological property is one of the main improvements in drug discovery. The virtual molecular filtering and screening relies greatly on quantitative structure-activity relationship (QSAR) analysis, a mathematical model that correlates the activity of a molecule with molecular descriptors. QSAR models have the potential to reduce the costly failure of drug candidates in advanced (clinical) stages by filtering combinatorial libraries, eliminating candidates with a predicted toxic effect and poor pharmacokinetic profiles, and reducing the number of experiments. To obtain a predictive and reliable QSAR model, scientists use methods from various fields such as molecular modeling, pattern recognition, machine learning or artificial intelligence. QSAR modeling relies on three main steps: molecular structure codification into molecular descriptors, selection of relevant variables in the context of the analyzed activity, and search of the optimal mathematical model that correlates the molecular descriptors with a specific activity. Since a variety of techniques from statistics and artificial intelligence can aid variable selection and model building steps, this review focuses on the evolutionary computation methods supporting these tasks. Thus, this review explains the basic of the genetic algorithms and genetic programming as evolutionary computation approaches, the selection methods for high-dimensional data in QSAR, the methods to build QSAR models, the current evolutionary feature selection methods and applications in QSAR and the future trend on the joint or multi-task feature selection methods.Instituto de Salud Carlos III, PIO52048Instituto de Salud Carlos III, RD07/0067/0005Ministerio de Industria, Comercio y Turismo; TSI-020110-2009-53)Galicia. Conseller铆a de Econom铆a e Industria; 10SIN105004P

    Faculty of Mathematics and Science 1st Graduate Research Day Conference, 2022

    Get PDF
    FMS Graduate Research Day (FMS GRaD) is an academic conference open to all FMS students with a mandate to celebrate and communicate Brock University research and teaching. The FMS GRaD 2022 conference was hosted by the Dean鈥檚 office of the Faculty of Mathematics and Science and Graduate Mathematics and Science Society at Brock University. With 57 presenters and over 300 attendees this first FMS GRaD held on September 16th 2022 strengthened the STEM research community and highlight the research and profile of FMS graduate student research programs
    corecore