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Abstract. Economic dispatch problems (EDPs) can be reduced to non-convex constrained optimization problems, and most 
of the population-based algorithms are prone to have problems of premature and falling into local optimum when solving 
EDPs. Therefore, this paper proposes a hybrid quantum-behaved particle swarm optimization (HQPSO) algorithm to alleviate 
the above problems. In the HQPSO, the Solis and Wets local search method is used to enhance the local search ability of the 
QPSO so that the algorithm can fnd solutions that is close to optimal when the constraints are met, and two evolution operators 
are proposed and incorporated for the purpose of making a better balance between local search and global search abilities at 
the later search stage. The performance comparison is made among the HQPSO and the other ten population-based random 
search methods under two different experimental confgurations and four different power systems in terms of solution quality, 
robustness, and convergence property. The experimental results show that the HQPSO improves the convergence properties 
of the QPSO and fnally obtains the best total generation cost without violating any constraints. In addition, the HQPSO 
outperforms all the other algorithms on 7 cases of all 8 experimental cases in terms of global best position and mean position, 
which verifes the effectiveness of the algorithm. 

Keywords: Constrained nonlinear optimization, Hybrid quantum-behaved particle swarm optimization, Economic dispatch 
problem, Solis and Wets local search 

1. Introduction1 

Economic dispatch (ED) is of vital importance for effective operation of an electric power system. 
Solving the ED problems properly can not only optimize the allocation of resources, but also can pro-
mote the transformation of the power company’s production scheduling mode to the greatest extent. In 
addition, reducing the loss of resources can also effectively reduce environmental pollution to a cer-
tain extent. An ED problem can be mathematically formulated as a constrained nonlinear optimization 

*Corresponding author. E-mail: sunjun_wx@hotmail.com. 
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problem, the objective of which is to minimize the total short-term cost of operating the generators by 
properly dividing the total load demand among the available generators [1]. In order to tackle such kind 
of problems effectively, researchers have proposed many optimization methods, including traditional 
gradient-based and metaheuristic methods. 

The traditional gradient based methods such as linear programming, λ-iteration method [2], quadratic 
programming [3], branch and bound [4] and [5], have shown to perform well on the continuous ED 
problems without prohibit operation zones. Since the thermal power systems need to consider the valve 
point loading effects and the prohibited operating zones of the power system, practical ED problems 
are generally non-smooth, non-convex and non-continues ones, so that the traditional gradient-based 
methods inevitably encounter diffculties in solving such problems [6]. However, since the traditional 
gradient descent based methods are fast in solving this problem, some modifed algorithms also be 
proposed [7]. 

Metaheuristic algorithms, particularly population-based random search techniques, are known to 
be effective in solving complex nonlinear optimization problems [10]. They also had been used and 
achieved promising performances in many machine learning tasks, the most typical fled is the feature 
selection [13] [14]. In addition, two well-known classes of population-based search techniques, namely 
evolutionary algorithms and swarm intelligence optimization algorithms, had shown effectiveness in 
solving ED problems [15]. The most widely used optimizers of these kinds include particle swarm opti-
mization (PSO) [16], the bee colony Optimization (BCO) [17], frefy algorithm (FA) [18], artifcial bee 
colony algorithm (ABC) [19], Kho-Kho optimization (KKO) algorithm [20], whale optimization algo-
rithm [21], tunicate swarm algorithm [22], and some recently proposed metaheuristic algorithms [23]. 
Compare to the other metaheuristic algorithms, PSO is simpler, more robust, has fewer parameters to 
be adjusted, and is easy to converge [28]. However, PSO is prone to fall into the local minimum, and 
thus it is diffcult to obtain a satisfying solution. Recently, various PSO modifcations were presented. 
For example, Maedeh et al. proposed a phasor particle swarm optimization (PPSO), which uses a phasor 
angle to replace the control parameter of PSO to solve different types of ED problems [29]. The QPSO 
algorithm is inspired by quantum mechanics and trajectory analysis of the canonical PSO [30], and its 
motivation is to improve the search ability of PSO by designing new update equation of particle positions 
different from that of the canonical PSO. 

The QPSO performs well on many optimization problems, especially on continues and non-
constrained optimization problems [31]. However, for complex constrained optimization problems like 
ED problems, the QPSO algorithm lacks strong local search capabilities, and the convergence speed is 
slow, so that it still has room for improvement. For instance, in order to improve the convergence per-
formance of the QPSO, Zhao et al. proposed a DE-CQPSO (Differential Evolution-Crossover Quantum 
Particle Swarm Optimization) algorithm, which utilizes the fast convergence of differential evolution and 
controls the particle diversity by using crossover operators of genetic algorithms [33]. To maintain the 
diversity of the particle swarm, the QPSO combined with cultural evolution mechanism named CQPSO 
was proposed [34]. 

Recently, some hybrid metaheuristic algorithms, which combine their strengths with each other, are 
presented and performed well in terms of improving the shortcomings of PSO when solving ED prob-
lems recently. To accelerate the convergence speed and reduce the total number of evaluations of the 
algorithm when solving ED problems, Juan designed a hybrid optimization framework based on the 
adaptive simulated annealing (ASA) and genetic operators [35]. The hybrid DE (differential evolution) 
and PSO algorithm (DEPSO) designed was the relatively simple hybrid PSO algorithm, but performs 
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well on eight optimization problems [36]. In the evolutionary particle swarm optimization (E-PSO) al-
gorithm, mutation, crossover, and selection in genetic algorithm are implemented to enhance the ability 
of skipping local optimal points [28]. 

Therefore, in this work, we propose a hybrid QPSO (HQPSO) algorithm for solving ED problems, 
by incorporating the Solis and Wets local search method and evolution operators into the QPSO. The 
purpose of using the Solis and Wets local search method is to enhance the local search ability and fasten 
the convergence of the QPSO algorithm, which is desirable for the algorithm to fnd a solution of higher 
precision for the constrained optimization problem at the later stage of the search process. Although the 
local search method on the one hand can enhance the solution precision of the problem, it can on the 
other hand make the algorithm prone to be stuck into local optimal area of the search space. Thus, in 
order to further improve the algorithmic performance, we propose to couple the algorithm with evolution 
operators, namely, crossover and mutation, which can give some disturbance to the current positions of 
the particles to help the particles escape the local optimal area. With the combination of the Solis and 
Wets search and evolution operators, the HQPSO algorithm obtains a better balance between the local 
search ability and global search ability. The rest of the paper are organized as follows. Section II is the 
mathematical statement of ED problems. Section III presents the details of the proposed HQPSO algo-
rithm, and section IV describes the implementation of the HQPSO for ED problems. The experimental 
results and analysis are given in section V, and some conclusions are provided in the fnal section. 

2. The Economic Dispatch Problem1 

The goal of an ED problem is to minimize the total fuel cost subjected to some constraints of a power 
system [46]. The cost function of an ED problem can be generally formulated by: 

NgX 
Minimize Fcost = F j (Pj) (1) 

j=1 

With 

2F j (Pj) = aj + bjP j + c jP j (2) 

where F j (Pj) is the cost function of the j-th generator, Pj is the power output of the j-th generator, 
and Ng is the total number of generators in the power system. where ai, bi, and ciare the coeffcients 
of the fuel cost function F j. For the ED problems with valve-point effects (VPE) considered, the cost 
function of each generator is given by: 

2F j (Pj) = aj + bjP j + c jP j + ei sin[ fi(Pmin − Pj)] (3)j 

where ei and fi are VPE coeffcients of the n-th generator, and Pmin is the minimum output of j-th j 
generator. In addition, for the ED problems with both valve-point effects and multiple fuel options taken 
into consideration, the cost function of each generator can be written as: 
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2 − Pj)] , Pmin+ ei1 sin[ fi1(Pmin f uel type 1aj1 + bj1Pj + c j1Pj j j ⩽ Pj ⩽ Pj1,aj2 + bj2Pj + c j2Pj 
2 + ei2 sin[ fi2(Pmin − Pj)] , Pmin ⩽ Pj ⩽ Pj2, f uel type 2 

F j (Pj) = j j1 

· · ·  ajk + bjkP j + c jkP j 
2 + eik sin[ fik(Pmin − Pj)] , Pmin ⩽ Pj ⩽ Pmax , f uel type kj j(k−1) j 

(4) 

where k denotes the total number of fuel types in the system. Simultaneously, four constraints should 
be considered in the ED problems. They are constraints for active power balance, minimum and maxi-
mum power limits, ramp rate limits and prohibited operating zones. 

2.1. Active Power Balance2 

Active power balance can be expressed as the following equality constraint: 

(PNg 
j=1 Pj = PD + PLPNg PNg PNg (5)

PL = j=1 k=1 PjBjkPk + j=1 PjBj0 + B00 

Where PL is a function of the generator power outputs, which can be described by using B coeffcient 
[46], 1 ⩽ j,k ⩽ Ng denotes the index of the generator, and Bj0, Bjk, B00 represents the transmission 
network losses parameter or B parameter. Note that Bjk is a Ng × Ng matrix. In addition, the totalPNggenerated power of the system Pj should be the same as the load demand PD (in MW) of thej=1 
system plus the transmission network losses PL (in MW), when the lowest generation cost is obtained.PNgIn addition, the total generated power of the system Pj should be the same as the load demandj=1 
PD(in MW) of the system plus the transmission network losses PL (in MW), when the lowest generation 
cost is obtained. 

2.2. Minimum and Maximum Power Limits2 

The generation of each generator should be within the interval between its minimum bound Pmin andj 
maximum bound Pmax . Mathematically, this constraint can be formulated as:j 

Pmin < Pj < Pmax 
j j , ( j = 1, 2 . . . , Ng) (6) 

2.3. Ramp Rate Limits2 

In the actual operation process of each generator, the operating range of each generator is restricted 
by its ramp rate limits. The inequality constraints of the ramp rate limits are as follows. 

(i) If the power generation increases 

Pj − P0 
j ⩽ URj (7) 
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(ii) If the power generation decreases 

P0 
j − P

j 
⩽ DRj (8) 

where P0 
j , URj, DRj are the previous output level, the up-ramp limit, the down-ramp limit of the j-th 

generator, respectively. 

2.4. Prohibited Operating Zones2 

In the actual power system, the entire operating range of a generator is not always available when 
some cases like steam valve operating (i.e. vibrating) in a shaft bearing occur. In other words, the system 
has some prohibited operating zones. Therefore, the feasible operating zones of the j-th generator can 
be described as: 

Pmin 
j ⩽ Pj ⩽ Pl (9)j,1 

Pu
j,k−1 ⩽ Pj ⩽ Pl

j,k, k = 2, 3 . . . , nj (10) 

⩽ Pj ⩽ Pmax Pu
j,n j j (11) 

where Pl
j,k andPu

j,k are the lower and upper bounds of the k-th prohibited operation zone of the j-th 
generating unit, and nj is the number of prohibited operation zones in the j-th generator. 

2.5. The formulation of the ED problem2 

Considering the constraints in Eq.(7) to Eq.(11), we get the feasible operation zones of the j-th gener-
ator as: � � � � 

Pmin Pmax Max j , Pj − DRj ⩽ Pj ⩽ Min j , P0 
j + URj (12) 

Therefore, the ED problem can be formulated as the following constrained nonlinear optimization 
problem: 

NgX 
Pj = PD + PL (13) 

j=1 

subject to: 

NgX 
Minimize Fcost = F j (Pj) (14) 

j=1 
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� � 
PminMax j , Pj − DRj ⩽ Pj ⩽ Pl

j,1 (15) 

Pu ⩽ Pj ⩽ Pl
j,k, k = 2, 3 . . . , nj (16)j,k−1 

� � 
Pu ⩽ Pj ⩽ Min Pmax , P0 

j + URj (17)j,k−1 j 

3. The HQPSO Algorithm1 

3.1. A Brief Introduction to the QPSO algorithm2 

The quantum-behave particle swarm optimization (QPSO) algorithm is a variant of PSO, with the 
update equation of particle positions very different from the canonical PSO. In the QPSO with M in-
dividuals, each individual is treated as a volume-less particle in the N-dimensional search space, with 
the current position of each particle presented as a candidate solution, and updated according to the 
following equation: ! 

X j = p
j ± α • C j − X j • ln 

1 
(18)i,t+1 i,t t i,t jui,t+1 

where 

MX 
Ct

j = Pi
j 
,t (19) 

i=1 

� � 
j j j G jpi,t = φi,t • Pi

j 
,t + 1 − φi,t t (20) 

With 1 ⩽ i ⩽ M,1 ⩽ j ⩽ N. In (9),Xi
j 
,t represents the j-th component (1 ⩽ j ⩽ N) of the current 

position of particle i at iteration t. pi
j 
,t , determined by (20) is the j-th component of the local attractor 

of particle i at the t-th iteration. Pi
j 
,t is the j-th component of the personal best position of particle i at 

iterationt, and G j is the j-th component of the global best position at iteration t. Ct, whose component t 
in the j-th dimension is obtained by (19), is the mean of the personal best positions of all the particles at

j jiteration t. u and φ are two different sequences of random numbers uniformly distributed on (0, 1). i,t+1 i,t 
α in (18) is known as the contraction-expansion (CE) coeffcient which is a parameter used to control 
the convergence of the particle. In the standard QPSO, the CE coeffcient is set to linearly decrease from 
1.0 to 0.5 over the whole search process. More details of the QPSO can be found in [30]. 
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3.2. The Hybrid QPSO algorithm2 

Since the constraints of the ED problem is highly complicated, it is diffcult for the QPSO to fnd a 
satisfed solution to the problem meeting all the constraints. In this work, in order to further improve 
the performance of the QPSO for the ED problem, we propose a novel hybrid QPSO (HQPSO) algo-
rithm, which couple the QPSO with the Solis and Wets local search method and evolution operators. In 
the HQPSO, the Solis and Wets local search method executes on a randomly selected particle at each 
iteration, for the purpose of enhancing the local search ability of the QPSO algorithm. With the Solis 
and Wets search, the QPSO can fnd a fnal solution of the ED problem at faster convergence speed. 
However, the enhanced local search ability of the QPSO by the Solis and Wets search can results in a 
swarm diversity loss of the algorithm in the later search stage, thus making the particles to be trapped 
into the local optimal or sub-optimal solution. To address this issue, we propose to exert crossover and 
mutation operators on the positions of randomly selected particles to bring them some disturbances so 
that the particle swarm can get enhanced vitality to escape the local or sub-optimal solution. With the 
combination of the Solis and Wets local search and the two evolution operators, the balance between the 
local search and global search abilities at the later stage of search can be achieved so that the algorithmic 
performance can be further improved. The rest of this subsection will focus on the detailed description 
of the different components of the HQPSO. 

(i) Solis and Wets local search 
The purpose of using Solis and Wets local search in the proposed HQPSO is to enhance the local search 

ability of the algorithm, which is desirable for the algorithm to obtain a relatively good solution with 
fewer iterations at the early search stage and get a fnal solution with high precision at the later search 
stage. This is particularly conducive to the constrained optimization problems with equality constraints, 
like ED problems. The equality constraints are essentially the bounds of the feasible area of the ED 
problems so that the solution with high precision is more likely to be on the bounds. 

The Solis and Wets local search algorithm is a randomized hill climber with an adaptive step size, 
without any reliance on the gradient information of the objective function [37]. The local search exe-
cutes on the current position of a selected particle for some steps during each iteration, with the search 
direction of the current position generated by a normal distribution whose mean and standard deviation 
are user-specifed parameters. The algorithm of the Solis and Wets local search is described in Algo-
rithm 1. 

As illustrated in Algorithm 1, during the local search steps for the current position X of a particle, a 
move is made to the position and then the new position is evaluated according to the objective function. 
Specifcally, with D denoting the search direction vector for the particle position at a certain step, we 
frst get X+D as the new position. If the objective function value of X+D is better than the previous one, 
a ‘success’ is recorded, that is, the value of ‘succ’ increases by one and the current position is updated 
by X+D. Otherwise, we get X-D as the new position, and if the objective function value of X-D is better 
than the previous one, a ‘success’ is recorded, namely, the value of ‘succ’ increases by one and the 
current position is updated by X-D. 

However, if either the temporary solution X-D or X+D performs worse or falls outside of the feasible 
solution, then a ‘failure’ is recorded, that is, the value of “fail” increases by one. In addition, a bias term 
gives a search momentum in the current search direction when a ‘success’ is recorded. In contrast, when 
a ‘failure’ is recorded, the search domain should be reduced in the next step by decreasing the standard 
deviation ρ of the normal distribution. Furthermore, when the value of ‘succ’ equals to succmax, the ρ is 
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Algorithm 1 An example for format For & While Loop in Algorithm 
1: Solis and Wets local search = (the position of particle Xi,t, standard deviation ρ, maximum number 

of success steps succmax, maximum number of failure steps f ail , and maximum steps step );max max 

2: b=0⃗,step=0,succ=0,fail=0; 
3: while step<step and ρ is not too small domax 
4: for each dimension j do 
5: δ j = normrnd(bj, ρ j); 
6: end for 
7: Xnew =X +D; D=[ δ1, δ2,· · · ]; 
8: if Xnew is better than X then 
9: X = Xnew; succ = succ + 1; f ail = 0; b = 0.4b + 0.2D; 

10: else 
11: Xnew = X − D; 
12: if Xnew is better than X then 
13: X = Xnew; succ = succ + 1; f ail = 0; b = b − 0.4D; 
14: else 
15: X = Xnew; succ = 0; f ail = f ail + 1; b = 0.5b; 
16: end if 
17: end if 
18: if succ=succmax then 
19: ρ = 2ρ; succ = 0; 
20: end if 
21: if fail = f ail thenmax 
22: ρ = 0.5ρ; f ail = 0; 
23: end if 
24: step=step+1; 
25: end while 
26: return Xnew; 

doubled to increase the search step. Otherwise, the search step of the algorithm decreases by setting the 
standard deviation to be 0.5ρ. 

(ii)Diversity explosion of HQPSO 
Since the Solis and Wets local search method in the HQPSO can enhance the local search ability of 

the algorithm, it can make the particle swarm aggregate to the current global best position at a higher 
speed. As mention in the above subsection, this local search method can make the algorithm fnd a 
good solution rapidly at the early search stage and yield a fnal solution with high precision at the later 
search stage. However, during the later stage, strong local search ability of the algorithm may lead 
the algorithm to encounter premature convergence. Hence, in order to overcome this disadvantage, we 
further propose to incorporate two evolution operators into the HQPSO to enhance the global search 
ability of the algorithm at the later search stage so that the algorithm can has much chance to escape the 
local optimal or sub-optimal solution, and we call it diversity explosion phase. As a result, with both 
Solis and Wets local search and the two evolution operators, the HQPSO has better balance between 
the global search ability and the local search ability than the QPSO with only Solis and Wets local 
search. The evolution operators used in the HQPSO, the crossover and mutation, are different from the 
ones generally used in evolutionary algorithms in that they are not executed on the whole position of 
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the particle but on a certain dimension of the position. In the subsequent part of this sub-section, the 
crossover and the mutation operators used in our proposed HQPSO are described in detail. 

The Single Dimension Crossover: The goal of the crossover operation in the HQPSO is to exchange 
the components in a randomly selected dimension of two randomly selected particles to obtain two 
new particle positions. As mentioned above, the crossover operator employed here is different from 
the one in most of real-coded evolutionary algorithms in that the crossover is operated on a certain 
dimension instead of the whole position vector. Thus, such a crossover operation, named as the single 
dimension crossover, can give the particle swarm a certain disturbance but not defnitely declining the 
swarm diversity as the traditional crossover operator does in other real-coded evolutionary algorithms. 
Practically, it can provide the algorithm some chance to escape the local optimal or sub-optimal solution 
and in turn to fnd a more promising area in the feasible region. 

Specifcally, at iteration t, we generated a random number uniformly distributed on (0,1). If this num-
ber is greater than the crossover probability pc, the single dimension crossover is executed, which is 
defned as: 

(
Xc j = r1Xc j + (1 − r1)X

c j 
c1,t+1 c1,t c2,t 

Xc j = r1Xc j (21)
+ (1 − r1)X

c j 
c2,t+1 c2,t c1,t 

where particles c1 and c2 are two randomly selected particles for the single dimension crossover oper-
ation and dimension c j is randomly selected for the purpose. In (21), r1 is a random number uniformly 
distributed on (0,1). 

The Single Dimension Mutation: The mutation operation adopted for the HQPSO, called the single 
dimension mutation, is implemented on the component in a randomly selected dimension of a randomly 
selected particle. This mutation can defnitely increase the swarm diversity of the particle swarm so 
that the global search ability of the algorithm can be enhanced to trade off the strong local search abil-
ity brought by the Solis and Wets local search without explicitly decreasing the precision of the fnal 
solution. With the above specifcation, the single dimension mutation can be formally expressed as: 

Xm j 
i,t+1 = 

  
� �2t 

− Pmin 
i 

Tmax ), i f r2 > �2�) × (1 − r2 
t 

Pmax − Xm j × (1 − r2 
Tmax ), otherwise i i,t 

0.5 �(Xm j 
i,t � (22) 

where r2 is a random numbers generated according to the uniform distribution on (0, 1), and Pmin andm j 
Pmax is the lower and upper bounds of the m j-th generating unit. m j 

According to (22), for each particle at the t-th iteration, a number is randomly generated uniformly 
distributed on (0,1) and if this number is greater than the mutation probability pm, the particle is selected 
for mutation. For the selected particle, a dimension m j is randomly selected, and then if r2 is larger 
than 0.5, the m j-th component of the particle position carries out the mutation according to the Eq.(22); 
otherwise, the lower one is carried out. 

(iii) The Procedure of the HQPSO algorithm 
With the above specifcation, the procedure of HQPSO is shown in Fgi. 1. Empirically, the algorithm 

strikes a balance between local search ability and global search ability when performing the two com-
bined evolution operators if the current iteration t is greater than half of maximum number of ftness 
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evaluations (FEs). It should be noted that all the random selection operation in the crossover and muta-
tion are with equal probability. 

Begin

Initialize the particle swarm

Initialize !",$, %",$, &$

The stopping criterion
is not met

Update particle’s positions
using QPSO by (18)

' > maximum	FEs/2 Perform crossover by (21)

Perform mutation by (22)

Update	!",$, %",$, &$

Solis and Wets local search by
Algorithm 1

Yes

Set t = 0

Set t = t + 1

Yes

No
End

No

Fig. 1. The follow chart of HQPSO algorithm 

With the above specifcation, the procedure of HQPSO is shown in Fgi.1. Empirically, the algorithm 
strikes a balance between local search ability and global search ability when performing the two com-
bined evolution operators if the current iteration t is greater than half of maximum number of ftness 
evaluations (FEs). It should be noted that all the random selection operation in the crossover and muta-
tion are with equal probability. 

4. Solving the ED problem with the HQPSO1 

4.1. Representations of the individual particle2 

When solving the ED problem by the HQPSO, we represent the current position of each particle as a 
candidate solution, with each component of the position vector denoting the power output of a generator. 
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Put it in more detail, if the system with Ng generators are needed to provide power to load demand, the 
current position of the i-th particle can be described as: 

Pi, j = [P i,1, P i,2, . . . , P i,Ng ], i = 1, 2, . . . M (23) 

where Mdenotes the swarm size, and Pi, j represents the output power of the j-th generator of the i-th 
particle. 

4.2. The objective function and constraints handling2 

We use a dynamic penalty method to deal with the equality constraints, and consequently the objective 
function then can be given by: 

XN NX 
Minimize F = F j(Pj) + Kn| Pj − PD − PL| (24) 

j=1 j=1 

where Kn is a positive value known as the penalty coeffcient, which increases over the search process. PNThe penalty term Pj − PD − PL is given by the equality constraint in (5). j=1 
The penalty method can control the candidate solution to approach gradually to the feasible search 

space. On the one hand, when the candidate solution does not violate the equality constraints, the penalty 
term equals to zero no matter how large the penalty coeffcient is. On the other hand, according to (24), 
a larger objective value is given to the candidate solution when it violates the equality constraint. 

As for inequality constraints described in (15)-(17), we also employ a penalty method. Specifcally, if 
the particle’ position is within the feasible intervals, the objective value is given by (24); otherwise, the 
objective function value of the particle’s position is penalized with a very large positive constant, which 
is also a user-specifed parameter. 

5. Experiment results and analysis1 

The HQPSO algorithm was tested on four actual power systems to verify its effectiveness in solving 
ED problems. In these systems, the ramp rate limit, the prohibited zones, the valve-points and multi fuel 
options of the equipment were taken into consideration in the corresponding experiment. For a compre-
hensive performance comparison, many optimization algorithms were evaluated on these four systems, 
including, the standard PSO with shrinkage and inertia weight (SPSO) [38], the hybrid gradient de-
scent PSO (HGPSO) [38], the QPSO [39], the hybrid PSO with mutation (HPSOM) [38], the hybrid 
PSO with wavelet mutation (HPSOWM)[38], the chaos PSO (CPSO) [40], artifcial bee colony algo-
rithm with distance-ftness-based neighbor search (DFnABC) [41], enhanced self-adaptive global-best 
harmony search (ESGHS) [42], diversity-based parallel PSO (DPPSO) [47]and differential evolution-
crossover QPSO (DE-CQPSO) [33]. For each system, all the tested methods used the same objective 
function. Besides, we carried out an ablation experiment to verify the effectiveness of each incorpo-
rated operation in the HQPSO. That is, we made a further performance comparison between two dif-
ferent versions of the HQPSO, namely the HQPSO-t1 and HQPSO-t2, where the HQPSO-t1 only em-
ployed the Solis and Wets local search method and the HQPSO-t2 used both the Solis and Wets local 
search method and the evolution operators. The source code of the HQPSO algorithm can be found in 
https://github.com/russchen/HQPSO.git. 

https://github.com/russchen/HQPSO.git
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5.1. The four power systems2 

System 1: The system is a medium-scale system with 15 thermal units, the characteristics of which 
can be found in [19]. The load demand of the system is 2630 MW, and the generating units 2, 5, 6, and 
12 in the system have a total of 11 prohibited operating zones. Therefore, this system has inequality 
constraints according to Eqs.(15)-(17). 

System 2: The system contains 40 generating units in the actual Taipower system, which is a high-
scale hybrid power system with coal-fred, oil-fred, gas-fred, diesel and combined cycles presented. 
The load demand of the system is 10500 MW. The details of this system such as the parameters and 
loss coeffcients of the generating unit can be found in [43]. This system has no prohibited zones with a 
result that has fewer inequalities. However, it does not signifcantly reduce the diffculty of the problem, 
since the characteristic of large size and the valve-point effects of this system make the corresponding 
ED problem hard to solve. 

System 3: The system consists of 140 generating units also known as Korean power system, which 
is a large-scale hybrid power system with coal, LNG_CC, NUCLEAL and OIL presented. The Korean 
power system is a non-convex problem with valve-points, prohibited operating zones as well as the ramp 
rate limits considered. The total demand of the system is set to 49342MW, and the dimension of this ED 
problem is 140. Since the valve point results in the ripples in this system, a cost function contains higher 
order non-linearity that makes its corresponding ED problem the most diffcult to solve among all the 
four systems. Due to space limitation, one can refer to [44] for the details of the system. 

System 4: This system has 320 generating units with both valve-point effect and multi fuel options 
considered, which is built by duplicating the 10-units system 32 times. The total load demand is set to 
86400 MW and the transmission loss is ignored. Due to the limited spaces, the details of the fundamental 
10-units system, such as cost effcient and defnition of fuel types, can be found in [45]. The cost function 
of its ED problem is defned by Eq.(4) and Eq.(13). 

5.2. Experimental confguration2 

The maximum number of FEs for solving the ED problem of the four systems using each of all 
the tested algorithms was 20000 for the purpose of fair performance comparison, since the most of 
computational consumption in the optimization task is spent on objective function evaluation. Each 
algorithm was tested on each system with two different experimental confgurations, one with the swarm 
size M = 100 and the maximum generation number Gmax = 200, and the other with the swarm size 
M = 20 and the maximum generation number Gmax = 1000. In addition, the minimum, mean and 
maximum of total fuel costs were obtained by conducting 100 independent trail runs with the given 
swarm size and the maximum generation number. Note that the experimental results are statistically 
obtained on an intel core i5 based workstation. 

For√ the former three systems, the penalty coeffcient Kt in the objective function was set to Kt = 
100 t, where t is the current generation number, and for the System 4, the penalty coeffcient Kt is 0.55. 
The penalty constant for inequality constraints was set to 106 . Table 1 presents the parameters settings 
of different operation in the proposed HQPSO-t2. Note that the parameters in the HQPSO-t1, namely 
the parameters of the QPSO algorithm and Solis and Wets local search, are the same as those in the 
HQPSO-t2. In Solis and Wets local search method, succmaxand f ail are two coeffcients to controlmax 
the local search ability. The larger the value of these two coeffcients, the stronger the local search ability. 
ρ determines the convergence speed of the method, and the larger the value, the faster the search speed. 
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The settings of these three parameters are the same as they set in the original paper. The coeffcient 
itermax determines the maximum number of generation, since the maximum number of FEs is 20000. 
Therefore, If the system is smaller, we will give this parameter a smaller value. In this paper, the itermax 

for different ED problems are set empirically. 
The main parameters of the other compared algorithms are described as follows. The maximum veloc-

ity of the SPSO was set to 0.2, the inertia weight of the CPSO was 0.9, the learning rate of the HGPSO 
was 0.001, the probability of mutation of the HPSOM and the HPSOWM both was 0.1, the coeffcient 
parameter in the QPSO algorithms declined from 1 to 0.5, and the present number of times in DFnABC 
equaled to the number of employed bees or onlooker bees times the dimension of the problem. 

Table 1 
The parameters setting in the hqpso-t2 algorithms for different systems 

Different modules in The HQPSO-t2 Parameters Value 
The QPSO algorithm α Declines from 1 to 0.5 

Evolution operators 
pc 0.1 
pm 0.1 
succmax 4 
f ailmax 4 
ρ 1 

Solis and Wets local search 

itermax 

System 1 2 
System 2 2 
System 3 10 
System 4 10 
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Fig. 2. Convergence properties of the tested optimization methods with higher objective function values on the 15-Unit sys-
tem.(a) M = 100 and Gmax = 200 (b) M = 20 and Gmax = 1000 

Table 2 gives the results obtained by each tested algorithm over 100 independently trail runs on the ED 
problem of system 1. As can be observed from the table, the HQPSO-t2 not only found the best solution 
(the minimum total fuel cost value is 32531.5860 $/h with M = 20, Gmax = 1000), but also obtained the 
smallest mean total fuel cost and standard deviation among all the tested algorithms under two different 
experiment confgurations. In addition, the ESGHS and DFnABC algorithms did not perform well on this 
ED problem. The minimum total fuel cost value obtained by the HQPSO-t2 with M = 20, Gmax = 1000 
out of 100 runs of the algorithm is 32686.4338 $/h. 
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Fig. 3. Convergence properties of the algorithms with higher objective function values on the 40-Unit system. (a) 
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Table 2 
The results on system 1 (15-unit system) 

M = 100, Gmax = 200 
Algorithms Min.Cost Mean.Cost Std.Cost Max.Cost Time Cost 

SPSO 32675.3597 32840.9538 93.5420 33049.5619 0.42 
CPSO 32705.5390 32917.4052 111.2425 33138.0568 0.59 

HGPSO 32970.7299 33127.2396 75.2538 33327.9679 1.49 
HPSOM 32717.6562 32849.8113 86.2222 33085.7497 0.38 

HPSOWM 32696.9585 32805.7185 87.8689 33034.3413 0.39 
QPSO 32685.9790 32825.4643 39.63134 32894.0091 0.38 

ESGHS 32932.8918 33165.2630 86.5261 33510.1828 0.41 
DFnABC 32696.9585 32805.7185 87.8689 33034.3413 1.21 

DE-CQPSO 32741.5275 32802.4608 65.3821 32904.9196 0.43 
DPPSO 32767.8293 32832.4202 75.3425 33014.2185 0.38 

HQPSO-t1 32709.6485 32764.9474 33.9226 32844.3083 2.19 
HQPSO-t2 32678.4298 32759.4641 38.4864 32850.6269 2.39 

M = 20, Gmax = 1000 
SPSO 32697.1431 32933.5688 137.8462 33399.6968 0.43 
CPSO 32774.8653 32897.7110 112.1387 33372.1291 0.94 

HGPSO 32963.0643 33148.3155 81.6494 33370.2925 1.81 
HPSOM 32698.2917 32847.3980 123.6024 33245.2739 0.40 

HPSOWM 32692.1996 32837.3907 109.3634 33057.3898 0.42 
QPSO 32663.1132 32732.8841 45.3794 32871.4257 0.42 

ESGHS 32970.7345 33331.2792 148.1969 33726.3692 0.38 
DFnABC 32940.3648 33186.2583 93.6921 33386.5677 1.29 

DE-CQPSO 32759.3216 32828.8773 48.7985 32933.0331 0.41 
DPPSO 32712.5265 32802.4608 65.3821 32904.9196 0.43 

HQPSO-t1 32670.3033 32735.1835 45.9301 32856.4061 2.06 
HQPSO-t2 32658.3740 32728.0508 55.5440 32884.3606 2.07 

In order to verify the best solution obtained by the proposed method not violate s the constraints, 
the characteristics of System 1 are given in Table 3. Columns 2-5 in this table describe the generating 
prohibited zones of the system, where P0 

j , URj , and DRj are the previous output level, the up-ramp 
limit, the down-ramp limit of the j-th generator, respectively. Columns 6-10 give the coeffcients of the 
generating unit ramp rate limits of the system, where Pmin and Pmax are the lower and upper bounds of j j 
the k-th prohibited operation zone of the j-th generating unit. The Table 4 gives the power generation 
output of each generator corresponding to the best solution. To prove that the best solution obtained 
by the HQPSO-t2 satisfes the constraints in (14), we added the transmission loss (25.1431 MW) to 
the load demand (2630 MW), getting the summation of 2655.1431 MW. By comparing the summation 
with the total power output (2656.6716 MW), we fnd that the equality constraint is well satisfed. In 
addition, we fnd that all the power outputs of generators are satisfy the ramp-rate limits, minimum 
and maximum limits and prohibited zones limits. In addition, the convergence properties of the tested 
optimization methods with higher objective function values on the 15-Unit system, namely the QPSO, 
the HPSOWM, and two types of HQPSO algorithms, are presented in Fig.2. We fnd that the proposed 
method converges faster and obtains a better solution fnally than the fundamental QPSO method, which 
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Table 3 
The generating unit ramp rate limits and the generating prohibited zones of the 15-unit system 

The generating prohibited zones The generating unit ramp rate limits 
Unit P0 

j UR j DR j Prohibited Zones Pmin 
j Pmax 

j a j b j c j 

1 400 80 120 150 455 671 10.1 0.000299 
2 300 80 120 [185,225][305,335][420,450] 150 455 574 10.2 0.000183 
3 105 130 130 20 130 374 8.8 0.001126 
4 100 130 130 20 130 374 8.8 0.001126 
5 90 80 120 [180,200][305,335][390,420] 150 470 461 10.4 0.000205 
6 400 80 120 [230,255][365,395][430,455] 135 460 630 10.1 0.000301 
7 350 80 120 135 465 548 9.8 0.000364 
8 95 65 100 60 300 227 11.2 0.000338 
9 105 60 100 25 162 173 11.2 0.000807 
10 110 60 100 25 160 175 10.7 0.001203 
11 60 80 80 20 80 186 10.2 0.003586 
12 40 80 80 [30,40][55,65] 20 80 230 9.9 0.005513 
13 30 80 80 25 85 225 13.1 0.000371 
14 20 55 55 15 55 309 12.1 0.001929 
15 20 55 55 15 55 323 12.4 0.004447 

Table 4 
The best solution obtained by the HQPSO on system 1 (15-unit system) with M = 20and Gmax = 1000 

Power Output 
P1 − P4 (MW) 454.5451 378.7795 130 130 
P5 − P8 (MW) 170 459.8223 428.8658 66.3782 

P9 − P12 (MW) 51.9768 159.0918 79.0049 79.4431 
P13 − P15 (MW) 25.2877 24.9203 17.0272 

Total Power Output (MW) 2655.1431 Power Loss (MW) 25.1431 
Total generation cost($/h) 32686.4338 

verifes the improvement of the convergence performance by incorporating the local search method and 
two evolution operators of the algorithm. 

As we can see in Table 5, the minimum total fuel cost obtained by the HQPSO-t2 with 
M = 100, Gmax = 200 over 100 independently trail runs is 119058.2805 $/h on the ED problem of 
System 2. Fig.3 indicates that both the HQPSO-t1 and HQPSO-t2 have better convergence performance 
than the canonical QPSO algorithm, and the HQPSO-t2 can fnd a better solution than the other com-
petitors. 

The ED problem of System 3 taking the valve point effects into consideration that it is harder than 
the problems of the previous systems, so that there are great differences among the tested algorithms in 
solving the ED problem as can be seen in Table 6. Similar to the other cases, the minimum fuel cost 
value was also yielded by the HQPSO-t2, and the HQPSO-t1 is the second-best algorithm in solving 
this ED problem. Fig.4 shows the convergence properties of four tested algorithms that perform well 
on the ED problem of this system. It is worth noting that the canonical QPSO and the two different 
types of the proposed HQPSO converge smoothly and can fnd fnal satisfying solutions. However, other 
algorithms, for example, the HPSOWM algorithm, converges very fast at the early search stage which 
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Table 5 
The results on system 2 (40-unit system) 

M = 100, Gmax = 200 
Algorithms Min.Cost Mean.Cost Std.Cost Max.Cost Time Cost 

SPSO 126133.3248 127892.0687 1499.0383 134228.2116 0.38 
CPSO 127315.8093 130562.3740 1556.9199 134635.5384 0.49 

HGPSO 131204.4270 133254.5020 1354.3291 135164.4746 1.94 
HPSOM 127129.5609 128501.2895 1229.9310 131450.5274 0.32 

HPSOWM 127502.6626 128609.6261 682.5146 129535.0901 0.34 
QPSO 123928.5081 124818.7533 510.1762 125075.9790 0.34 

ESGHS 123801.7456 128433.3286 2340.1223 134380.7145 0.32 
DFnABC 125310.9948 131094.0562 2693.0796 136801.5961 0.85 

DE-CQPSO 123329.7213 123728.8773 2523.7985 126293.6599 0.32 
DPPSO 123210.5375 123529.4618 788.3241 126704.2136 0.52 

HQPSO-t1 122929.7734 123934.7336 607.0051 126219.8492 1.06 
HQPSO-t2 123001.4797 123930.6621 604.6610 125805.0694 1.09 

M = 20, Gmax = 1000 
SPSO 127747.9049 131024.0408 4683.2325 150323.9269 0.56 
CPSO 128989.9941 133099.8996 2756.4730 139322.9076 0.65 

HGPSO 131673.4145 134277.9978 2022.6942 138303.8831 2.31 
HPSOM 127835.5108 127835.5108 743.5363 129284.1261 0.41 

HPSOWM 128066.3551 128066.3551 1376.5995 131628.1340 0.41 
QPSO 121948.8493 122900.0740 530.0614 124212.2353 0.42 

ESGHS 123801.7456 128433.3286 2340.1223 134380.7145 0.42 
DFnABC 125310.9937 131094.0562 2693.0796 136801.5961 0.97 

DE-CQPSO 122313.9905 123202.1172 2573.0851 129923.7554 0.47 
DPPSO 122345.1225 122376.1628 733.3221 125492.1116 0.49 

HQPSO-t1 121972.5806 122959.5297 645.9579 124970.6544 1.10 
HQPSO-t2 121800.5434 122739.6659 488.3997 124345.7115 1.21 

may make the swarm stuck into a local optimal point. It can be clearly seen from the enlarged picture 
that the HQPSO-t2 is able to get a better solution than the QPSO and the HQPSO-t1. 

Table 7 provides the results of 10 tested algorithms obtaining by 100 trails on the problem of System 4. 
This problem is the largest and the hardest problem among the four systems, since it has 320 generating 
units with both valve-point effect and multi fuel options considered. It can be clearly seen from the table 
that the proposed method HQPSO-t2 outperforms the other competitors under two different confgura-
tions. Fig.5 shows the convergence properties of four tested algorithms for the 320-Unit system, and we 
fnd that the algorithm may stucks into the local optima area without the help of the single dimension 
operations of crossover and mutation. 

Furthermore, Table 8 provides the results of the unpaired t-test and Wilcoxon rank sum test of the 
HQPSO-t2 with the other compared algorithms. Due to space limitation, the statistic test results for 
the other three systems are not given in the paper. From Table 8, we can reach the conclusion that the 
HQPSO-t2 has an extremely signifcant difference with all the other competitors. Therefore, it is verifed 
that the HQPSO-t2 performed the best in a signifcance manner on this ED problem among all the tested 
approaches. 
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Table 6 
The results on system 3 (140-unit system) 

M = 100, Gmax = 200 
Algorithms Min.Cost Mean.Cost Std.Cost Max.Cost Time Cost 

SPSO 1728741.8982 1778427.0646 37939.5346 1996816.3970 1.56 
CPSO 1832766.1106 1888991.6944 24467.0471 2011114.1627 2.37 

HGPSO 1879121.8773 1909705.5392 11218.3140 1931204.5411 11.24 
HPSOM 1887442.9630 1956773.7462 25737.7534 2002370.4120 0.82 

HPSOWM 1884711.1356 1964226.7551 45201.4724 2038199.9819 0.89 
QPSO 1670809.7544 1677133.6079 3570.5149 1687790.7177 1.20 

ESGHS 1857427.1258 1928523.8805 24238.3065 1977945.9261 1.29 
DFnABC 1881238.3763 2553878.8346 881745.0854 4699593.8377 3.57 

DE-CQPSO 1847690.9399 1917456.9870 35199.6722 1969464.5639 0.92 
DPPSO 1676223.1275 1680231.4108 4572.3221 1692837.2126 1.03 

HQPSO-t1 1670756.2609 1675535.7567 3222.5733 1683489.5604 5.32 
HQPSO-t2 1670265.6224 1675272.4989 2748.2349 1682552.8438 5.40 

M = 20, Gmax = 1000 
SPSO 1742480.5812 1914882.7720 117215.2318 2152977.5007 1.52 
CPSO 1857363.8994 1903203.3744 19802.0558 1974100.2225 1.72 

HGPSO 1885397.0518 1920491.6889 12486.4050 1945173.1240 12.64 
HPSOM 1880363.6519 1930098.3411 26842.2235 2071747.6331 1.20 

HPSOWM 1881967.9661 1928056.8934 25162.5623 2057779.5623 1.23 
QPSO 1659691.9918 1662849.4855 1789.4972 1668901.1165 1.72 

ESGHS 1853743.4210 1905869.6847 33572.2909 2007021.7456 1.85 
DFnABC 1870110.7843 2112048.5359 118097.2076 2390590.1222 5.82 

DE-CQPSO 1934426.0643 1982332.1632 23069.0030 2007861.6231 1.82 
DPPSO 1678723.5275 1679723.3608 2020.3321 1682302.2193 1.92 

HQPSO-t1 1660878.1374 1664237.8064 1451.3683 1667938.3994 14.91 
HQPSO-t2 1659909.7560 1662186.9386 1057.6178 1665583.3976 15.25 

Fig.6 shows the changing curves of the swarm diversity of two types of the proposed algorithms and 
the canonical QPSO algorithm during the search process. The swarm diversity is calculated by: 

 1/2 
M M h i MX X X1 1

D (Xt) =  X j − C j  = X j − C j | (25)i,t i,tM · A t M · A t 
i=1 j=1 i=1 

with 
√ 

A = 2 ∗ γ ∗ D| (26) 

where M is the swarm size, γ is self-defned and used to limit the range of swarm diversity values, and 
D means the dimension number of the problem. C j is the mean value of each dimension of the particle t 
swarm. It can be clearly seen form Fig.6 that HQPSO-t2 can maintain the swarm diversity during the 
search process better than the other two algorithms. In addition, the swarm diversities of the QPSO drops 
rapidly especially at the later search stage. 
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Table 7 
The results on system 4 (320-unit system) 

M = 100, Gmax = 200 
Algorithms Min.Cost Mean.Cost Std.Cost Max.Cost Time Cost 

SPSO 23530.0279 23895.2890 135.3200 24203.2531 2.65 
CPSO 20730.0132 20854.1034 74.8109 20982.5791 4.38 

HGPSO 21703.1450 21895.9838 99.9073 22177.3701 524.11 
HPSOM 20601.5084 20711.6665 55.8853 20855.2873 3.44 

HPSOWM 20968.2764 21091.4724 67.0453 21296.7401 2.86 
QPSO 20253.8544 20339.0282 34.7542 20441.9486 2.96 

ESGHS 22757.6964 23224.3743 220.0019 23757.9709 0.83 
DFnABC 22125.2705 22716.6823 176.5680 23031.9353 44.53 

DE-CQPSO 23488.9966 23862.7038 186.6734 24249.5416 0.87 
DPPSO 23021.5271 23210.4201 220.3521 23321.2195 3.23 

HQPSO-t1 23657.5590 24301.6431 273.1929 25286.2464 3.00 
HQPSO-t2 20228.0330 20292.3103 35.7659 20392.5634 3.89 

M = 20, Gmax = 1000 
SPSO 23873.4001 24341.5286 212.4972 24782.2126 2.79 
CPSO 20730.0132 20854.1034 74.8109 20982.5791 5.75 

HGPSO 21647.6398 21895.5575 124.4781 22153.0172 505.00 
HPSOM 20197.7344 20290.9004 35.2913 20383.1526 3.01 

HPSOWM 20380.7888 20529.0938 54.4495 20692.9613 3.00 
QPSO 20208.3425 20299.6276 43.6105 20401.6185 3.12 

ESGHS 22141.7745 22557.0066 211.2381 23223.0294 4.15 
DFnABC 20636.0731 20802.1720 79.3019 21044.2541 10.38 

DE-CQPSO 23884.1108 24310.1655 280.4958 24686.1076 3.21 
DPPSO 21281.2252 21321.3262 46.1231 21542.1082 4.43 

HQPSO-t1 21323.3064 21735.0146 198.5969 22377.5906 7.57 
HQPSO-t2 20079.5113 20136.7030 25.6040 20209.9782 8.66 

6. Conclusion and Future Works1 

In this paper, we proposed the HQPSO algorithm which couples the Solis and Wets local search and 
evolution operators with the QPSO, in order to improve the relatively poor local search ability of the 
QPSO when solving the non-convex ED problems. In the HQPSO, the Solis and Wets local search 
method enhances the local search ability of the algorithm, and the two evolution operators decrease the 
probability of premature convergence caused by the Solis and Wets method. Therefore, the HQPSO has a 
better balance between the local search and global search abilities. The two types of the HQPSO and the 
other optimization techniques were tested on the ED problems of four power systems, with the nonlinear 
characteristics of the generators, valve-point effects and multi-fuel options taken into consideration. To 
guarantee that the candidate solutions provided by the tested algorithms do not violate the constraints, 
the penalty method was employed. 

The experimental results obtained by the tested algorithms on the four well-studied cases indicated 
that the two different types of HQPSO algorithms were better than the other tested competitors in terms 
of solution quality and performance robustness. Furthermore, the HQPSO-t2 could yield higher-quality 
solutions with better convergence properties than the HQPSO-t1, implying that it is a promising opti-
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Table 8 
Results of the unpaired t-test and Wilcoxon rank sum test on the data in Table 7.) 

Confgurations 
M = 100, Gmax = 200 M = 20, Gmax = 1000 M = 100, Gmax = 200 M = 20, Gmax = 1000 

p value of the unpaired t-test p value of Wilcoxon rank sum test 
HQPSO-t2 SPSO 2.39E-29 3.22E-162 1.13E-23 2.56E-34 
HQPSO-t2 CPSO 3.83E-66 9.31E-26 2.56E-34 2.06E-07 

HQPSO-t2 HGPSO 1.71E-155 9.12E-11 1.96E-10 1.96E-10 
HQPSO-t2 HPSOM 7.76E-193 1.72E-143 2.56E-34 2.56E-34 

HQPSO-t2 HPSOWM 1.31E-182 5.43E-127 2.56E-34 2.56E-34 
HQPSO-t2 QPSO 2.67E-202 2.51E-142 2.56E-34 2.56E-34 
HQPSO-t2 MGDE 6.38E-174 3.06E-150 2.56E-34 2.56E-34 
HQPSO-t2 ESGHS 3.04E-77 1.24E-71 3.06E-34 2.56E-34 

HQPSO-t2 DE-CQPSO 1.23E-199 1.92E-132 2.56E-34 2.56E-34 
HQPSO-t2 DPPSO 3.31E-76 1.68E-71 2.56E-34 2.56E-34 

HQPSO-t2 DFnABC 3.31E-112 1.68E-103 2.56E-34 2.56E-34 
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Fig. 6. The changing curve of the swarm diversities of the QPSO, HQPSO-t1 and HQPSO-t2 algorithms on different systems 
with M = 20 and Gmax = 1000 

mization technique for solving ED problems. However, the proposed algorithm has many parameters 
need to be adjusted and converges lower that the other metaheuristic algorithms. 

Since the HQPSO incorporates the Solis and Wets local search method and two evolution operators, 
its computational cost is higher than the other population-based algorithms. Therefore, in the future, we 
will frst implement some gradient based methods into the algorithm to reduce the time complexity of the 



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

21 Qidong Chen et al. / Instructions for the preparation of a camera-ready paper in LATEX 

algorithm. We also will focus on the application of the HQPSO-t2 algorithm to other diffcult industrial 
optimization problems. 
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