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Parallel multi-objective algorithms for the molecular docking
problem

Jean-Charles Boisson, Laetitia Jourdan, El-Ghazali Talbiand Dragos Horvath

Abstract— Molecular docking is an essential tool for drug
design. It helps the scientist to rapidly know if two molecules,
respectively called ligand and receptor, can be combined to-
gether to obtain a stable complex. We propose a new multi-
objective model combining an energy term and a surface term
to gain such complexes. The aim of our model is to provide
complexes with a low energy and low surface. This model
has been validated with two multi-objective genetic algorithms
on instances from the literature dedicated to the docking
benchmarking.

I. I NTRODUCTION

FOR drug design, it is essential to find which molecules
can interact with other bigger molecules. In this con-

text, the docking problem consists in finding how a small
molecule, the ligand, can be put in contact in a particular
location, the binding site, of another bigger molecule. Ex-
perimental docking studies cost time and resources. There
generally exist more than one hundred thousand ligands
and the binding site of a receptor is not necessary known
and/or unique. In this situation, automatic docking methods
to screen large ligand databases allow to speed up drug
design. The ligand databases are parsed in order to find
ligands which can be docked with the molecule of interest
in order to enable, disable or modify its function. Then the
selected ligands can be docked experimentally to validate the
result of the automatic docking. These approaches to speed-
up drug design are also called “virtual screening” methods.

Since the 90’s, metaheuristics have been used to solve
the molecular docking problem. Originally, single solution
metaheuristics, such as Metropolis Monte-Carlo algorithm
or Simulated Annealing, were used to solve this problem.
For example, the first version of the well known AutoDock
software package has its main algorithm based on a Simu-
lated Annealing [1]. Later, population based metaheuristics
like Genetic Algorithms (GAs) have been used [2], [3]. The
current main algorithm included in AutoDock is based on
a Lamarckian Genetic Algorithm (LGA). It corresponds to
the hybridization of a GA and a local search method [4].
Recently, new docking methods have been also proposed
using Particle Swarm Optimization (PSO) [5] or Ant Colony
based metaheuristics [6]. All these methods try to find the
best binding mode using complete molecules. Other methods
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propose incremental algorithms to find the binding mode. In
DOCK [7] and FlexX [8], the complete ligand is constructed
step by step in the binding site. More information about
standard docking softwares can be found in [9].

We propose a new multi-objective model for the flexible
docking problem combining an energy term with a surface
term. It is a flexible docking model because the conformation
of the ligand and the site can be modified during the process.
The aim of the surface term is to guide the penetration of
the ligand into the site. The energy term is used to gain a
complex of low energy.

This paper is organized in four main parts. First, our bi-
objective model is detailed and each objective is presented
in three steps: definition, motivation and validation. In the
second part, the algorithm design is described. As we use
a platform to ease the design of our algorithm, only parts
dedicated to the docking problem are explained. The third
part presents our first results that validate our model. Finally,
conclusions and perspectives about this work are provided.

II. N EW MODEL FOR THE MOLECULAR DOCKING

PROBLEM

A. Existing multi-objective models

Most of the docking methods use a mono-objective mod-
eling. In these models, the objective is generally the binding
free energy. This objective is defined as an aggregation of
energy interaction terms. However, other type of information
can be also included. First multi-objective models were based
on subsets of the original binding free energy from the
mono-objective models. The multi-objective model that is
the most used for solving the docking problem (but also
the protein structure prediction problem) is the bi-objective
model that divides the energy into bonded and non-bonded
energy. This model is based on the notion of attractive
and repulsive energies that maintain the molecule into a
stable conformation. Other models include objectives based
on information about molecule geometry [10]. But this type
of objective is more often used in preliminary studies for
decreasing the search space of docking methods [11].

B. Our bi-objective model

In our model, we combine an energy term and a surface
term. The first one describes the stability of the ligand/site
complex (LSC) and the second allows to qualify the how the
ligand is entered into the binding site.



1) First objective: This criterion is a compound of two
main terms: the bonded and the non-bonded atom energy.
The first describes all the interactions that occur when
two atoms are linked together. This term is described in
equation 1.

Ebonded atoms =
∑

bonds

Kb(b − b0)
2 +

∑

angles

Kθ(θ − θ0)
2 +

∑

torsions

Kφ(1 − cos n(φ − φ0))

(1)

Kb, Kθ and Kφ are the strength constants linked to the
length, the angle and the phase contributions respectively. In
the same manner,b0, θ0 andφ0 are empirical optimal value
for the length, the angle and the phase difference between
two given atoms.b, θ and φ are the current values of the
length, the angle and the phase difference. For the torsion
term, n is the periodicity linked to the type of the central
bond of the torsion (double or triple).

The second term of our first objective function corresponds
to the interactions between the atoms and their environment
(other atoms, solvent, etc). This term is detailed in equa-
tion 2.

Enon bonded atoms =
∑

V an der Waals

Ka
ij

d12
ij

−
Kb

ij

d6
ij

+

∑

Coulomb

qiqj

4πǫdij

+

∑

desolvation

Kq2
i Vj + q2

j Vi

d4
ij

(2)

In this equation,qi is the charge of the atomi; dij is the
distance between atomsi andj; Vi is a volumetric measure
for the atomi; K and Kx

ij are strength constants linked to
the contribution of the considered atoms. The Van der Waals
contribution term allows to describe the combination of
attractive and repulsive force between two atoms accordingto
the distance between their centers. The Coulomb contribution
term describes how the electronegativity differences inside
a molecule between atoms of different size and mass have
an impact on the corresponding energy. These differences
produce charges that can be attractive or repulsive. The des-
olvation term models the solvent action around a molecule.

The force field used for computing all these terms is the
Consistent Valence Force Field (CVFF). All the parameters
of this force field have been tuned experimentally on a
diverse set of molecules.

These bonded and non-bonded energy terms have been
already used in a bi-objective model for the resolution of the
Protein Structure Prediction problem (PSP) [12].

In our case, the first criterion is a stability indicator. To
estimate the stability of a ligand/site complex, we need its
complete molecular energy. As a result, the bonded and the

non-bonded energy terms are combined. Finally, our first
objective function is a compound of six terms summarized
in equation 3:

E = Ebonded atoms + Enon bonded atoms

=
∑

bonds

+
∑

angles

+
∑

torsions

+

∑

V an der Waals

+
∑

Coulomb

+
∑

desolvation

(3)

Our first criterion defines the molecular energy of a LSC.
The lower the energy is, the more stable the complex is.
Nevertheless, a LSC with a low energy does not necessarily
correspond to a good quality docking. Two LSCs with an
equivalent energy can correspond to two completely differ-
ent complexes. When considered alone, energy cannot give
enough information to differentiate similar conformations. A
same level of energy can correspond to a very diversified
family of conformations. A family of narrow conformations,
can have very different levels of energy. Our second objective
function may help choosing the best LSC for our problem.

2) Second objective:For molecules, there are three types
of surfaces:

• the Van Der Waals Surface (VDWS) that is the simplest
surface to represent.

• the Solvent Accessible Surface (SAS) that is the first to
use the notion of solvent.

• the Connolly Surface (CS) that is considered as the real
surface of a molecule.

An atom can be represented as a sphere due to its Van
der Waals radius. The VDWS corresponds to the sum of the
spherical surface parts that are not in collision with other
spheres. Figure 1 shows the Van der Waals surface of a
molecule of five atoms.

VDWS

Fig. 1

VAN DER WAALS SURFACE(VDWS) OF A MOLECULE COMPOUND OF

FIVE ATOMS.

The SAS, and later the CS, were defined by Lee and
Richards in [13] and in [14] respectively. For the VDWS,
the molecule is considered to be in the vacuum but it is a
simplified model. The SAS and the CS are more realistic
surfaces because they consider that the molecule is in a
solvent. This solvent presence is symbolized by a probe. The
SAS is drawn according to the center of this probe that rolls
on the atom spheres. Generally, the probe has a radius of



1.4 Å (1 angstrom(̊A)= 0.1 nanometer) in order to be able to
contain a water molecule that is one of the standard solvents.
Figure 2 describes the SAS of the same molecule of five
atoms.

Probe SAS

Fig. 2

SOLVENT ACCESSIBLE SURFACE(SAS)OF A MOLECULE COMPOUND OF

FIVE ATOMS. THE PROBE SYMBOLIZES A SOLVENT MOLECULE. IN OUR

CASE, IT IS A MOLECULE OF WATER.

For the CS, the surface is drawn according to all the points
of the probe surface that touch the atom spherical surfaces.
A special case occurs when a probe touches two spheres at
the same time. In this case, the drawn surface corresponds to
all the points of the probe surface which are oriented toward
the molecule. An example of CS is shown in the figure 3
always with the same molecule of five atoms.

Probe

CS

Fig. 3

CONNOLY SURFACE (CS)OF A MOLECULE COMPOUNDED OF FIVE

ATOMS. THE PROBE SYMBOLIZES A SOLVENT MOLECULE. IN OUR CASE,

IT IS A MOLECULE OF WATER.

Several methods that compute these surfaces can be found
in [15], [16], [17], [18].

For our multi-objective model, we use an algorithm that
computes an approximation of the SAS for a LSC. The SAS
is a good compromise between quality and computational
complexity. Due to the notion of solvent, it is a realistic
surface and its calculus is not too expensive compared to
the CS computation. The original SAS algorithm was first
presented in [19], but was also recently used in [20]. It is
based on look-up tables and Boolean Logic. It approximates
the method of Shrake and Rupley [21].

According to this method, each atom spherical surface is
represented as a set of points (figure 4). Each point is encoded

Fig. 4

REPRESENTATION OF THE SPHERICAL SURFACE OF AN ATOM WITH

POINTS.

as a bit to indicate if it is in interaction with the solvent (1) or
not (0). Thus surface points are represented as bit string. Due
to the atom encoding, computing the area of one atom only
consists of “AND” Boolean operations. Look-up tables are
used to speed-up the calculus by saving Boolean masks used
to approximate intersection between atom points. The SAS of
a LSC allows to evaluate the penetration of the ligand into the
site. In a real docking process, the ligand may try to dive into
the binding site or try to modify its conformation to better
suit the binding surface. In both cases, the corresponding
SAS will decrease. Therefore, this criterion is essential for
simulating realistic flexible docking processes.

III. M ETHOD

A. Multi-objective optimization problems

In a variety of applications, a problem arises that several
objective functions have to be optimized concurrently. One
important feature of these problems is that the different ob-
jectives typically contradict each other and therefore certainly
not have identical optima. Thus, the question arises how to
approximate one or several particular “optimal compromises”
or how to compute all optimal compromises of this multi-
objective optimization problem (MOP).

A MOP can be defined as follow:

min
x∈S

{F (x)}, S = {x ∈ Rn : h(x) = 0, g(x) ≤ 0},

whereF is defined as the vector of the objectives:

F : Rn → Rk, F (x) = (f1(x), ..., fk(x)),

with f1, ..., fk : Rn → R, h : Rn → Rm, m ≤ n, and
g : Rn → Rq. A vectorv ∈ Rk is said to bedominatedby
a vectorw ∈ Rk if for all i ∈ 1, ..., k wi ≤ vi andv 6= w.
A vector v is nondominatedwith respect to a setP , if none
of the vectorsp ∈ P dominatev. A point x ∈ S is called
optimal orPareto optimal, if F (x) is not dominated by any
vectorsF (y), y ∈ S.

B. ParadisEO platform

In order to ease the implementation of our algorithm,
we have used the ParadisEO platform [22]. ParadisEO is a
complete platform to design powerful optimization methods.
It consists in four components:

1) ParadisEO-EO (Evolving Object) dedicated to
population-based metaheuristics.



2) ParadisEO-MO (Moving Object) dedicated to single
solution-based metaheuristics.

3) ParadisEO-MOEO (Multi ObjectiveEO) dedicated to
multi-objective meta-heuristics.

4) ParadisEO-PEO (Parallel EO) dedicated to parallel
metaheuristics.

ParadisEO-MOEO [23] and ParadisEO-PEO have been
more particularly used in our case. More information about
ParadisEO is available on the official website:

(http : //paradiseo.gforge.inria.fr).

This platform allows the user to only design the parts spe-
cific to his problem in order to design effective algorithms.
In our case, only solution encoding, solution evaluation and
genetic operators have implemented.

C. Parallel genetic algorithms

Thanks to the ParadisEO platform, two parallel genetic
algorithms have been designed: one based on the well known
NSGA-II (Non-dominated Sorting Genetic Algorithm II) and
the other on the IBEA (Indicator-Based Evolutionary Algo-
rithm). The first one is a standard multi-objective algorithm
used to test our model. The second one is an algorithm that
has been proved better than NSGA-II on several problems.
Therefore, we have test it on the docking problem.

1) Genetic Algorithms:A Genetic Algorithm (GA) works
by repeatedly modifying a population of artificial structures
through the application of genetic operators (crossover and
mutation) [24]. The goal is to find the best possible solution
or, at least good, solutions for the problem.

2) NSGA-II and IBEA: In NSGA-II [25], the solutions
contained in the population are ranked into several classes
at each generation. Individuals from the first front all belong
to the first efficient set. Individuals from the second front
all belong to the second best efficient set, etc. Two values
are then computed for every solutions of the population. The
first one corresponds to the rank the corresponding solution
belongs to, and represents the quality of the solution in terms
of convergence. The second one, the crowding distance,
consists of estimating the density of solutions surrounding
a particular point of the objective space, and represents the
quality of the solution in terms of diversity. A solution is said
to be better than another if it has the best rank, or in the case
of a tie, if it has the best crowding distance. The selection
strategy is a deterministic tournament between two random
solutions. At the replacement step, only the best individuals
survive, with respect to the population size. Likewise, an
external population is added to the steady-state NSGA-II in
order to store every potentially efficient solution found during
the search.

For IBEA [26], the fitness assignment scheme is based on
a pairwise comparison of solutions contained in a population
by using a binary quality indicator. No diversity preservation
technique is required, according to the indicator being used.
The selection scheme for reproduction is a binary tournament

between randomly chosen individuals. The replacement strat-
egy is an environmental one that consists of deleting, one-by-
one, the worst individuals, and in updating the fitness values
of the remaining solutions each time there is a deletion; this
is continued until the required population size is reached.
Moreover, an archive stores solutions mapping to potentially
non-dominated points, in order to prevent their loss during
the stochastic search process.

3) Coding: In our algorithm, the solutions are represented
according to two vectors of float corresponding to the atomic
coordinates. Each atom has three coordinates (x, y and z).
Figure 5 describes this coding. In our case a solution is called
a “Docking Complex”.

X0 Y0 Z 0

X1

X2

Y1

Y2

Z 1

Z 2

XN−1 YN−1 Z N−1

X’0 Y’0 Z’0

X’1 Y’1 Z’1

X’2 Y’2 Z’2

X’M−1 Y’M−1 Z’M−1

Ligand

N atoms

Docking Complex

M atoms

Protein

Fig. 5

REPRESENTATION A SOLUTION IN OUR GENETIC ALGORITHM. N AND M

ARE THE NUMBER OF ATOMS COMPOUNDING THE BINDING SITE AND

THE LIGAND RESPECTIVELY.

Between two individuals, only the coordinates of the atoms
change. The molecule topology is already loaded and can
be used directly. The full ligand/site complex is only build
during the evaluation step of an individual.

4) Operators: There are two types of operators in a
standard GA: crossover and mutation. The crossover mixes
the information of two individuals, the parents, to create new
individuals, the children. In our case, it swaps the ligand
of two complexes. If the parent complexes areS1L1 and
S2L2, the children complexes will beS1L2 and S2L1. It
must be noticed that this type of operator can generate invalid
complexes with atomic collisions. However, these complexes
are penalized by the evaluation of the first objective. Its
can be explained by one of the term of our first objective
function: the Van der Waals term. Figure 6 details the



variation of the energy between two atoms according to the
distance of their center.

Repulsion

Attraction

Minimal energy

Fig. 6

VAN DER WAALS INTERACTION BETWEEN TWO ATOMS.

There is an optimal distance that minimizes the energy, but
if two atoms are too close the corresponding energy become
very high. That is why our first objective function will
penalize such ligand/site configuration. Thus, we do not need
a mechanism to repair or check the generated complexes.

Crossover operators do not add new information to the
population. The parent information is just reordered in the
children. Mutation adds some diversity in the new individuals
just after applying the crossover. This unary operator is
applied on an individual according to a global probability
of mutation. Three mutation operators have been designed:
rotation, translation and torsion rotation mutation. The ro-
tation and translation operators provide rigid docking. The
last operator adds some flexibility in the docking. If only
one molecule can have its structure modified (typically the
ligand) due to torsion rotation, it is a semi-flexible docking. If
both molecules can be modified, it is a full flexible docking.
In our case, we can make rigid, semi-flexible or full-flexible
docking according to the configuration of our algorithm. The
choice of mutation used depends on probabilities linked to
each of them.

5) Paralleling scheme:In optimization methods, the eval-
uation step is resource consuming. Therefore, we use the well
known master/slave paradigm for the individual evaluation.
The master manages the GA and the slaves are used to
evaluate one individual. In ParadisEO-PEO, the master is
known as arunner and another process calledscheduler
dispatches the individuals that will be evaluated by the slaves.
For instance, a parallel run with a master and ten slave needs
in reality twelve processors.

IV. RESULTS

A. Test protocol

1) test data: In order to test our model, we use lig-
and/site complexes (LSC) from the CCDC/Astex data set.
The original version of this data set is referenced in [27].
It corresponds to the benchmarking of the GOLD docking
software. We have taken instances from the CCDC/Astex

“clean” list. It corresponds to 224 diversified instances that
suit well for docking benchmarking.

Table I presents the first complexes taken from this list.

TABLE I

PROTEIN-LIGAND COMPLEXES USED FOR BENCHMARKING. PDB IS THE

PROTEIN DATA BANK IDENTIFIER OF THE COMPLEXES.

Protein-ligand complexes PDB
Ribonuclease A / Uridine-2’,3’-Vanadate 6rsa

HIV-1 Protease / G26 1mbi
Thymidilate / CB3 2tsc

HIV-1 Protease / G26 1htf
Glucoamylase-471 / Alpha-d-mannose 1dog

For the remaining of this article, the complexes will
be designated by their corresponding Protein Data Bank
identifier (PDB). The docking algorithm is the last step of a
larger work-flow of molecule/molecule interaction analysis:
docking@GRID. According to this work-flow, we consider
that the docking algorithm starts with two proteins, a ligand
and another molecule with a potential binding site, in a
stable conformation gained thanks to a folding algorithm. We
also consider that the protein corresponding to the ligand is
already in front of the binding site.

To prepare our instances, we have used the USCF Chimera
software1. The ligand has been manually extracted from its
crystallographic location in order to have aseed ligand.
This seed is perturbed to generate a population of diversified
individuals. These perturbations combine rotation, translation
and torsion rotation. All these perturbations are applied
randomly a given number of times (10 by default).

Table II details the deviation between the seed ligand used
to initialize the GA population and the ligand considered
to be at the good location according to the crystallographic
data. The computed deviation is theRoot Mean Square
Deviation (RMSD). According to [28], the RMSD is defined
as followed:

RMSD =

√

∑n

i=1
(dx2

i + dy2
i + dz2

i )

n
(4)

In equation 4,n corresponds to the total number of atoms.
dxi, dyi and dzi are the atomic coordinate differences be-
tween the ligand predicted location and its location according
to the crystallographic data.

TABLE II

RMSD BETWEEN THE SEED LIGAND AND THE LIGAND IN ITS

CRYSTALLOGRAPHIC LOCATION(ACCORDING TO THECCDC-ASTEX

DATA SET). THE INSTANCES ARE CITED ACCORDING TO THEIRPDB

IDENTIFIER.

Instance RMSD seed VS optimal (̊A)
6rsa 7.15
1mbi 7.93
2tsc 13.48
1htf 14.45
1dog 10.68

1www.cgl.ucsf.edu/chimera



2) Parameters:Our population consists in 100 individ-
uals. The probabilities of crossover and mutation are 0.9
and 0.5 respectively. In our GA, the stopping criterion is a
number of generations without improvement after a minimal
number of generations. No improvement means no new
non-dominated solution discovery. In our tests, the minimal
number of generations is 1000 and the number of generations
without improvement is 100.

3) Paralleling speed-up:Table III and figure 7 shows an
example of the speed-up obtained thanks the parallelization
of our GA for a small population of 32 individuals using
Intel Xeon 3Ghz processors. The speed-up corresponds to
the ratio of the time taken with one slave and the time with
more slaves (2, 4, 8, 16 and 32 respectively).

TABLE III

SPEED-UP ACCORDING TO THE NUMBER OF SLAVES. SPEED-UP

CORRESPONDS TO TIME FOR1 SLAVE DIVIDED BY THE TIME OF X

SLAVES.

Number of slaves Time in seconds Speed-up
1 1243.76 1
2 769.30 1.62
4 543.73 2.29
8 439.85 2.83
16 365.32 3.4
32 352.61 3.53
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Fig. 7

T IME (DECREASING LINE) AND SPEED-UP (INCREASING LINE)

ACCORDING TO THE NUMBER OF SLAVES USED.

According to these data, we can establish that having
a number of slaves equal to the population size is not
necessarily an efficient solution. It can be due to the time of
communication between the master and a slave: packing an
individual (master), send it (from master to slave), unpacking
the individual (slave), evaluate it (slave), packing the individ-
ual (slave), send it (from slave to master) and unpacking the
individual for using it (master). In an individual, the ligand
coordinate vector is generally very small (< 100 atoms) but
the binding site coordinate vector can be huge (more than
5000 atoms).

TABLE IV

COMPARISON OF DIFFERENT METAHEURISTICS FOR THEEps AND THE

I
−

H
METRICS BY USING A MANN-WHITNEY STATISTICAL TEST WITH A

P-VALUE OF 5%. ACCORDING TO THE METRIC UNDER CONSIDERATION,

EITHER THE RESULTS OF THE ALGORITHM LOCATED AT A SPECIFIC ROW

ARE SIGNIFICANTLY BETTER THAN THOSE OF THE ALGORITHM

LOCATED AT A SPECIFIC COLUMN(≻), EITHER THEY ARE WORSE(≺),

OR THERE IS NO SIGNIFICANT DIFFERENCE BETWEEN BOTH(≡).

Eps I
−

h

Instance algorithms IBEA NSGA II IBEA NSGA II

6rsc
IBEA - ≻ - ≻

NSGA II ≺ - ≺ -

1mbi
IBEA - ≻ - ≻

NSGAII ≺ - ≺ -

2tsc IBEA - ≡ - ≻
NSGAII ≡ - ≺ -

1htf IBEA - ≡ - ≡
NSGAII ≡ - ≡ -

1dog
IBEA - ≻ - ≻

NSGA II ≺ - ≺ -

B. Comparison

All our tests have been run on a cluster of 64 Intel Xeon
3Ghz processors.

1) Performance Assessment:For each instance and each
metaheuristic, a set of10 runs, with different initial popu-
lations, has been performed. In order to evaluate the quality
of the non-dominated front approximations obtained for a
specific test instance, we follow the protocol given in [29].
First, we compute a reference setZ⋆

N of non-dominated
points extracted from the union of all these fronts. Second,
we definezmax = (zmax

1 , zmax
2 ), wherezmax

1 (respectively
zmax
2 ) denotes the upper bound of the first (respectively

second) objective in the whole non-dominated front approx-
imations. Then, to measure the quality of an output setA
in comparison toZ⋆

N , we compute the difference between
these two sets by using the unary hypervolume metric [30],
(1.05 × zmax

1 , 1.05 × zmax
2 ) being the reference point. The

hypervolume difference indicator computes the portion of
the objective space that is dominated weakly byZ⋆

N and not
by A. Furthermore, we also consider the unary additiveǫ-
indicator (I1ǫ+) that gives the minimum value by which an
approximationA has to be translated in the objective space
to dominate weakly the reference setZ⋆

N . As a consequence,
for each test instance, we obtain10 hypervolume differences
and10 epsilon measures, corresponding to the10 runs, per
algorithm. As suggested by Knowles et al. [29], once all
these values are computed, we perform a statistical analysis
on pairs of optimization methods for a comparison on a
specific test instance. To this end, we use the Mann-Whitney
statistical test as described in [29], with a p-value lower than
10%. Note that all the performance assessment procedures
have been achieved using the performance assessment tool
suite provided in PISA2 [31].

According to table IV, IBEA globally outperforms NSGA

2The package is available athttp://www.tik.ee.ethz.ch/
pisa/assessment.html.

http://www.tik.ee.ethz.ch/pisa/assessment.html


II for the instances of our problem.
2) Docking results quality:In order to evaluate our model,

we have computed the RMSD of the ligand of our solutions
with the crystallographic location of the ligand. In the
literature, it is common to estimate that a docking is good
for a RMSD ≤ 2.0 Å. Nevertheless, the standard RMSD
computation is not very robust according to several factor:
size of the molecule, atoms used and not used, symmetric
part, etc. So it is important to analyze well each solution
for estimate its quality. Furthermore, the distance between
the initial solutions and the crystallographic solution is
important because in most of the literature, this distance is
not >10 Å and generally≤ 5 Å.

Table V summarizes the results of NSGA-II and IBEA on
the five chosen instances. As the RMSD is not (and can not
be) an objective of our model, all the archives generated
during each run are analysed to know the quality of the
encountered solutions. We have remarked that the solutions
with the best RMSD are not necessary in the final archive.
It can be explained by a premature convergence of our
algorithm. In the same manner, one run makes on average of
225 000 evaluations. Comparing to other docking methods
as Autodock (2 000 000 evaluations), it is not very high.
Therefore, this number of evaluation can also significate a
premature convergence of our algorithm.

TABLE V

BEST RESULTS FOR EACH INSTANCE WITH THENSGA-II AND IBEA

ALGORITHMS. FOR EACH ALGORITHM THE BESTRMSD AND THE

STANDARD DEVIATION (STD) BETWEEN THE BESTRMSDS ARE GIVEN.

NSGA-II best results IBEA best results
Instance RMSD (Å) std RMSD (Å) std

6rsa 1.66 1.04 1.32 1.3
1mbi 5.2 0.4 4.16 0.8
2tsc 2.19 2.75 2.19 2.68
1htf 2.88 2.64 2.59 1.33
1dog 4.38 0.99 2.44 0.56

According to the RMSD of our solution and the cor-
responding seed RMSD, we can estimate that our results
are good for four instances (more particularly 6rsa, 2tsc
and 1htf). Only 1mbi is problematic because the algorithm
makes only few improvement of the RMSD (according to the
RMSD of the seed). An analysis of the 1mbi instance shows
that the ligand is a very tiny molecule (9 atoms) that has to
be put in a big binding site (see Figure 8). Therefore, there
are a lot of potential binding mode for the ligand, maybe of
equivalent quality.

According to the algorithm comparison, IBEA gives better
or equivalent results on each instances. We can notice that
the standard deviations are better for NSGA-II on 6rsa and
1mbi instances. This can be explained by the size of the
instances because 6rsa and 1mbi are the smallest instances
of our dataset.

IBEA has been already proved better than NSGA-II for
several problems. Our results confirm this remark.

In order to compare visually a result of docking, the
figure 9 shows the crystallographic complex of the 6rsa

Fig. 8

L IGAND /SITE COMPLEX COMING FROM CRYSTALLOGRAPHIC DATA FOR

THE 1MBI INSTANCE.

instance. Figure 10 and figure 11 represent the complex with
the minimal RMSD gained with the NSGA-II and IBEA
algorithms respectively.

Fig. 9

L IGAND /SITE COMPLEX COMING FROM CRYSTALLOGRAPHIC DATA FOR

THE 6RSA INSTANCE.

NSGA-II proposes a ligand that is partially centered in the
binding site. The ligand has not find its right conformation
in the binding site.

The IBEA solution has a lower RMSD because the ligand
is better centered into the binding site.

Complementary tests are currently made in order to extend
the number of instances tested and compare our approach
with other works of the literature. Nevertheless, according to
our tests, our model has been validated and gives promising
results.

V. CONCLUSIONS

In this article, a new bi-objective model for the molecular
docking problem has been proposed. This model has been
validated thanks to instances of high confidence dedicated to
docking benchmarking. Our model can be easily used with
other energy function (and force field) and/or other molecular



Fig. 10

L IGAND /SITE COMPLEX COMING FROM THE INDIVIDUAL HAVING THE

BEST RMSD (1.66)WITH THE NSGA-II ALGORITHM .

Fig. 11

L IGAND /SITE COMPLEX COMING FROM THE INDIVIDUAL HAVING THE

BEST RMSD (1.32)WITH THE IBEA ALGORITHM .

surfaces. A tri-objective version of our model is being tested.
The third objective is a robustness objective. It describesthe
quality of the ligand/site complex by making a sampling of
the energetic landscape around a current individual. However,
this model is very time and resource consuming and has
to be improved in order to be used efficiently (grid com-
puting). Furthermore, in order to improve the diversity of
our population of solutions to prevent a potential premature
convergence, new operators are planned to be added as the
reverse mutation. The reverse mutation consists in making
a big rotation of 180 of the ligand in order to increase the
speed of convergence. This type of mutation can be useful
in the case of a ligand well entered into the binding site
but in the bad side so the associated RMSD is not low. In
this case, it cannot be reversed by small rotations due to
the lack of space. With the improvement of the algorithm
behaviour, we are getting a powerful docking method that
will be available on-line throw the Docking@GRID platform
(http://docking.futurs.inria.fr).
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