140 research outputs found

    An Extended Review on Fabric Defects and Its Detection Techniques

    Get PDF
    In Textile Industry, Quality of the Fabric is the main important factor. At the initial stage, it is very essential to identify and avoid the fabrics faults/defects and hence human perception consumes lot of time and cost to reveal the fabrics faults. Now-a-days Automated Inspection Systems are very useful to decrease the fault prediction time and gives best visualizing clarity- based on computer vision and image processing techniques. This paper made an extended review about the quality parameters in the fiber-to-fabric process, fabrics defects detection terminologies applied on major three clusters of fabric defects knitting, woven and sewing fabric defects. And this paper also explains about the statistical performance measures which are used to analyze the defect detection process. Also, comparison among the methods proposed in the field of fabric defect detection

    An overview of artificial intelligence applications for power electronics

    Get PDF

    An Intelligent Automatic Fault Detection Technique Incorporating Image Processing and Fuzzy Logic

    Get PDF
    Fault detection is considered an important and challenging task to be incorporated in many industrial applications. It has gained interest in recent years, and many techniques have been proposed for developing an effective fault detection approach due to its significant importance in everyday life. This study presents an automated intelligent fault detection technique incorporating image processing and fuzzy logic. Image processing is the first step where features such as entropy estimation, color-based segmentation and depth estimation from gradients are obtained. The extracted features (number of {blobs, minima, maxima}, and estimated entropy) act as input to the fuzzy logic. The subsequent step incorporates fuzzy logic; the four inputs are fed to fuzzy which extract the fault and acts as knowledge rule-based tool and final step, i.e. the output generation, classifies it accordingly into four categories of faults (rust, bumps, hole, wrinkles/roller marks). The proposed method is compared with Linear Vector Quantization, and Multivariate Discriminant Function approaches. The method is tested on a database of 150 images. The proposed method demonstrated its significance and effectiveness with performance accuracy of 99%, 98%, 96.8% and 97.6% for rust, bumps, holes and wrinkles/roller marks respectively

    Diagnostic and adaptive redundant robotic planning and control

    Get PDF
    Neural networks and fuzzy logic are combined into a hierarchical structure capable of planning, diagnosis, and control for a redundant, nonlinear robotic system in a real world scenario. Throughout this work levels of this overall approach are demonstrated for a redundant robot and hand combination as it is commanded to approach, grasp, and successfully manipulate objects for a wheelchair-bound user in a crowded, unpredictable environment. Four levels of hierarchy are developed and demonstrated, from the lowest level upward: diagnostic individual motor control, optimal redundant joint allocation for trajectory planning, grasp planning with tip and slip control, and high level task planning for multiple arms and manipulated objects. Given the expectations of the user and of the constantly changing nature of processes, the robot hierarchy learns from its experiences in order to more efficiently execute the next related task, and allocate this knowledge to the appropriate levels of planning and control. The above approaches are then extended to automotive and space applications

    Genetic algorithm for Artificial Neural Network training for the purpose of Automated Part Recognition

    Get PDF
    Object or part recognition is of major interest in industrial environments. Current methods implement expensive camera based solutions. There is a need for a cost effective alternative to be developed. One of the proposed methods is to overcome the hardware, camera, problem by implementing a software solution. Artificial Neural Networks (ANN) are to be used as the underlying intelligent software as they have high tolerance for noise and have the ability to generalize. A colleague has implemented a basic ANN based system comprising of an ANN and three cost effective laser distance sensors. However, the system is only able to identify 3 different parts and needed hard coding changes made by trial and error. This is not practical for industrial use in a production environment where there are a large quantity of different parts to be identified that change relatively regularly. The ability to easily train more parts is required. Difficulties associated with traditional mathematically guided training methods are discussed, which leads to the development of a Genetic Algorithm (GA) based evolutionary training method that overcomes these difficulties and makes accurate part recognition possible. An ANN hybridised with GA training is introduced and a general solution encoding scheme which is used to encode the required ANN connection weights. Experimental tests were performed in order to determine the ideal GA performance and control parameters as studies have indicated that different GA control parameters can lead to large differences in training accuracy. After performing these tests, the training accuracy was analyzed by investigation into GA performance as well as hardware based part recognition performance. This analysis identified the ideal GA control parameters when training an ANN for the purpose of part recognition and showed that the ANN generally trained well and could generalize well on data not presented to it during training

    An improved data classification framework based on fractional particle swarm optimization

    Get PDF
    Particle Swarm Optimization (PSO) is a population based stochastic optimization technique which consist of particles that move collectively in iterations to search for the most optimum solutions. However, conventional PSO is prone to lack of convergence and even stagnation in complex high dimensional-search problems with multiple local optima. Therefore, this research proposed an improved Mutually-Optimized Fractional PSO (MOFPSO) algorithm based on fractional derivatives and small step lengths to ensure convergence to global optima by supplying a fine balance between exploration and exploitation. The proposed algorithm is tested and verified for optimization performance comparison on ten benchmark functions against six existing established algorithms in terms of Mean of Error and Standard Deviation values. The proposed MOFPSO algorithm demonstrated lowest Mean of Error values during the optimization on all benchmark functions through all 30 runs (Ackley = 0.2, Rosenbrock = 0.2, Bohachevsky = 9.36E-06, Easom = -0.95, Griewank = 0.01, Rastrigin = 2.5E-03, Schaffer = 1.31E-06, Schwefel 1.2 = 3.2E-05, Sphere = 8.36E-03, Step = 0). Furthermore, the proposed MOFPSO algorithm is hybridized with Back-Propagation (BP), Elman Recurrent Neural Networks (RNN) and Levenberg-Marquardt (LM) Artificial Neural Networks (ANNs) to propose an enhanced data classification framework, especially for data classification applications. The proposed classification framework is then evaluated for classification accuracy, computational time and Mean Squared Error on five benchmark datasets against seven existing techniques. It can be concluded from the simulation results that the proposed MOFPSO-ERNN classification algorithm demonstrated good classification performance in terms of classification accuracy (Breast Cancer = 99.01%, EEG = 99.99%, PIMA Indian Diabetes = 99.37%, Iris = 99.6%, Thyroid = 99.88%) as compared to the existing hybrid classification techniques. Hence, the proposed technique can be employed to improve the overall classification accuracy and reduce the computational time in data classification applications

    Failure Prognosis of Wind Turbine Components

    Get PDF
    Wind energy is playing an increasingly significant role in the World\u27s energy supply mix. In North America, many utility-scale wind turbines are approaching, or are beyond the half-way point of their originally anticipated lifespan. Accurate estimation of the times to failure of major turbine components can provide wind farm owners insight into how to optimize the life and value of their farm assets. This dissertation deals with fault detection and failure prognosis of critical wind turbine sub-assemblies, including generators, blades, and bearings based on data-driven approaches. The main aim of the data-driven methods is to utilize measurement data from the system and forecast the Remaining Useful Life (RUL) of faulty components accurately and efficiently. The main contributions of this dissertation are in the application of ALTA lifetime analysis to help illustrate a possible relationship between varying loads and generators reliability, a wavelet-based Probability Density Function (PDF) to effectively detecting incipient wind turbine blade failure, an adaptive Bayesian algorithm for modeling the uncertainty inherent in the bearings RUL prediction horizon, and a Hidden Markov Model (HMM) for characterizing the bearing damage progression based on varying operating states to mimic a real condition in which wind turbines operate and to recognize that the damage progression is a function of the stress applied to each component using data from historical failures across three different Canadian wind farms
    corecore