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ABSTRACT 

Neural networks and fuzzy logic are combined into a hierarchical structure capable of 

planning, diagnosis, and control for a redundant, nonlinear robotic system in a real world 

scenario. Throughout this work levels of this overall approach are demonstrated for a 

redundant robot and hand combination as it is commanded to approach, grasp, and 

successfully manipulate objects for a wheelchair-bound user in a crowded, unpredictable 

environment. Four levels of hierarchy are developed and demonstrated, from the lowest 

level upward: diagnostic individual motor control, optimal redundant joint allocation for 

trajectory planning, grasp planning with tip and slip control, and high level task planning 

for multiple arms and manipulated objects. Given the expectations of the user and of the 

constantly changing nature of processes, the robot hierarchy learns from its experiences 

in order to more efficiently execute the next related task, and allocate this knowledge to 

the appropriate levels of planning and control. The above approaches are then extended 

to automotive and space applications. 
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INTRODUCTION 

Conventional feedback control' attempt to maintain the table, accurate 

performance of an a umed time invariant sy tern de piLe external di turbances. Optimal 

contr 12 elect the feedback parameter , or ga in , by optimizing more than one aspect of 

out put perf rmance, uch a both time and energy expenditure, fr m initial to fin al 

conditi on . Robu t control3.4 choo e feedback ga in that will en ure table operati on a. 

parameter within the y tern , or controlled pl ant , vary. When robu t control cannot offer 

hi gh enough out put accuracy ae ro the ant ic ipated range of pl ant variability, adapti e 

contr 15 m difie the controller parameter them el e ia a perf rmance index . M de l 

referen e control i a pecia l form of adapti e contr I who e ontroller feedback 

mechani m attempt to teer the performance of a pl ant toward that of a de ired m de l. 

Traditionall y, the e method ha e required a ufficiently accurate linear model of 

the pl ant. and all unknown or in ufficiently modelled parameter are either approx imated 

stati ti call y or treated a di turbance . The e approache have till been inadequate f r 

high peed, high accuracy application. where the controlled pl ant nonlinearl y drift s with 

time. Although approache uch a the Extended Kalman Filter attempt to make the next 

estimation of a parameter conform to a nonlinear trajectory such a aJ ong an ellip e. an 

assumption such a this cannot alway be made.7 



A customers demand greater reliability and consistency m product operation, 

control procedures must evolve to accommodate the time dependent , noisy nonlinearities 

that were tolerated , ignored, or roughly approximated in the pa t. Fuzzy logic and neural 

network can help the engineer understand the interdependencie of nonlinear behavior, 

by direct ly modelling the input/output relationship diagnosi ng a variable responsible for 

parameter drift , or allocating resources to more effectively plan for uncertainty. 

Thi work will explore the role fuzzy logic and neural network , in conjunction 

with expert y tern , can play when a redundant manipul ator hand two fin ge r , one 

thumb two independent actuator per appendage) and rob t combination with DC joint 

motor i commanded to approach gra p and u ce full y manipulate an object. The 

goal i to be able t integrate a functionally complete planning and control trategy int 

an alg rithm that can run in real time for interac ti n with human . A a frame of 

refer nee for a umptions and an illu trati e example. the redundant rob t and hand 

c mbinati n are a umed to be mounted to the arm of a wheelchair. A an aid t the 

di ab led. the robot will be commanded to perform 

retrie ing a oda can from a cluttered refri gerator. 

uch a liftin g a pencil or 

Although vi ual feedback will contribute vi tal informati on for any cenari o. the 

pnmar ource of diagno i and planning for the manipulation ubt a k will be ta tile 

feedback through the hand's finger . The touch feedback will be con ·idered crucial from 

the standpoint not onl y of tip and lip control (where fuzzy technique lead to neural). but 

will continue to influence the gra p approach vector it elf via the training of object gra p 

category networks. which rank the earlier attempt made to gra p a cia s of objec t and 

2 



learn which to try next and save time in the future. 

In any complex scenario, there is no one performance measure that will assure 

successful completion of ~ task. To this end, control and planning are arranged into a 

four level hierarchy, each sharing information with other levels, but focussed on a specific 

combination of a performance criterion. Given the expectations of the user and of the 

constantly changing nature of processes, the robot hierarchy learns from its experiences 

in order to more efficiently execute the next related task, and allocate this knowledge to 

the appropriate levels of planning and control. 

Various adaptive learning and control approaches are reviewed, and neural network 

training and architectures are compared in Chapter 1. Some of these approaches are 

investigated and compared in Chapter 2, where the neural network architecture developed 

is included as part of a larger planning and control hierarchy with expert systems and 

fuzzy logic. Each level of this new hierarchy is developed and demonstrated in 

subsequent chapters, from local to abstract: diagnostic motor control in Chapter 3, optimal 

redundant joint allocation for trajectory planning in Chapter 4, grasp planning with tip and 

slip control in Chapter 5, and high level task planning for multiple arms and manipulated 

objects in Chapter 6. The above approaches are then extended to an automotive 

application in Chapter 7 to demonstrate extensibility of the approach. 

3 
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CHAPTER 1: 

ADAPTIVE LEARNING AND CONTROL APPROACHES 

1.1 The Adapti ve Learning and Control Problem 

When the redundant robot of Figure I i given thi complex contr I cenario. there 

1 n guarantee that an et of c mmand will be rep ated, and if the are. there i n 

guarantee that the y tern ill be operating under the arne internal parameter and 

ex ternal en ironmental condition . The implemented pl anning mechani m cho en mu t 

be ne ible to in tantaneou change f goal tate, and th erall adapti e c ntr I 

mechani m cho en mu t provide a re p table and within acceptab le limit f r 

an gt n referen e c mmand , de pite parameter dri ft and b th anticipated and 

unanti ipated di turbance . A the u er of thi tern i likely to I e pati ence waitine 

for itt adapt t a new ituati on, the robot mu t in orporate learning into it pl annin £ and 

contr I. 

In many ituati n cia ica l and modern control theory i inadequate to contr I 

complex sy tern . The y tern to b controlled may be parti ally or totall y unkn wn. 

parameteL within the pl ant that i modelled may dri ft and highl y nonlinear beha i r 

within the y tern may dri ve an algorithm ba ed upon linearization un table. A primar 

5 



CHAPTER 1: 

ADAPTIVE LEARNING AND CONTROL APPROACHES 

1.1 The Adapti e Learning and Control Problem 

When the redundant r bot of Figure 1 i given thi compte contr I cenario, there 

no guarantee that any et of c mmand will be repeated , and if the are. there i n 

guaran tee that the y tem wi ll be perating und r the arne internal parameter and 

ex tern al en ironmental conditi n . The implemented planning mechani m cho en mu t 

be flexible to in tantaneou change of goal tate , and the o era!! adapti e contr 

mechani m cho en mu t pro table and ithin acceptable limit f r 

an gi en referen e command de pite parameter dri ft and b th anticipated and 

unanticipated di turbance . A the u er of thi tem i like! t I e patience wai tine 

for it t adapt to a new ituation, the r b t mu t incorporate learning int it planning and 

contr I. 

In many ituation . cia ical and modern control the ry i inadequate to control 

complex Y tem . The ystem to be controlled may be partiall y or totally unknown. 

parameter, within the pl ant that i modelled may drift , and highly nonlinear beha ior 

within the Y tem may dri e an algorithm ba ed upon lineari zation un table. A primary 

5 



Figure 1 : Robot and Hand installed on a 
wheelchair. 
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example of such a complex sy tern i a robotic hand . Not only are robotic hands 

redundant joint which complicate cia ical ix axi kinematic and dynamic control 

scheme , but the motions required must be intricately dexterou and adaptive to loads of 

variable weight, center of rna , orientation, friction , stiffne. , and gra p stability . 

lf an adaptive robotic control system is to be tru ted for implementation , it must 

reliably outperform human . Like a human, it mu t be able to follow fa t, low preci ion 

movement with low, high preci ion movement , and be able toe timate when fir t faced 

with a ta k and then Jearn from that experience for recall at a later time. Applying thi 

to a robotic hand entail the coordination of everal dedicated alg rithm , each controlling 

with a implified yet flexible and adaptive algorithm. After e eral nonlinear method 

of function appr ximation are explored and neural net ork ba ed method are expanded 

up n. practical implementation con ern and the o erall hierar hy of the e approache 

will be di cu ed in hapter 2. 

1.2 Approximating a Functi n in the Real World 

Whether the pr blem con ern determination of acceptable contr I parameter. . 

table gra p . optimal configuration . or timely proce flow . all an be implified t the 

ta k of learning a functional relation hip. Each nonlinear approach con idered for thi s 

ta k will b di cu ed a to it utility in a real time, cluttered. and noLy en ironment. 

1 .2.1 PolynomjaJ Approximation 

A popular first attempt at nonlinear modelling i to regress the linear coefficient 

of the multiple and power of input to the unknown relation hip. Although a imple 
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approach for lower order problems, polynomial approximati ons do not have good scaling 

propertie and are di ffi cult to implement in hardware, due to the signal saturation effects 

of analog circuit when the higher order polynomial coefficient tend to be very . mall. 

Additionall y, high order inputs can result in numerical instabilitie whjle their coeffi cient 

are being determjned. 

The most fund amental polynomial approximation technique invol ves the Least 

Square Method which work such that a matrix of input vector X (Equation I) and an 

output vector Y may be directl y used to directl y obtain the fun ctional relationship A a. 

hown in Equati n 2. 

(1) 

A (2) 

1 .2 .2 Orthogonal function 

Based on the concept of combining function a if they ran along a cart e ian 

coordinate axi orthogonal function can ea il y be combined to repre ent ignal that are 

highl y inu oidal in nature. For nonlinearitie that are not a eas il y decompo ed. the 

neces ary (and hopefully anticipated) ba i functions are complex and not generally found 

in lookup tables , increa ing the difficulty of online oftware implementation. A wide 
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range of highly varying functions is also expensive to implement in hardware. 

1.2.3 Splines 

As piecewi e polynomial approximation , they are an improvement in accuracy, 

but in the end uffer the same problems a polynomials for real time. 

1.2.4 Gradient De cent Ba ed Approaches 

By a uming that an error surface approximate a parabola, parameter are varied 

to follow the direction of the rate of change of the error in a performance index function 

toward the error minimum. The current e timate of each variable coefficient i usually 

modified by adding the product of the current input alue the performance index error, 

and a mall learning rate con tant to low the rate of con ergence and a oid over hooting 

the optimum. 

Via the Lyapun tabilit criteri n 1.
2 if the derivati e of the performance index 

can be pro en ah ay negati e, then a local error minimum will be reached in an 

a mptotically table fa hion . If the local minimum coincide with the de ired global 

minimum the re ult ha been both table and accurate. A a fir t order method of error 

approximati n, it i relati ely imple and fa t executing. The functi n appr ximati n 

meth d that foil w, al ng with neural network. (to be di cu ed later). frequent] 

employ gradient approache . 

1.2.4.1 Lea t Mean Square (LMS) 

A fully digital approach, LMS i ea ily implemented in hardware. It a ume that 

the nonJinear function of intere t can be modelled by a system of weighted delay stage . 

Each delay tage serves a a hift regi ter po ition or vector element to which a gradient 
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adju ted weight is applied, resulting in an adaptive filter. In one implementation , ~ a 40 

dB magnitude noise reduction was achieved in les than 0.0 I econds for a linear model 

of an acoustic propagation path. Based on the a umption that the re idual error in a 

sy tern can be appro~imated via a linearly weighted serie of time delay , it is till 

uncertain if LMS will be able to approximate higher order function any better than other 

gradient approache or Simplex optimization for a nonlinear system. The general weight 

update for the LMS i hown in Equation 3 with W k being the adju table weight , ~ the 

learning rate and £k the output error. 

1.2.4.2 Recur i e Lea t Square Method (RLSM 4 

RLSM , and it. cou m the Kalman Filter and the Bierman Algorithm. are 

recur 1ve filter whjch linearly e timate the next value of a tate ariable g1 en a 

computed co ariance of the model ' error. Their hortcoming tern fr m the a umption 

that the m del will gi e a ufficient appr ximation of the real . tern across the entire 

operating range of intere t. and that the initial parameter e timat i not too far off from 

it optimal value. le t the e timation cheme get caught in an unde irable local error 

minimum. If an unbounded y tern tate i not modelled (or not modelled sufficiently). 

the error in the e timation can grow without bound and any system controller dependent 

upon thi e timation can become un table . Sometime thi divergence is overcome by 

incorporating a forgetting factor that give greater weight to the newe t error , but at the 
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expense of Jo ing past experience. Additionally, if the target parameter is a fixed bias 

value, RLSM input mu t often be augmented by an artificial noise signal to continue 

optimizing based on the rate of change of the error. This noi e jitter i often propagated 

through the filter to the controlled sy tern and may be unde irable. Above third order in 

complexity, most ystem become very difficult to stably approximate. 

1.2.4.3 Extended Kalman Filter4 

Not only do the higher than fir t order approximation of an Extended Kalman 

require foreknowledge of the type of function that i being approximated the additional 

tep required to make the nonlinear e timation at each update . tep are time con urning. 

The imple addition and multiplicati n of fuzzy I gi and neural network become very 

competitive computati nail t the e higher order re ur i e approximation . Althouoh the 

Extended Kalman filter ha been f und to be a more reali tic inertial motion approximator 

to u er of irtual realit imulati n mea ured ia a de rea e in motion ickne ). Mori . 

et al , in their paper "An Artificial Neural-Net Ba ed Method for Predicting P wer 

Sy t m V ltage Harmonic ," found the time prediction capabilitie of a imple 

feedforward neural net ork with time delayed input quite comparable to that of the 

Kalman filter. Although parameter e timation can be u ed to continuou ly update the 

model for u e in an indirect adapti\ e control cheme, many di turbance occur too quick! 

to be e timated in a globally a ymptotic fa hion a asymptotic tability only a. sure 

lability at infinity with no a urance a to the tran ient beha ior. 

1.2 .5 Simplex Optirnization3 

The implex optimization method a recursive approximation to an unknown 

II 



function via optimizing the size of a polygon whose number of sides exceeds the number 

of variable parameter by one. The measure of fit i determjned via comparison to a co t 

fun ction that is calculated from input/output example . Although uperior to the gradient 

method for optimization along a rough error surface, it result i a linear coefficient for 

every variable parameter. This i acceptable as a best compromi e for the examples 

trained on, but may not be very accurate aero s a wider range, if truly accurate for the 

given example to begin with . Like self tuning it can be proven stable and i be t 

implemented when another method ha narrowed the error to reasonably small value . 

The number o f vari able it can ucces fully optimi ze i limited t about fi e -- beyond 

that the polynomial end the length of it ide to extreme in an att empt to quickJ y 

minimize the error. 

1.2 .6 Stati tical Approximati n 

Man appr ac he fall within thi category. onl me of which will be touched 

up n here. All are ba ed on the concept that rand mne can o er orne limitati on in 

err r urface n goti ati n, and that th numb r of attempt nece ary to appr ximate the 

c fficient of the a umed component parameter in the repre entati ve function i not 

exce 1 

1. 2.6.1 Monte Carlo Method 

A phrase that encompa e any meth d that choose the next et of ari ab le a lues 

via a random number generator, the re ult o f evaluating the performance index for the 

latest gue is compared to that of the Ia t winner. If no improvement is made. the 

weight are imply rejected and another random set of weight i tried . Without a 
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gradient like direction to follow, or some other rule of thumb, the effectiveness of the 

method from one day to the next can vary widely and only general statistical a sumption. 

can be made. A model made via Monte Carlo i better than none at all , and with luck. 

it will be a good one, if time permits enough trial 

1.2 .6.2 Genetic Algorithms 

ln a commonly implemented genetic algorithm (GA), all variable are arranged into 

a vector called a chromo orne. Individual entrie , or gene in the vector are mutated by 

varying one increment up or down to create off pring chromo orne . At a randomly 

cho en breakpoint , a chromo orne trade a ection of it elf with a ibling, approximating 

the cro over that occur a a re ult of mating. All candidate off pring are then evaluated 

by a performance mea ure, i.e .. an ab. olute di tance from a target ), and are ranked . The 

be t ranked off pring i then compared t e ery other off pring to ield di er it value . 

and another rank.ing i perf rmed . Perf rmance rank and di er it y rank are then 

combined in a u er-defined fa hion to yield a final rank to whi h probabilit alue are 

a igned . Off pring pa ing on to the next tep are cho en with a higher probabilit from 

the hi gher rank and a lower probability from the lower rank . Normal! half of the 

off pring are cho en t continue. maintaining a con tant p pulati n. Repeat mutati n. 

cro o er, and ranking continue until either performance st p improving or an error 

tolerance i reached . 

GA can very quickly cro moats (i.e., error surfaces with no continuou trend 

in the optimal direction) in an error urface to find a global optimal point. as long as the 

search grid of delta value is fine enough and a large enough population of chromo me. 
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i u ed. Two drawbacks of the genetic approach are that, due to its randomnes , there 

is no guarantee that an acceptable minimum will be found , and even if the region 

containing the optimal point is located by the GA the odd of hitting that optimum are 

slim. Despite these drawback , their desirable advantages make GA very well suited a 

a rough fir t approximation for a final gradient-based optimization for both neural 

network modelling and control. GAs have been u ed to swap weight values within a 

neural network controller which has been held initially table by a fixed feedback 

controller, a well a to automatically generate an appropriate neural network via a fractal 

algorithm. 7 

1.2.7 Harne ing of Parallel Pr ce ing Speed and Redundancy 

The time limitation of orne of the abo e approache can be aile iated by 

implementing them in a parallel computer, but lock cycle ar expen ive even in parallel. 

and the limit to an approach i impl rai ed a little higher. lronically. parallel pr 

designer are looking to artificial intelligence method to overcome orne of the 

challenge of parallel proces ing it elf, uch a synchronization, rna ter/ lave interaction. 

and fault toleranc . · IO 

1.2.8 Artificial Intelligence Approache 

The abo e method employ determini tic, gradient approximated and random 

approache to the nonlinear function approximation problem. Other method · known 

collectively a artificial intelligence method attempt to capture a higher order 

repre entation via accumulation of experience , supervi ed or un upervi sed hardcoded or 

learned through experience. 
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1.2.8.1 Expert Sy terns (E$) 1
1.1

2 

ES are rule ba ed deci ion trees whose knowledge i collected from a serie of 

human expert who know what the re ult of the interaction of variou input to a y tern 

i , but cannot easily describe the rules they operate by explicitly. ES have many 

advantage , including ease of knowledge tran fer to a computer program ea y to follow 

logic within the inference engine's decision tree, ea e of update and a large capacity for 

torage of knowledge, flexibility of tree modification and weighting, clear repre entation 

of proce flow contingencie from tart to fini h, a tolerance for incomplete information 

and the ability to make prediction ba ed on thi repre entati n. 

De pite their traightf rward ea e of implementation. ES are n t very adapti e 

to the generation of new de ign .13 ntil a model i made of the human de ign proce 

it will be difficult to de ign an expert y tern capable f adju ting the weight of it 

after it ha already been created . Additi nail , E ha e n mean f 

repre enting the rule patially or temporally in relation tooth r rule within the databa e, 

and it i hard to mea ure the accuracy of a deci ion made b the expert y tern ba ed n 

knowledge of expert who e d ci ion may have been marginall acceptable in the fir t 

place. Fuzzy I gic and neural network rna be able to offer a i tan e when imperfect. 

impreci e, incomplete, and ometime uncertain knowledge mu I be added to a databa e. 

The e caJating problem that expert for high tech proce e are carce expen i e. and in 

high demand will trigger much effort in thi area. 14
·
15 

1.2.8.2 Fuzzy Logic (FL) 

Fuzzy logic formalize the idea of a cia of real world entities where each entit 
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ha a certain participation in the class measurable along a continuous variable. 16
•
19 Thi . 

is in contrast to probabilities, which represent a degree of knowledge about real entitie 

and to what degree they are likely to be true for a given value.20 The concept of fu zzy 

set theory wa fir t formally introduced in a paper by Lotfi Zadeh in 1965, and one of 

it offshoots, fuzzy logic control, ha matured to the point where a model helicopter can 

now be controlled by voice alone and a robot can hit a ball that i falling through a 

pinball array of peg with a dart almost every attempt. 21 

By grouping rel ative mea ure of an input or output of a sy tern into (u ually 

overlapping) et . fuzzy logic allow a controller to appl lingui . ti c rule imilar to tho e 

that a human u e . For in tance, if the onion in a fryin g pan ar n't quite brown. but the 

butter i burning, it i logical to lower the fl ame a little bit. Howe er. if the de ired 

br wning rate of the nion i ub equently not fa t enough increa e the fl ame a tiny bit. 

Exa t 'alue , both incoming and utg ing, are n t nece ary, but the c ntr I algorithm 

mu. t be fa t enough 1 ave the n n- ti ck urfa e of the pan . 

Fuz et the ry i a to I f r anyone who i concerned with uncertai n! where the 

interva l of confiden e can be defined. The application of fu zzy et have been made 

e rywhere and in many practical problem . Thr ugh the u e of fuzzy et and fuzz 

knowledge, optimization technique can be developed and u ed in the olution derived by 

the y tem.22 AI o it is wi th the u e of fuzzy information that large sy tern can be 

modelled and analyzed to incorporate the po ibility of incomplete, lo t, or incorrect 

information that i being u ed a input by the y tem.n.23 

Fuzzy logic control application are at o prevalent and varied . The clas. ic 
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in vert ed pendulum ha appeared oft en in the literature, where a many a three pendula 

have been balanced in seri es.2 1 As another balancing control problem,24 a monorail cart 

i commanded to balance an inverted pendulum while the cart foll ows a desired trajectory. 

Due to the integral inference block that has been added, a tep disturbance exi t in the 

angle att ained for the pendulum. Balancing has been extended to wai!Ung with promi ing 

result . For a biped wai!Ung robot·25 with no inver e !Unematics model, overlapping 

gau ian fuzzy member hi p function approx imate the nonlinear function of a walking 

step with continuou deri vati ve . Fuzzy logic ha al o proven u eful when peed of 

re pon e 1 n t a important a anticipating a nece . ary cont rol input ba ed on ex tremely 

delayed en r data, uch a f r a cement kiln .2 Adapti ve fuzzy y tern are already 

chall enging older neural network de ign uch a Ko ko' adapti e fuzzy logic tractor 

trailer contr ller, which out perf rm a one hidden layer neural network f r backing up 

t a d k. 27 

Be ond control, the generali zation capabil itie of fu zz logic have been repeated! 

dem n trated . For pl anning. fu zzy logic offer a fa t explicit way to implement an 

expert ' impr or incomplete knowledge gi en that expert y tern alone perf rm be. I 

if the in f nnation and data i part f a cri p et. Fuzz log ic ha been employed in the 

m de lli ng fun ert aj ntie , election of optimization trategie .29 conceptual modelling 

and cogniti ve mapping for operation re earch,30 the integration of rule ba ed and 

procedural method to olve optimization problem through ES tec hno l ogy . ~ 1 dynamic 

programmjng.32 and interac ti ve multi objecti ve optimization of dec i ion .)) If orne 

relation hip between input and outputs are not apparent to the expert. neural network . 
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can offer a model.n.23
·
34 Two illustrative fuzzy logic applications close to thi s work 's 

implementations are outlined in Appendix A. 

The u e of fuzzy logic has several advantage over traditional cri . p data or logic. 

Lmplemented as simple additions, multiplications. and compari on , FL i easily 

tran ferred to real time application . The linguistic mea ure of belief can be adjusted 

until the user i ati fied, and will work effectively at any point during tuning. FL can 

ea ily adapt to relation hip that are too ambiguou to be captured in equation , and are 

not u ceptible to limitation of equation uch a the un table a ymptote near mall 

number and the wraparound of inu oidal fun ti on . Fuzzy control offer a mooth 

tran iti n between operating m de . a oiding the po ible in tabi liti e found at the 

bou ndarie of gain hedu led controller uch a that between aut pil t and human pilot 

m de in an ice torm . A fuzz controller b ha ing explici t reacti n that are clear! 

outlined for th u er i often more a cepted b a cu t mer than other form of AI. 

e pe iall if online adaptation impl mixe a group of other i e table fuzz output . 

Additi onall y, fuzz logic can explicit! pro ide an equilibrium action. e peciall important 

for control problem that req uire nulling a calar error mea ure and mai ntaining that 

equilibrium tate. 

There are orne drawback to fuzzy I g1c. Simple analytic controller will till 

ha e a fa ter re pon e time -- one mu t con ider the total number of operation required 

per time tep. a well a the po ible failure mode . FL require a good conceptual 

under tanding of the relation hip between the input and output. If the e relationship are 

not under tood in all area of an implementation. neural network can give the de. igner 
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a good rough e timate of the vari able dependencies in a given control problem, o that 

he or he will be able to focus their effort s more intelligently when des igning a fu zzy 

cont ro ller. Sub ets of rules must be defined continuously over all reg10ns of each 

uni ver e of di scour e, or di continuous control ac tion may occur. Further, tuning can 

only improve o much -- sometime one can encounter a waterbed effect, where 

improvement made in one area of the response urface will degrade re ponse in other . 

Neural network tuning of the hape or degree of overl ap of these functions can improve 

perf rmance. In practice. implementers have had trouble producing intuiti ve re ult for 

relation hip with more than two input , and mu t therefore tagger two fu zzy logic 

cont ro ller to encompa the full pr blem. 

1.2 . . 3 Neural Network (NN ) 

The computational approach to artific ial intelli gence AI and cognit i e 

eng1neenng ha undergon a dramati e olut i n o er the pa t few year _J Th i. 

tran f rmati n ha cau ed the rea oning methodology to change from di crete ymbolic 

rea ning t ma 1 el parallel, connectioni t neuralmodeling.3 There are two ba ic type 

of pr blem need t be dea lt wi th in the de ign. development. and application of the. e 

di tri buted c mputing y tem : determ ini tic and n n-determini ti c. ~ 5 Determini ti c 

pr blem are clearly defined and are targeted for olut ion that are determini ti c in nature. 

preci ely controllable, and can be t be handled by computer that employ ri gorou . prec i e 

logic, algorithms, or production rule . Non-deterministi c problems are un tructured and 

impreci e in nature which lead to computational problems that are inherently ill-po ed and 

ill-conditioned. Thi leads to decision being made oft en without prior thought. The 
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deci sions made are based on information that is incomplete, often ambiguous , pl agued 

with imperfect or inexact knowledge, and involve the handling of large sets of competing 

con traint that could tolerate close enough solution .35 

The Perceptron, an early building block of neural net , was fir t created by 

Ro en blatt [2 1 ]. He proved, in hi Perceptron Convergence Theorem, that if a training 

set (commonly a matrix of inputs introduced to the net one row at a time) i linearly 

eparable then a Perceptron will in a finite number of iteration learn the function : 

g i (input) input * (4) 

where w, repre ent adju table \ eight . A per eptron can be pictured a a number of input 

linked to an output with weighted c nnection whi h mu t be trained . It training 

technique i called the perceptron training mle and i u ed f r imple pattern 

cia ifi ati n wher onl y a linear relation i needed. Perceptr n ha e a ingle Ia er f 

hard limit neur n which genera ll y gi e either zero or one a an output. 

A neural network i a ene of interconnected pr e ing node (Fi gure 2) 

modelled after tho e in the human brain that, when int rod uced to a ene of input called 

a training et, can learn a nonlinear relation hip between them. 7
"
39 Figure 3 i an example 

of a imple neural network . The outputs of a neural network can either be compared to 

de ired output and the weight within the network updat d to reduce the error 

( upervi ed learning) or the network can employ it own internal mle to learn to 

recognize imilar input by categorizing them (un upervi ed learning) . Becau e of it 
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Figure 2: A Typical Neural Network Neuron 
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parallel de ign, a neural network implemented in hardware can reduce computation time 

by order of magnitude over ungainly equential aJgorithm like the Lagrange-Euler 

dynamic equation which can only deal with one parameter at a time. Becau e a neural 

network a umes no prior knowledge about the behav ior of the sy tern it will control. 

emulate, or interpret, it draw it own conclu ion about the rel ation hip between input. , 

relieving pre ure on the programmer to fully under tand the underlying phy ics of the 

y tern and accurately capture all perceived nece sary input with en or .37
J 

Becau e neural nets make few or no a umption about the de ign of the plant 

the contr I, they are better equipped tore pond to une en di . tribution and n nlineariti e 

that might complicate the cenari . In an emergency ituation uch a a iding a per on 

while carrying an p n e el f ac id , orne input may be noi · r lo. t. but the neural 

net mu t till plan an ac tion, be it attrac tion or a oidance. Becau e a neural net ork can 

di tribute it internal c ntrol law am n t it interc nne ted n de , a lo t input ' value 

an b a. umed from the other input and operation v ill continue in a tab le. if n t 

origi nal! intended fa hion. Software ba ed control y tern ill at be t a , ume a fixed 

alue. which rna n t be accurate or table . If the input i real! r 

unreli ab le. online adapti e learni ng would adju t the neural network to the new . ituati n 

and c ntinue operation if nece ary . When the parallel nature of a neuraJ net ork i 

implemented in hardware. it can provide an in tantaneou rea ti on to sudden change in 

plan not only in the laboratory but on the shop floor. 

1.3 Neural Network Training Algorithm 

In time. advance in neural network and fuzzy et theory may be able t 
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overcome the misconceptions that have barred robot from many poss ible applications in 

industry and in the home. Combinations of fuzzy logic and neural networks (ca lled 

neurofuzzy) are many , and are explored in Appendix B. Alternative neural network 

update methods and architectures are now di cu sed, leading to a choice of neurofuzzy 

architecture for a hierarchy that combine many of the optimization method of thi 

chapter. 

1.3.1 Backpropagation a a Weight Update Method 

Backpropagation wa created by generalizing the Widrow-Hoff learning rule40 to 

multiple Ia er network uch a Figure 4) and nonlinear differentiable tran fer function . 

By minimizing the um quared err r for each of the training et example output with 

gradient de cent optimizati n. and then di tributing incremental weight corre tion 

backward thr ugh the Ia er from the output toward the input , complex nonlinear 

function can be learned in a rea nab le amount of time. Eight t ninety percent of all 

neural network t day are trained with me variati n of ba kpropagation . 

Neural net.,: rk trai ned with backpropagation are g d generalizer , that i . an 

et of input ne er een before but within the range of training et input . will pr du e 

an utput that i a m oth interpolation from urrounding point . Thi property all w 

them to approximate function , a ociate input vector with pecific output vector (a in 

vi ion ystem ). cia ify input vector . steer a car and keep it on the road. or learn robot 

kinematic and dynamic . Network with bia e , at lea t one igmoidal neur n layer. and 

a linear output neuron layer are capable of approximating any rea onable function. 40 

Each node in backpropagation. like in other neural net update method , i a 
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Figure 4: Standard Backpropagation 
Network With One Hidden Unit Layer 
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summation of the value of each input, in; . multiplied by the connection' associated 

weight , w;J' across all inputs to the node. Often a bia b, equal to one is added to the 

summation a an imaginary extra input of one to provide a hift degree of freedom to the 

learned function . Weight are first initialized randomly near zero, and then adjusted 

between unit o that the square of the difference between the output and target signals 

i minimized and the procedure i repeated until the error fall below a predetermined 

thre hold . A derivation of the backpropagation algorithm, in Appendix C, i pre ented 

in derived form b Yeung4 1 with addition and modificati n by DeMuth 1 and thi author. 

One of the di ad antage of backpropagation i that the time needed to train 

weight increa e exponentially with the complexit of the network . A a gradient ba ed 

pr edure, it can al get trapped in local minima. Thirdl , the re ult of weight ariati n 

b backpr pagation d e not gi e man clue a t h w t m dif the netw rk ' tructure 

get better re ult. . Thr ugh experience, one learn that t o few hidden unit rna n t 

be able t repre ent all of the nonlinearitie but too man hidden unit allow o erfitting. 

where the network e tabli he it elf a lookup table that will ha e difficult generalizing 

example it ha not trained n. For y tern with complex output po ibilitie . pr per 

ch ice f weight training (a well a architecture) are e entia!. A force contr I 

er mechani m u. ed to demon trate that tability of a one hidden Ia er 

backpr pagation network depend upon a trial-and-error choice of learning rate and 

connection weight alue .42 

1.3 .2 Improvement to Backpropagation 

Many re earcher have tried to optimize backpropagation , either in the method. 
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of updating , or in the tructure of the network . One enhancement to standard 

backpropagation is Paul Werbo ' backpropagation through time ,4 ~ which with it additi onal 

memory capabilities, aJio~s optimization of dynamic problem such a iterati ve analy. is 

procedure , neural nets with memory , and time dependent control sy tern . It 

di advantage , however, include poor foreca t if made far in advance no compen ation 

for noi e, many computation and iteration for training, a continued dependence on 

gradient search (which can get trapped by local error minima , and lack of real time 

learning capability. 

By making a umption ab ut a plant or it output ariou re earcher have 

found fa ter vari ation of ba ic backpropagation. Scott Fahlman4J claim that hi 

qUI kpr p, lo el related toNe ton' method by a uming that the err r i quadrati call 

hap d . con i tent! outperform meth uch a conjugate gradient. Werb .4J at the 

am time, u ed Shanno' c njugate gradient meth d and cla imed it ut performed pattern 

learn in meth d f r a "den e training et made up of di tin tl diffe rent pattern " 

Al gorithm enhancement can be att ained not only in way mentioned ab e. but 

b mor ubtl meth d . u h a building in a priori knowledge of the r bot r 

re tructu ri ng the netw rk t uit the level of nonlinearit . Before making ex treme 

change . one can impl retrain the netw rk wi th a new et of init ial conditi n and ee 

if it c nverge better than the previ u network during the initial teep optimizati on. 

Weight are often initiali zed with mall random number centered around zero. but if ne 

i u ing a ba ic two layer network, con i ting f igmoid acti vation fun cti n in the first. 

or hidden layer. and linear acti vation fun cti on in the econd. or output laye r. then 
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choo ing Nguyen-Widrow45 initial condition will tend to reduce training times by an 

order of magnitude. 

If the network is a igning weight that are too large, one can reduce step . izes 

and introduce nonlinear transfer function into the fir t hidden layer if they are linear. 

One can al o cale the input so that they are im.ilar order of magnitude and one i not 

overwhelmed by the influence of the other . If orne values range about an average, that 

bi a can be subtracted off of the input training et to utilize both side of a sigmoid . 

Network prefer to ee a full vari ation within their tran fe r functi on . Additionally a 

m mentum term can be added to .1w,J by multiplying the pre iou .1\ 'J by kappa (K). a 

p iti e con tant , to pre ent the netw rk from b ing trapped by cal minima. Thi . 

adapti e momentum can be adju ted to be larger earl on and maller later when 

calcul ati n need to be m re pr i e. Kappa i e peciaJI important in network with 

man hidden unit . where nonlinearitie have more freedom to repre ent the relation hi p 

in un intend d wa . art ificia ll y all wing a I al minimum t yield a lo error. 

n e a network ha been found that give a reaconable an wer. the hidden unit 

can be interac ti el ari ed f r a rea nably mall number of iteration to ob erve which 

ariation minimj ze err r the fa te. t. When the be t net i full trained. the weight that 

are aJmo t zero can be eliminat d and the network retrained. Simplification. in the 

number of connecti on will make the network that much ea ier to interac ti ve ly retrain 

during run mode. Further enhancement to neural network training are di cus ed in the 

application of ection 2.3 and 2.4. 
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1.4 Neural Network Architecture 

The adapti ve linear element (ADALIN E) was developed by Widrow and Hoff. 

Unlike the perceptron, the transfer function i linear, not hard limit , o outputs can be 

continuou in tead of di crete. Training utili ze the lea t mean squares method by 

adju ting weight and bia e according to the magnitude of the error between the current 

output of the network and it target. Adaline can repre ent any rea onable fun ction 

linearl y. The network will find a clo e a olution a po ible becau e the error urface 

of a linear network i a parab Ia of a many dimen ion a there are linearl y independe nt 

input . 

Man ar hitectu re fall under the cia ifica ti n of neura l netw rk . Some of the 

mo t p pul ar are di cu ed in the nex t fe parag raph . When con idering which 

ar hite ture i b t for an appli ati n. ne mu t de ide if the tate and adaptati n 

parameter are c nt inuou or di crete, if the architecture i et up to accomm date the 

peed and/ r error reduction nece ar . if tabilit of training i critica l er u fl e ·ib il it _ 

of pti n. , and finall what exp tati n. th re are for output: cia ificati n. de i i n. 

(g /n g ). p it i /negati e. or di crete/ ontinuou .. 

1.4.1 Self Organizing Network (SON 

Neuron in the e network , uch a the In tar Out tar, and Hopfi ld.JO.J 

competiti ve ly categori ze input vector on their own with ut a upen i ory compari n to 

a de ired output, and are e peciall y u eful in i ion-oriented applicati on uch a object 

recognition and darknes contra t in a variable li ght em ironment.47 SON' have bee n 
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demonstrated in learning game strategy where a goal fun ction cannot be used to infinite 

memory requirement , but the algorithm i not very stable.48 

A popular SON architecture i the adapti ve resonance theory network (ART).49 

Thi architec ture autonomou ly Jearn to ci a ify arbitraril y many vector into recogniti on 

categorie ba ed on predicti ve succes e maximizing generali zation and minimizing 

predicti ve error under fa t learning condition , achiev ing I OOo/t accuracy on a te t et 

when used on a machine learning benchmark database. Each ART network Jearn to make 

accurate pred iction. quickJ y. effi ciently, and fl ex ibl y a it table learning permit 

cont inuou. new learning on one or more databa e . . Learning d e not erode pn r 

kn wledge until the full memory capacit of the y tern ex hau ted. In one 

app lication,5 a imulated rabbi t i trained ia an ART network to react to a predator in 

a n dimen i nal fa hion, b ither tanding till when the predator d e not appr ach. 

r b m ving ri ght or left ba d on the direction of predat r appr ach. Once trained . the 

c ntr ll er be om a content -addre ab le memory. retri ev ing the nex t appropri ate ac ti n 

fr m the current tate of the rabbit and input from the predator. The "re olution" 

capability of the rabbit to di cern unique tran ition from one tate to the next i direc t! 

pr p rtionaJ: 15 rec £nition nod r pre ent 15 tran iti n , and take about an hour f 

clock time to train on a Symboli 36 ene computer. a concern as the problem . ca l e. 

larger and increa e in dimen ion . The ART i a very u eful network a long a one can 

make u e of the categorie it create . An application of it u e i demonstrated in 

Chapter 7. 

1.4.2 The Boltzmann Machine 1 
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The Boltzmann Machine i a digitally implemented. hardware oriented neural 

network architecture which ha a distributed control mechanism and it neuron can only 

as ume a zero or one value. Thjs elirrunate the requirement of the de ign and 

implementation of a multiplier which elirrunate the need for any compan. on 

requirement of the y tern for data manipulation . This digital approach free up preciou. 

memory requirement allow for pre pecified accuracy control. and the deci ion proce. 

i reduced to a lookup table. Although in theory ideal for ilicon , implementation i till 

plagu d with problem in the tuning of topology and learning parameter . Effort ha\ e 

been fo u ed on wa to tran fer the gain made in other neural network architecture 

update meth d to the digital d main. with promi ing re ult .5 
•
5

-' 

1.4 .. 3 Radial Ba i Function RBF 

RBF are a linear weighted combinati n of gau ian acti ation function . . 

Traditi nal optimizati n meth d uch a lea t quare or Kalman can be u ed t 

determine the weight in it one linear weight Ia er. Due to the narr w gau ian recepti e 

field , RBF offer excellent repre entation of nonlinearitie of up to third order in 

complex it . Higher order require prior knowledge of the magnitudes of the input ignaL 

and an exponentially large number f gau. ian to co er the parameter pace. In rder 

to repre ent higher ord r nonlinearitie with a mall number of gau ian . one mu t all w 

variation of the mean and standard de iation of each gau ian. rai ing the complexity f 

training to that of any other neuraJ network with nonlinear acti at ion function . (thre hold. 

sigmoid inu oid, etc .). 

1.4.4 Multilayer Feedforward Neural Network 
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A feedforward network con i t of weighted connection between a large number 

of simple repeated neurons, and the fl ow of information propagates forward through the 

network from input through neurons in variou layers to output . Generally, each neuron 

in a given layer i full y connected to each input or neuron in the previous layer as well 

as to each neuron or output in the next layer. Any layer that is not an input or output 

neuron i defined as a hidden layer neuron. Each neuron either impl y multiplie and 

bia e the input a a linear neuron or pa e the sum of weighted input through a 

nonlinear ac ti vation function before add ing the bia weight. 

Due to the multi ple layer of weight connect ing nonlinearitie . tandard 

optim ization method are n I nger acceptab le. It i diffi cult t ontrol the acti it y within 

the hidden lay r . e pecia ll y if there are more than one. The K lmogorov Mappi ng 

Theorem 4 impl ie that a three laye r backpropagation network (whi h include one hidden 

Ia er) h uld "perfonn an cont inuou mapping defined on a compact et" a well a a 

net with more Ia r , but the author and Rumelhart55 ha e found that hi ghl y n nlinear 

network benefi t fr m more layer of ~ wer unit . avo iding the look-up table trap f 

exce i e unit per Ia er. Throughout thi work the three layer network of Kolmog rov 

will be ca ll ed a two layer network, a the input layer ha no trainable weight in a one 

hidden unit layer network. 

A popular update method backpropagation.55 assume that the error contributi n 

of any neuron input i proportional to it overa ll contribution to the output , and the 

amount of correction i determined by gradient de cent. Con idering th i a umpti on. the 

method works fa irly well although it is plagued with the arne local minimum problem. 
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and is too quick to alter weight that u ed to provide a good match.56 Many researchers 

have approached thi problem. The dynamics of a manipulator can be approximated with 

small neural network joined by a final layer trajned with a lea. t quare method ,57 a 

steepest de cent autotuning method can be employed to vary the hape of the sigmoidal 

activation function 58 a genetic algorithm can be used to swap weight values within a 

neural network controller which ha been held initially table by a fixed feedback 

controller,59 and the backpropagation update method itself can be di gitized to speed 

convergence.60
·
61 The Le enberg-Marquardt40 algorithm, a econd order variant of 

backpr pagation based on Newton' method , i a go d compromi e between maintaining 

peed of computati n while a oid ing local minima. and i dem n trated in Chapter 3. 

Oth r attempt ha e been made to modify backpropagation t exp li itl pr e that 

training wi ll tab! appr ach a minimum but work i preliminary . 2 

Ad anl age of feedf rward net rk are man . Both tandard and m dified. tatic 

and dynami , gradient method have found acceptable err r mjnima f r man practical 

cia ificati n. modelling. and contr I application . They can be u d for app li cation 

where input magnitude are n t kn wn ahead of time and dimen ionalit of the input 

pace t high . Becau e they are brok n d wn into function with ea il y c mputed panial 

derivati e , computat i n are traightforward and are not ungain ly 1 cale up in tze . 

making neural net ideal candidate for parallel computer implementation . Neural net 

can deal wi th ju t about any level of prior know ledge, from gathering a general 

relation hip from sketchy raw data to moothing out or implifying the re ponse of a 

complete set of fuzzy rule . 
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Capable of capturing higher order nonlinearities than other optimization methods, 

neural networks difficultie begin to multiply as their size increases. Convergence low. 

due to a larger error space with many more local minima. Not only doe one weight 

early on affect more weights in later layer , but more training pa e are necessary for 

the network to adequately capture the nonlinearities without overfitting. 6~ Some internal 

interpretation of input effects on weight can be inferred for smaller network , but larger 

networks di tribute the repre entation too completely for a re earcher to want to ri k 

drawi ng conclu ion or pruning weights after a training e ion. A neural network can 

learn a relation hip with ex traneou input , but it can al o memori ze orne input at the 

expen e of learning the proper relation hip from other more critical input 

1.4.4 . 1 Recurrent Modification to Fe dforward Neural Network 

One popul ar modifi ati n to a feedf rward neural netw rk i to feed the output 

of me neuron back int them el e or previ u Jay r a addi ti nal input . Training 

become more difficult. but the e path by ac ting a delay , can impro e the netw rk '. 

abilit to repre ent time dependent relation hip .6-l . 
5 Attempt ha e been made to find 

1mpr ed weight optimjzati n alg rithm for recurrent network , uch a with a decoupled 

ex tended Kalman filter , wi th prorru mg re ul L .6 Recurrent net\ rk are app li ed m 

Secti n 2.4. 

1.4.4 .2 erebell ar Model Articulation Contr ll er (CMAC) 

Jame Albu ' CMAC (Figure 5), which W.T. Miller and other 7 at the Univer it 

of New Hamp hire have implemented on an actual robotic control sy tern. i an 

a ociati ve neural network which a ume local generali zati on. Input which are strong) 
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related to certain outputs are arranged near and given more connections to them , while 

fewer connections are made to train outputs that are not very related. By alleviating 

backpropagation' connection blow-up problem, Miller clai ms convergence an order of 

magnitude fa ter. The mall model in Figure 5 show a 20o/c improvement over Figure 

4, but a larger net can ee even bigger savings in training and update time. CMAC fa vor 

a large number of unit per layer to ensure hidden units devoted to nearby input , but care 

i needed to en. ure a low error solution when the network i asked to interpolate using 

an unfamili ar et of input . 

1.4.4.3 Ca cade Correlation Neural Network 

Fahlman44
, de iring to peed up neural net training and online update, de igned a 

ca cade correlation neural net (Figu re 6 and 7) that onl y added hidden unit a needed 

to approximate the output \ ith in an acceptable err r tolerance. Thi can increa. e 

ori ginal training time. but the number f connection ill be ptimal for later online 

updating of the net. After a training e ion tart to le el off in hi error minimi zati n. 

Fahlman train a hidden unit to maximize it correlation with the remaining error. thereb 

adding a nonlinearit y t the net, which i then added to the neural net prior to a ne\\ 

round of training. Note that in Figure 7, a cascade network with two hidden uniL 

in tail ed that each new unit e a contribution from all previou hidden unit a if the 

were independent input . Thi wa intended by Fahlman to adapt to error contributed by 

all influence in the network , including all previou hidden units. If the magnitude of the 

input varie widely, numerou hidden units will continue to add error in their que. t to 

reduce a combined error. 
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Figure 5: CMAC Network With Far 
Connections Disabled 
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Figure 6: Cascade Network with 
One Hidden Unit Installed 

Weights for bold connections are frozen once 
hidden unit is installed in the network. 
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Figure 7: Cascade Network with 
Two Hidden Units Installed 

Weights for bold connections are frozen once 
hidden unit is installed in the network. 
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1.4.4.4 An Improved Architecture 

An improved architecture for variable range network output 68
·
69 would add hidden 

units to adapt to errors accumulated, thus approximating a spec ific output and avoiding 

needle reiteration. The training algorithm incrementall y add a layer of hidden unit 

which, beyond the original input , are only influenced by other hidden units devoted to 

the same output. If a particular output doe not need a highl y nonlinear adju tment , it 

hidden unit will have relati vely mall value . The network then tend to favor tho e 

hidden unit a igned to tho e output mo t in need of error minimization. The algorithm 

doe not make CMAC' a umption about inpuUoutput pr ference , but allow the 

network to dec ide if there are any. It continue to implement Fahlman' increment al 

hidden unit to eliminate unnece ary connection for online update . but accommodate 

output which ex hibit varying degree of nonlinear beha ior. If a high degree of accuracy 

i nece ary for an output . one neural network i modified to ha e three identical out put . 

The fir t exp cted point i then general d, and one of the tw output that agree m t i 

cho en f r th current round of implementation. The fir 1 point i all that i needed 

becau e, accurate or not all output of the network will repre. ent a continuou functi on 

from ther . 

1.5 Practi cal Con iderations 

After variou alternati ve have been explored, prac ti ca l application can determine 

which are easily implementable expandable table, and robu 1. Prac tical con iderati on 

of implementing the ideas of thi chapter are explored in the next chapter, leading to an 
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overall planning and control hierarchy to share information, prioriti ze and time pl anning 

and control responses , and learn from experience as they are accumulated. 
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CHAPTER 2: 

PRACTICAL MODELLING FOR 

A CONTROL AND PLANNING HIERARCHY 

2.1 Modelling Real World Nonlinear System 

Some practical con ideration of de igning a neural netw rk to capture nonlinear 

relation hi p in a rea l world en ir nment are explored, from learning the kinematic of 

a fi e axi mani pul ator, to fi tting the curve with linear! dependent in put . to modelling 

the d namic f a autom bile engine dri en by a d namometer. The auth r' 

contri bu tion in thi area i the FSFER network, a modified recurrent network, which 

excel in it ab ility to model a time vary ing nonlinear y tern in both the time and 

frequenc domain .1 The FS FER network with the author' enhancement to weight 

training for peed and reliability of err r minimization i incorporated into a no el 

coordinated hierar hy for r dundant robot pl anning and control. 

2.2 Example of Neural Trajectory Tnuning 

2.2. 1 Robot In ver e )(jnematic 

The improved architecture was employed to learn the inverse kinematic of the 
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five axi Rhino XR-2 robot (Figures I and 2), with the three cartesian points in space plus 

q2:4 and the independent q5 a inputs. The joint angles q ,, q2, q3, and q4 were the output 

angles to train to . The effectivene s of training was demonstrated by inserting the neural 

network uggested q angle for a given trajectory into forward kinematic equation , and 

then plotting the resulting actual trajectory. The resulting plot (Figure 3 through 8, odd 

number labelling the target, and even numbers the re ulting trajectory for a selected 

training set of points) howed that , although the exact location of the trajectory in 

carte ian pace wa not attained the de ired hape and orientation wa . Demon tration 

on an actual Rh ino robot howed that the hape had been learned , but twi ted in carte ian 

pace. The err r ptimization eemed trapped in local minima. 

2.2.2 Weight Trai ning Enhancement 

In order to o ercome ba kpr pagati n' diffi ult In a iding local minima, the 

mod ified algorithm preconditi ned the trai nab le weight and bia e by arranging them in 

a ector. varyi ng and e aluati ng them via a quality mea ure. The wi nning ect r a 

then introduced or returned to the netw rk for further optimizati on . Thi meth d. ba. ed 

upon the geneti algorithm cone pt. excel when de irable performance crit erion alue. 

are urr unded by unde irab le alue , a trap for a gradient-ba ed algori thm . Th 

organized randomne of the geneti c algorithm jumps over thi "moat" by utili zing the 

cone pt of mutation and cro sover. Such di continuou move are po ible by 

choo ing off pring ba ed on di ver ity a well a optimality. 

ln order to overcome backpropagation' difficulty in avoiding local minima, the 

algorithm interrupted training every few hundred iteration to arrange the trainable 
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Figure 1: Denavit-Hartenberg Link Coordinates For the Rhino XR-2 Robot 
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Figure 2: Rhino XR-2 Inverse Kinematics Equations 
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weights in a vector, vary and evaluate them. The winning vector was then returned to 

the network for further optimization. Figure 9 is an example of a solution pace where 

the de irable vaJues (highest in thi instance) are surrounded by very low vaJue , trapping 

a gradient based algorithm. The tructured randomne s of the genetic algorithm jump 

over thi moat by utilizing the concepts of mutation (Figure I 0) and cro over (Figure 

II) . Such di continuou moves are po ible by choo ing offspring ba ed on diversity a 

well a optimality Figure 12). 

In the modified algorithm, aJI neural net variable weights are arranged into a 

vector. One weight i randomly varied, creating an off pring of the original vector to 

approximate mutation . Variation f one weight i continued acr the length of the 

ector until there are a man off pring a weight plu the original parent. A few more 

off pring are then created b randomly arying all weight to approximate diver it . 

Output value are obtained for di tance from the target , rate of change of that di tance 

(" el city" and curvature of that di lance ("acceleration"). The re ulting alue (or 

n rmalized ver i n are added together and the off pring with the I we t 0\ erall c re 

ch en to continue for optimization by the neural network . If the original parent i 

cho en. a flag can be et to top or modify the geneti portion for later. Otherwi e, when 

progre in error reduction of the backpropagation ha lowed. the weight will return t 

the genetic portion . 

2.2 .3 Comparison of Approache 

The function in Figure I 3 
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2 y = x 1 + 4 . 0 x 2 - 0 . 2 x 3 - 0 . 3 , 
(I) 

where x1, x2, and x are all linearly dependent , wa trained first with backpropagation and 

then enhanced with a genetic ba ed algorithm. The re ult were obviou : the original 

backpropagation, even with adaptive learning rate momentum and various architectures, 

would top learning around 800 iteration (Figure 17). No significant progress occurred 

a far a 9900 iteration along (Figure 18). 

Fir t, a genetic ba ed algorithm that compared di tance away from the target wa 

empl yed . The curve wa better approximated for the po itive x axi , but remained flat 

for the negati e x axi (Figure 19 . With a rate of change "velocity ") factor added into 

the performance mea ure, the negati e ide lifted up (Figure 20). and with acceleration 

added, the cur e wa e en bett r appr ximated Figure 21 ). The genetic algorithm i 

urely worth in e tigating for practical application uch a the robotic hand. Becau e 

the e timation tra at the edge , it i recommended that training be extended beyond the 

expected operation range t get the clo e t fit where crucial. 

2.3 A Recurrent Architecture for Modelling of Nonlinear Systems 

The above concepts were then applied to the modelling of an automotive engine 

and dynamometer te tbed o that alternative control methods for the noi y torque control 

loop could be tested offline resulting in further enhancements to architecture and weight 

update. An application was found that centered around a popular traditional feedback PID 
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control configuration. 3 Such controllers are conceptually simple and ea ily implemented , 

but require routine adjustment as test conditions and engine characteristics vary from test 

to te t. Thi adjustment does not neces arily result in the be t po sible performance, 

especially for transient type testing in which the inherent system nonlinearities are mo t 

apparent. As the system at hand is highly nonlinear, and subject to environmental 

condition , neuraJ networks are an excellent choice for both on and off line 

characterization of the proce . 

2.3. J The Applicati on Scenario 

Thi application in volve the modeling of an engme dynamometer te tbed 

con ting of a heavy duty ga oline engine, DC dynamometer and the a ociated feedback 

control mechani m. The principal g al of the work i to obtain a greater under tanding 

of the y tern and ac hieve a functi onal imulation model for the de elopment of an 

impro ed throttle control mechani m. All too oft en. uch feedback control de ign tart 

with a imple linear model which, although convenient for algorithm development. are 

typicall y an inadequate repre entation of the nonlinear dynamic y tern . An altemati e 

approach w rth con id ring i to tart with a reliable nonlinear model. and then beg in 

control de ign around lineari zed portion of that model. Thi permit finer 

characteri zation of the validity of each linear model, and offer an offline evaluati n 

platform for any developed controller. The latter i especiall y criti cal in the pre. ent 

application, a the integration and te ting of a new controller in any acti ve producti n 

fac ility is di ruptive and co tl y. 

For thi ta k, three di fferent neural architecture are con idered. tandard 
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feedforward ,4 Elman type recurrent,5 and finaJl y a Full State Feedback Extended Recurrent 

(FSFER) architecture. FundamentaJ benefits of the recurrent architecture are demonstrated 

a well a an evaluation of different recurrent implementation . Neural network offer 

a favorable tradeoff between explicit model (which render each component of the sy tem 

in a very accurate manner but are very pecific to a particular y tern and are time 

con uming to a emble and execute) and implified linear repre entation which are ea y 

to build and u e at the expen e of validity . For thi work , three neural architecture are 

con idered: a tandard feedforward , a ba ic recurrent (Elman network ). and finally a 

FSFER archit cture. The e are hown in Figure 22-24 and de cribed in f rmula form 

bel w. Ea h of the neural network can be repre ented in a common matrix form. 

Repre ented a In t ) = [in '! in (t -1) in(t -2) and/or time ari ant of other 

ignal ]', the input ect r can ei ther be obtained a a r w fr m a training et during 

train ing. r a the Ia t ignal obtained from the y tem nee n line. 3.3. 1.1 The 

Feedf rward Net rk 

The feedf rward network found to be optimal for the problem con i ted of two 

igmoidal layer . 4 and 8 unit apiece. followed by a linear neuron repre enting it O \\ n 

Ia er. Therefor . L I nit in La er J) will be 4. L2 will be 8 and L3 ill be I. 

NL (Number f Input will equal 5. In the fir t weight layer. the output ec t rOut , v.. ill 

be orne: 

ln('!) a Nlx I vector, 
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Out 1 ('r) is a ULI x I vector, 

F1 is a hyperbolic tangent sigmoid acti vation fun ction, 

W1 is a ULJxNI matri x, and 

B1 i a ULI x J vector. 

In the second weight layer: 

Outi t ) = Fi W/ Out1(t )+B
2
) , where (3) 

Out 2('r) is a UL2x I vec tor 

F2 i a hyperbolic tangent igmoid acti va tion fun tion, 

W2 i a UL2xULI matri x and 

B2 i. a UL2x I vec tor. 

ln the third weight layer: 

u t . the output of the neural network 

F3 i a linear activati on function, 

W 3 is a UL3xUL2 vector, and 

B3 i a calar (or UL3x I). 

a calar, 

The complete Feedforward function then becomes: 

60 



STANDARD FEEDFORW ARD 
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rec 3 

Tan sigmoid 
Neuron 
Layer1 

Figure 22 
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rec 3 
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2.3 . J .2 The Elman Network 

The Elman network found to be optimal for the problem consisted of one 4 unit 

igmoidal layer followed by a linear neuron repre enting it own layer. Therefore, UL I 

(Unit in Layer J) will be 4 and UL2 will be I. NL (Number of Input ) will equal 5 

input + 4 UL I unit fed back= 9 total input . ln the fir t weight layer, the output vector 

Out 1 will become: 

Out 1("r) = F1(W 1*1n(-r)+B 1), (6) 

and the econd layer, with feedback, become 

u(1) = F1 W2*(F, (W1*(1n(1)+0ut 1(1-I ))+B 1))+B2) . (7) 

In erting Out 1(1- l ) = F1(W, *Ln (1-I )+B 1 • the complete Elman fun tion then become: 

u 1 = F2(W2*(F1 W1*(ln 1 +(F1(W 1*In(1- I)+B 1)) +B 1 +B . 

2 .. 1.3 The FSFER N twork 

The FSFER netw rk f und t be optimal for the problem c n i ted of 4 and unit 

1gm idal layer followed by a lin ar neur n repre enting it own Ia er. Therefore. L I 

( nit in La er I) will be 4, L2 will be 8, and L3 will be I. NL (Number of Input 

will equal 5 input + 4 L I unit + 8 UL2 unit + J UL3 unit = 18 total input . 

A umjng the arne time delay on e ery feedback I op. the fin al Ia er. ith feedback. 

be orne : 

u(-r) = F3(W3*(F (W2*(F1(W, *(In(1)+0ut 1(1-1 )+0ut2(1-l )+u(1-1 ) +B 1))+B 2))+B3) . (9 

In erting Out 1(1-I )=F 1(W 1*1n(1- I)+B 1 Out2(1-I )=Fi W2*(F1(W 1*In(1-I )+B 1))+B1) . and 

u(-r- I)=F/ W3* Fl W2*(F, W 1*In(1-J +B, ))+B _ )+B 3),the complete FSFER function 

then becomes: 
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u('!) = F3(W3 *(Fl W2*(F1(W 1 *(ln('!)+(F1(W 1 *In('!- I )+B 1))+(Fi W 2 *(F1(W 1 * 

ln('!-1 )+B 1))+B2))+(F)(W *(Fl W 2 *(F1(W 1 * 

ln('!-1 )+B 1))+82))+8 3)))+8 1 ))+B2))+BJ). 

( I 0) 

2.3.2 Neural Network Based Modelling 

The more common feedforward network (Figure 22 by their very nature, do not 

con ider time delay . In a time dependent y tern the network mu t be given time 

delayed ignal explicitly at the input4
• Thi although effecti ve, i a wa te of valuable 

input and weight . Furthermore, it i a somewhat inflexible trategy in the en e that the 

optimum delay( mu t be elected by the de igner thu defeatin g the ability of the neural 

network to become a truly effe ti e approx imator. The implified recurrent architecture 

repre ented by the Elman network in Figure 23 ha the benefi t of what may be con idered 

be a tate feedback from the fir t Ia er to a econd et of input weight . Thi 

feedba k ha a dual purpo e: Fir t. it permit better modeling of the internal dynamic of 

a complex tem.5 Second! . it permit characteri zation of an indefinitely long time 

delay. or a combination of dela . di fferent for ariou input or input haracteri sti c . In 

effect. the feedba k igni fica ntl enhan e the abilit of the neural net rk t mode l 

nonlinear dynamical y tern . 

The network of Figure 24 build upon the ba ic recurrent by extending it t a full 

three layer architecture with feedback from each layer brought back to it own set of 

input weight . AI o, each feedback incorporate independently tuned time delay element 

which may be adjusted as mall a the di creti zation tep (the minimum for digital! 
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simulated networks). Thi architecture differs from traditional recurrent net. in that 

typically , one would extend the recurrent by imply adding more sigmoidal layer to the 

Elman . This would imply that each layer has both inputs from the previou layer and a 

second et of input corresponding to its old outputs. This network was found to be more 

difficult to design and train than if all feedbacks were brought back as inputs to the very 

first sigmoidal layer as shown in Figure 24. 

2.3.3 Determination of the Training Set and Algorithm 

Pre ent engine te t technique include a so-called transient C)cle, driving the plant 

through a wide frequency range, and offering an excellent excitati n ignal for model 

de el pment. All mod I are ba ed upon a training et which c n i t of fi e input 

ignal , and the actual y tern torque re pon e, all ampled at I 00 Hz. The input ( 1-5 

on Figures 22-24) con i t of pre ent and pa t throttle command , pre. ent and pa t peed 

ommand and finally, the difference between th pa t I\ throttle command a een 

bel w: 

SPEED_CMD t 

SPEED_CMD t- 1) 

THROTTLE_CMD(t 

THROTTLE_CMD(t-1) 

THROTTLE_CMD(t)-THROTTLE_CMD(t-1 

The penalty function for training (f) i computed a the urn squared error between actual 

sy tern torque T and the network computed torque hown a out6 in Figure 22-24. 

65 



( II ) 

Weight update are performed by the Levenberg-Marquardt6 (LM) algorithm which is 

found to be significantly fa ter than traditional backpropagation . The LM algorithm i 

derived from Newton' method and use Equation 12 with J being the Jacobian error 

deri ati ve matrix , J.l being a tuning parameter and E the error vector to enact a weight 

change !lW. 

( 12 

The training tn I ed ch mg the be t of 5 c mplete training run , wh re 

weight tarted at Ngu en-Widrow initiaJi zati n, and then iterated 30 time . It i found 

that. alth ugh the torque error Je el off quick! by the completion of 30 iterati n it i 

of ignificant alue to re tart the network from scratch u ing a fre h et of rand ml 

initi ali zed weight. . A oft en occur with nonlinear problem , optimi zati n algorithm. 

(including th e u ed f r neural network. have difficulty finding the gl bal minima. 

While vart u technique are built int both Backpropagation and LM to extrac t the 

gl bal mmunum from a highly nonlinear error urface. it i often helpful to initi ali ze 

training at a variety of random po it ion in the error pace. greatly increa ing the chance 

that the global olution hall be located. 

2.3.4 Model Training Compari on 
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Work was performed on a 4861100 microcomputer in the MATLAB/SIMULINK 

environment. Trajning time is a function of network size and architectural complexity . 

The simple Feedforward net, containing roughly 60 weights take approximately 30 

minute to train and only several second to execute a 100 second simulated segment. 

At the other end of the spectrum is the FSFER network with 112 weights and a complex 

feedback structure. Thi implementation takes approximately 150 mjnutes to train 5 full 

passe and 20 econd to execute the trained network. 

Qualitatively, Figure 25-27 how the torque output of the neural network 

superimpo ed upon that of the actual y tern for elected portion of the transient cycle. 

The time domain compari on reveal that both the Elman and FSFER architecture exhibit 

a fairl clo e approximation of the actual ystem, each with orne le el of stead tate 

error and imilar following of the tran ient (Figure 25-26). The Feedforward network. 

while till foil wing the tran ient appear ery noi y, with a ignificant high frequency 

comp nent riding on the intended ignal (Figure 27). The accentuated hjgh frequency 

component of the Feedforward network are equally apparent in the frequency re pon e 

of Figure 29, who e reference ignal appear in Figure 28 . The Elman and FSFER 

netw rk how a omewhat clo er re ult in Figure 30-3.1. 

Quantitatively the network are each evaluated on the ba i of the training et 

it elf and two ection of the tran ient cycle for which they were not trained . While it 

i of interest to minimjze error in all re pect , it is the performance of the network 

( y tern model) in response to input which have not been previou ly experienced that i 

of critical value. To better characterize the issue. the magnitude re ponse to both throttle 

67 



FSFER THROTTLE RESPONSE 

400 Figure25 

300 

100 

0 

- 100 ~------~------~------~------~------~ 
0 20 40 60 80 1 00 

time. (seconds) 

ELMAN THROTTLE RESPONSE 

500.-------~------.-------~------~-------. 

Figure 26 

100 

0 

- 100 L-------~------~------~------~------~ 
0 20 4 0 60 80 1 00 

time . (seconds) 

FEEDFORWARD NETWORK 

500.-------~------~------~--------~------. 

Figure 27 

-100L-------~------~------~--------~----~ 
0 20 4 0 60 80 100 

t1me. (seconds) 

68 



TORQUE RESPONSE TO THROTTLE INPUT 
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and speed inputs were computed and compared with the reference.7 

The sum absolute error in the time and frequency respon e for the training set and 

two other data sets (which the neural network had not been trained on) are then 

computed, and normalized to strip the unit . Each network i evaluated on the ba i of 

both frequency and time domain performance. A two of the dominant parameter 

affecting engine torque are throttle position and current peed, the response of the model 

to both of the e parameter is evaluated . Analysis therefore involve comparing the 

frequency magnitude re pon e for both peed and torque of the actual engine and all 

model . AI o con idered i the overall torque error in the time domain . 

Three overall portion of the tran ient cycle are on idered, the training et iLelf 

and two other portion for whi h the network had not been trained. Thi evaluate the 

ability of the network to model the actual dynamic of the problem a oppo ed to imp! 

memorizing a trace. The total ab olute error fo r each e aluation x i gi en by Equati on 

13 f r N t tal p int of reference R and model G. 

(13) 

Data wa then grouped and normalized by type. Spec ificall y, the error for 

throttle, peed and time respon e for each of trained and untrained portions were treated 

a equi valent , and normalized uch that the greate t error within each group would be 

equal to 1.0. The total normalized error for each of the neural network type wa then 

totaled and repre ented on a cale of 0- 1 for Figure 32, where it i een that recurrent 
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network are ignificantly better than traditional feedforward . It i also een that the 

FSFER network is somewhat better than the Elman when extended to input for which 

it i not trained. 

2.3.5 Compari on of the Model under Control 

While the time and frequency domain re emblance to the actual plant are critical 

parameter in the evaluation of any model , the dynamic re pon e of the model to a 

simulated or actual controller i al o of interest to the problem. The given task implie 

that any re ulting model mu t interact properly with the controller, and re pond 

appropriately to change in the control tructure . Although, thi quality may be 

a certained through the u e of time and frequency domain analy i technique evaluation 

with the controller may be con idered a the final word on model qualit 

For thi te t an explicit model of the current PID control tructure wa 

implemented a een in Figure 33. A the re pon e of the a tual y tern to parameter 

ariati n in thi controller are well known the e arne parameter ariation were 

recreated t perf rm final e aluation of the imulated plant. Figure 34-36 show the 

re ult of proportional and deri ati e parameter variation in the controller. and the plant ' 

corre ponding tep re p n e. A. expected, the new recurrent network ha a completely 

unique tep re pon e for each of four control etting (Figure 34 . Thi indicate that the 

recurrent model re pond to control variation much like the actual engine testbed being 

modeled and more importantly, that any evaluation of a new control de ign with thi . 

model would be valid. The same may not be said for either of the other two model 

te ted. A seen in Figure 35 and 36. the more traditional neural network model are 
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quite in en iti ve to control variation , indicating that any evaluation of a unique control 

structure with the e pl ant representation would be hjghly uninformati ve. 

2.4 Future Directions for Modelljng with FSFER 

Current effort s are directed toward both control development on the present model 

and model refinement in term of both architecture and training. The concept of a hybrid 

network incorporating both recurrent and feedforward element ( eparably trained) shows 

ignificant promi e. In term of control application it i believed that both the 

performance and robustne of the control sy tern can be ignifi antly improved over that 

offered by the ex i ting proportional deri vati ve trategy . AI o, further application of the 

enhanced rec urrent network are being in e tigated including the modeling of full vehicle 

dynamj c for the de el pment of automatic dri er , and the exten ion of the ne 

architecture for u e a a feedback c ntroller. 

It i found that the enhanced re urrent architecture de cribed i ideal form deling 

nonlinear dynami y tern . Thi architecture ha been de veloped and trained for the 

hea y dut engine te tbed application of pre ent intere t and compared favorabl over 

other neural architecture . Future work in ol ec development of a unique contr I strateg 

for the engin te tbed application a we ll a application of the FSFER architecture t 

other modeling and control problem . 

2.5 Incorporation of FSFER into a Hierarchy 

' 
A hierarchical control compo ed of fuzzy logic, neural network , and expert 
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systems will demonstrate that it can not only execute a realistic task in a crowded 

environment, but can learn to accomplish similar task in a more efficient fa hion at a 

later time. Real world complex systems are characterized by poor models of an uncertain 

environment, high dimensionality and nonlinearity of the deci ion space, hierarchies of 

influence/complex information pattern , multiple performance criteria, di tributed sensors 

and actuator , and high noi e levels, all resulting in computational complexity for control 

scheme . Biological sy tern have shown that they can be t handle complexity, 

uncertainty. redundancy, noi e rejection fault tolerance and signal fusion. 

The po ible application area are many . Current incarnation of vacuum cleaning 

and lawn mowing robot mu t hut down for unf re een circum tance and wait for a 

human to return . A embly robot taught teach point for proce e uch a welding, can 

run day and night until their component fail. With a method of diagno i tied into their 

contr I majntenance and programmer can be warned of an impending line down 

condition while they are still on duty. Welding rob t for joining variably curved hiny 

urfa e would ha e a lower reject rate if th y could learn from vi ual feedback that the 

were currently making a bad weld and correct it before the earn i completed. Another 

ca e of a con tantly drifting y tern i when a robot mu t load emiconductor wafer on 

an evaporator d me. Warpage from con tant reheating cau e each mounting depre ion 

on every wafer dome to be differ etting the tage for wafer rru mounting . T 

complicate the i ue, vi ual confirmation of a good mount i confu ed by reflections from 

the poli hed tainle steel equipment in all directions. Even human driver teleoperators 

manipulating un table load can benefit from learning. A controller is needed that can 
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sen e the intentions of a human that i overreacting to a potentially unstable grasp. based 

on expenence. For quadriplegics and other wheelchair di abled, a learning adaptive 

controller can mean the difference between con tant superv1 Ion and relative 

independence. A mouthpiece or head mounted Ia er indicator controller, in concert with 

to a learning robot attached to a wheelchair, hould be able to adapt to everyday minor 

calamitie and emergency ituation in tead of having to wait for ervice personnel to 

arrive. 

2.6 Propo ed Hierarchy for Thi Work 

Gi en that online adapti e control i a difficult t pic f r neural network the goal 

of thi effort i to dem n trate orne po iti e re ult with the cho en combination and 

m dification of approache , gi en a weight training meth d that i timely for real world 

application . The hierarchy de el ped Figure 37) i intended t fall back to a table 

control in a ne ituation then learn how to deal with the ne\ difficulty. From the 

tandp int of c perating arm or redundant joint , the hierarchy will pro ide a ch 1ce 

of . table contr ller t ch e fr m, a mooth tabl tran ition from one controller t the 

next , and a m re ptimal lution for the next time a imilar et of operating condition. 

i enc untered . 

2.6.1 Mo t Local Level : Diagno tic DC Motor Control 

A diagno tic adaptive DC neural motor controller i developed to compen ate f r 

parameter ariation at the joint , and then pa information it gain on to higher Je el 

control and planning. The goal i minimization of human intervention due to mechanical 
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wear and unforeseen degradation in the performance of one joint so that redundant joints 

can backfill until maintenance i convenient. Con i tency, safety , and stability are 

important consideration . Some compari on is made between using time domain ver 'us 

frequency domain information in doing diagnostic · (i.e., helicopter gearbox). This topic 

is di scussed in Chapter 3. 

2.6.2 Coordination of Many Joint : Redundant Axi Robot Control 

With only ix joint there is one way for the end effector to achieve three 

po ilion and three orientation . Redundancy offer the option of optimizing the 

all cation of the reference command for obviou imple goal (i.e., energy or time a. 

well a more ubtle goal (i.e . even tre and wear acr the joint or favoring an 

impaired joint . A neural net ork i trained to allocate the manipulator joint command , 

ba ed on po iti n and diagno tic inf rmation . The re ult are te ted on a imulation 

m del which con ider torque loadi ng. d namjc coupling, fri tion , centripetal and Corioli . 

effe t . Thi topic i di cu ed in Chapter 4. 

2.6.3 Working Toward a Goal: Gra p Planning with Tip and Slip Control 

A neural object approach vector cia ifier i al o developed for cho ing the beet 

fir t gra p for a cia of object . An initi al determinati n of appr ach vector i made via 

lability rule . As an object lift i attempted. fuzzy logic i used to correct for tip and 

slip. Then an object gra p rank ba ed on the ucce s of the fuzzy attempt i u ed a 

feedback for the neural object category network. Object are clu tered ba ed on trial 

grasps, not by human perception. A imulation of the fuzzy gra p tipping algorithm i. 

demon trated, as well a the ability of a neural network to replace fuzzy controller ac ros 
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a wider range of variable parameter . Thi topic is di scus ed in Chapter 5. 

2.6.4 Working with Other Robots: Multiple Arm and Object Planning 

The last topic , parallel task planning, utilizes a self-organi zing neural network to 

extract an appropriate selection of plan from a stocha tic petri net. A block manipulation 

and stacking ta k u ing two robot hand is demon trated in imulation . This topic is 

di cu ed in Chapter 6. 

2. 7 Ex ten ibility of the Hierarchy 

A imilar hierarchy i de eloped for an detecting and dri ving automobile on a 

cha i dynamometer in Chapter 7, where additi onal proce ing required to interpret the 

en ory information. Succe ful at recogni zing the frequency ignature of vehicle it ha. 

ne er been traj ned n, a well a dem n trating pr mi ing m delling and control abilit . 

thi hierarch lend upport to the ex ten ibility of the concept to many pra ti cal 

app lication . 

References 

1Ta cill , M. Ta ci llo. A .. and D. G ng."Neural Network Ba ed Sy tern Identificati n of 
an Engine Te tbed," Proceedings IPC '95 Workshop. Detroit. Michigan. May 9- 1 I. 
1995 . 

2Winston , Patrick Henry. Artificial Intelligence. New York : Addi on-We ley, 1992. 

3Kawarabaya hi , S. and T. Fugii: "De ign of Optimal Servo-Sy tern for Engine Test Bed 
by ILQ Method", Proceedings of 28th Conference on Decision and Control. December 
1990. 

4Rume1hart , D.E., G.E. Hinton and R.J . William : "Learning lnternal Representati ons by 

79 



Error Propagation ." Parallel Distributed Processing, vol. I D.E. Rumelhart , J .L. 
McClelland and the PDP Research Group, eds. , Cambridge, MA: MIT Pres . 1986. 

5Caudill , M. and C. Butler: Understanding Neural Networks, Volume 2: Advanced 
Networks. The MIT Press, Cambridge, MA, 1992 

6Demuth , H. and M. Beale: MA TLAB Neural Network Toolbox. The Mathworks, 1994. 

7Proaki , G. and D. Manolaki : Introduction to Digital Signal Processing. MacmWan. 
NY, 1988. 

80 



CHAPTER 3: 

DIAGNOSTIC DC MOTOR CONTROL 

3. I Neural Networks that Diagnose 

Although recent literature indicate a proli fera tion of neural network application . . 

a ignifi cant challenge remain in the area of control engineering. A typical para llel 

algorithm ' can effecti ely execute one repetiti ve , hort term robotic ta k in vo lving the 

e timation of parameter command of motor joint , planning of trajectori e , and gra ping 

of imple object . In an increa ing number of application h we er. product run change 

and interchange rapidly requiring frequent adjustment , retooling. and maintenance. It 

would be de irab le to implement an algorithm that could reli ably adapt to mechanical 

wear and prod u t variation, thereby increa ing producti on time between in tance. f 

human inter enti on. 

Employment of neural network to learn the entire robot control ta k from en r 

to actuator or end effector ha been ucce ful for two or three degree of freedom 

sy tern 2
·.1 but attempts to apply the e to higher order, more reali. tic robot have been 

di courag ing. 4 The mo t common assumption of conventional parameter estimation 

techniques i that initial condition be close to their target value . One way around thi 
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limitation is to employ a robust control scheme that perform acceptably aero s all 

expected parameter values, but even in thi case a partially known linear time-invariant 

sy tern is assumed. 2 This approach may be inadequate when the control requirements 

extend simple, u ually planar demon trators to three dimen ional robots with redundant 

joint performing high peed, precise manipulations of un table variable loads in cluttered 

environments. Neural network can extend the capabilities of the controllers they were 

modelled after,6·
7 but once the task becomes too nonlinear, output must be supervised 

(i.e. , with an expert y tern ) to correct for teady state error and in labilities. 

A diagno tic output or node can be defined a a neural network output who e 

purpo e i to infer a nonlinear y tern . tate or intended reaction condition to be u ed or 

interpreted by orne other alg rithm. Some re earch ha begun re 'ently with diagno ti 

output . Abu-Mu tafa refer to "hint " in hi work ,9 where extra output are added for 

the ole purpo e of aiding the neural network in it internal repre entation of the nonlinear 

relation hip intended for the fir t output. The hint are extra information the programmer 

happen to colle t for each et of training data which by contributing to the hidden Ia er 

weight update bia the network's approach to learning the original relation hip. From 

an ther point of view,10 heli opter gearbox frequencie are monitored by a neural network 

with an initial Fourier tran form layer. All output are diagno tic , and their value are 

trained a failure pre ent or not pre ent -- the failure output with the highe t value win . 

From a third per pective, model reference control neural networks have been ucce sfully 

used to model the controlled plant so that the tandard model reference control gain can 
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be determined adaptively. 11 Hints have al o been interpreted by an expert y tern when 

a neural network can not resolve steady state error at value near zero. 

The next logical step i to employ the diagno tic node of a model or controller 

neural network for better election of neural network weight . It i al o logical that the. e 

diagno tic can al o be used for higher level planning uch a. for the redundant joint 

allocation of Chapter 4. The author' contribution 12
•
14 is the ex ten ion of diagnostic 

output as direct contributors to modification of the controller's own weights, as well a. 

input to other level of the hierarchy. A ucce ful method of tably switching from one 

et of controller weight to another i demon trated and a famil y of tab ly tran iti oned 

neural network are trained to m del a range of indi iduall tuned PID or fuzz 

controller aero the anticipated diagno ab le work pace. 

3.2 Diagn ti c for Drifting Sy tern 

A neural netw rk controller i therefore de igned that will fir t acceptabl c ntr I 

a plant who e parameter drift with time. then Iran iti on to a pecificall trained hild 

contr ll er ba ed up n a tab le parent neural netw rk if increa ed accurac 1 nece . . ary 

and a\ ail ab le. The c ntrolling neural network it elf po e e effi ciently trained outpu t. 

to diagno e drift of crucial plant parameter . For thi approach re ult. are dem n trated 

for two plant . one linear, the other nonlinear. A demon !ration of diagno ti c output on 

a model neural network will be hown in Chapter 7. 

3.3 Why Diagnose at the Motor Level 
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When faced with predicting the behavior of such a highly complex and nonlinear 

control ta k, a human will split the problem up into manageable tasks. With this 

approach in mind, some neural network based controllers 1 ~ · 1 6 have broken up the dynamjc 

equation for a specific robot into small functional blocks, and then developed optimal 

linear combination of the e blocks by training. Unfortunately, robot configuration 

flexibility and orne nonlinear effects cannot be properly addre ed. Attempts to 

accommodate the e nonlinearitie on-line by adjusting more than one layer of weights via 

a supervi ory context network may lead to in tability. 17 A imjlar approach was 

attempted by Yamaguchj et.al., 1 where a fuzzy controller blended two neural network 

gain chedule . It performed no diagnostic , but used fuzzy member hip function to 

a certain a continu u aJtitude-dep ndent combination of neural controller output 

appropriate for control. The initial control robu tly tabi li zab le for all condition . wa 

u ed fir t a the default but a learning progre ed, it a umed an overlapping role 

between two more pecialized network , one of whjch exhibited robu tne for high 

di turbance-low altitude flight , while the econd wa tuned to higher altitude flight. The 

neural architecture employed wa Ko ko' bidirectional as ociati e memor (BAM , which 

memonze input/output pair via the reverberation of correction u ing a correlati n 

matrix and it tran po e. Extrapolation to a large number of fli ght chedule wa not 

di cu sed. 

A control network i de ired that i both en itive and adaptive to the parameter 

variation of an arbitrary robot uch that pre pecified performance and robu tne criteria 

shall be met. Inver e kjnematic and dynamics can be e timated for a given robot in 
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many ways, but the effect of parameter variation is most noti ceable at indi vidual joi nt s. 

The function of a robot joint i theoretically simple: at any given moment, it mu t rotate 

cl ockwi e or counterclockwise a specified di tance. The movement control problem can 

be complicated, however, by variable parameter such a initial po ition with respect to 

grav ity, load and environmental di sturbance , sensor noi e, fri ction, and beam stiffne . 

Any combination of the above can compound error aero many joints and result in 

exces ive overshoot and/or ettling time. 

3.4 What to do with a Diagno 

It wa ob er ed m pre IOU w rk 19 that a tandard feedf rward backpropagation 

neural network had little trouble learning the three dimen ional in ver e kinematic 

relati n hip for aft e ax i rob t, but fi ne tuning of the po ition and orientation aero the 

enti re w rk pace wa a more di fficult ta k. A oluti on· to the accuracy problem ha 

been attempted by training network t operate within a equence of mall window 

panning the work pace. However, udden tran iti on between windo.,: ded icated 

network can re ult in unacceptable robot operati n. 

Yariou re earcher have attempted to add intelligent deci ion mak ing to all eviate 

performance degradation cau ed by the e tran it ions. Jordan and Jacob 21
, f r in tan e. 

utili ze a supervisory gating network which determine the control ignal ba ed on the 

weighted contributi ons of peciaJ ized expert controller . Pomerleau' AL YINN22
, which 

interpret camera image to direct an automobile, employs a uperv i ory algorithm whi ch 

choo e a teering command by gauging the importance of the ugge tions of indi vidual 
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expert networks specializing in highway driving, off road driving, avoiding obstacle , etc . 

Upon implementation , data input interpretation difficulties have per isted, periodically 

confu ing the network . It i difficult to teach an algorithm a continuou sen e of the 

entire driving experience when the basic driving task i interrupted by somewhat cyclic 

environmental phenomena including turn , obstacles, traffic patterns, and variably relevant 

change in road surface, cenery, and weather condition , whether multilayer perceptrons22 

or ART2 network with edge detection preproce ing23 are employed . These 

environmental factor mu t omehow be incorporated into the training et and accounted 

for by the neural network cho. en. Voting among better option 24 can be an impro ement 

over a ingle choice of be t network -- although the highway network may be mo tly 

correct that remaining in it lane i optimaJ a mall tree mu t till be avoided ia the 

input f an ob ta I a oidance network whi h h uld contribute a large weighted vote 

bey nd a gi en thre h ld . 

It i k.no n that accurac of a neural net ba ed controller i affected by the wa 

a training et i generated. It ha been ugge ted 19 that a training et accumulated al ng 

a piral haped trajectory of point within a mall volume can con iderably increa e the 

accurac of full ize te t traject rie panning the work pace. Once the network extracted 

the in er e kinematic , the relation hip wa valid everywhere. An approach i de ired 

that incorporate a much knowledge about an unknown dynamic y tern a po ible into 

coordinated, manageable, and table ubcontroller which are not re tricted to a mall 

neighborhood of applicability and do not require a pre-rehear ed sequence of snap hot 

from initial condition to target. 
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3.5 Problem Approach 

The goal of the proposed neural network based controller is to generate a control 

effort for the system of intere t, minimizing orne performance criterion. Thi problem 

can become complex due to non-stationary effects uch as drifting plant parameters . 

The e issue are addre ed by system adaptation, which re ult in building an additional 

control loop re pon ible for controller characteristics. A neural network based approach 

ha the potential for incorporating both the control and adaptation ta k in the same 

control procedure, providing that a rational training et ha been generated. As uming 

no direct tate or other parameter feedback , only integral and derivative variation of 

y tern output error and control effort are u ed a input for the network . Neural 

network diagno tic node could ha e been u ed to imply adju t a traditional controller' 

gain , but the pole placement controller u ed a ideal targeL f reach child network mu _ t 

a ume full acce to all y t m tate , and the often generate unreali tically high 

feedba k gain in order to achieve an ideal re pon e i.e., minimal ettling time). 

While the control problem i the primary ta k of the neural network. orne 

valuable diagno ti c information can be generated . The advantage of adaptati n emerge · 

wh n additi nal diagno ti c output can recognize the beginning of a parameter hift. 

revert to a network that can handle all anticipated ca e to an acceptable degree. then 

execute a mooth tran ition to a cho en pecialized, more accurate network. Sharper 

re olution between parameter value are obtained when the diagno tic values u ed for 

inertia value of 
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{ .003, .0045 , .0 I, .02, .03 , .04, .05 , .06, .1 , .5} 

are converted to target of 

{ -4 -3 -2 - I . I I 2 3 4 5 ) 

for training, allowing for ea ier interpretation of network re ult when the practical value 

are very clo e together. 

ln order to accompli h the e goal for a gi en y tern , a parent network i trained 

to th roughl y Jearn the de ired control functional relation hip ae ro all anticipated 

operating conditi n . Thi tab le contr I can then be enhanced by ihiti ali zing pe iali zed 

child network with the parent ' we ight value and expo ing the net ork to a new train ing 

et de oted to a y tern with a aried parameter. Hav ing a hieved an alread imil ar 

relati n hip. the child will not need to radica ll y alter it weight . offering a m re 

c ntinuou ly tabl tran ition from the parent y tern . A eparate di agno ti unit f r ea h 

vari ab le parameter i added to the parent network by freezing all existing we ight of the 

parent network and training a new et of linear connec ti n leading dire tl y the 

di agn tic unit. 

To demon trate the approach two type of y tern are considered. the fir t aimed 

at the evaluation of the effi ciency of the adapti ve control procedure . A simple linear 

controlled plant, 
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1 ( 1) 
( s + p ) f 

is de igned with a feedback controller 

10 - p, (2) 

that i. guaranteed to pro ide a fi r t order re pon wi th a 0.4 econd ettling time. A 

neural network wa trained to both imitate th i. adapti e controller and ident ify any drift 

of the time dependent parameter p. potenti ally a alue bet-. een I and 5. It wa found that 

linear c nnecti n from the netw rk input to the diagn tic ut put were all that \ a. 

nece ary fo r an accurate diagno i of p, and a linear adj u tment fr m one et of v. eight. 

another offered a mooth tran ition in control. 

The imulation diagram u ed to train a neural contro ller for the econd sy tern. a 

DC mot r with load bearing arm. i hown in Figure I. A pole pl acement state feedback 

contr ller i fi rs t found for ea h et of variab le plant parameter . in thi example I ad 

inerti a j 1oad load fri ction b1oad• and joint arm twi t ti ffnes , k1oad· Secondl y, the network 

traj ned with an enhanced backprop-ba ed algorithm that has been de igned to 

repeatab ly converge within a minimal number of epochs (Figure 2) and provide a stable 

and omewhat accurate control command, unew• for all example parameter vari ation . 
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Control command for references of I and 2 for a plant with load inerti as of .03 and .06 

are hown in Figures 3 and 4. 

A weighted error evaluation function is also used for training this output , varying 

the emphasis on initi al transient control effort versu tho e exerted near steady state. For 

the DC motor, linear connections from both the network input and the econd laye r of 

sigmoidal unit were neces ary fo r proper identification of drifted parameters. 

The architectu re of the neural motor controller network i shown in Figure 5, 

where the hidden layer unit are hyperbolic tangent igmoid acti vation functi on and the 

out put layer i linear. Both neural network input and econd hidden unit layer neuron. 

cont ribute weighted connection, to the output node . The input t th motor network 

are the error between the referen e and the plant output , the error doubly integrated. the 

pre iou control input to the plant. and it deri ati e and econd deri ati e alue . 

3.6 Diagno Re ult 

Fi gur 6 h w the fir t order pole pl acement target respon e upenmp . ed with 

b th the lower. hi ghly er h oting. uncontrolled plant and the impr ed. reali tica ll 

implement ab le neural re p n e. Fi gure 7 and 8 illu trate a eri e of linear y tern and 

motor neural controller re pon e to command for a gtven et of parameter 

uperimpo ed with the reference. Fi gure 9 and I 0 how filt ered re pon e to dri fting 

parameter , clo ely fitting the actual value , orne of which vary con iderably from the 

first "normal" parameter. The actual output of the node follows a hape irrular to the 

control output une w· but the magnitude infonnation can be ea ·ily and accurately ex tracted. 
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Noi. e was then added to all inputs, resulting in the parameter diagnoses of Figure I I and 

12. Finall y, parameter hifts were impo ed upon the neural controlled system during 

implementation, an example of which i shown in Figure 13. Exhibiting a sli ghtl y 

different transient re pon e, the new sy tern picks up smoothl y at a reference of two 

where the parent left off at the reference of one. 

3.7 An lllu trative Example 

A erie of fi gure will demon trate the control procedure. A normal plant, with 

a load inerti a of .03. i commanded to move from 0 radi an t I and then 2 radian . The 

parent network controller, opti mal near the normal operating parameter of load inerti a 

j 1oad =.03 load friction b1ood = .38. and beam twi t tiffne k1 od = Sx I a~ , will accurate! 

execute thi command (Figure 14) . Interpreted b a fu zz uper 1 r a ha ing remained 

with in acceptab le li mi t for the current contr ll er the parent c ntroller remain ac ti e. 

After the m t r arm i returned t a po it ion of zero radian . an additi onal ex tern al 

load i add d, doubling the previou alue to .06. A command i. then gi en to m ' e t 

on radi an. re. ulting in an a ceptab le, tab le re p n e with orne t ady tate error. While 

thi ommand i executed . th diagno ti output for load inerti a interpret the new plant 

a requiring a pec iali z d child network, noting that the averaged value of .2693 former! 

clo e t to the normal . I target fo r j 1oad of .0 , ha now hi fted to 3.09 16. close t to the 

target of 3 for a j 1oad of .06. The weight are linearly drifted to the child va lue a the 

pl ant i commanded to move to two radian . demon trating a smooth tran ition in control 

acros all ets of weight to the de ired steady tate value. Figure 15 compare. the 
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response of the parent controller with no drift (dotted line), to the drifted re ponse (solid 

line) after di agno i during the first command. An instant exchange of weight. from 

parent to child Figure II will yield imilar re ult for a transition a small a. that between 

thi parent and child . 

The robot joint controller network ha three diagno ti c output which can give 

indi vidual estimation of parameter drift. If two parameter are drifting at the same time, 

or if there are interdepend ncie a fuzzy interpreter can decide which pretrained child 

neural network i better to tran ition to, one advocated by di agno tic output A (i.e .. 

ti ffne or by di agno ti c output B (i.e. inerti a . Since a gradient hift in control from 

a parent network to a child network ha been demon trated a tab le, then a fuzzy linear 

all ocati on of control ignal from ari u network. can offer a more accurate contr I. 

3. Perfonnan e Improvement 

A a mea ure of controller effe ti vene , the tandard de iation of the output error 

(mea. ured a the difference between the given ignal and the pole pl acement ideal) i. 

mea ured, emplo ing Equation I for 01 g. the a erage va lue of the error and Equati on 2 

for cr. the tandard deviati on: 

a vgx = _1:. ~ E · 
N ~i= l .l ' 

(3) 
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(4) 

By companng the pole placed signal p to vanou control approache for the 

to 2 command of the illu trative example, 

crr(p-uncontrolled plant , for compari on) = .2749 

crr(p-parent onl y, no adaptation) = .082 1 

a (p-parent udden wit h to child ) = .070 I 

crr(p-parent drifted witch to child = .0691 

crr( p-child on! , a . uming pri r kn wledge = .0654 

where. due to the clo ene of the parent to the child in thi ca e. the 

udden and drifted tran ition to the child controller weight d n t ary 

significant! 

For the e ex periment . parameter hift diagno i wa. determined f r 

a command g1ven to a steady tate value for demon tration purp e . 

Diagno is cou ld be achieved a soon a the signal ettled to within the 

neighborhood of the reference (roughly 0.25 ec . 

3.9 Frequency Consideration 
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A motor under varying inertial loads will experience a change in frequency in the 

uncontrolled pl ant , and if diagnoses were being done on an uncontrolled plant , a standard 

or neural Fourier transform could be taken of the respon e and u ed as a di agnostic tool 

for determining the new inerti a. ln Kazla ,24 however, indi vidual fault detection with a 

neural Fourier wa not as succe ful due to pectral imilarity. The analog 

implementation of a neural Fourier tran form experienced additional problem with 

approx imation of the ab olute value function and when igmoid were driven into a 

nonlinear region. De pile the e difficult ie , frequency domain till a po ible 

con iderati n a a voting contributi on to di agno i . A y tern already under a robu. t 

control i difficult to di agno e, however, a the over hoot and ettling time of the output 

ignal are brought into clo er ynchroni zation. With onl y a rea nable teady tate err r 

in the out put to correct for, characteri . tic magnitude and freq uenc for the inerti a. and 

tudied wer lo t in the ignal to noi e rati . Arm t.,: i. t ti ffne , howe\ er. 

benefi tt ed fro m the explicit frequen domain informati n. 

3.10 C nclu ion 

e of an enhanced backpropagation learning algorithm14 to train a network with 

two hidden unit layer wa adequate for learning the motor relation hi p for the expected 

parameter variation . By constraining drifted parameter child controller t be a grad ient 

transition from the parent , error that re ult by rn.i xing competing convention (i.e . 

controller that accomplish a sirrtilar result via va tly different combination of weights) 

is avoided. 12 If a nonlinear relation hip i not learned in a reasonable amount of time. it 
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has been suggested 25 that one could apply a co t function to tune the lope of the 

sigmoids within the neurons them elve . This may be utilized a the propo ed technique 

is extended to the control of the motors a part of a coupled redundant ystem. 

In tantaneou disturbance affect the hort term behavior of a system, which can 

confu e local e timation schemes. The proposed network searche for a recognizable 

trend before adjusting the controller resulting in a pau e in highly accurate performance, 

but avoiding a cyclic o cillation of controller choice . An additional supervi ory layer 

could be added in the future to recognize the effect of orne parameter hift on more 

than one diagno tic output. By recognizing the change in di tinct feature of a ignal , 

a diagn ti c network might aid the effort of other re earcher predicting ignal that are 

locally chaotic but globally tructured uch a mu ic, speech, or power line re onance. 

Study of the local weight change of child network could aid under tanding of the way 

a particular neural network learn the dynamic of the y tern under tud . 
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CHAPTER 4: 

DYNAMIC REDUNDANT AXIS ROBOT CONTROL 

4.1 Traditional Robot Control Approaches 

Robot control methods can vary from a simple servomechanism to advanced 

control schemes such as adaptive control with an identification algorithm. Some popular 

approaches are joint motion control, resolved motion control, and adaptive control. 1
•
7 

Most of the joint motion and resolved motion control methods9 servo the ann at the hand 

or the joint level and emphasize nonlinear compensations of the coupling forces among 

the various joints. Resolved motion rate control also breaks down near joint space 

singularities (i .e, when the tool configuration matrix loses rank), so imaginary joints must 

be added which optimize some criterion chosen by the user. 

Model reference adaptive control is easy to implement, but suitable reference 

models are difficult to choose and it is difficult to establish any stability analysis of the 

controlled system. Self-tuning adaptive control fits the input-output data of the system 

with an autoregressive model. Both methods neglect the coupling forces between the 

joints which may be severe for manipulators with rotary joints. Adaptive control using 

perturbation theory may be more appropriate for various manipulators because it takes all 

the interaction forces between the joints into consideration, but it can be computationally 
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intensive and its assumptions may not be applicable for all situations. Some traditional 

approaches applicable to this work's emphasis on adaptation and redundancy are discussed 

below, followed by researchers who focused on a neural network solution to the robotic 

control problem. 

Wu, C., and C. Jou8
, while designing a controlled spatial trajectory for robot 

manipulators, present a two-phase robot trajectory planning method that decomposes the 

trajectory planning problem into path geometry planning and robot movement speed 

planning. The desired path is maintained while the speed is varied. The path geometry 

can be used to verify against geometric and kinematic constraints of the robot 

manipulator, while the speed function of robot motion can be used to verify against 

dynamic constraints. 

Walker, et.al.9
, while investigating robustness issues for kinematically redundant 

manipulator control , predict performance of rigid manipulator controllers without complete 

parameter knowledge. The method introduces redundancy as part of the manipulator 

states by inserting a parameter matrix P with upper and lower bounds, and its estimate 

Ph.at• for the equation of motion : 

A(P,6) 6 + V(P,6,S) + G(P,6) 

6 = set of rigid and flex degrees Of freedom (n X 1), 
A = the symmetric, positive definite mass matrix (n x n), 
V = centripetal and coriolis torques (n x 1 ), 
G = gravitational torque (n x 1 ), and 
tc = control torque (n x 1 ). 
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The computed torque controller for this system was then chosen as: 

'tc = A(P,8) (8d + Kd ~ + KP e) + V(P,8,S) + G(P,8) ,where (
2

) 

ed = desired joint accelerations, 
e = ed- e =joint position errors, 
derivatives of the terms in the above equation for joint velocity errors, and 
Kd,~ = diagonal feedback gain matrices . 

This type of controller is currently the most widely used type of control in robotics. It 

is popular due to its simplicity, essentially linearizing the dynamics and applying PD 

control at each joint. However, the approach requires perfect cancellation of the terms 

V and G, and calculation of the matrix A. Poor tracking and stability can follow. An 

adaptive perturbation control strategy was found by the researchers to be suitable for 

controlling the manipulator in both the joint coordinates and cartesian coordinates. An 

adaptive perturbation control system is characterized by a feedf01ward component and a 

feedback component which can be computed separately and simultaneously in parallel. 

The computations of the adaptive control for a six-link robot arm may be implemented 

in low-cost microprocessors for controlling in the joint variable space, while the resolved 

motion adaptive control cannot be implemented in present-day low-cost microprocessors 

because they still do not have the required speed to compute the controller parameters for 

the "standard" 60-Hz sampling frequency. 

Given the limitations of traditional approaches, a method is desired that does not 

specifically require a matrix representation, and therefore does not also go unstable near 

joint singularities. The author's contribution 10
'
11 is the design of a joint allocation network 
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that suggests a weighted contribution of a particular joint to a task given its perceived 

state of health or stress. This network is trained with the outputs of optimization 

equations whose goals often conflict. The approach is demonstrated in simulation for the 

complete redundant robot. 

4.2 Neural Network Approaches 

Not much work has been done with neural networks for combined trajectory 

following and dynamics for five, six, and redundantly jointed robots. Most researchers 

stop at two or three jointsi.c. 12
-
17 and the vast majority learn inverse kinematics/e. 12

•
1
• ·

18 not 

dynamics . Of researchers who have extended to a larger number of joints, the controllers 

generally consist of a neural network map of a robot's workspace, which converts to 

motor movements or joint angles necessary to track to the object location indicated, 

essentially memorizing the robot's inverse kinematics. The most successful dynamics 

work 1 has involved linear combinations of conventionally estimated parts of the robot 

dynarrucs equation .15
-
17 The linear combinations could be varied on line to adapt to 

changes due to load, and were accurate for their specific robot, but Kawato et. al.'s 

configuration could not be applied to any another robot or modification to that robot. 

This method may not be acceptable over time or with injury to components. Some 

insights can be gained from looking at these applications in more detail. 
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The most successful neural network dynamics work by Kawato et.al. 15 has 

involved one layer linear combinations of conventionally estimated parts of the robot 
dynamics equation 

q(t) is an nx I vector of joint linear/angular positions, 
l(q,t), an nxn matrix of terms related to inertial forces 

( 3) 
T( t) = I(q, t) ~( t) + H(q, q, t) q + B q( t) + G(q, t), where 

H( q,q,t), an nx 1 vector of centripetal & Corio lis forces, 
B, an nxn diagonal matrix of viscous friction terms, 
G(q,t), an n x I vector of gravitational force terms, 
T(t) the n x I vector of driving forces or torques, and 
n, the number of degrees of freedom of the manipulator. 

The control performs well, but is specific to the manipulator it was designed for. In one 

paper, a recursive Jordan network (some initial nodes employ their previous value as 

another input) was used to control a two link planar manipulator12
• Their model differed 

from Kawato's dynamic controller in that he studied voluntary movement and proposed 

a hierarchical, structured model for generating motor commands (torques) from a desired 

trajectory expressed in body centered coordinates. Moreover, he studied the coordinate 

transformation problem and proposed an iterative control learning algorithm. This 

research, on the other hand, dealt with a sensory-motor transformation based on a non-

hierarchical layered architecture translating sensory stimuli directly into time-varying 

patterns of muscular activation corresponding to minimum jerk trajectories. A coordinate 

transformation problem was avoided by hypothesizing that both target and movement 

were already expressed in the same body-centered reference frame. 
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A kinematics controller was trained in a second paper for another planar two joint 

arm13
, whose equations were: 

where 

k1 = L1 cos(8 1) + L2 cos(8 1 + 8J, 
k2 = L1 sin(8 1) + L2 sin(8 1 + 62), 

C2 = cos(82) = (x2 +I - L1
2 

- L/)1(2 L1 Lz), and 
S2 = sin(82) = ± sqrt(l - C2) 

The four inputs to the neural network were desired x and y position in addition to the 8 1 

and 82 suggested by the regular controller. There were 24 units in one hidden layer. 

Outputs were V0 1 and V02 which were added to the regular controller suggested angles 

8 1 and 82• After training on a set of targets, the base joint was stiffened for the first 

error, and the second joint was bent for the second error. For training on test points in 

and out of the original training region, the neural controller compensated for 60% of the 

error in both error cases after experiencing just one target point. After three points, 

accuracy improved six times, and after 8 points learning leveled off with an 11 times 

improvement over the original controller accuracy. These results indicate that a neural 

network is successful in learning sinusoidal relationships for a planar two joint arm, and 

can demonstrate online adaptation when new areas of the workspace are introduced. It 

is unclear if this direct learning will be stable in situations of parameter drift or for larger 

numbers of joints. 

In a third paper inverse kinematics was learned for a planar two degree of freedom 

robot 14
• The internal state of the system and error in position formed the inputs to a 
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neural network which was trained to be an inverse Jacobian accurate for long trajectories. 

The classical inverse Jacobian is only accurate for moves in the linear neighborhood of 

the current state. The actual control input to the system was the network output 

multiplied by the position error of the system. The neural network itself had two voltage 

inputs, each of which lead to their own four overlapping gaussian functions. Groups of 

two gaussian neurons were multiplied together at one of the eight cartesian neurons. All 

cartesian neurons fully connected with each of the eight sigmoidal learning neurons. 

These last two layers were modified via backpropagation during learning. Each of the 

two voltage output neurons in the final layer were connected to their own four learning 

neurons. The output neuron activation function was the first moment of the states of the 

learning layer neurons. 

The learning rate during online adaptation was adjusted proportionally to the 

position error. Also, if the network suggested no correction for a currently existing 

position error, a nonzero learning input was given to the neural net causing motion to 

continue. Training was accomplished online, where the goal, being a two dimensional 

point in space, was presented a maximum of 15 times as the network attempted to reduce 

the error through adjustment of its inverse Jacobian weights. After roughly 25 goal 

presentations the robot required a maximum of two steps to attain the goal. After 500-

1000 additional goals were presented, an average error of approximately 6% resulted. 

Another test consisted of removing 10% of the trained weights, and then retraining the 

remaining weights. The error doubled, but then returned to nearly the previous level. An 

additional 10% of connections were removed twice more, resulting in errors of 40 and 
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50%. The final error returned to nearly 1 0% each time. This paper demonstrates a 

successful mixing of neuron types, and shows the robustness of the controller despite 

damage to its weights. 

Moving to a paper whose controller accounted for dynamics, a neural network 

motor controller was added to a K gain multiplier of the system error15
• The network 

consisted of linear combinations of the components of the inverse dynamics equation. 

This work is an earlier version of an application explained in the following article 

summary. 

The control signal for a three joint manipulator16 was synthesized by adding the 

control command of a PD controller to the suggested adjustment offered by a linear 

combination of subnets, each representing a known component of the given robot's 

dynamics. First, the adjustable final layer linear weights were initialized at zero, allowing 

only feedback control. Learning adjustment of these weights then required 30 minutes 

of a 6 second pattern repeated 300 times with sample and update rate placed at 100 Hz 

(sample step 0.01 seconds). The trained system remained stable under load, and when 

learning commenced, the steady state error was eliminated as before. Both of these 

papers used linear combinations of components of a dynamics equation to demonstrate 

their concepts. 

In a dissertation that touched on online adaptive control of a DC motor, the author 

himself 7 concedes that, "our study focuses more on the capabilities of neural networks 

in learning inverse models than on the design of feedback control systems with 

feedforward control. The latter concern is an issue on its own." He does, however, have 
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some valuable comments to make on other researchers, summarized below. Kuperstein 18 

attempted to achieve visual-motor coordination by relating the sensory maps directly with 

the motor commands in order to reach some specified target locations. Although these 

methods have been demonstrated to work for robot arms with two or three degrees of 

freedom (DOF), they may not perform equally well for 6-DOF arms. In fact, Yeung's 

attempts to apply these methods directly to more realistic robot arms with a larger number 

ofDOFs were "discouraging." Kawato8 overcomes this problem with linear combinations 

of simpler fun ctions, but the dynamic equation must be known in advance. Kawato's 

feedforward/feedback control, with only one layer of weights updated online via the 

guaranteed convergence Widrow-Hoff rule, controlled well. Yeung's learning procedure 

may lead to instability if used in an online fashion due to more than one layer of 

adjustable weights in the modifiable context network. 

In a paper concerning coordination of two "planar" manipulators, a hierarchy of 

neural networks was used to control walking in a biped roboe 9
• Nonlinear feedback 

decoupling was utilized for training. Competing hypotheses of modular sub function nets 

were combined for robustness. Robust to parameter variations and disturbances, this 

controller improved its performance through learning. The training control model was 

based upon nonlinear feedback decoupling and optimal tracking. A critic network added 

an additional input to the supnets, or task networks, which were themselves composed of 

time sequenced subnets. Example supnet tasks specialized in leg support control, 

regulation of body orientation, and leg swing control. The 5 subnets split the walking 

task up into phases that were more easily learned by a three input, 20 sigmoidal unit first 
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layer, 3 sigmoidal unit second layer, and one scaled linear output unit for actuator control. 

20 patterns were used to train the network, so the first hidden layer consisted of 20 units 

to memorize the patterns .. The three inputs were position, angular velocity, and desired 

position. 10,000-100,000 epochs were required for learning with adjustable learning rate 

and momentum. Performance after learning (demonstrated after 450 20-millisecond 

samples, or 9 seconds) equaled or surpassed both quantized and continuous PID 

controllers for various tracking problems. The author claims guaranteed absolute stability, 

but the effects of friction, dynamic aspects of the foot, leg to leg transfer and non relevant 

planar motion were ignored for simplicity. 

4.3 Redundant Allocation of Joints 

For this effort the individual joint diagnostic motor controller outputs discussed 

in Chapter 3 are interpreted by weight allocation neural networks (Figure 1 ), whose task 

is to propose a proportion of a motion a joint feels capable of performing. Following the 

lead of the literature by assuming rigid joints, the proposed redundant manipulator 

allocation method will allow each individual joint controller to handle the task of adapting 

to the nonlinear effects it sees at a local level. The effort it requires to overcome these 

nonlinearities will be reflected in the differential values of the diagnostic outputs. 

The weight allocation neural network suggested proportions are interpreted via 

fuzzy logic to determine the relative state of health or excessive stress for joints 

considered equal contributors to a component of desired motion. If the results are 
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inconclusive, an expert system determines from experience what initial weights to start 

with given data about the similarity of a new situation to others it has seen before. 

If a hand joint redundant to a main robot joint does exist, then its weight is added 

to the chosen weight and the motor contributions are 

wbase (4) 
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where wb..., is the main robot minimum recommended weight and wb&nd is the relevant 

hand weight. The inverse kinematics are then solved for that proportion of the necessary 

motion and the hand is asked to complete the movement. For example, assume that joints 

I and 7 of the redundant robot base and hand combination are determined redundant for 

yaw, and A is the total current expended for the movement. If the critical weight 

determined by the neurofuzzy weight allocation algorithm is that for the hand joint 7, then 

the final proportion of effort will be allocated 

for joint 7, and 

for the redundant joint 1. 

Since the configurations all satisfy acceptable kinematic constraints, all are stable. 

One configuration is simply more optimal from a longer time horizon standpoint (i .e. 

anticipates greater accuracy in the future) . 

4.4 Choice of Cost Functions 

The goal of redundant weight allocation is to best implement the planned 

trajectory of higher level planning. First, the next via point of a trajectory is chosen by 

a method such as the Generalized Voronoi Diagram (GVDY, which is commonly used to 

map out the shortest path to a target equidistant from obstacles. Then the challenge is 

to find the sequence of joint reference commands that optimize a cost function as a robot 
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manipulates an object within the workspace. This cost function would ideally retain the 

minimum overshoot and minimum settling time goals of the joints despite disturbances, 

not only due to changes in loading, friction, and beam stiffness, but also due to the effects 

of gross positioning of the manipulator. 

These costs functions should also be able to accommodate useful rules of thumb . 

For instance, the three large joints nearest to the base (proximal) are better at gross 

motion and attainment of manipulator cartesian position. Although this rule at first would 

suggest that the algorithm will allocate most of the gross motions at any given moment 

to the largest joints, they also cannot move as quickly, and will be stressed when a fast 

movement is required. Complicating these two constraints, priority should be given to 

the most proximal angle for successful avoidance of moving obstacles whose point of 

closest approach has not yet been determined. lf the base joints are maintained close to 

the center of their operating ranges, they are better prepared for large distance evasive 

action . 

Further constraining the choice of joint allocation are those passed down from the 

object tip and slip algorithms of Chapter 5. For instance, the current orientation of an 

object must be closely maintained in order to avoid spills and other instabilities due to 

the change of center of mass . This constraint can often simplifies number of joints to 

essentially six during transfer of the object across the workspace once stably grasped. 

The cost of moving the hand joints should be weighted higher than the cost of 

maintaining the current orientation. During the time that tip and slip algorithms are 
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active, their motion takes priority at the hand joint level, and priority must be given to 

motions that cause minimal object relative motion. 

By repeatedly reassessing the costs of particular allocations of the redundant joints, 

one can optimize over a smaller range of movement, in a fashion similar to that of Kim 

and Shin.20 They developed a suboptimal method for controlling the first three links of 

a PUMA manipulator (with DC servomotors) that provides improved performance in both 

operating speed and use of energy. The nonlinearity and the joint couplings in the 

manipulator dynamics are handled by averaging the dynamics at each sampling interval. 

With the averaged dynamics, a feedback controller is derived which has a simple structure 

allowing for online implementation with inexpensive computers, and offers a near 

minimum time-fuel (NMTF) solution, thus enabling the manipulator to perform nearly up 

to its maximum capability and efficiency. The NTBF controller derived in the paper, 

however, is concerned only with free space motion, or noncompliant motion. For the 

compliant case, the dynamic equation becomes far more complex; for example, the static 

friction terms cannot be ignored, but cannot be modeled accurately, either. With an 

accurate dynamic model of the manipulator for the compliant case, and with a suitable 

performance criterion21 an optimal controller could be derived. 

Following are the cost functions22 chosen to be summed as targets for the neural 

joint allocation networks to learn. The first function is the standard minimum 

time/minimum distance of travel, 

N-1 

J = N = r 
k=o 

1 1 
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This basic equation has to be limited to avoid oscillations and range/rate limits. The 
' 

second function, minimum fuel, 

(6) 

seeks to maintain the status quo over sudden changes in joint position. An ailing motor 

is given even higher weighting for minimal usage. The third function, minimal energy, 

(7) 

favors the center of the earth, assuming 90 degrees is down, as well as the absolute value 

of the current state minus (90/57 .3) to maintain midrange for future movement flexibility . 

The fourth function , minimum jerk12
, 

J = 1· q·l , where q = joint position, (8) 

minimizes unnecessary harsh movements during acceleration and deceleration . The fifth 

function , minimum coupling, minimizes the effects of one joint of the positioning of 

others, specifically those joints that are redundant. After allocating favoritism due to 
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ailing or stressed joints, priority allocation is given to the most proximal redundant joint. 

Functionally, this fifth cost can be expressed as 

(9) 

or m other words, minimization of the off diagonal elements of the R matrix or its 

equivalent. ' Coupling also must account for self motions, when two or more axes of a 

robot form a straight line, that is, become collinear. Here the effects of rotation can be 

canceled by a counteracting rotation about the other axis. The above functions are 

supplemented with the aforementioned rules of thumb and constraints. 

4.5 Dynamic Simulation of the Redundant Robot 

Simulation of the redundant PUMA base robot plus hand was accomplished m 

Simulink with a sampling frequency of I MHz to closely approximate the analog system, 

necessary to avoid simulation instability. Figure 2 shows the overall simulation and 

Figure 3 is a closeup of one joint. Simulation of the resulting motion with the hand is 

demonstrated in the language C in the remaining figures . 

When a new desired position was determined for a given joint, a ramp command 

was given from the previous state to the new state in order to avoid exciting resonant 

frequencies similar to those experienced by Tam, et.al.23
, who excited joints 2 and 3 of 

the Puma at 1350 Hz and the other joints at 1600 Hz. They found that an acceptable 
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ANYA•s ROBOT MANIPULATOR 

PRESS ESCAPE TO EXIT 

Figure 4 
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AHVA'S ROBOT MAHIPULATOR PRESS ESCAPE TO EXIT 

Figure 5 
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AHVA'S ROBOT MAHIPULATOR PRESS ESCAPE TO EXIT 

Figure 6 
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AHVR•s ROBOT MANIPULATOR l PRESS ESCAPE TO EXIT 

Figure 7 
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AHVA'S ROBOT HAHIPULATOR PRESS ESCAPE TO EXIT 

Figure 8 
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AHVA'S ROBOT HAHIPULATOR PRESS ESCAPE TO EXIT 

Flgure 9 
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AHVA' S ROBOT l'tAHI PULATOR PRESS ESCAPE TO EXIT 

Figure 10 
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AHVA'S ROBOT ~HJPULATOR PRESS ESCAPE TO EXIT 

Figure 11 
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ramp could be followed that could reach its destination well before the limit of 0.00 I 

second update of the average PUMA controller. Data for an actual PUMA robot was 

borrowed from Lloyd/4 who examined friction's effect on the dynamics, modelled as: 

D(6) 6 + c(6, S) + tg(6) + £(6) + t. ( t) 

6 = the generalized joint coordinates, 
0(6) = the N x N inertia matrix, 
c(6d01 ,6) =the centrifugal and Coriolis force vector, 
t
8
(6) = the gravity loading vector, 

f(6dot) = joint friction, 
t.(t) = externally applied joint forces, and 
~(t) =joint torques/forces exerted by the motors, where 
~(t) = t

8
,,>( 6) + f(6doc) + t.(t). 

The gravity loading model became: 

N 

tg(t) = "];1 

t
8
,,, = the torque joint i exerts to overcome gravity, 

N = the total number of links for the robot, 
mk = the mass of link k, 
g = the acceleration of gravity vector (base coord.'s), 
T k = the 4 x 4 transformation matrix (base frame to link k), 
6; = the joint variable for joint i, and 
~,= the center of mass for link k, (link coord. frame). 

(10) 
tJ ( t) , where 

(11) 

After inserting real measurements of torque sensitivity, friction, and gravity 

loading, this model determined the net torque acting on a joint as well as the desired net 

torque for a joint to exert. These measurements were useful for assigning realistic values 
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CHAPTER 5: 

GRASP PLANNING 

WITH TIP AND SLIP CONTROL 

5.1 Grasping with a Redundant Robot and Hand 

Fuzzy logic and neural network are empl oyed to contr I a robotic hand with two 

Lhree-j inted finger and a two-joi nted thumb. The hand algorithm i expected toe timate 

a gra p f r an unknown object adj u t it gra p unt il one that i m t table i found. and 

then lift the object. adju ting for ti p and lip. Addit ionally, ince vi ion cannot be 

depended upon in a cluttered environment uch a a refri gerator. the algorithm mu t be 

able to operate wi th little or no upport from camera data. In lead, pres ure and f rce 

feedback are u ed. An attempt i made here to determine an optimal approach angle and 

hand orient ation for a range of imilar object with little regard for feature that human. 

mjght in i t on considering (i.e. , that a mug ha a handle and no other option ex i t for 

li fting) . For the hand an architecture and aJgorithm based upon backpropagation wa 

cho en, due to it relati ve trajning stability and ability to provide continuou out put 

values. 
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Before any grasping i to be attempted by a robotic hand, the higher level in the 

hierarchy devoted to planning will approach an object from a distance away, allowing the 

locali zed grasp algorithms to be optimized for more intricate motions. Once in the 

proximjty of the object , however, two challenge arise, "How should the object be 

approached?", and once grasped, "How can stable and reliable control be maintained?". 

Hu, et. al. 1 agree that local reference frames aided in the navigation of an autonomous 

robot via a Kalman filter approach . A combination of both global and local per pectives 

can provide the control hierarchy with the information it need to make a deci ion optimal 

from both hon and long term point of view. 

An initi al gra p can be e timated simpl y a a direct computation ba ed upon 

en ory feedback. or it can draw from pa t experience ba ed upon object feature . One 

example of the fir t ca e can be f und in ,2 which emplo a fri ctionle point contact 

m del be t appli able to object large compared to the finger of an object to e aluate 

quality a a functi n of the di turbance to the object cau ed by the finger . The alg rithm 

a ume mall gra p adju tment and i mo t accurate for object approaching the ize f 

the hand it elf. Pri or to thi approach one could apply that of Nguyen and Stephanou;' 

wh define a gra p a a combination of po ible ubconfiguration and u e a knowled£e 

ba e to earch for an optimal gra p from the initial approximation. If the experience 

gained from the fir t approach can be u ed to add data to the knowledge ba e. the 

controller could continue gra p learning unsupervised. 

One way to accumulate knowledge could be by matching object feature in the 

databa e, and adding the experience gai ned. One example is Nasrabadi and Li .4 where 
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object profiles, based upon polygonal approximations of two dimen ional vi ual data, are 

compared with object polygons in a database via a Hopfield network . Classification is 

succe sful with object . which are rotated and whose e timated polygon vertices 

outnumber tho e of the object in the database. Physical contact could be utilized in a 

similar way. If the data IS hard to match from the sen ory data available, offer an 

enhancement.5 Becau e a neural feature extraction network often has problem. 

identifying highly noi sy detailed pattern , a pattern IS sectioned up into blocks, 

ub-block of which are clu tered by di imilarity and then entered into the neural 

network. The final layer of the network con i t of noi e filtering fuzzy member hip 

fun tion , which compare their re ult to pattern in a databa e. 

Once the object ha been gra ped in a perceived optimal manner, it mu t be lifted 

ucce fully , and factor uch a tip and lip mu t be compen ated for. Adaptive control 

i ne e ary both for gra p lability and for negotiating through cluttered en ironment . 

Cia i al control technique may not be adequate to ompen ate for extremely nonlinear 

behavior. One example of cia ical feedback control employ finger tip pre ure and 

po ition feedback control to mo e a peg from one hole to another. The peg mu t be 

dragged along the work urface between the hole to obtain nece ary feedback 

information . Neural network and fuzzy logic how promise in tandem with or when 

compared to cia sical approache . Ln Scharf and Mandie 7 an adaptive fuzzy robotic 

trajectory tracker compare favorably to continuou and quantized input PID controller . 

Ln Wang. Lee and Gruver,8 a neural network design with nonlinear feedback decoupling 
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is u ed to control a biped robot that is robust to di turbance . Sub-function s in the 

walking ta k are controlled with small dedicated network . 

Gi ven a u er' expectation that a grasping robot will learn from experiences with 

similar objects, the author' contribution 10·
11 is the utili zation of an expert gra p stability 

hierarchy and the experience of fuzzy or neural tip/ lip tri al grasp to accumulate a 

trajning set for an object category network. For a given class of object thi network 

rank a candidate hand approach vector a acceptable for reducing the number of 

nonoptimal gra p . Object are grouped based on gra p experience, not visual shape a 

perceived by human . 

5.2 Problem Approach 

The required gra p orientation and pre ure are determined b repeating a 

pr cedure where. aft er the hand make thr e tentati e te t gra p . a I k-up tab le tab ilit 

hierarch i ref ren ed to determj ne whether a lift hould be att empted with one of the. e 

gra p f r a gi en tip or pad contact scenario (Fi gure I and 2 , or another thre hould 

be tri ed . Once a gra. pi attempted, fuzzy logic tip and lip routine correct for the error. 

in de ired ori entation for the obje t (u uall defin ed a_ the orientation it wa found in ). 

When n tip or lip regi ter , a rue lift will be attempted and independent trajector 

foil wing routine can be initi ated. After e eral uch lifting attempt , a neural network 

learn a be t approach angle and hand orientation for a category of object it ha defined 

from experience. If a set of three te t grasp trigger recognition from the neural 
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network, this approach angle and orientation will be implemented and the control 

algorithm will resume as before with the fuzzy tip and slip algorithms . 

ln order to overcome the con traint of time and complexity, simplification are 

made to the approach which will not , for the time being, compromi e the effectivenes 

of the control , and may in fact improve it. The first tep toward simplification i to 

minimize the number of sen or and actuators , and then econdly, to break the control 

equence into smaller manageable routines. Thirdly, an approach or combination of 

approache mu t be cho en which can be t handle each ta k. 

Each joint on the finger i a umed to ha e two parallel pre .. ure en or a umed 

here to be train gauge. a number adequate to en e a change in orientati n 

perpendicular to the joint gra ping urface, a well a to regi ter an ab olute value to 

compare to an acceptable thre h ld . For the prelimjnary calcul ati n . placement i fir t 

calculated f r the fir t finger and thumb nl . lea ing the ec nd fin ger free for balanci ng 

of the ~ec t. 

When one of the two digit conta t the object. the econd cl e in to make 

contact. Pre ure read ing are taken. and if a gra p i to be attempted. the third finger 

contact. the urface. Tentati e gra. p can be helpful not onl in learning the malle. t 

practical di ameter of the objec t (u uall y mo t table) but al o help avoid I cati n with 

udden change in diameter, uch a a handle on a mug or a pocket clip on a pen. 

5.3 A Local Grasp Stability Hierarchy 
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Some grasp are intuitively more table than other , and hould be given a higher 

priority when several trial gra p option are available. A suming no open vessels of 

liquid. a cheme was devi ed that agree with one's intuitive perception of which gra ps 

are mo t stable. The method is demonstrated with an example of four trial gra ps shown 

in Figure 3 (note that the econd finger i neglected at first, to be u ed for extra stability). 

Figure 4 outline the member hip vaJue as igned to grasps A through D for each 

criterion . The econd joint of gra p B doe not touch the object; instead it reaches behind 

it a if it were a mug handle, for in lance. 

A gra p hierarchy can be deterrruned once applicable a umption are made and 

applied. There are many way that a gra p can be percei ed more table . The first to 

be con idered i the number of pre ure contact made per finger or thumb. It was al so 

a umed that joint farther away fr m the wri t can take ad antage of upporting object 

again t the "palm." and are therefore more table that th e bject held by more proximal 

j int . The two hierarchie in Figure 5 and 6 re ulted, and membeLhip function alue 

were a igned, ranging from I for the fir t ranked, and zero for the Ia t, where the finger 

or thumb make no contact. The order for the finger ran { 1, .9,.8 .. 7 .. 3 .. 2,.1,0}. and the 

thumb ran { 1.. 7 .. 3,0} . 

Other criteria aJ o contribute to a more table gra p. A uming that the largest 

po iti e theta I (ba e gra. p) angle corre pond to a clenched fi t, and that thi would 

imply a tighter gra p, all candidate gra p were ranked, highe t theta one a .8. lowe t a . 

. 2, and all other equally spaced between. Thi was done eparately for both finger and 

thumb. Ba ed on the prerru e that if an object is grasped at two point 180 degree apart 
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it is most stable, the highest rank of .9 wa assigned to finger and thumb combinations 

that most closely satisfied the equation: 

(I) 

and the lowest rank wa a signed .3. All other were paced equally as before. A tie 

breaking criterion wa u ed only if two of the urn from the above criteria were equal. 

The gra p that allowed more room for the econd balancing finger wa cho en as the final 

gra p to move onto the fuzzy tip and slip controller. Gra p D of Figure 5 win handily 

with a total of 3.7 and doe not require the tie breaking criterion. The addition of the 

fuzzy member hip value from each individual criterion re ulted in ranking the four 

gra p the arne way a human volunteer did , implying that the human added up the 

contribution of ariou factor in c ming to a percei ed tabilit ranking. 

5.4 Fuzzy Logic for Tip and Slip Control 

While neural network can adapti ely e timate a function , fuzz logi excel at quick. 

rough human approximation when a fa t and adequate control action i required .9 F r the 

imple t fuzzy controller, common en e i u ed to build rules that , given normal "cri p" 

sen ory value (i.e., po ition velocity. torque, or pre ure). percentage member hip in 

various categorie are determined. A logical proce s (often max-min decompo ition) is 

u ed to choo e the dominant category, and a resulting control effort i determjned through 

defuzzification to a cri p value. Becau e fuzzy logic obtain its command from addition 
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and multiplications of non-zero set membership value , clas ical control mathematic 

violation are avoided, and time is optimized. 

In order to adju t the grasp for object tip and lip employing fuzzy set theory. a three 

step algorithm i followed. Fir t, it is assumed that exces ive pre ure on one member 

of a pair of pre ure ensor for a finger in Figure 7 signal a po ible tipping of the 

object. The bottom member of each pair i subtracted from the top, and the value are 

entered along the horizontal axis of the member hip function in Figure 8. A membership 

value i found on the vertical axi for every category that i nonzero at that horizontal 

value . Category value are found for each en or pair that exceed a minimum tolerance, 

£. Thi tolerance ignore pair that do not regi ter a ignificant pre ure a well a pair 

that are practically identical and do not need adju tment. 

Sen or input categ rie mu t now be defined. and p 

determined . The minimum member hip alue for each categ r . large negati e (LN ). 

mall negati e SN . near zero (NZ I . mall po itive (SP). and large po iti e (LP) are 

found , and the category that po e e the maximum of the e ur i ing rrummum i the 

categ ry cho en f r control. In the ca e of LN , LP and NZ I, the P MA arm that 

upp rt the hand will be gi en the command to move the finger up or do n th bje t 

(a uming a I o ing and ub equent tightening of the finger orne mall amount ). If the 

winning categ ry i SN or LP, the finger them elve can adju t their yaw angle to 

compen ate . The actual adju tment command i found by entering the as ociated 

member hip into the vertical axi of a function such a Figure 9, retrie ing the de ired 

command value at the horizontal. Human do not react ymmetrically in each direction. 
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o m order to avoid a limit cycle, avoid symmetry m the fuzzy controller command 

function. 

The second major focus in the algorithm, the slip problem, is very similar to that 

for tip, but the incoming pre sure information must be interpreted differently . Each 

pre ure sen or i compared to a suggested pre ure limit , and the e limit may vary due 

to indi vidual en or characteri tics or to expected pre ures for a perceived familiar shape . 

It i a umed that a little too tight of a gra p is better than a little too loo e, o no 

adju tment i made for anywhere from ju t right to a little too tight. Much too tight , 

however, could damage the finger or gra ped object, o the finger i carefully loo ened. 

Loo e gra p are tightened to approach the de ired limit. In a manner imilar to that for 

tip . each individual pre ure i ubtracted from it limit and the va lue are entered onto 

the hori zontal axi f Figure I 0. 

For lip the choice of control ignaJ mu t be con idered carefully in ca e the 

hape of the gra ped object produce confu ing input . Thi time, in tead of empl ying 

a maximum of the minimum to decide on a prevailing control effort. a priority hierarchy 

i f II wed . If an member hip va lue for mall tight (ST) i equal t I, all other alue 

are overruled and the gra p i loo ened. Otherw i e, if the minimum forST i greater than 

. I, that value i entered into a function imilar to Figure 9, and that command i u ed for 

adju tment. Otherwise the . I criterion i applied to near zero (NZ2) if true or mall 

loo e (SL) if fal e. Finally, if no previous category ha a minimum greater than . I, the 

appropriate adju tment i found by in erting the minimum for large loo e (LL). 

152 



An example of a confusing slip situation is illustrated in Figure 11. Here the 

mi dd le fin ger pai r has exceeded the sugge ted pre ure limit , osten ibly cru hing the 

object, while a smaJI offshoot of the object barely makes contact with one of the two 

sen ors proximal to the wri st. In thi s case the two middle ensor would probab ly have 

overruled the prox imal en or nonethele s, but an object with many projection could 

draw att ention away from a critical stre s ituation. 

If an adju tment fo r tip or slip i not neces ary the third pha e, lifting of the 

object may be attempted. Fir t the algorithm check to see if the winning categories for 

the two prior step were NZ I and NZ2. If so, an attempt i made to lift or continue lifting 

the object before repeating tep I and 2. If large negati ve (LN) or large po iti ve (LP) 

are re ulting command for ti p after the object ha been lifted. an attempt houl d be made 

to et the object d wn before readj u ting, and the e timated neural gra p . hould be 

recalcul ated before liftin g the object aga in . 

Pseudocode for the Tip and Slip Algorithms follows: 

FUZZY TIP CONTROLLER: 

Program Tip_Controller 

While (Press_Differences > Stopping Cr i terion) 

Receive Press_Valu es from Hand 

For e a ch active Finger_Joint with in an 

approach vector region 
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} 

Find Press_Differences 

End for 

For each Membership_Function 

Call Fuzzify subroutine 

End for 

Winning_Value = Max(all Minvals) 

Winning_Mem_Function=Membership_Function(Winning_Value) 

For each Lookup_ Defuz 

If assigned to Winning_Mem_Function 

Output_Tip = Lookup_Defuz(Winning_Mem_Value) 
Endif 

End for 

If Press_Differenc es in opposing approach vector 

regi on > £ 

Output_Tip = Winner of comparison of Ou tput_Tips 
Endif 

Call Slip_Controller subroutine 

Endwhile 

Attempt_Hand_Lift 

FUZZIFY SUBROUTINE: 

Subroutine Fuzzify 

{ 

Initialize Minval(Membership_Function) as a number> 1 
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} 

For each Press Difference 

If Press_Difference is supported by Membership_Function 

Calculate Membership_Value ( (0,1] 

Endif 

If Membership_Value < Minval(Membership_ Function) 

Minval(Membership_Function) = Membership_Value 

Endif 

End or 

FUZZY SLIP CONTROLLER: 

Subroutine Slip_Controller 

{ 

Receive Press_Values from Hand 

For each activated Finger_Joint within an 

approach vector region 

If Press_Values > Press_Tolerance 

Loo sen Hand_ Gra s p 

Go to Tip_ Contro ller 

Endif 

End for 

For each Membership_Function in Slip_Hierarchy_ Order 

Call Fuzzify subroutine 

If Minval(Membership_Function) > . 1 

Winning_Value - Minval(Member_Func ti o n) 
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} 

Winning_Mem_Function = Membership_Function 

Break out of For Loop 

Endif 

End for 

If Press_Values in opposing approach vector region > £ 

Output_Tighten = Winner of comparison of Output_Tightens 

Endif 

5.5 A Fuzzy Logic Tipping Controller 

A implified tipping ca e wa demon trated by a imulati n written in C, which 

will be extended to three dimen ion . Some a umption ha e been made to approximate 

reality . Fir t. the motion of the da can is modell d a an in erted pendulum with a 

table equilibrium tate at topm t vertical (within ± I .7 degree ). Friction at the soda 

can ' b ttom pi ot i a umed trong enough to ignore lipping on the upporting urfa e. 

Tipping i confined to mo ement into or out of the creen. and only one finger i 

being u ed to counter the tipping. The thumb i fixed in•the location e timated by the 

neural net. whj h i au eful as umption if the thumb i within a mug handle, for in tan e. 

The finger adjust with a vertical up or down movement, pu hing the can backward b 

a number of degree in proportion to it vertical movement. The finger adju tmenL are 

low to avoid drastic over hoot and to allow an overworked controller to catch up. The 

can i allowed to continue in it motion before the next adju tment. 
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ANYA's FUZZY SODA CAN TIP: Enter starting angle in degrees:15 

Time Step : 1 

Theta 16.841194 / 

Figure 12 
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ANYA's FUZZY SODA CAN TIP : Enter starting angle in degrees:15 

Time Step : z 

/ Theta 17 .151272 

D2 input: 1 . 911571 

Lfl 1 

Thetatteu: 17 .151271 

Figure 13 
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ANYA's FUZZY SODA CAN TIP: Enter starting angle in degrees:15 

Ttrne Step: 3 

Theta 7.208211 

Figure 14 
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ANYA's FUZZY SODA CAN TIP: Enter starting angle in degrees:15 

Time Step: 4 

Theta 3.86891 

DZ input: 8.159313 

SP1 8.3186273 

ThetaNew: 1.113118 

Figure 15 
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ANYA's FUZZY SODA CAN TIP: Enter starting angle in degrees:15 

Time Step: 4 

Theta 1 .113118 

TIPPIHG HAS 

BEErt CONTROLLED. 

Figure 16 
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Pseudocode for the Neural Network Object Category Estimator 

Follows: 

NEURAL NETWORK OBJECT CATEGORY ESTIMATOR: 

Run Tip_Controller for several trials on some training 

objects . 

Then: 

Program Train Estimator 

{ 

For each training object 

Receive Num_of_Trialsl Approach_Thetal Approach_Phil 

Hand_Rotationl fingl_q 1 ch i fingl_qyaw 1 

thumb_q i ch 1 thumb_qyaw 1 f ing2_q i ch 1 and 

f ing2_qyaw from Tip Con troller 

Scale Num_of _Trials to fit a range from 0 to MaxTrials 

Train a Category_NNet to match scaled Num_of_Trials for 

object 

Separately store values of Approach_Thetal 

Approach_Phil and Hand_Rotation which 

result in lowest Num_of_Trials value. 

Endfor 
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efficient communicati on between it di agno tic nodes and the originators of joint 

com mand . The preliminary result look promising for a rea e nable accumulati on of 

informati on in a fo rm that useful to thi level of the hierarchy as well a others. 
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CHAPTER 6: 

MULTIPLE ARM AND OBJECT PLANNING 

6.1 Problem Scenario 

This chapter pre ents a planning methodology ba ed on Stocha tic Petri Nets 

(SPN) and Neural net for coordination of multiple robotic arm working a space with 

constrained placement. The SPN planning method generate a gl bal plan ba ed on th_e 

tate of the element of the Univer e of Di cour e. The plan include all the po ible 

conflict-free planning path to achieve the goal under con traint . uch a pecific 

location on which object ha e to be placed order of placement. etc. An a ociated 

neural network i u ed to earch the vector of marking generated by the SPN 

reachability graph for the appropriate election of plan . Moreover, it pre erve all the 

intere ting feature of the SPN model uch as ynchronization , paralleli m. concurrency 

and timing of event . The oordination of two robotic arm i u ed a an illu trati e 

example for the propo ed planning method, in a UD pace where the location of object 

pl acement are re tricted. 

There are a variety of planning methodologies developed in the Ia t twenty years .1
- JJ 

Mo t of the e methodologie (NOAH, NONLIN, DEVISER SIPE, TWEAK, etc .) 

generate a partially ordered plan network for the achievement of conjunctive goals. More 

specifically these method are ba ed on state oriented planning. where each plan i 
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CHAPTER 6: 

MULTIPLE ARM AND OBJECT PLANNING 

6. 1 Problem Scenario 

Thi chapter pre ent a planning methodology ba ed on Stocha ti c Petri Net 

SPN and Neural net for coordinati on of multiple robotic arm working a space with 

con trained pl acement. The SPN pl anning method generate a gl bal pl an ba ed on th_e 

tate of the element of the ni er e of Di c ur e. The plan in Jude all the po. ible 

conni t-free pl anning path ac hie e the g al under con traint . uch a pe ifi 

I cati n on whi h obj ct ha e t be pl aced, order f pi a ement. etc. An a ciated 

neural network i u ed to ar h the ect r of marking generated b the SPN 

reachabilit graph for the appropriate el tion of plan . M re er, it pre erve all the 

intere ting feature f the SPN model, uch a ynchroni zati n, paralleli m. concurrenc 

and timing f e ent . The rdi nation of tw r b ti c arm i u. ed a an illu. trati e 

exampl for the propo ed planning meth d, in a D pace where the locati on of obje t 

pl acem nt are re tricted. 

There are a variety of pl anning method Iogie developed in the Ia t twent y year .1
·

1
J 

Mo t of the e methodologie (NOAH , NONUN , DEVISER SIPE, TWEAK, etc.) 

generate a parti ally ordered plan network for the achievement of conjunctive goal . More 

pec ifically, the e method are ba ed on tate ori ented planning. where each pl an i 
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constructed by generating a ubpl an for each goal state, while the detecti on and re. olution 

of conflicts among the e ubpl an take pl ace in the tate pace. In addition, a well defined 

planning methodology, called RPP8
, has been propo ed for the re olution of parallel pl an . . 

Thi method con ider re ource a ac ti ve element in con tructing plans and generates 

conflict-free subplan by controlling the fl ow of a parti cul ar re ource, while it synthe ize. 

a complete pl an in cooperation with the other ubpl an . The RPP methodology con truct 

conflict free ubplan pnor to the expan ion of the current plan network . Another 

meth dology u e heuri ti c earch on a Petri -net framew rk and a metric space for 

effi cient pl ann ing . 

M t of the meth d di cu ed abo e Ia k in timing and t ha ti c nchr ni zation f 

the e ent (action ) whi ch take pl ace during the execution of a plan. M reo er, mo t of 

them ann here the nu mber f element in rea e. ignifi cantl 

ln thi paper. a planning meth d I g ba ed on the c mbin ati n of ha. ti 

Petri -net and neural net i pr p ed. M re pecificaJI , the plan netw rk i expre. ed 

a an SPN netw rk where aJ I the tate f the element and the a ti on of the uni er. e 

of di cour. e ar expre ed a Petri -net place P and tran iti on. T re pe ti el . in ari LL 

le el f ab trac ti n. A neural netw rk m de l searche the PN framew rk for the 

appr pri ate se le ti n of pl an . D comp iti f ubp lan can be ea. il y 

ac hie ed on the SPN model. A neural net model i u ed t ear h the tate pace in orde r 

to achieve a de irable path . An illustrati e example i provided by u ing the SPN netw rk 

methodology, for the coordinati on of two roboti c arm in a pace with con. traint u h 

a pecific location. for placement of object . 
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The author' contribution 18
·
19 is the u e of an adapt ive resonance theory neural 

network to direct the robot hands toward a minimum time solution given possibiliti es 

defined by a tochas tic petri net. A network trained to achieve a de ired confi gurati on 

of bl ock can achieve thi goal given tarting configuration it ha never seen. Thi paper 

is organized into fi ve section . Section 6.2 present the import ant notation and 

definiti on . Section 6.3 deal with the SPN modeling of the pl anning methodology . 

Section 6.4 pre ents the re ult of the illu trati ve example and ection 6.5 summarize the 

overall work. 

6 .2 Nota t i on s a n d Definitions 

Notation 1: The set (UD) of all the elements Ei, iEZ, a nd the 

knowledge related with them for a particular d omain: 

UD = {Ei / Ei is an element with proper ies {F(Ei) }, and 

{ (Ei,Ej)} rela ionships among elemen t s} 

Notation 2: A state S(k,t), with kEZ and t=time, is a 

representation of the set UD (or a subset of it) at a 

given time t after an action A. 

No tation 3: An action Am, m Z, represen s the mapping of UD 

(or a subset of it) from the state S(i, t) into state 

s ( j 1 t 0
) : 

Am : L X s --- --> s 

where I ={Am / Am is a primitive a ction performed on Ei}, 

a nd S = {S (k,t) / S(k,t) is a ny state of UD} 
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A plan would be considered as a sequence of actions 

performed on the elements of UD at a state for the achievement 

of the g oal state. More specifically, 

Definition 1: A plan PLi = {{Am},{Ei},{S(i,t)}} is a 

tri - tuple, where {S (i,t) £ S} is a sequence of states achieved 

by performing a sequence of actions {Am £ L , m £ Z} on the set 

of elements at {Ei £ UD, i £ Z} s tarting from a state S(j,tO) 

for the accomplishment of the goal states {S(k,tn) ,n £ Z}. 

PLi : UD [Ex { S ( k, t) } ] --- - - > UD [ Ey { S ( j , t ' ) } ] 
{Am} 

Notation 4: A plan is successful [PLi] if and only if it can 

achieve the g oal state. 

Notation 5 : The set of all the successful plans represents the 

direct graph (or network) G. It is the synthesis of a ll 

[ PLi l I i £ z 

G = $ { [ PLi] } 
l 

Notation 6: The set G can als o expressed as the uni on of all 

transformations of the elements of UD which participate in the 

plan PLi (En) : 

G = U G{PLi(En)}. 
n 

6.3 The SPN Planning Methodology 

In thi ection the SPN planning methodology i ~ pre ented. 

6.3. 1 Why Stocha ti c Petri -Net 
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There are a variety of methodolog ies u ed for planning, uch a form al languages, 

directed graph , cl as icaJ mathematical models queuing modeL , Petri -nets, etc. In thi . 

chapter, a modified version of the Petri -net will be used as the mode ling framework of 

an SPN Planning strategy for two robot hand . The major reason for the u e of the 

Petri -net are9
·D · 17: 

* SPN is an efficient modeling tool for the f unctional 

description and analysis of complex systems, 

* SPN is a ble to describe simu l taneously concur ren c y , 

parallelism and synchronization of events that take p lace 

in a complex system, especially when other methodologies 

lack adequate results, 

* SPN can be used as a modeling tool for hierarchical and 

abstracted (top-down or bottom - up) processes, 

* SPN provides timing during the execution of various events, 

* SPN presents compatibility with neural ne ts, and 

* SPN is an efficient interface for control and communication. 

Notat i o n : The Petri-net used in our case is a Stochastic (SP ) 

one with time capabilities. 

Notation: RT (Mk, NO, FS) represents the rea chabili ty tree of 

SPN. 

Notati on: RT(Mr) is the set of all markings which are 

reachable from Mr, r£Z . 

Notation : NO represents the number of moving objects. 

Notation: FS represents the n umber of open corridors. 
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Note th at the SPN used here is a k-bounded one. AI o, the assoc iati on of rand m 

time with the tran iti on will be u ed . In particul ar, the SPN tran iti on will be ci a s ifi ed 

into categories: I ) immedi ate tran ition (which fire in "zero" time o nce they are enabled ) 

and 2) the timed tran ition (which fire a ft er a rand m, ex po nenti a ll y di tributed , en abling 

time). Thi a umption will reduce the complex ity o f SPN when it is needed . 

6.3.2 The SPN Model 

Definition 2 : The structure of the SPN planning model i s based 

on a stochastic Petri-net model. Thus , i ts f ormal 

definition is an 11-tuple : 

SPN(P) = {P,T,I,O,M,L,X , MC,Q,R,F} 

where 

* P ={P1,P2,P3, .. . ,Pn} is a finite set of places. Each place 

Pj represents a particular state of an element Ei; 

* T ={T1,T2,T3, . . . ,Tm} is a finite set of transitions. A 

transition Ti, iEZ, represents an action performed on a 

set of elements at a state S(k,t) ; 

* Ii C (PxT) is the input function and 

* Oj C (TxP) lS the output function; 

* Mi = {mil,mi2,mi3 , ... , min}, ij£Z, is the vector of marking 

(tokens) mij, which represent the status of the 

places ; for i=O mOj, j=0 , 1, .. . ,n denotes the n umber of 

tokens in place Pj in the initial marki n g MO. 

* Q = {t1,t2,t3, ... ,tm} is t h e vector of time v a lues related 

with t h e time r e quired by an action to be p e rformed . 
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* R = {r1,r2,r3, ... ,rk} lS the set of the relationships among 

elements; 

* F = {f1,f2,f3, ... ,fn} lS the set of the properties of the 

elements. 

* MC = { a1, a2, ... , ak } . kEZ, is the alphabet of 

communication, 

* L = { 11,12, ... lm} is the set of possibly marking-dependent 

firing rates associated with the Petri-net transitions, 

and 

*X= { x1,x2, ... ,xm} lS the set of delays associated with 

the Petri-net transitions. 

Notation: The Petri-net used in our case is a Stochastic (SPN ) 

one with time capabilities. 

Notation: RT(Mk) represents the reachability tree of SPN. 

Notation: RT(Mr) is the set of all marking which are reachable 

from Mr, r£Z. 

Notation: The SPN used here is a k -bounded one. 

Notation: The a ssociation of random time with the transiti o ns 

will be used: 

1) immediate transi ions (whi ch fire in "zero" ime 

once they are enabled) 

2) the timed transitions (which fire after a random, 

exponentially distributed, enabling time). 

Notation : A marking Mki £ RT represents a n ode of the 

reachability tree . 
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Definition : An SPN plan is safe if the number of tokens in 

each place is less or equal to 1 1 for all markings ln 

RT(Mi). 

Definition The length v of an SPN path is the number of 

markings Mkl k £ Zl which compose the path. 

Definition : The length ls of an SPN plan is the number of 

transitions required I from an initial marking MkO 1 to 

reach the goal markings Mk £ SPNPL. 

Definition 

Definition 

An SPN path is empty if v=O and unique if v=l. 

An SPN plan is empty if ls= O and unique if the 

number of paths Lpl which compose the plan is Lp=l. 

Definition: An SPNPLi plan is closed if there i .s n o transition 

from any state of SPNPLi to any state of ASPNPLi 1 where 

ASPNPLi 1 i £ z represents the complement plan. 

Proposition: Two SPN plans are equivalen I SPNPLi = SPNPLj if 

lsi = lsj and have the same cost. 

Proposition: The synthesis (@) of two paths requires the union 

of the marking sequences. 

Propositi o n: The synthesis of two SPN plans requlres the liKn 

of the paths and the appropriate adjustment of the 

transitions associated with the marking s. 

Proposition SPNPHi @ SPNPHj ? SPNPHj @ SPNPHi; and 

SPNPLi @ SPNPLj ? SPNPLj @ SPNPLi. 

6.3.4 SPN Planning in UD U ing Two Robotic Arm 
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Let u consider the set UD = { a,b,c, { on,table, avail able, clear} , { above, left ,ri ght} , 

{ L I ,L2,L3} } as hown in Figure I , where Li , i= I 2,3, repre ents a parti cul ar locati on on 

th e t a bl e. AI o th e se t of ac ti o ns I: = { t a rt (s r ),. to p ( p ), 

m ove( m v),g r a b (g r ), pi c k - up (p u ) r e l ea e( r e),s t ac k (. t ) , 

un tack(u ),put-down(pd ),wait (w) }. Then, the pl an-network G for two 

succe sful pl an hown in Figure 2. The decompo iti on of G into three 

ubplan G{P(a) }. G{P(b) ), G{ P(c) } i hown in Figure 3, under the condit ion 

of parallel execut ion by three independent unit . In the ca. e where onl y two 

unit (r b t hand are a ail ab le, then the ubpl an are pre. en ted in Figure 4. It i 

under tandab le that in all the e ca e abo e there i orne confli t during the parall el 

execution of orne ac tion . The a oidan e of the e kind of confl ict can be d ne b 

devel ping the SPN planning model a ho\ n in Figur 5 and 6. Figure 5 h a 

genen SPN pl an model fo r two r bot hand b nchr ni zing any po ib le confli t f 

a ti n during the para llel and concurrent exe uti n of the plan . Note that the thi k 

tran iti on Ti repre ent t cha tic time delay due to confl ic t whil e the thin ne, 

repr ent dir ct tran iti on wi th ze r delay f r the execut ion fa parti ul ar acti n. 

SPN ' s Main Places and Transitions (actions) 

PO starting place of SPN; 

Pl one or more objects are available; 

P2 assignment of the locations status; 

P3 robot hand H2; 

P4 3-D workspace for execution of the plans; 

PS robot hand Hl; 
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Figure 6: SPN Model 
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P6 free state of H2 with probability pl; 

P7 busy state of H2 with probability ql=l-pl; 

PB availability of the 3-D workspace with probability p2; 

P9 unavailability of the 3-D workspace with probab. q2=1-p2; 

PlO free state of Hl with probability p3; 

Pll busy state of Hl with probability q3 =1-p3; 

P16 object grabbed with probability p4; 

P17 object blocked with probability q4; 

P18 object available at the top of a stack with probab. ~ 

P19 object available at the table with probability u4; 

P2 0 location free with probability p5; 

P21 location unavailable with probability q5=1 - p5; 

Tmv move a robot hand; 

Tre release the object; 

Tgr grab the object; 

Tpu pick -up the object; 

Tun unstack the object; 

Tpd put d own the object; and 

Tst stack the object; 

6.4 An Illu trative Example of SPN Planning 

with a Self Organizing Neural Network 

6.4 . 1 The Example Scenario 
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In thi section a neural network model is u ed for the efficient search of the SPN 

framework by using the simple example of the previous section. In particular. an ART I 

elf-organizing network for categorizing binary vector 11
·
12 i employed to extract an 

efficient trategy for a block manipulation problem by u ing two robotic arms (hand ), 

three block and three block po it ion . The ART I network i trained to alway achieve 

the ame goal , a above b above c on L2 , within a minimum number of time step and 

from any tarting configuration . 

A a trategy upervi or. the neural network decompo. e a larger trategy that may not 

be intuiti e into a hierarchy of maller goal . The mo t ob iou example of the benefit 

of trategy decompo ition i when Hand I gra p it fir t bl k and mu. t dec ide to either 

wait or pro eed t ward one of the two other po ili on . 

Sixteen tate and nine pre i u acti n were arranged in a ec t rand c ded a " I" f r 

va lid and "0" for not alid for a particular time tep. For a gi, en end goa l. the netw rk 

wa. trained with f ur tarting tate 

(caboeaab e LI ,bab' L2. aab ebaboe L2. cab eL3). (aab ecab \ e 

b abo e L2), and (b ab e a abo e c ab e L3 . 

The g al tate for Te t Scenari (Figure 7) wa · for the network t ac hi eve (a 

above b above c above L3), and the goal forTe t Scenario 2 (Figure 8) wa (a abo ' e c 

above Ll , b above L2), to be completed directl y aft er Scenario I. 

Th e states and actions vectors are: 

Test Scenario 1 and 2 States: 

S(1) Hand1 available 
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S(2) Hand2 available 

s ( 3) Handl waiting 

S(4) Hand2 waiting 

S(S) Ll Position clear above 

S(6) Ll Position available 

s (7) L2 Position clear above 

S(8) L2 Position available 

S(9) L3 Position clear above 

S(l O) L3 Position available 

S(l1) Block a clear and available 

S(12) Block b clear and available 

S(13) Block c clear and available 

S(14) Hand grasping or releasing Block a 

S(l5) Hand grasping or releasing Block b 

S(l6) Hand grasping or releasing Block c 

Test Scenario 1 Possible Actions: 

A (1) Move c to Not L2 

A(2) Move Block (a or b) to Not above c 

A(3) Move a to Not L2 

A(4) Move b to Not L2 

A(S) Move c to L2 

A(6) Move a to Not above b 

A( 7 ) Move b to above c 

A(8) Move a t o above b 

A(9) Wait 
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A block is considered unavailable if grasped by a hand or covered by another 

block. A grasp requires movement into the vicinity of the target position through a 

po sibl y busy workspace or to grasp an object that is not free to be grasped . Releasing, 

simjl ar to gra ping, includes movement through the work pace away from the immediate 

vicinity of the block. The act of waiting implie that the active hand move out of the 

immediate workspace for benefit of the other hand . After a hand waits a time step it 

then review it recommended ub trategie (actions) and choo e one that ha no conflict. 

6.4 .2 Determin ation of Po ible Action 

A minimum number of po ible action wa. cho en to attai n the nex t po ible 

ubgoal . Acti n I and 2 are de igned t move block away from an initi al 

configuration . A common trateg in a tacki ng " ituation" for a nex t-to-bottom object i. 

to place it in a lo ation ot her than it goal tate t clear pace for the bottom obje t. 

Acti n I, 3, and 4 have thi logic de igned in f r each bl ck, a there i a very go d 

chance that a block mu t end up on top of an ther in the desired final confi guration. 

Acti on 5 thr ugh 8 provide the robot arm an opportunit to tack bl ck in relati n to 

other block. or locati on a referenced to their final de ired configurati on. Action 9 i. the 

ac ti on of wait ing. mandatory for multiple hand . cenari . N te that the ac tion. are n t 

pecific a to location other than t thei r final de tination. This provi ion hould be ab le 

to accommodate more or fewer spare locations in a future scenario. 

6.4 .3 Logic Supervisor Choice of Action 

A vector representing the current tate of the cenario i introduced to the network. 

which produces a recommended action category . After a nex t ac tion ha. been chosen b 
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5 

6 

7 

415 

617 

21819 

5 

8 

9 

It i intere ting to note that Hand 2, which alway follows Hand I at each time step. 

acquired a category 7 devoted to waiting. 

Test Scenario 1 Resulting Act i ons: 

Robot Hand Resulting Recommended Chosen 

and Step Category Actions Actions 

H1 -1 4 217 2 

H2-1 3 213151718 2 -> 9 

H1 - 2 (2 17) 2 

H2-2 (213151718) 2 

Hl-3 5 415 5 

H2- 3 (2 13 151718) 2 

H1 - 4 ( 41 5) 5 

H2- 4 3 315171812 7 

H1 -5 7 81912 8 

H2-5 (315171812) 7 

H1 -6 ( 8 1 91 2) 8 
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Rob o ti c Hand 

and Ste p 

H1-1 

H2- 1 

H1-2 

H2-2 

H1-3 

H2-3 

H1- 4 

H2-4 

H1-5 

H2-5 

H1-6 

Te. t Sc nario 2 

Logi c 

Fo ll owed 

a, above c , i s a v a ilabl e 

L3 l S busy with Hand 

a p laced on Ll (Not 

b l S n ow g r a s p e d 

b is busy , c gra sped 

b is p laced on Ll 

c is pl a ced on L2 

a not clear , c busy, 

a clear 

b is placed on c 

a is placed on b 

1 

L2 ) 

b clear 

The pre 10 u example is ex tended n w to move t a new end . tate. The a ail ab le 

ac ti on are modified to ace mmodate the ne\ goa l tate and their de ired I ati n . The 

new goa l tat i to be achie ed b moving from the prev i u goal tate (a abo e b abo e 

c ab ve L3) to the new goal (a abo e cab e Ll. b ab ve L2) . 

Test Scenario 2 Possible Actions 

A(l) Move c to Not L1 

A (2) Move (a or b) to Not a bove c 

A (3) Move a to Not Ll 

A (4 ) Move b to Not L2 

A (5) Move c to Ll 
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A(6) Move a to Not above c 

A(7) Move b to above L2 

A(8) Move a to above c 

A(9) Wait 

Test Scenario 2 Resulting Actions 

Robotic Hand Chosen Human 

and Step Actions Actions 

H1-1 3 3 

H2- 1 2->9 2 - >9 

H1 -2 3 3 

H2 - 2 2 2 

Hl-3 5 5 

H2 - 3 2 2->9 

H1-4 5 5 

H2- 4 7 7 

H1 -5 8 8 

H2-5 7 Done 

H1 -6 8 8 

194 

Logic 

Followed 

a lS directed away from 

destinati on 

Hand 2 must wait for 

Hand 1 

a is placed on L3 

b begins toward 

defaul t Ll 

c is directed toward 

its destination 

b is redirected by 

Hand 1 with c 

c is placed on L1 

b is directed toward 

its destination 

a is directed toward 

its destination 

b is placed on L2 

a is placed on c 



6.5 Conclusion 

In thi chapter a stochastic Petri -net planning model and a neural network were used 

in a synergetic way for the election of the appropriate action to achieve the goal state 

for the block manipulation problem. More specificall y, the SPN plan model was 

generated for the development of the appropri ate framework on which the neural network 

wa u ed as an effi cient earch planning strategy . In the cenarios u ed a illu trati ve 

examples it wa ob erved that, in Scenario 2, Hand 2 (at Te t Step 2) had more than one 

de tination option. Gi ven no other option the default i . et at (LI before L2 before L3) . 

How ver. if Hand 2 i in the proce of plac ing a block on a pace that Hand I intend 

a a target locati n fo r the blo k it i gra ping, Hand 2 will go to another locati on which 

till a ceptable to the ac ti n con tra int time tep T3) . 

Thi . planning meth d I g (at the neural netw rk earch le el ha a pre ccupation 

with ompleting a ubgoal ta k, which it ha been gi en. interrupting with a wait tep 

onl when a lo ation i being occupied b the other hand. An exten ion of thi work i 

to change pl an or path mjd\ ay thr ugh a ta k execution a the tate of the proce 

change , although in the example abo e if a human' attempt. to ave tep do not 

de rea e the overall time to compl te the ta k. Another future ex ten. i n of thi work i. 

the u e f feedf rward diagno ti c node which may be added to aid the next tep trategy 

of a fuzzy uper i or. 
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CHAPTER 7: 

ROBOT DRIVER CONTROL WITH NEURAL NETWORKS 

7.1 An Application of the Hierarchy Concept 

Thi chapter i an application of the wheelchai r robot hierarchy concept to that 

of a vehicle dri ving on dynamometer roller . Although modi fied for the prac ti ca l 

con ideration of the application, there are trong irnil ari tie between the hierarchie . 

h wing that the approach i extendable to other area . The author' contribution 14 i the 

additi n of a fu zzy pectral filter interpreted b radi al ba i function neural network a. 

a di agno ti contributor to the ori ginal planning and cont rol hierarchy. The method i not 

onl ab le to categori ze vehicle with ignature that do not look imil ar to the human 

ob erve r (e pec iall y due to noi e) but it can also prop rl y identi f parameter. of a ehicle 

it ha never een before. The fu zzy pectral filter concept can be ex tended to applicati ons 

uch a gamma ray categori zation and robot nav igation in har h or unex pl ored 

environment .15 

7.2 Problem Scenario 

Repeatability in vehicle testin g on dynamometer rollers is critical fo r prov iding 
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automotive engineers with a consistent correlation to real world conditions. Commercially 

available robot driver controllers have been successful at following a velocity trace u ing 

PID and H~ based approaches, but the throttle, clutch, and braking behavior to achieve 

the desired velocitie has not closely re embled that of a human driving the same trace. 

In addition, the robot have difficulty driving automobiles significantly different in 

performance characteri tics than those they were developed for. In re ponse to these 

challenges, neural network are used in the diagnostic adaptive control of a robot driver 

which mu t minimize dynamometer slip, insufficient braking, and other error due to 

automobile, dynamometer, and environmental variation. The re ulting robot driver and 

controller can be employed to more accurately compare te t ite automobile , and engine 

controller strategie . By reducing the variability from automobile to automobile and te t 

run to te t run , the re ulting controller modeL can be u ed in error propagation studie 

to further reduce oth r ource of ariability in the te t proce . . 

The goal of thi s effort i to minimize the error between a cheduled velocit trace 

(i .e .. Figure 1) and the actuaJ roll peed of a vehicle cha is dynamometer (dyno). 

Normally a human driver applie throttle. clutch, and brake movement in reaction to 

velocity error as viewed on a computer creen called the driver' aid. With time, a driver 

learn the inadequacy of reacting only to CUITent peed error -- by recalling previou. 

experience with upcoming portion of the trace, the driver applie pedal movement in 

anticipation of a lag in the vehicle respon e. The e lags can vary due to vehicle inertia 

(J) , vehicle horsepower (HP), vehicle/engine temperature relative to a nonn, and time the 

vehicle ha been continuou ly te ting on a given dyno. One example of an inertia, 
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temperature, and time dependent error that requires on line driver adapt ation is brake fade 

(Figures 2 and 3), shown here for Vehicle I , a heavy rear wheel dri ve vehicle. If the 

driver find that, due to heating of the vehicle and dyno, a greater brake force is 

nece ary to slow a vehicle as a test progre ses, he or she learn to apply the brake sooner 

and/or use less throttle as the next planned brake approaches. 

Two constraint are added to the problem of diagnostic and adaptive control in 

an environment where vehicle (and fun ctional variation of vehicl e ) change several 

time dail y on a given dyno . The fir t i to implement di agno tic and control that i 

ea il y integrated with , or u ing. hardware and o ft ware already within the laborato ry. 

Extra equipment mu t be purcha ed, tared, and mai ntajned. In additi on. dat a acqui iti o'n 

at high ampling rate not alway a ail able or de ired in an indu trial te tin g 

en ironment. M t data co llection not nece ary at rate g reater than one to ten 

ample per econd , and greater ample rate have both pr ce. mg and st rage 

ramifi cati on . Lower ampling rate , howe er, cannot accurat capture the behaYi o r of 

y te rn which require bette r control of the ir tran ient re pa n e . . A method i de ired that 

can re li ably ex trac t u e ful informati on from a\ a il able data. a. we ll a remain fl ex ible t 

upgrad in rate of data acqui iti n and c nt ro l. The econd con tra in I i to a\ oid 

increa ing vehic le preparati on or te t time. The de ired method houl d be accompli hed 

whil e a vehicl e parameter i not under acti v contro l ( uch a. at idle for throttl e. or be fore 

decelerati on for brake) , without interac ti on with the vehicl e' computer contro l (which has 

to be manuall y interfaced), and without in lall ation of ex tra en OL durin g te t 

preparati on. 
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7.3 Current Controller Performance 

Due to nonlinear time dependent phenomena, memorization of the appropriate 

gam for a PID or other fixed model-based controller are inadequate. In addition , any 

control model that is designed for this type of proce mu t be stable acros all pos ible 

operating conditions, but must also be able to adequately identify and transition to a more 

accurate set of controller gajns for the new driver/dyno/vehicle state. Commercially 

available manual tran mission driving robots have demon trated acceptable performance 

for mo t vehicle. under mo t laboratory driving condition . 1.
2 During the learn cycle, a 

control model i developed for a given robot/vehicle (and optionally dyno) y tern . To 

en ure repeatability under tandard condition thi model i u ed to dri e that vehicle for 

all velocity trace irre pecti e of changing y tern condition . Thi . approach to contr I 

re ult in low tandard de iati n for the vehicle under the condition the robot wa 

trajned but repeatability degrade when te t are included where the temperature i 

incr a ed from 75° F to 105° F. 

Figure 4 and 5 compare the trace following performance of one robot 

ver u Dri ver I, an exceptional driver and Driver 2. an average dri er. all 

for Vehicle 2 a high performance front wheel dri e. Figure 4 show Driver 

I with the lea t ab olute error ummed econd by second followed by the 

Robot and Driver 2. Robot average error exceeded both human driver once 

te t room temperature wa varied. The robot 's "average" trace following 

error for the e te t is attributable to a drive tyle programmed to optimize 

a wider range of parameters, only one of which trace following . Although 
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Driver was the more accurate driver, Figure 5 shows that hi s standard 

deviation was higher than the robot or Driver 2. This can be attributed to 

the fact that test were run with Driver before and after he went on 

vacation , while Driver 2 drove his tests within a ingle week. The robot 

demonstrated its advertised superior standard deviation at room temperature. 

but looked like it wa coming due for a vacation when temperature was taken 

into account. 

7.4 A Hybrid Controller Approach 

The propo ed approach to thi problem i to extrac t a vehicle' tate from it 

frequency ignature while idling n the dyno ju t before the de ired ve loc ity trace begin . 

Thi tate information i then fed into fa t re p n e combination of neural network 1 and 

fuzzy logic4 cheduler which can tab ly adju t the weight of default contr ll er to gain 

a timely and accurate re pon e to any given vel city command trace (Figure 6). Neural 

network and fuzzy logic ha e already hown promi e in di agn ti cs~ · ·7 and control. 9 10 

A major ad ant age to implementing nonlinear repre entation in neural network or fuzzy 

logic form i the peed f computati n -- a erie of add , multiplie. , and conditional 

tatement . Computation that might have required everal iterative pa e through 

formul ae connected by everal condjtion and look up table can be conden ed into one 

forward pa through dedicated module . The challenge of thi effort is to extend the. e 

idea to accurate , reliable operation in the indu tri al setting given real world con traint . 
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7.5 The Fu zzy Spectral Filter (FSF) 

The FSF, in the lower left comer of Figure 6, single out weighted candidate 

frequencies for classification by the perceived vehicle state (PVS) radi al basis functi on 11 

neural network . Two signal , veloc ity and torque, are readily avail able from a chassis 

dyno, and are dependent upon the vehicle above it. Dyno torque, being a higher order 

signal, contain more useful information than roll speed and was the ignal of choice for 

this work. Figure 7 and 8 are typical example of hydrokineti c dyno torque for the fir t 

240 second of the Fi gure I de ired velocity trace. Although it i obviou that a heavy 

vehicle will cau e a larger dyno torque at nonzero veloc ity the difference are not a 

obviou at idle. Additionally. in Figure 9 where ampl itude analy i of the noi y Vehicle 

3 (a li ght weight rear wheel dri e) d no torque mi ght fail the propo ed method i capable 

of identi fy ing the vehicle. The technique can al o be extended to electric dyno a the 

fr quen ie are imjlar yet hi fted by a fraction of a Hertz. P wer spectral den itie 11 

are calcul ated for tretche of idle before ignition, after ignit ion. and between eloc it ) 

"hill " along the de ired tra e a they o cur. A power pectra1 magnitud re pon e 

(PSMR) i found b di viding ea h idle pectrum by the fir t preigniti on pe trum in order 

t charac teri ze the gain int roduced by the runn ing ehicle o er background n i e. Idle 

period can vary igni ficantly in length , from second to minutes. In order t demon. trate 

the propo ed approach' ability to handle low spectral re olution, the number of ampl es 

for each idle pectrum wa limited to le than 128 points. Preignition data. con isting 

of a few a 47 ample wa used in conjunction with idles before and after the fir t 

velocity "hill " to generate spectra uch a tho e in Figure 10 through 15 (with common 
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frequencies of large magnitude removed). 

Due to the limited number of data points, the magnitudes and frequency locati ons 

of each peak can not be relied upon in a strict sense. High frequencie tend to be 

exaggerated, and low frequencies are lo t in the noi e background . In order to be t 

extract ignificant frequencie for a gi ven vehicle category, significant frequencie for 

representative vehicles are arranged in a reference vector, and gaus ian member hip 

function are centered about each frequency. After the six largest magnitudes of a 

candidate pectrum are ubtracted a line that i three time the average value of the 

rema1mng magnitude u ed a minimum magnitude thre hold for the election of 

candidate frequencie Frequencie which pa within the area of a member hi p gau ian 

are a igned a member hip alue and added t any previou member hip alue in that 

vector location. Nonzero member hi p alue can then be ummed ae ro frequencie f r 

a candidate ehicle (two fo r the example fo llowing . and compared to tho e for the other 

vehi le m the candidate vector, or in the complete cont ro ller implementation. left 

un ummed and entered into the PYS radi al ba i network for ci a ifica tion. 

Thi example rad ial ba i fun li on wa trained t determine a vehicle in que. tion' 

relati e temperature (cold (-1 0) or hot ( 10 , it normali zed inerti a (J/1 000. and iL dyno 

hor epower (HP), given a vector of frequency membershi p for 5 repre entati ve ve hicle. 

(Vehicle I , 2, and 3 plu a medium performance front wheel drive) . Thi neural net wa. 

then te ted on a fifth vehicle, a heavy high perfonnance rear wheel dri ve. 
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Training Example Inputs and Outputs: 

In put. (Frequency memberships) Outputs (RVT,J ,HP) 

[1.74 .35 .05 0 0 .91 .9 0] [-10 8.0 19.4] 

[.84 1.02 .05 0 0 .91 .9 0] [10 8.0 19.4] 

[.84 .04 .46 0 0 .75 0 0] [-108.0 19.4] 

[.84 .35 .44 0 0 .75 0 OJ [10 8.0 19.4] 

[0 .02 .44 1.0 0 .76 0 0] [-10 3.25 7.0] 

[0 .02 1.0 1.0 0 . 12 . I I 0] [10 3.25 7.0] 

[0 .35 .37 .37 .44 0 0 .02] [-10 3.25 7.0] 

[0 0 1.37 .03 .97 . II 0 .35] [10 3.25 7.0] 

[0 .35 .07 0 .97 I. II 0 .35] [- 10 3.375 6.2] 

[0 0 .07 0 .97 1.1 I 0 .35] [I 0 .375 6.2] 

[0 .02 .79 0 .97 .76 .84 .35] [-10 3.375 6.2] 

[0 0 .79 .02 .97 .75 . 4 .38] [I 0 3.375 6.2] 

[. 15 .02 .02 0 0 .01 .75 0] [- 10 3.625 8. 1] 

LO 1.37 0 .02 0 0 0 0] [10 3.625 8. 1] 

[0 .04 .44 0 .4 .75 .84 .97] [-1 0 4.25 8.9] 

[.15 .02 0 .73 .40 0 0 .97] [10 4 .25 8.9] 

[0 .02 0 .35 .97 .2 .84 .38] [-10 4.25 8.9] 

[0 0 0 .35 0 .2 .84 .03] [104 .25 8.9] 
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Test Inputs 

[.99 0 0 0 1.32 0 1.7 1.32] 

[.99 0 0 0 .35 0 1.7 .97] 

Network Output 

[ -10 3.981 8 

[10 4.2844 

8.9867] 

9.7883] 

Actual Values 

[- 10 4 .25 8.9] 

liO 4 .25 8.9] 

Con idering that the example are par e at the high weight end of the car (with only 

one vehicle with higher value ), the approximation for the new Vehicle 5 example are 

clo e t to their ac tual va lue , despite the eemingly di imil ar member hip vector . The 

RYT output are aut mati ca ll y rounded to their relati ve ex treme f - I 0 or I 0. 

7.6 Radial Ba i Functi on for Categorization 

Radi al ba i. functi n f rm a n nlinear mapping of a parameter pace with 

(genera II erl apping gau ian fun cti n . Gi ven an in put ect r t be cia ifled. the 

output. f the e gau. ian are weighted and ummed t produc a ugge ted category 

value. The out put of the PYT network are percei ed inerti a (J). dyn h r ep \ er (HP). 

and relati e ehicle temperature (RYT). RYT can be determined by the relati e drop in 

magnitude of a particul ar frequency for each vehicle. An anticipated throttl e lag (A TL) 

radi al ba i fun ction network u e the e output a input to produce a ugge ted lag. or 

time before change in cheduled peed t appl y the throttl e, a demon trated below. 

This example radial ba i fun ction wa de igned to be able to predict throttle lag 

from scaled inerti a caled hor epower, and dyno type (- I 0 for elec tric, +I 0 for 

hydrokineti c) from onl y a few examples. All examples were for warm engines. Low Jag 
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i the time between first throttle motion and some nonzero dyno roller velocity , and high 

lag is the time between first throttle motion and a major change in dyno roller velocity . 

The gaussian layer weight matrix became a 4x3 (bias weight 4x I), and the linear layer 

weight matrix became a 2x4 matrix (bia weights 2x I ). For such a small training et the 

re ult look prorni ing . 

Training Example Input. and Output : 

lnput Output 

(Dyno type. Inert ia. Hor epower) (Low lag, Hi gh Lag) 

[-10 3.375 6 .2 ] 

[- 10 8.0 19.4] 

[ 10 8.0 19.4] 

[ 10 3.25 7.0 ] 

[ 10 4 .0 9 .2 ] 

Te t Input 

[.65 

[.415 

[.40 

[. 7 

[.60 

.85 ] 

1.92] 

1.0 I] 

.85 

1.4 

Network Output 

(For ehicle with learned dyno counterpart ) 

[I 0 3.375 6 .2] 

[-10 3 .25 7.0] 

[.6005 .903 1] 

[.5587 .9084] 
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Actual Lags 

[.60 1.2] 

[.66 .85] 



(For a vehicle never seen before) 

[-10 4.25 8.9] [ .4009 I . 0094] [.30 1.18] 

7. 7 A Neural Diagnostic Controller 

A neural network diagnostic controller wa developed in prev10u work 7 to 

di agno e a change in the plant and tran ilion the default parent controller network to a 

more accurate child network . ln thi paper, practical implementation are con idered 

with ampling rate and tirrting re tri ction . In tead of impl y memori zing the children. 

the FSF, PVS , and A TL module calculate ju t how much to modify the tirrting and 

amplitude of a parent network for a percei ed dri ft in parameter . The child net 

configurati on continue control for a I ng a the mea ured parameters are within 

operating tolerance . Learning from future experience can be u ed to update each of 

the e module . 

Figure 17 through 19 h w typical throttle, brake. and clutch mo ement of a 

robot dri er in a My tique a it follow the cheduled veloc ity trace in Figure I . Fi gure 

20 and 2 1 how twenty econd of FSFER net L1 ugge. t d throttle and brake movement.. 

before filtering. Gi ven that a cheduled peed trace i known beforehand (and can be 

preproce sed during idle period at the beginning of a te t run and el ewhere). the rate 

of change of throttle deterrrtine the amount of moothjng for the uggested movement. 

and results in a throttle very clo e to the target. The extra fitting capacity in the network. 

although it exhibit hi gher order than at fir t nece ary , allows it to accommodate 
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anticipated changes in the system parameters. 

The clutching pattern is cho en as the close t memorized by category of car and 

gear transition. It s timing is dependent upon a predetermined hift schedule. A FS FER 

neural net work 13 is used to learn the de ired throttle and brake command g1 ven 

information by dyno en or , the ho t computer, the ATL net, and the fuzzy schedulers. 

The e neural networks ugge t the magnitude and general hape of the command , but the 

actual timing of a command relati ve to a change in desired speed i sugge ted by the 

most recent di agno i of the ATL net.. Input to the radi al ba i net are the perceived 

inerti a (vehicle weight ) indicated hor epower (in reference to the dyno). and relati e 

temperature of the ehicle/d no combination ver u hav ing oaked at 75 degree F for I 0 

hour . Thi percei ed hor epower i in turn offered by a radi al ba i network wh e 

input are fu zzy member hi p of candidate frequencie . 

7.8 Future Work 

After more data is gathered. the new control trategy will be impl mented a a 

eparately compiled ubroutine acce sed by the commerc ial rob t' oft ware . The fiL t 

controller will be a upervi or which modifie the r b t' exi sting controller. Once thi . 

approach ha been ucces full y demon trated. the robot controller will be complete! 

replaced by a modelling and control hierarchy. 
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Appendix A: 
Fuzzy Logic Applications of Particular Interest 

A.l An Illustrative Application: Obstacle Avoidance 

Yochiro Maeda' Fuzzy Ob tacle Avoidance Method For a Mobile Robot Based 

on the Degree of Danger,' is a good application to expl ore how fu zzy logic can be 

implemented (Figure I). ln thi paper fuzzy ob tacle avoidance i offered a an 

alternative to two method : the Configuration Space Method. which cannot be employed 

real time due to exce i e calcul ation . and the Artificial Potential Field method. which 

deadlock the robot if the target, modelled a a point , fall between the robot and the 

mo ing ob tacle. It i a umed that on! one ob tacle i encountered at a time by a robot 

that can only control it leering and it onl y en e continuou ly mo ing ob tacles ahead 

of it not behind it while facing it fixed target. Robot and ob tacle are p int rna e 

and it i a umed that the robot re pond exactl y to the command it i given. 
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Figure 1: Obsta cle avoidance 
model of a mob ile robot. 

Degree of danger for the robot are determined ba ed on the tatic direc tion and di tance 

of an ob tacle f r tatic danger, a. and veloc ity magnitude and directi on for dynamic 

danger, ~ · Figure 2a and 2b h w the member hi p functi on. f r tati c danger. and 

Figure 3a and 3b repre ent tho e ford narn.ic danger. Triangul ar member hip function . . 

u ed here. are mo t popular but ther hape , including tho e sugge ted by neural 

network after trying hundred of example , can also be used. 

A an example. if an ob tac le is approaching from 30 degree t the right of the 

robot' heading and 60 em away . approx imate member hjp value. of0 .7 RS (right small ). 

0.4 RL (ri ght large), 0.3 N (near), and 0.8 M (medium) would result. If the veloc ity is 

approaching from 45 degree to the right at 50 em per second, 0.5 YRS (velocity right 

mall), 0.5 YRM (veloc ity right medium), 0.5 VS (velocity low), and 0.5 VF (veloc ity 

fa t) would re ult. The fuzzy recognition map of Fi gure 2d and 3c, fu zzy recognition 
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maps, graphically represent the fuzzy rules that result in variables to be inserted into 

Figure 2c for their respective degrees of danger. If non-zero values exist for both item. 

in parentheses on the fuzzy recognition map, the corresponding function name, such as 

RDS for (N) and (RL) on the static map, will hold the minimum of the contributing 

value . With 0.3 for N and 0.4 for RL, the corre ponding value for RDS would be 0 .3. 

Once all relevant function names are assigned member hip function values from the fuzzy 

recognition map, each non-zero member hip function is reduced to the area below a 

vertical slice at the maximum resulting member hip value . For the example, the final 

candidate for static danger would be determined by : 

(a) MLN(0.7 RS , 0 .3 N) = .3 RDL 

b) MIN(0 .7 RS , 0 .8 M) = .7 RDS 

(c M1N(0.4 RL, 0.3 N) = . RDS 

(d) MIN(0.4 RL, 0 . M) = .4 RSS 
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resulting in maximums .3 RDL, .7 RDS , and .4 RSS and Figure 4 below. This method 

of taking the maximum of the minimums is referred to a mjn-max composition . One 

popular way to optimize response time of a fu zzy system is to find and eliminate 

extraneou rule such a (c) above. For large systems hundred of poss ible scenarios are 

often introduced to a neural network dedicated to isolating only those rules that are 

necessary for operation. One extreme example, the in verted pendulum di cussed later in 

thi chapter, would return to it original orientation de pite di . turbance using only 7 of 

49 po ible rul es, a uming vertical a the initial condition.2 

OS 

RSS 
RDL 

0 
u 7 ~ l 

~ I I I , -~ I) (, I ll 

Figure 4: Modified membership f unct i on s for s t a tic degree 
of d anger. 

Next a cri p, or defu zzified degree of danger need to be extracted , and thi s can 

be accompli shed in many way . Three popular method are the centroid, or center o f 
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grav ity, method, the maximum height method, and the averaging method. Centroid is 

most accurate but time consuming compared to the other two methods, which may be ju t 

as uitable for some applications. For the example, the centroid method, by summing 

aero s the membership values multiplied by the hori zontal center of mass values, and then 

di viding by the summed membership values, a weighted center of mas will re ult : 

(0.4) (0.4) + (0 . 7) (0 . 7) + (0.3) (0.9) 
0.4+0.7+0.3 

0.92 
1.4 

0.66 . 

The maximum height method impl y declares that 0.7 the center of RDS with max imum 

member hip, 0. 7, i the fin al va lue: 

MAX (0 . 4, 0. 7 , 0.3) 0. 7 - - --- - 0. 7 1 

and ave rag ing the hori zontal center of rna. result s in : 
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(0.4 + 0.7 + 0.9) 
3 

0.67 . 

For thi example all three methods result in an a of roughly 0. 7, and when 

combined with a ~ of 0.25, an avoidance vector of 0.0 can be found wi th the lookup table 

of Figure 5. So, for the example, the robot i instructed to maintain its intended direction 

which is toward it target. For application where only one defuzzified value is needed 

(in tead of our a and ~ ), a direct conver ion can be made to a control input via a 

conver ion function, circumventing the looku p table. 

I I I I I I I I I 

l· I · I· I I I I l .. I• 
I 

I• I•· I I I I I l• .. 
I .. I I I I ' 0 I I I . 

I I t ' I I I I I ' I 

I I I I I I I I I 
I 

' I I I I I I I I I 
I 

, . I I I I I I ' I ' . 
I· I• ' 0 I I I 0 I I 

I 

' l .. .. I I I t I I 
I 

I . l• ,. I I I I , l 

PI U!lo 10 Tt41 IIIC:HI W !o' U\ 10 IHf tilt 

I I) 1 J J 0 • U \ I) OIGII" 

Figure 5 : Decision t a ble for 
the a v o idanc e vector . 
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In order to move the robot , a new target vector, D, is found , 

D I I ( 1) 
I 

where P, i position of the target and P, is the position of the robot, shown in Figure I . 

Our fin al goal the steering vector, M , is found , 

M = D + 0 
D + 0 I I 

I 

( 2 ) 

whe re 0 i a unit ector tran lation of the avoidance vector. 

In Figure 6, depending on the peed of approach of an ob tac le (repre ented b 

the large circle . low (a) or fa t (b) the robot reached it targe t with re lati vely littl e 

change of dire ti on. When the fuzz (c) method wa compared to the artific ial pote nti a l 

fi e ld (d) method, the fu zzy method found a more direct route to the targe t. 

After implementing her own ver ion of thi . method, the author o f thi effort found 

that one advantage to thi s approach i that the robot alway move , avo iding the 

po ibility of tailing. On the other hand , if the object make a lot of complicated 

movement , the object eems to o c ili ate a unit in e ither directi on. Thi doe not eem 
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apparent in their simulation illustrations, but then the object of interest seems to always 

be moving either parallel or perpendicular to the robot. If the author were to Jessen the 

sensitivity of her robot, uch oscillations might go away. 

A.2 The Fuzzy Advantage For Pole Balancing 

Thi apparently simple and natural method of reasoning has proven succe sful with 

ystems at the limit of and beyond the capabilities of cia ical control. Although 

balancing control of an inverted pendulum on a monorail cart can be determined by 

cia sica! dynamic , the malle t parameter error in implementation can ea ily jeopardize 

·ucce . The actual tran iti on point between balance and in tabi lity can be found by 

employing fuzzy inference rule . If the cart i currently travelling with velocity v at a 

di tance x from a target location fuzzy rule calculate a irtual equilibrium point for the 

pendulum that lean away from the target 8 degree . The cart then move to achie e thi 

virtual equilibrium, tipping the pendulum roughl y 8 degree toward the target a a re ult. 

Now a econd et of rule command the cart to move toward the origin to drive the 

pendulum back to the actual equilibrium at vertica l. Figure 7 repre ent the re ulting 

cont rol y tem. If the cart is to follow ome reference path in tead of holding one 

po iti on, the po ition feedback i replaced by an error in pos ition between the de ired and 

current po ition , requiring a control y tern similar to that in Figure 7. Due to the 

integral nature of the added inference block, a step di sturbance will exi t. causing both 

the cart and pendulum to waver a small distance from their desi red locations. 

Inputs to a fuzzy controller are a fraction of a max imum value determined by a 
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non-zero winning membership function (or overlapping of functions), resulting in robust 

olutions which require little beyond rescaling or normalizing. There is no poss ibility of 

a divide by zero or other di scontinuity . For a pendulum, parameter such as the length 

of the shaft , its weight, or the controlling motor's torque can naturally drift or be varied 

without having to change the logical rul es or membership function . Neural network can 

be employed to modify the shapes of the membership functions for smooth transitions in 

control respon e aero s all pos ible input , or to eliminate orne of the rules from the rule 

ba e, decrea ing calculation time. The e feature have allowed Take hi Yamakawa4 to 

balance an ac ti ve live mou e in a ba ket at the top of the in erted pendulum or by 

extending beyond the curren t abilit y of cia ica l control, to imultaneou ly balance three 

in vert ed pendula connected in erie above the arne can . 

K •I 

• y •• 

l 

,.. .. ., . . 
'(1Mia) · C • • (or n ..,one 
-.a.. 

dip 

,-------------------J+ 

Figure 7: The inverted pendulum controller . 
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APPENDIX B: 
FUZZY LOGIC AND NEURAL NETWORKS TOGETHER 

B. 1 Introduction 

Both fu zzy logic and neural approache are numerical, can be partially described 

by theorems, and admit an al gorithmic characteri zation that favor silicon and optical 

implementation.
1 

Therefore. they can be interchangeably implemented and even mixed 

wi thin the arne implementation. Some application found their way into both questi on 

due the fu zzifica tion of the neuralification of the fuzz ification and vice ver a. Idea (mine 

and other ) are pre ented fir t, followed by orne application example which are bri eOy 

outlined to illu tra te concept . either a implemented or a a po ible enhancement to the 

work publi hed. 

B.2 Fuzzification of Neural Network 

If one as ume that a ce rt ai n impreci 10n ex i. t or can be tolerated in the 

cont roller. then a neural controller can be fuzzi fi ed. Then, via ve rifi cation and de leti on. 

member hip function parameter and rule repre enting only the mo t crucial input/output 

relationship can be stored more compac tl y with a minimum los of accuracy. The 

software implementation of fu zzy logic requires fewer multiplies and adds than a neural 

network a crucial con ideration while neuraJ chip (and chip dedicated oftware ) prices 

remain hi gh. Some pecific applicati on are de cribed below. 
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8.2.1 Determining the Shape of a Membership Function 

A software fuzzy controller package called Neufuz42 uses a modified supervi sed 

neural net with error back propagation to determine appropriate nonlinear bellshaped 

membership functions (for better fit and therefore fewer rules), which is described in 

better detail for the nex t question . This neural net, for more automated implementation , 

is con trained to four inputs and one output, although multiple nets can be used for 

multiple output . The software package provides utilities for aiding the user in gathering 

training set input/output pattern if they are directly avail ab le from the target application 

but leave it up to the u er to gue s appropriate inner and output layer learning rates a 

well a final target error. Accumulated knowledge could be clu tered and rule generated 

to uggest appropriate fir t gue se for the clas of problems a given u er ee in hi 

work . It i al o recommended by the software manufacturer that the user peci fy the 

max imum number of member hip function ( even) at fir t. and then reduce the e until 

the re ulting error become una ceptab le. Thi proce could be fuzzified in a im.ilar 

manner. 

8 .2 .2 Product Space Clu tering 

For littl e extra computati onal co t one can generate a et of tructured FAM rul 

to approximate a neural y tern' behav ior 1 and peed up computation. Un uperv i ed 

neural clustering algorithm efficiently track the den ity of input-output ample in fuzzy 

a sociati ve memory (FAM) cells. The number of synaptic vector in each FAM ce ll can 

be u ed to weight the underlying expert or proces rules. The fuzzy system can then be 

tuned by refining the rules with common sense and with further training data. Kosko' s 
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applications apply the adaptive product-space clustering methodology to inverted

pendulum control, backing up a truck-and-trailer in a parking lot , and real -time target 

tracking. 

B.2.3 Stability Enhancement by Interpreting the Output of an Online Adaptive 

Neural Controller 

ln order to solve the inverse kinematics problem for a robot (modelled to mimic 

the human arm), the u ual method of constructing the controller neural network with 

sigmoidal activation leading to linear activation in the final output layer is replaced by 

a erie of maller sigmoid-only network leading into a elector which mjnimize the 

re idual error online via a Newton-Raph on iterative method .3 Thi elector layer could 

ea ily be fuzzified, a the iterati e method a ume a elution without local mjnima 

between initial and final condition . Building upon experience, a fuzzy layer could add 

tructure and direction in an online appli ation uch a thi where tab ility i crucial. 

B.2.4 Di tributing the Influence of Stati tical Activation Function 

A variant on the above approache ha been ad ocated by the Ba e Ian 

community. Given an MRJ brain image application. where background, scalp. kull , 

white matter, and grey matter mu t be determined, a stati tical cia ifier ha been u ed 

to map the original image pixel grey level s onto an n-tuple of probabilitiel repre enting 

the likelihood that a pixel belongs to a certajn cia . The EM (Expectation Maximization ) 

algorithm5 is u ed to iteratively determine the proper weighting of Gau ian function to 

represent thi s cia ification u ing sample data. The w •. j.o weights 
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(a) • . 

l.,J,a 

1t~;a;a p~;a ;a (i,j) 

p(i,j) 

( 1) 

used in the update equations are said to act as fuzzy classifications of the data points, 

where 1t is the a priori probability that a pixel belongs to a certain class and p is the 

cia ' conditional intensity di stribution . Deltas indicate value for a pair of pixels under 

con ideration. The probabilistic representation a input to the cia ifier led to greater 

classification accuracy over that of simple grey level inputs. It is assumed that EM 

adaptation will render the clas ification process invariant to sy tem noise and shift in 

image orientation . Thi · method a ume a priori values of rr and initial gue es of 

inten ity parameter for the EM algorithm to modify requiring human intervention sirrtilar 

to that required to elirrtinate re idual error after an initial implementation of cia ical 

fuzzy logic. The entire proce i repre ented a a one hidden unit layer network who e 

cia ification layer re emble a fuzzy layer combining the output of Baye ian activation 

function . The author of thj paper point out a simjlar effort by Perlovskl where the 

EM algorithm i u ed in an adaptive neural architecture where the fuzzy cia ification 

value are seen a adju table weight between proce ing element . 

8 .2.5 Diagno tic Robotic and DC Motor Control 

A neural network can be u ed to learn the output it need from a preliminary 

fuzzy controller to provide the necessary input to a controlled plant in order to obtain the 

desired respon e. The fuzzy controller can continue to exi t as a backup robust controller 

if no adequate neural network has been trajned for that operating region. 

Neural networks can be u ed to weight contributions particular redundant robot 
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joints can make to sati sfy a particular reference command. Fuzzy logic can determine 

from experience what initial weights to start with at the beginning of a session before 

enough data ha accumulated for diagnostics. 

The robot joint controller network has three diagno tic outputs which give their 

estimations of parameter drift. If two parameters are drifting at the same time, or if there 

are interdependencie , a fuzzy interpreter can decide which pretrained child neural 

network is better to drift to, one advocated by diagnostic output A (i.e., stiffness) or by 

diagno tic output B (i.e. inertia) . Because I have demonstrated through examples that a 

gradient hift in control from a parent network to a child network is table, then a fuzzy 

linear all ocation of control ignal from variou network rrtight provide a mo t accurate 

control. 

B.3 Neural Networks to Aid Fuzzy Logic 

It is difficult to prove ab olute tability for a neural net controller that adapt 

online beyond tho~ e with only one layer of adju tab le weight with a linear acti ation 

functi on at the output. A fuzzy controller, by hav ing explicit reactions that are clearly 

outlined for the u er. is more accepted e pecially if adaptation imply mjxes a group of 

otherwi e stable fuzzy output . Further many control problem require nulling a scalar 

error mea ure and mai ntaining that equilibrium state, which may not be modelled exac tl y 

by a neural network concerned with representing major nonlinearities. Fuzzy logic can 

explicitly provide an equilibrium action . Adaptive fuzzy sy terns can use neural (or 

stati tical) technique to abstract fuzzy principle from sampled cases and to gradually 
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refine tho e principles as the system samples new cases. 

NeuraJ networks (especially in hardware) can help aJi eviate several di sadvantages 

of fu zzy logic for control. First, fuzzy logic requires a good conceptual understanding 

of the relationship between the input and output. Neural networks can give a des igner 

a good rough estimate of the variable dependencie in a given control problem, o that 

he will be able to focus hi effort more intelligently when des igning a fu zzy controller. 

A neural network that i provided with the best po sible input (or time dependencies of 

input ) will not train a well a one with the input most influent ial to the relationshi p. 

Secondl y, analyti c controller generally have a more rapid re pon e time, and 

thi rd ly ub et of rule mu t be defin ed cont inuou ly over all reg i n of each uni verse 

of di course or di ontinuou control action may occur. If a neural network can provide 

a better fi t for each rule (i.e. by finding the be t bell curve hape) , and clu tering (i .e. 

fu zzy C-mean 7 or adapti e product- pace 1
) technique prune out redundant or 

unnece ary ru le , then the fu zzy cont ro ller can act that much fa ter. and can compen ate 

for any remaining speed di screpancy with more robu tne than it analytic counterpart. 

Fourthl y. member hip calcul ations grow exponenti all y with the uni verse of 

di cour e. If the ta k become too compl x for cont rol at one level. a hierarchy wi th 

trainable connections between level can capture wider reaching trend and allow the 

lower level to focus on local relation hips. 

Fifthly, fu zzy logic requ ires complete knowledge of en or/actuator relationshi ps . 

Neural networks can ex tract coupled effect from a mi sing input by a surning a simil ar 

relationshi p wi th what it found in training data. Once the relation hip is found fo r a 
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neural controller, for instance, the diagnostic output on the same network can be trained 

with only the added expense of connection from the last hidden layer. One succe. sful 

combination could be a hybrid system where neural networks handle relationship with 

unreliable or miss ing inputs and fuzzy quickJ y calculates other relation hip . 

Finally, one must verify that a system originally controlled via a neural network 

still re ults in a table plant when converted to one that i fuzzy. 

Kosko' tate that neural network so far eem be t applied to ill-defined two-cia 

pattern recognition problems. For a one hidden layer network , this is probably o. 

Higher order problems are being ucce fully learned with more hidden unit layer , 

howe er. and the previou problem are being learned more effi cientl y than with more 

hidden unit in one layer. Fuzzy logic will be ab le to capitalize on thi increased ability 

to learn nonlinear relation hip ·. 

Some nonlinear relation hip are difficult for human toe timate from input output 

data alone. A hi ghl y nonlinear h drogen etch proce with a ery mall acceptable 

proce wind w cau ed engineer at IBM Ea t Fi hkill to truggle for week adj u tin g the 

two variable . pre ure and ga fl ow. Some pecific application are described belo . 

B.3.1 E timation Storage, and Modification of Fuzzy Rule 

Ko ko allow competitive neural network to adaptively e timate. tore. and 

modify decomposed FAM rule in a matrix format.' Thi representation requires far le. s 

storage than the multidimensional-array repre entation . 

B.3.2 E timation of Inacce sible Controlled Plant States 

A neural network can act a a state estimator to feed a fuzzy controller with 
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variables that are not directly accessible. Neural network structure and weight update 

methods provides a convenient way to combine the outputs of the various fuzzy logic 

rule , without having to know the exact structure of the function(s) to be learned . The 

membership functions themselves can be provided by the domain experts and remain as 

static information, or can be automatically generated using some stati stical methods such 

a Set-Valued stati stic 8
, or to be trained using a neural network and based on historical 

data from the data base. 

B.3 .3 Refinement of the Neural Widrow Truck and Trailer Emulator 

Becau e the fuzzy clu tered modified neural and fuzzy truck ystem generated 

similar backing-up trajectories black-box neural e timator eem adequate for defining 

the front end of FAM- tructured y tem 1
• 

B.3.4 Learning the Con tant for Neural Network Training 

Neufuz4, the software package mentioned earlier execute the final fuzzy control 

in a standard fa hion : it fir t find each rule that applie to input at hand, calculates the 

degree of membership for input for each rule, and finally multiplie the member hip for 

all input . In order to determine an accurate, compact fuzzy controller. a neural network 

approach i u ed to define the hape of the membership function . and a final weighting 

layer of the e functions can be trained to provide an optimal combination to sugge t a. 

an output. 

The first layer neurons and the weights between layer I (inputs) and layer 2 (rules) 

are u ed to define the input membership functions. The rule base is reflected in layer 2, 

where the inputs to one of the neuron are the antecedent and the output is the 
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consequent for a single fuzzy rule. If input I is low and input 2 is medium then output 

is (cri sp) X. All of these X's are multiplied, then defuzzified at the output layer. 

To simplify implementation fuzzy rules are limited to use of the AND operator 

(corresponding to the conventional fuzzy mi11. operation) and output is always a singleton. 

To increase the effectiveness of the implementation and to be able to transfer assembly 

code to a low co t 8 bit microcontroller, input to the controller are restricted to four and 

shouldered trapezoids are approximated onto the calculated bell curve shapes. The 

number of rule (hidden unit layer) neurons is equivalent to the max imum number of rules: 

rule = (number of member hip function /input)inpuls. 

Caution hould be u ed when combining the effort of enhanced fuzzy logic, via 

neural network or other approache , a thei r output characteri ti c may differ and 

complicate tuning of a fin al re ult. For example, becau e Neufuz4 fir t u e a neural 

network to determine the shape of a gaus ian member hip function. and then 

approx imate it a a houldered trapezoid (to save ROM). the highe t po . ible 

member hip may not be one. Therefore, a maximum po ible output ignal may ne er 

be achieved , and overl apping member hips may not add to one for a given input va lue. 

B.3 .5 Higher Level Control Strategy 

When considering a higher level of control (i. e. , which fu zzy logic path to follow 

for navigation and ob tacle avoidance9
) , neural networks can be u ed for online tuning 

of decision threshold and gain limits. A conservative navigator can slowly shorten 
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di lances as experience confirms an adequate margin of error after each safety threatening 

situation i encountered. 

8 .3.6 Fuzzy Control With Feedback Error Learning 

No exact kinematics or dynamics model i needed for the fuzzy control of a 

simulated biped locomoti ve robot when estimated torque feedback is used for neural 

tuning of the defuzzification weight 10
. For thi application fu zzy logic learns the 

nonlinear relation hip nece ary for a smooth gait when onl y "head" and "ank.le" reference 

trajec torie are given. Continuou ly differentiable gau sian and quadrati c membershi p 

function are u ed in antecedent part of fu zzy rule in order to obtain a continuou error 

ignal. In order to minimize feedback torque and thereby smooth the gait , the learning 

rule be omes: 

where w i the 5x I weight vector lea ing the j th rul e, n i the sample number (e ery 2 

m. ec). T b i the ) x I vector of joint feedback torque , 1 i the learning rate, and 1-l) n- 1 0] 

i the compati bility degree of the jth rule 10 tep previou . . 

8 .3.7 Fuzzy Gain Scheduling 

For a helicopter controller 11 control i dependent upon fl ying conditi on_ uch as 

height above the ground and wind velocit y. After training bidirectional as oc iati ve 

memory fuzzy contro ller via human experience, a Widrow-Hoff Algorithm 12 i u ed to 

refine each operation model under it s fl ying condit ion. Fuzzy allocation can then be u ed 
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to choose a combination of controllers for ambiguous conditions. 

B.3.8 Neural Nets to Store Fuzzy Estimations 

Separate torage of fu zzy rule associations consumes space but provides an audit 

trail of the fu zzy rule inference procedure and avoids crosstalk . The user can add 

endpoint rules or delete unnecessary rules without di sturbing the others and neural 

networks can e timate or indi viduall y house the estimations. 
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APPENDIX C: 

THE BACKPROPAGATION ALGORITHM 

Each input to a node of a neural network is entered into an activation function 

after umming with other inputs and continuing on to the next node. An activation 

function is desirable so that the nodal output i continuou Iy differentiable, ha a imple, 

ea y to compute derivative and can give a rea onable respon e to input with extreme 

value . Common example vary from simple linear or thre hold relation hip to 

sigmoidal function uch a : 

f =tanh( (tinput .w . . ) +b .) 
~ l] J 

( 1) 

and 

f = 1 
( 2) 

Alpha, a, i a con tant that when increa ed increa e the slope of the sigmoid 

curve of the activation function . An a of three is already quite vertical. When 

calculating weight correction , the derivative of the activation function must be evaluated 

at that node. Derivative of the above two functions are: 
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f' 

and 

f' 

1 

a e - a; ( (E input{w11 l •b1l 

1 + e - a; ( (E input1 w11 l +b1l 

( 3) 

(4) 

Noting that the activation function corresponding to thi Ia t deri vative i quite similar to 

the olution for the pread of epidemic from differential equation textbook a much 

simpler derivative i often employed: 

f 1 a f ( 1- f ) ( 5) 

where f i the percentage of infected m mber , and 1-f the percentage of non-infec ted 

member . 

For each training et example t et" delta 8, or incremental changes, can be 

calculated for both bia e and weight . For a fin al output node, find ok by ubtracting the 

calculated ac ti vation value from the de ired value and multiplying by the derivative of the 

activation function at that node: 
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( 6) 

where fk is the desired act ivation value and fk is the calcul ated activation value. For a 

hidden unit node, ()J is calculated by first summing the associated input deltas multiplied 

by the weights connecting their output nodes, then multiplying the sum by the deri vati ve 

of the acti vation fun ction at that node as such: 

(7) 

Now one can fin all y update bi ases and weights before introducing the nex t training 

set example. The change in bia weight (referred to a b, ince the actual value of the 

bia i alway one) of an output or hidden value node i calcul ated by fir t summing it 

a ociated delta then multipl ying by eta, TJ , a learn ing rate either specified by the u er 

or keyed to the complexity of the error surface to keep the net from neither tailing nor 

go ing un table : 

( 8) 

and 

( 9) 
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The change in weight value for an output or hidden unit node is obtained by first 

summing the product of each associated delta multiplied by each associated activation 

function , then finally multiplying by eta: 

(10) 

and 

(11) 
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4) Find changes in connection w's , given learning rate Tl & momentum fact or K : 

(14) 

) End Input Loop 

} End Tolerance Loop 
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