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ABSTRACT

Wind energy is playing an increasingly significant role in the World’s energy supply

mix. In North America, many utility-scale wind turbines are approaching, or are beyond

the half-way point of their originally anticipated lifespan. Accurate estimation of the times

to failure of major turbine components can provide wind farm owners insight into how to

optimize the life and value of their farm assets. This dissertation deals with fault detection

and failure prognosis of critical wind turbine sub-assemblies, including generators, blades,

and bearings based on data-driven approaches. The main aim of the data-driven methods

is to utilize measurement data from the system and forecast the Remaining Useful Life

(RUL) of faulty components accurately and efficiently. The main contributions of this

dissertation are in the application of ALTA lifetime analysis to help illustrate a possible

relationship between varying loads and generators reliability, a wavelet-based Probability

Density Function (PDF) to effectively detecting incipient wind turbine blade failure, an

adaptive Bayesian algorithm for modeling the uncertainty inherent in the bearings RUL

prediction horizon, and a Hidden Markov Model (HMM) for characterizing the bearing

damage progression based on varying operating states to mimic a real condition in which

wind turbines operate and to recognize that the damage progression is a function of the

stress applied to each component using data from historical failures across three different

Canadian wind farms.

Keywords: Failure Prognosis, Wind Turbine, Generator, Blades, Bearings
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CHAPTER 1

Introduction

1.1 Dissertation Motivation and Objectives

Wind energy is playing an increasingly pivotal role in Canada’s energy demands. Canada

finished 2018 with 12,816 MW of wind energy capacity, enough to power over 3 million

homes, or six percent of electricity demand [1]. Wind is also assuming a nascent and

growing role in the expanding ancillary services market associated with evolving grids.

Wind Turbines (WTs) are complex machines, assembled combinations of numerous

technologies, operating in challenging environments [2]. As for any integrated system,

some of the components are more critical than others, so for a WT, it is necessary to rank

components based on failure rate and downtime. There have been some seminal efforts

in recent decades on the reliability of wind farm components that indicate that the most

frequent failures are related to generators and gearboxes in the component level, and bear-

ings in sub-assembly level. Furthermore, generators, gearboxes, and blades have the most

downtime [3, 4, 5, 6, 7, 8]. The unexpected failure of WT components can cause substan-

tial economic losses, so, it may be prudent to consider wind turbine components safety and

reliability as a more distinct category.

Safety and reliability are vital concerns for critical systems. Fault diagnosis and prog-

nosis (FDP), i.e., estimation of remaining useful life (RUL) can provide wind farm owners

insight into how to optimize the life and value of their farm assets by isolating incipient

faults and anticipating the future status of the faulty systems [9, 10]. An improved un-

derstanding of the RUL of turbine components is particularly important as many owners

consider retiring, life-extending, or re-powering their farms [11]. Proper performance mon-
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1. INTRODUCTION

itoring based on Supervisory Control and Data Acquisition (SCADA) data and condition

monitoring (CM) are essential components of this pursuit [12].

This performance monitoring technique correlates different groups of SCADA data

(e.g., the power generated, wind speed and ambient temperature), develops models for

normal operational states, and uses these models to identify abnormalities. However, this

technique may not be straightforward in pinpointing specific damaged components. On

the other hand, CM is capable of pinpointing damage locations/components precisely [13].

The outcomes of the CM enable condition-based maintenance (CBM) that reduce mainte-

nance cost [14]. FDP as an essential step of the CBM procedure is crucial and fundamental

in successful CBM [15]. FDP information is employed to isolate an incipient fault, predict

future behavior of faulty components, and then, schedule the maintenance.

Although fault diagnosis is a well-known task, and it has been widely considered, fail-

ure prognosis is a relatively new area of research, which is often more challenging owing

to the uncertainty inherent in the potential for multiple failure degradation paths. The main

objective of this dissertation is to deepen the insight into the shortcomings and existing

methods and also introduce new modern methods for health monitoring of wind turbine

elements.

The primary research objective of this dissertation is to introduce new failure prognosis

methods for critical WT components. For this aim, various monitoring and failure progno-

sis methods for health monitoring of systems are investigated to enhance current estimation

and increase the prediction accuracy of failure prognosis approaches. Note that due to the

availability of historical data across three different Canadian wind farms, data-driven meth-

ods are employed. Data-driven methods transform historical data into relevant models of

the degradation behavior rather than a direct physical account of the failure processes. For

this aim, a complete set of failure data based on all operating conditions is required to

develop thorough and accurate data-driven prognosis methods.
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1. INTRODUCTION

1.2 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 focuses on a limited

data set for reliability prediction of a wind turbine generator population. Furthermore, a

Naive procedure is proposed for the prediction of individual generator lifetime intervals. A

real-time hybrid fault detection method is developed in Chapter 3 for wind turbine blades.

Chapter 4 reviews the most recent literature on RUL anticipation of wind turbine bearings

and highlights some directions that merit further study, which mainly are addressed in the

next two chapters. A combination of signal processing, adaptive Bayesian, and fusion tech-

niques is employed in Chapter 5 for RUL prediction of faulty bearings. In Chapter 6, a hy-

brid data-driven prognostics method for RUL forecast of wind turbine bearings under vary-

ing operating conditions is presented. The proposed method leverages signal processing,

data clustering, Viterbi-based Hidden Markov Model, and an adaptive Bayesian algorithm.

Chapter 7 draws the conclusion of the dissertation, and it also examines open problems and

possible developments and highlights a number of challenges that merit further study.
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CHAPTER 2

Aggregate reliability analysis of wind

turbine generators

2.1 Introduction

Energy is a primary key to economic growth and industrialization. Fossil fuels presently

play a vital role meeting world energy demand. Finite supply and significant environmental

footprints limit the appeal of these fuels. Among renewables, wind energy is recognized

as one of the lowest-cost and fastest growing clean power options [1]. Wind now plays an

important and expanding role in many energy systems worldwide. According to the Global

Wind Energy Council (GWEC)’s report [2], wind energy capacity could reach almost 2.1

TW, supplying up to 20% of global electricity by 2030.

A wind turbine (WT) is a complex machine functioning in a complex environment.

Wind turbines are an assembled combination of technologies from aeronautics, mechani-

cal engineering, hydraulics, electrical engineering, automation, information technologies,

as well as civil engineering infrastructure. The unexpected failure of wind turbine com-

ponents can cause substantial economic losses. As for any integrated system, some of the

components are more critical than others, so, for a wind turbine, it is necessary to rank

components based on failure rate and downtime [3]. There have been some seminal efforts

in recent decades on the reliability of wind farm components as reviewed below.

Shafiee and Dinmohammadi [4] indicated that, for onshore machines, the most frequent

failures are related to the tower, gearbox, rotor blades, rotor hub, and the transformer in that

order whereas in offshore settings, the gearbox, rotor blades, generator, tower and the trans-
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former have the highest failure rates. In Chen et al. [5], it was shown that the generator and

gearbox have the highest failure rate. Hahn et al. [6] showed that generator, gearbox, drive

train, and rotor blade have the most downtime based on 1467 WTGs (below 1 MW) data in

the period from 1989 until the end of 2004. In Stenberg and Holttinen [7] 1996-2008 data

from 72 operating wind turbines in Finland revealed that the gearbox, hydraulic system,

brake, and generator had the most downtime. The reliability of more than 6000 WTs in

Denmark and Germany over 11 years was investigated in Spinato et al. [8]. This work il-

lustrated that the sub-assemblies with the highest failure rates included, in descending order

of significance, the electrical system, rotor, converter, generator, hydraulics, and gearbox.

This paper mainly studied the changes in the reliability of generators and gearboxes in a

subset of 650 of these WTs in Schleswig-Holstein, Germany. This analysis showed that

wind turbine gearboxes seemed to be achieving reliabilities similar to gearboxes outside

the wind industry. However, wind turbine generator reliability is significantly below that

of other industries.

A review of such reliability summary studies reveals the generator as a critical wind

turbine sub-assembly. They are prone to faults caused by the corrosive, high temperature,

and high-speed environments in which they usually operate. Major generator failure in

wind turbines can lead to significant downtime if maintenance activities are reactive. One

of the principal causes of generator failure is the continuous insulation degradation in the

stator windings and subsequent melting of the copper coils of the windings, or the iron cores

[8]. Further, since it has been indicated in Spinato et al. [9] that wind turbine generators

are achieving reliabilities considerably below that of other industries, it may be prudent to

consider wind turbine generator reliability as a more distinct category.

Reliability speaks to the the ability of a system or a component to fulfill a required role

under given operational and environmental conditions for a stated period of time. Relia-

bility may be determined by various means depending on the situation. Particularly useful

reliability measures include: mean time to failure (MTTF), number of failures per time

unit (failure rate), the probability that the item does not fail in a time interval (survival

probability), and the probability that the item is able to function at any time [10]. Any

model engaged for reliability estimation is constrained by factors such as the accuracy of
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the initial prediction, the deficiencies of historical data, sensitivity to variations, human

errors in management, production, and application, the discrepancy between the domain

and the conditions of applicability, and unclear understanding of the logical and physical

relationship between the model and its prototype [11]. In the following, studies on relia-

bility analysis are reviewed. This review focuses principally on the reliability analysis of

generators.

A method for determining the impact of energy generation on generator reliability was

developed in Giorestto and Utsurogi [12] which helped with the determination of the use-

ful load carrying capability of a wind farm. Fitzgibbon et al. [13] presented a method that

combines Weibull analysis and statistical algorithms to forecast failures applied to elec-

tronic systems. Batzel and Swanson [14] developed prognostic tools to detect the onset

of electrical failures in an aircraft power generator and to predict the generator’s time to

failure (TTF) which helps to avoid unexpected failures. Yang et al. [15] investigated the

application of wavelet transforms to condition monitoring and fault diagnosis of a syn-

chronous wind turbine generator. The developed technique was confirmed as robust for

detecting electrical faults in a direct drive generator. Guo et al. [16] presented a three-

parameter Weibull failure rate function to obtain an accurate reliability projection of wind

turbines based on incomplete wind farm failure data. Hong et al. [17] used a parametric

lifetime model to define the lifetime distribution of high-voltage power transformers based

on left truncated and right censored data. A statistical procedure was developed, based on

age-adjusted life distributions, for computing a prediction interval for remaining life for in-

dividual transformers in service. A simple prediction interval procedure, the Naive method,

was used to provide an approximate interval, and was used as a start towards obtaining a

more refined interval. This work showed how to produce calibrated prediction intervals

through the use of a random weighted bootstrap technique and an approximation based on

a sophisticated central limit theorem. These ideas were extended to provide predictions and

prediction intervals for the cumulative number of failures, over a range of time for the entire

fleet of transformers. In He et al. [18], reliability evaluation indicators for a hybrid power

supply system were proposed. The indicators include the average failure rate, the average

duration of power outage for each failure, and the average duration of power outages per
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year, which were simple and very useful in their reliability analysis. Sikorska et al. [19]

presented classification tables and process flow diagrams to select appropriate prognostic

models for predicting the remaining useful life of engineering assets within their specific

industrial environment. The paper then investigated the strengths and weaknesses of the

significant prognostics model classes. Infield and Wang [20] proposed a non-linear state

estimation technique technique to model a healthy wind turbine gearbox using stored his-

torical data. These data take the correlation between the model input and output parameters.

This study employed TWelch’s t-test in the fault detection algorithm, together with suitable

time series filtering, to identify incipient anomalies in the turbine gearbox before they de-

velop into catastrophic faults. Okoh et al. [21] expressed the classification of techniques

used in TTF prediction for optimization of products’ future use. This was based on the pre-

dictability, availability, and reliability of current in-service products. This study presented

a mapping of degradation mechanisms against techniques for knowledge acquisition with

the objective of presenting designers and manufacturers ways to improve the life-span of

components. Sankararaman et al. [22] described three first-order reliability-based methods

for TTF uncertainty quantification, the first-order second moment method, the first order

reliability method, and the inverse first-order reliability method, to quantify the uncertainty

in the TTF estimate of a lithium-ion battery. A method called power density (PD) was de-

veloped by Akdağ and Dinler [23] to determine Weibull distribution parameters for wind

energy applications. Results of this study indicated that the PD method outperformed max-

imum likelihood and moment methods in estimating Weibull parameters. This resulted in

higher accuracy in reliability analysis for wind energy applications. Although PD does not

require binning and the solution of a linear least square problem, or iterative procedures for

Weibull parameters estimation, its accessibility might be considered challenging. The com-

bination of Simplified Fuzzy Adaptive Resonance Theory Map neural network and Weibull

distribution (WD) was explored in Ali et al. [24] to predict the TTF of rolling element bear-

ings (REBs) based on vibration signals. The proposed prediction approach can be applied

to prognostic other various mechanical assets. An intelligent prognostic system was devel-

oped for gear performance degradation assessment and TTF estimation in Wang et al. [25].

For gear TTF estimation, a general sequential Monte Carlo algorithm was applied to infer

9



2. AGGREGATE RELIABILITY ANALYSIS OF WIND TURBINE GENERATORS

gear failure probability density function iteratively. The results illustrated the ability of the

prognostic system to detect early gear faults, to track gear performance degradation, and to

predict gear TTF. Chen and co-authors [26] proposed an approach for automated detection

of wind turbine pitch faults by employing a priori knowledge-based adaptive neuro-fuzzy

inference system on SCADA data. The proposed method was applied to two datasets, il-

lustrating the strong potential of the approach to providing automated online WT pitch

fault detection and prognosis and its adaptability to a variety of techniques. A hierarchical

method based on Gaussian Processes (GP) and Principal Component Analysis (PCA) was

proposed in Chen et al. [5] for turbine prognosis using SCADA data. This study provided

the detection of the abnormality behaviour of a wind turbine and the determination of the

defective components in the abnormal turbine.

Although several approaches have been proposed for reliability prediction, generator

reliability analysis on limited historical data and varying load conditions remains challeng-

ing. To overcome this difficulty, this chapter examines aggregate reliability analysis. Here

the truncated generator data records of a wind farm operating through variable conditions

and associated loads, were used to offer estimation of generator lifetime. To pursue this

objective, the chapter engages a variety of lifetime data analyses. We examine those that

are most relevant to this application based on the amount and the type of data available.

We emphasize here that wind farm owners are often faced with major investment decisions

with very little notice. Historical failure data is often not ideal or sufficiently complete to

offer ultimately conclusive direction. Subsequently, decision makers are looking for tools

to at least improve the level of information available to them when making major financial

investments critical to the farm bottom line. This chapter explores such tools. The main

contributions of this study are as follows:

• The unprecedented application of the ALTA lifetime analysis method for reliability

estimation of wind turbine generators to help illustrate a possible relationship be-

tween varying loads and generator reliability.

• The novel employment of aggregate reliability methods in the analysis of times to

failure for a generator population to provide a means to generate a probability den-
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sity function and a related hazard function. This probability density function is not

representative of a single fault progression from incipience to final failure. Rather,

it explores the likelihood of the next failure event. Theoretically, this approach can

be performed at all equipment hierarchy levels, particularly when a small number of

failure modes dominate.

• The proposed methods described herein can significantly improve the accuracy of

generator failure rate estimation when limited data records are available compared to

the classical approaches.

This chapter is organized as follows: A brief theory background of the proposed re-

liability approach is provided in Section 2.2. Design implementations and experimental

test results are presented in 2.3. Section 2.4 concludes with some discussion and describes

areas for future research.

2.2 A Preliminary theory of the reliability analysis

This section introduces the preliminary theory of the proposed reliability analysis. The

proposed method includes nonparametric and parametric life data analyses.

2.2.1 Nonparametric life data analysis

Here we begin by engaging graphical data illustration techniques without considering strong

model assumptions. Such methods allow the data to be interpreted without distortion that

could ensue by assuming an inappropriate model. There are, however, many problems in

reliability data analysis where it is either useful or essential to use a parametric distribution

form. Indeed, a nonparametric analysis provides an intermediate step forward towards a

more structured model that may deliver more accurate results, provided that the additional

assumptions of such a model are valid [27]. A nonparametric analysis allows the user to an-

alyze data without considering an underlying distribution. It is advantageous since it avoids

potentially significant errors brought about by assuming an inappropriate distribution. On

the other hand, the analysis is limited to reliability measures only for the failure times in the
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data set, therefore making it impossible to make reliability predictions outside the range of

data values. Thus, nonparametric life data analysis has been used in this study to provide

an initial high-level view of how the components are behaving over time. There are several

techniques for conducting a nonparametric analysis including the Kaplan-Meier, simple

actuarial, and standard actuarial methods.

The Kaplan-Meier technique provides very useful measures of survival probabilities

and graphical illustration of survival distributions. It has been broadly used in survival data

analysis [28, 29]. The actuarial models are alternative nonparametric analyses that display

information for groupings of failure times.

The Kaplan-Meier estimates reliability for a population with multiple failures and sus-

pensions at data points in which individual failures occurred by the use of Equation 2.2.1.

R(ti) =
i∏

j=1

(nj − rj)
nj

, i = 1, . . . .,m (2.2.1)

where m is the total number of data points, n is the total number of units, rj is the

number of failures in the jth data group and the variable ni is defined by Equation 2.2.2.

ni = n−
i−1∑
j=0

sj −
i−1∑
j=0

rj, i = 1, . . . .,m (2.2.2)

where sj is the number of suspensions in the jth data group.

2.2.2 Parametric life data analysis

Parametric statistics is a category of statistics that assumes that sample data comes from a

population that follows a probability distribution based on a fixed set of parameters. Using

parametric distributions can be viewed as a way of extending nonparametric techniques,

they also provide the following advantages [27]:

• Parametric models can be compactly defined while including all critical information,

with just a few parameters, instead of having to report an entire curve.

• It is possible to use a parametric model to extrapolate (in time) to the lower or upper

tail of a distribution.
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• Parametric models provide smooth estimates of failure time distribution.

Some major parametric models are Weibull Standard Folio life data analysis, Naive

Prediction Interval Procedure and ALTA Standard Folio life data analysis.

Weibull Standard Folio life data analysis

The Weibull analysis makes projections about the future behaviour of a population by fitting

a statistical distribution to the life data. From this analysis, several life characteristics can

be estimated, such as the probability of failure, reliability, mean life or failure rate.

There are several distribution models to choose from, depending on which one best fits

the data based on the selected analysis method. Some principal distribution models with

their cumulative distribution function (CDF) and probability density function (PDF) are

illustrated in Table 2.2.1.

TABLE 2.2.1: Weibull distribution models

Distribution model CDF PDF
1P-Exponential F (t) = 1− exp(− t

η
) f(t) = η exp(− t

η
)

2P-Weibull F (t) = 1− exp(−( t
η
)β) f(t) = β

η
( t
η
)(β−1) exp(−( t

η
)β)

3P-Weibull F (t) = 1− exp(−( t−γ
η

)β) f(t) = β
η
( t−γ
η

)(β−1) exp(−( t−γ
η

)β)

Gamma F (t) = Γt(β)
Γ(β)

f(t) =
( t−γ
η

)β−1 exp( γ−t
η

)

ηΓ(β)

Gaussian F (t) = 0.5 + 0.5erf( t−µ
σ
√

2
) f(t) = 1

σ
√

2π
exp(− (t−µ)2

2σ2 )

Gumbel F (t) = exp(− exp(γ−t
η

)) f(t) = 1
η

exp(γ−t
η
− exp(γ−t

η
))

Log-normal F (t) = 0.5 + 0.5erf( ln t−µ
σ
√

2
) f(t) = 1

tσ
√

2π
exp(− (ln t−µ)2

2σ2 )

Logistic F (t) = 1
1+exp(− t−γ

η
)

f(t) =
exp(− t−γ

η
)

η(1+exp(− t−γ
η

))2

where η is the scale parameter, β is the shape parameter, γ is the location parameter, µ

is the mean or expectation of the distribution and σ is the standard deviation.

Typical analysis methods that help determine the best technique for estimating the pa-

rameters of chosen distribution include: rank regression (rank regression on X, Y (RRX and

RRY) and nonlinear rank regression (NLRR)) and maximum likelihood estimation (MLE)

[30]. These techniques are investigated in this chapter to figure out which one is the most

suitable for reliability projection of truncated data.
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Naive Prediction Interval Procedure

The Naive Prediction provides an approximate interval that can be used as a start toward

obtaining a more refined interval. The procedure takes the regression estimates of the

parameters and substitutes them into the estimated conditional probability distributions in

expression 2.2.3 (one distribution for each generator) [15].

F (t|ti; θ) =
F (t; θ)− F (ti; θ)

1− F (ti; θ)
(2.2.3)

where θ is a vector that gives the location parameter and scale parameters for each

generator and ti denotes the lifetime or survival time of generator i. The required param-

eters for this analysis includes the shape parameter, the scale parameter and the location

parameter.

ALTA Standard Folio life data analysis

In ALTA analysis, a product’s failure behaviour is extrapolated at standard conditions from

life data acquired at accelerated stress levels. As products fail much faster at accelerated

stress levels, this sort of analysis enables the engineer to gain reliability information about

a product (e.g., the probability of failure at a specific time) in a shorter time [27]. This

technique aims to perform quantitative accelerated life testing data analysis. There are

several life-stress relationships including the Arrhenius, the Eyring, the Inverse power law

(IPL), the Temperature-humidity (TH), etc. and three life distributions including Weibull,

Lognormal and Exponential for ALTA analysis. The Reliability and PDF of some of them

are indicated in Table 2.2.2. The choice of the life stress relationship depends on various

factors, including the types and number of stresses used in the test.

where T ′ = lnT , T is time-to-failure, σT ′ is the standard deviation of the natural

logarithms of the time-to-failure, V represents the stress level,K and n are IPL parameters,

A and B are Eyring parameters, and β is the Weibull shape parameter.
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TABLE 2.2.2: ALTA distribution models

Distribution model Reliability
IPL Exponential R(T, V ) = exp(−KV nT )
IPL Weibull R(T, V ) = exp(−(KV nT )β)

IPL Log-normal R(T, V ) =
∞∫
T ′

1
σT ′
√

2π
exp(−0.5( t+ln (K)+ln (V )

σT ′
)2)dt

Eyring Exponential R(T, V ) = exp(−TV exp(A− B
V

))
Eyring Weibull R(T, V ) = exp(−(TV exp(A− B

V
))β)

Eyring Log-normal R(T, V ) =
∞∫
T ′

1
σT ′
√

2π
exp(−0.5(

t+ln (V )+A−B
V

σT ′
)2)dt

Distribution model PDF
IPL Exponential f(T, V ) = KV n exp(−KV nT )
IPL Weibull f(T, V ) = βKV n(KV nT )β−1 exp(−(KV nT )β)

IPL Log-normal f(T, V ) = 1
σT ′
√

2πT
exp(−0.5( t+ln (K)+ln (V )

σT ′
)2)

Eyring Exponential f(T, V ) = V exp(A− B
V

) exp(−TV exp(A− B
V

))

Eyring Weibull f(T, V ) =
(TV exp(A−B

V
))β−1 exp(−(TV exp(A−B

V
))β)

1

BV exp(A−B
V

)

Eyring Log-normal f(T, V ) = 1
σT ′
√

2πT
exp(−0.5(

t+ln (V )+A−B
V

σT ′
)2)

2.3 Simulation studies and experimental results

This section introduces the structure of the reliability analysis and considers the experimen-

tal test study to investigate the performance of life data methods. In the sections that follow,

the failure scenario is illustrated. Afterwards, the proposed structure of reliability analysis

is developed and the results of the proposed techniques are evaluated using historical field

data from wind turbine generators.

2.3.1 Failure scenario

Data records of a wind farm including generators operating hours, power generated and

environmental conditions such as ambient temperature, shown in Figure 2.3.1 as a box

plot, have been used for this study.

The dataset contains 88 units, all asynchronous type, half of which were installed in

2008, and the other half were installed in 2011. The cumulative power generated by the

failed generators with a total number of 12, is shown in Figure 2.3.2. Here we also confirm

that the failures occurred mainly due to several poor design issues surrounding the stator
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FIGURE 2.3.1: Ambient temperature during 4 years of wind turbine operation

resin/wedge which resulted in the generator insulation failure. It is worth mentioning that

the failed generators were replaced by new ones which are included in the analysis.

One generator (T74), which was a substitute for failed generator (T73), failed within

the first two years of installation. The cumulative power generated by this generator was

not significant (0.84 GWh) compared to other units with the average power generated of

41.64 GWh. This early failure is believed to have been due to a defect that differed from

common causes of generator failure. Therefore, if this unexpected failure were considered

in the analysis (with its relatively modest population size), it could potentially lead to an

implication of an approximately constant hazard function in generator life, which is in-

compatible with the known dominant ageing failure mode. Thus, we considered this early

failure to be still in service at the time of failure.

For additional qualitative insights into the characteristics of the turbines under study, a

January 2015 power curve of a failed generator (T04) is shown in Figure 2.3.3. Here, 10-

minute averaged, data points from T04 in January 2015 are used. This was a few months

before complete failure occurred. It is worth noting that the data points far from the normal

distribution might be due to turbine operational fault conditions.
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FIGURE 2.3.2: Cumulative power generated (kWh) by the failed generator at the time of
failure

FIGURE 2.3.3: Power curve of wind Turbine T04 in January 2015

17



2. AGGREGATE RELIABILITY ANALYSIS OF WIND TURBINE GENERATORS

2.3.2 The proposed nonparametric life data analysis

In this section, based on the type of available data, the Kaplan-Meier method, Equation

2.2.1, is employed to estimate reliability for the population of generators. Figure 2.3.4

indicates the population reliability estimates at data points where individual failures oc-

curred. It shows that the population of generators exhibits a slow decline in reliability over

the course of years. It is worth mentioning that the dots on the plot show the reliability

estimates and the triangles show the lower 1-sided confidence bounds of the estimates and

the upper 1-sided confidence bounds. The calculated reliability values are illustrated in

Table 2.3.1. The results show that the reliability of the generators at around three and a

half years of operation is estimated to be 98.9 %; however, by seven years of operation, the

reliability estimate is around 79.0 % and may be as low as 67.9 %. It is concluded that the

reliability estimate for the wind turbine generators under study decreased totally by about

20 percent when time of operation increased from about 3.5 years to 7 years, at its limit

this estimate was as high as 26 percent.

Since nonparametric analysis is not able to provide reliability predictions outside of

the points of observation, it is feasible to utilize parametric analysis, and fit a distribution

to the free-form data set in order to interpolate (and to some extent, extrapolate) the life

characteristics of the component.

TABLE 2.3.1: Population reliability estimates at data points in which individual failures
occurred, nonparametric results

Time(yr.) Lower Bound Reliability Upper Bound
3.56 0.943 0.989 0.998
3.85 0.930 0.977 0.993
3.97 0.915 0.966 0.987
5.28 0.889 0.950 0.978
5.77 0.852 0.927 0.966
5.81 0.820 0.905 0.953
5.82 0.791 0.883 0.938
6.42 0.763 0.861 0.923
6.52 0.736 0.839 0.907
6.63 0.710 0.817 0.891
7.00 0.679 0.792 0.872

18



2. AGGREGATE RELIABILITY ANALYSIS OF WIND TURBINE GENERATORS

FIGURE 2.3.4: Population reliability estimates at data points in which individual failures
occurred, nonparametric results

2.3.3 The proposed parametric life data analysis

In this section, first, parametric analysis methods are employed for the reliability estimation

of generators using experimental data. Then, root mean square error (RMSE) is estimated

that indicates which distribution model best fits the generator truncated data records and

which parameter estimation method best approximates the distribution function parameters.

Finally, a sensitivity analysis is proposed to relate the generator failure rate to varying loads.

Here, Weibull Standard Folio life data analysis is employed to project the future be-

haviour of the generator population. For this purpose, first, distribution models, presented

in Table 2.2.1, are compared by calculating RMSE to find the one most suitable. As a

result, Table 2.3.2 indicates RMSE estimates for each model. It is clear from Table 2.3.2

that 3P-Weibull has the lowest RMSE and, therefore, is the most suitable model for fitting

generator truncated data sets. As an example, the probability line with respect to the val-

ues obtained from 3P-Weibull and 1P-Exponential are plotted in Figures 2.3.5 and 2.3.6,

respectively. It is obvious that the 3P-Weibull provides a better fit to the values compared

to the 1P-Exponential.

Here, parameter estimation methods are investigated to find the most appropriate one.

As a result, Table 2.3.3 indicates RMSE estimates for each method. It is clear from Table
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TABLE 2.3.2: RMSE estimates for Weibull distribution models

Distribution model RMSE
1P-Exponential 4.5556
2P-Weibull 2.4256
3P-Weibull 1.1517
Gamma 1.6218
Gaussian 3.4215
Gumbel 4.2570
Log-normal 2.8865
Logistic 3.8562

FIGURE 2.3.5: Probability plot, Weibull Standard Folio life data analysis based on 3P-
Weibull distribution)
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FIGURE 2.3.6: Probability plot, Weibull Standard Folio life data analysis based on 1P-
Exponential distribution

2.3.3 that NLRR has more potential than the more classical, MLE, proposed by Gourdin

et al. [31]. Where the objective was also the estimation of 3P-Weibull distribution func-

tion parameters based on a limited dataset. It may be concluded that small data sets are

best analysed with regression, while MLE may be more appropriate for data sets with a

large number of suspensions, interval data or several observed failures. The MLE solution

tends to be severely biased when implemented on small sample sizes. As the sample size

increases, the difference between the two techniques become less important. Factors such

as the variability in the data set and the acceptable level of uncertainty or margin of error in

the estimates need to be considered when assessing whether the sample dimension is large

enough for MLE.

TABLE 2.3.3: RMSE estimates for parameter estimation methods

Parameter estimation method RMSE
Non-linear rank regression (NLRR) 1.1517
Maximum likelihood estimation (MLE) 4.8628

The probability of failure of the product over time, using a Weibull failure rate, is indi-

cated in Figure 2.3.7. It is clear from the plot that the failure probability rises sharply after

around six years of operation, and by ten years of operation, the failure probability estimate

21



2. AGGREGATE RELIABILITY ANALYSIS OF WIND TURBINE GENERATORS

FIGURE 2.3.7: Unreliability vs. Time, Weibull Standard Folio life data analysis based on
3P-Weibull distribution

is around 76.7% and may be as high as 98.2% which is indicated from the top confidence

bound. The proposed probability density function and related hazard function for the pop-

ulation of wind farm generators are defined by Equations 2.3.1 and 2.3.2, respectively.

f(t) = 0.57(
t+ 3.75

13.1
)6.5e−( t+3.75

13.1
)7.5 (2.3.1)

λ(t) = 0.57(
t+ 3.75

13.1
)6.5 (2.3.2)

The required parameters for Naive analysis including the shape parameter, the scale

parameter and the location parameter which have been calculated in Weibull Standard Folio

life data analysis, since the 3P-Weibull provides a good fit to the values (see Figure 2.3.5),

can be found in Table 2.3.4.

Predictions for the remaining life of individual generators achieved by the Naive method

are illustrated in Figure 2.3.8. The solid line shows the survival time of generators which

are still under operation and the failure time for those which failed, and the dotted line

indicates the remaining useful life predicted for those which are still under operation. Such

graphs can offer valuable utility where if an imminent failure can be detected early enough,
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FIGURE 2.3.8: Predictions for the remaining life of 15 generators by the Naive method

the generator can be operated under reduced loading until replaced, to avoid costly catas-

trophic failures.

TABLE 2.3.4: Reliability estimates for the failures times, nonparametric results

Analysis NLRR
β 7.499258
η (yr.) 13.092321
γ -3.753434
LK Value -43.898648
V ar.− β 2.683202
V ar.− η 0.612978
CV.ηβ -0.999152

In this study, the rate of energy (kWh) generated by each generator over hours of its

operation (the average power (kW)) is considered as a stress level. Since the stress level

for each generator is available, ALTA can be used to predict the probability of failure for

each generator which is still under operation with respect to its average power. According

to the type and the number of stresses available, i.e. the average power (kW), the inverse

power law, a single-stress model typically used with a non-thermal tension, is chosen for

this analysis.

For this purpose, first, IPL distribution models, presented in Table 2.2.2, are compared
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by calculating RMSE to find the best fit. As a result, Table 2.3.5 indicates RMSE estimates

for each model. It is clear from Table 2.3.5 that the IPL-Lognormal best fits values. We look

at the generator with an average power production of 952.66 kW as an example, the proba-

bility line with respect to the values obtained from the IPL-Lognormal and IPL-Weibull are

plotted in Figures 2.3.9 and 2.3.10, respectively. Inspection of these plots reveals that the

IPL-Lognormal reliability provides a better fit to the values compared to the IPL-Weibull.

TABLE 2.3.5: RMSE estimates for ALTA distribution models

Distribution model RMSE
IPL Lognormal 2.1233
ILP Weibull 3.03367
IPL Exponential 4.3504

The probability of failure of the generator with the average lifetime power production

of 952.66 kW is illustrated in Figure 2.3.11. It is evident from the plot that the failure

probability increases dramatically after around six years of operation, and by ten years of

operation, the failure probability estimate is around 91.4 %. The probability of failure for

a generator which failed at the age of 5.8 years is shown in Figure 2.3.12. The probability

of failure estimate for this unit with the average generated power of 1015.32 kW is notable

FIGURE 2.3.9: Use Level Probability plot for the generator with 952.66 kW, ALTA Stan-
dard Folio life data analysis (IPL-Lognormal)
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FIGURE 2.3.10: Use Level Probability plot for the generator with 952.66 kW, ALTA Stan-
dard Folio life data analysis (IPL-Weibull)

at 73.9 % at the age of failure.

The results of this technique have been compared to the Naive results. For instance, for

the generator with the average power of 952.7 kW, the Naive predicts 11 years of operation

with 91.4 % probability of failure (as shown in Figure 2.3.13 with dotted line) which is

more than ALTA prediction with ten years of operation (as illustrated in Figure 2.3.11 with

dash line). This could be due to the consideration of power as stress in ALTA technique.

Sensitivity Analysis

Here we suggest that typically higher average generated power (electrical load), would

imply larger mechanical load and thus the more likely failure is. To indicate that the prob-

ability of failure of individual generators with varying average power generated at 10 years

of operation are estimated and compared in Table 2.3.6.

The probability plots, for instance, for two of the generators with stress levels of 952.7

kW (dash line) and 853.73 kW (dotted line) are shown in Figure 2.3.14. This plot reveals

that by ten years of operation the probability of failure estimate for the generator with the

average generated power of 952.7 kW is 91.4 %, and with the average generated power

of 853.73 kW would be around 33 %. As shown in Figure 2.3.14, the higher the average
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FIGURE 2.3.11: Unreliability vs. Time for the generator with 952.66 kW, ALTA Standard
Folio life data analysis

FIGURE 2.3.12: The probability of failure for the generator with 1015.33 kW, failed at the
age of 5.8 years
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FIGURE 2.3.13: The Naive Predictions for the remaining life of the generators with the
average power of 952.7 kW

TABLE 2.3.6: The probability of failure of individual generators with varying average
power generated at 10 years of operation

Average power generated (kW) The probability of failure at 10 years of operation
801.28 18.4 %
853.73 33 %
922.4 80.61 %
952.66 91.4 %
1015.33 100 %
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FIGURE 2.3.14: The probability of failure for generators with two different generated
power

generated power, the more likely failure is. This implies that the probability of failure for

a wind turbine generator increased by about 58 percent with a 12 percent increase in the

10-year average power production for that machine. This suggested in our study that the

higher the average generated power over a generator lifetime, the more likely failure is.

2.4 Conclusion and areas for future research

This study investigated reliability metrics for a set of truncated wind turbine generator data

records. The generators were from a 100 MW wind farm that is less than half way through

its originally projected 20-year service life. The proposed approach employed different

life data analysis methods including Weibull and ALTA. It was shown that 3P-Weibull and

IPL-Lognormal were the best fitted distribution models of the Weibull and ALTA analy-

ses, respectively. Their fit to the limited data sets was better than other distribution models

proposed in other studies. It was indicated that small data sets are best analysed with regres-

sion methods over MLE. A sensitivity analysis was developed which showed that higher

average generated power (electricity load) would increase the likelihood of failure for this

population. As a result, a probability density function and related hazard function was pro-
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posed for the generator group studied. The experimental results illustrate the capability of

the proposed method in the estimation of failure rate when truncated data records are what

is available.

Prediction of remaining life, achieved by the Naive method in this study has value when

utilized to achieve early detection. In these cases, generators can be operated under reduced

loading until replaced, to avoid costly catastrophic failures. Furthermore, predictions for

the remaining life of individual generators achieved by this method can provide a basis for

obtaining a more refined life range estimate.

This study provides valuable high level insights into utility scale wind turbine generator

reliability for a limited data set. Outcomes built from this work may help the research

community with the development of investment decision support mechanisms designed to

optimize the value of wind farming. The work also highlights useful tools for potential wind

farm prognostic maintenance. This study also contributed to identifying how electrical

loads may affect wind turbine generator reliability and how it accelerated their failure rate

for our data. The process presented in this study shows how to move forward estimating

turbine component remaining useful life based on truncated/limited data records. It is worth

noting that proactive maintenance actions can change the population under study and will

subsequently impact the results of an analysis like this.

In future works, the Naive prediction interval procedure will be calibrated to account

for statistical uncertainty by using Monte Carlo simulation/bootstrap re-sampling methods.

Based on available data, lifetime distributions and remaining life of other critical compo-

nents will be estimated.
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2.5 List of Abbreviations

CDF Cumulative Distribution Function

GP Gaussian Processes

GWEC Global Wind Energy Council

IPL Inverse Power Law

MLE Maximum Likelihood Estimation

MTTF Mean Time To Failure

NLRR Nonlinear Rank Regression

PCA Principal Component Analysis

PD Power Density

PDF Probability Density Function

REB Rolling Element Bearing

RMSE Root Mean Square Error

RRX Rank Regression on X

RRY Rank Regression on Y

SCADA Supervisory Control and Data Acquisition

TH Temperature-Humidity

TTF Time To Failure

WD Weibull Distribution

WT Wind Turbine
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[23] S. A. Akdağ and A. Dinler, “A new method to estimate weibull parameters for wind

energy applications,” Energy conversion and management, vol. 50, no. 7, pp. 1761–

1766, 2009.

[24] J. B. Ali, B. Chebel-Morello, L. Saidi, S. Malinowski, and F. Fnaiech, “Accurate

bearing remaining useful life prediction based on weibull distribution and artificial

neural network,” Mechanical Systems and Signal Processing, vol. 56, pp. 150–172,

2015.

[25] D. Wang, Q. Miao, Q. Zhou, and G. Zhou, “An intelligent prognostic system for gear

performance degradation assessment and remaining useful life estimation,” Journal

of Vibration and Acoustics, vol. 137, no. 2, p. 021004, 2015.

[26] B. Chen, P. C. Matthews, and P. J. Tavner, “Automated on-line fault prognosis for

wind turbine pitch systems using supervisory control and data acquisition,” IET Re-

newable Power Generation, vol. 9, no. 5, pp. 503–513, 2015.

[27] W. Q. Meeker and L. A. Escobar, “Statistical methods for reliability data using sas

software,” Technometrics, vol. 20, no. 3, pp. 245–247, 1978.

33



REFERENCES

[28] E. T. Lee and J. Wang, Statistical methods for survival data analysis. John Wiley &

Sons, 2003, vol. 476.

[29] E. L. Kaplan and P. Meier, “Nonparametric estimation from incomplete observations,”

Journal of the American statistical association, vol. 53, no. 282, pp. 457–481, 1958.
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CHAPTER 3

A Fault Detection Method for WT Blades

Using Recursive PCA and Wavelet-based

PDF

3.1 Introduction

Wind energy is considered as one of the lowest-cost and fastest growing renewable clean

power options. However, downtime and maintenance costs of Wind Turbines (WTs) are

critical challenges that need to be addressed if wind energy is to take a more significant

share of the renewable energy market [1, 2]. At present, at an estimated 10−15% of power

generation cost, the maintenance cost of the WTs comprises a relatively high proportion

of the total operating costs. Furthermore, a notable percentage of the maintenance cost is

often associated with unanticipated faults. These faults also cause extended downtime as

heavy components must be carried to a maintenance site which may be far from the wind

farm [3].

Condition monitoring is an essential means for reducing the maintenance cost and

downtime of the WTs. Condition monitoring can be accomplished by observing the WT

measurements such as vibration, electrical quantities (power, voltage, current), tempera-

ture, and blade direction to assess the health of the system based on those observations

[4].

Fault Detection and Diagnosis (FDD) are indispensable tasks often performed within a

condition monitoring system. Generally, FDD methods are categorized into three classes
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of model-based, data-driven, and knowledge-based approaches. Model-based FDD tech-

niques including Kalman Filter (KF) [5], Extended Kalman Filter (EKF) [6], Unscented

Kalman Filter (UKF) [7], and Particle Filter (PF) [8] often assume that an accurate math-

ematical representation of the system is available for fault diagnosis. However, obtaining

an accurate model of a complex engineering system is challenging in practice. Data-driven

FDD methods such as Neural Networks (NN) [9], Adaptive Neuro-Fuzzy Inference Sys-

tem (ANFIS) [10], Aggregate Reliability Analysis [11], Support Vector Machine (SVM)

[12] require a large volume of historical data from the system under various operating con-

ditions. The performance of data-driven methods depends on the quality of the data that

is available. Knowledge-based FDD methods such as Fuzzy Logic (FL) [13] rely on the

knowledge of experts about the system under consideration. The weakness of this class

of techniques stems from the fact that the knowledge from an expert is either expensive to

capture or may not be accessible in many instances.

Amongst the data based approaches, those based on Principal Component Analysis

(PCA) have proven to be capable of developing wind turbine fault detection to differen-

tiate between healthy and unhealthy component conditions [14, 15, 16, 17]. In Fang and

Guo [18], PCA is utilized to model the wind turbine tower vibration, hence, providing a

good insight into the tower vibration dynamic properties. The proposed method monitors

the operation of the wind turbine by determining the monitoring statistic Hotelling’s two-

sample (T2) and Squared Prediction Error (SPE) to detect abnormalities and the origin

of the fault. Experimental results show the effectiveness of the suggested fault detection

approach. Wang et al. [19] proposes an algorithm using PCA to select an optimal set

of variables while still capturing the variation of data in the original dataset. The paper

employs selected variables to detect wind turbine faults, to determine the corresponding

time and location where the fault occurs, and to estimate the severity of the faults. Results

confirm that the proposed technique can choose a reduced set of variables with minimum

information loss while detecting faults efficiently and effectively.

Blade fault detection has recently become an essential topic of research. An NN based

fault detection system is developed in Bangalore et. al. [20] to detect any anomaly in

the SCADA data. Their work applies preprocessing and post-processing to achieve high
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accuracy of the fault detection. Schlechtingen and Santos [21] introduced an ANFIS to

determine whether or not a specific wind turbine is operating in a healthy mode. A fuzzy

approach is proposed by Li et. al. [22] for fault diagnosis of wind turbine blades. The re-

sults show that the suggested FL method accurately detects the fault. A wavelet transform-

based method is employed by Tsai et. al. [23] to improve the fault detection ability of

wind turbine blades using time-frequency localization features embedded in the wavelets.

Test results indicate the practicality of the proposed method for blades fault diagnosis ap-

plication. An Acoustic Emission (AE) monitoring technique is developed by Joosse et. al.

[24] for the test of fiber composite blades to identify damaged states and evaluate blade

conditions. The test results prove the effectiveness of the proposed detection method.

In Jorgensen et. al. [25], an AE is employed to investigate the blade for irregularities.

The results indicate that the AE method is promising and helpful in blade damage detec-

tion. In Park et. al. [26], a new laser ultrasonic imaging approach is introduced for rotating

blades fault diagnosis. The effectiveness of the imaging procedure is verified by visualizing

ultrasonic wave distribution on a rotating steel blade. The results show that the damage is

successfully identified and its visibility is improved by applying the standing wave filter.

Kirikera et. al. [27] develop a Structural Neural System (SNS) based on AE monitoring

for low-cost Structural Health Monitoring (SHM) of wind turbine blades. The results show

the capability of SNS in identifying where the damage is initiated or how the damage is

propagated. In Dutton [28], a thermoelastic stress analysis approach is developed for blade

damage detection. The results show the ability of the proposed method to verify the overall

stress propagation at the blade surface as well as growing damage detection. Rumsey and

Paquette [29] introduce several SHM techniques for detecting blade fault. The SHM tech-

niques are evaluated using blade AE data, and the test results show the effectiveness of the

proposed method. A hybrid method including wavelet transform and Ensemble Empirical

Mode Decomposition (EEMD) technique is presented by Bouhali et. al. [30] for early

identification of blade state. Experimental results confirm that the proposed method effi-

ciency detects blade faults. In Munoz et. al. [31], a combination of ultrasonic techniques

and wavelet transform is presented for detecting ice on the blades. A real case study reveals

the system’s detection capability regardless of whether the blade is covered with ice or not.
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This research work falls into the data-driven category and is based on real data from a

wind farm located in southwestern Ontario, in Canada. The following is known about the

particular wind farm in Ontario:

1. Real-time SCADA measurement data from various sensors is recorded. Measure-

ments are sent to the Turbine Condition Monitoring (TCM) site server in the wind

farm station and are accessed through the TCM site server.

2. Raw data contains noisy and missing values. Therefore, a proper preprocessing

method is required before the fault detection procedure is initiated.

The primary goal of this work is to detect the blade faults in an early stage. The blades

operate in a harsh environment with wind gusts, water inclusions, sand particle erosion,

icing, and atmospheric oxidation [32]. These conditions can initiate minor faults such as

cracks, fatigue, increased surface roughness, and reduced stiffness which may grow slowly

at first, but then, over time leading to the deformation and breakage of the blades; hence,

significantly affecting the wind turbine performance. Therefore, early fault detection for

wind turbine blades is essential, yet a challenging task.

In this research work, we introduce a new hybrid fault detection system based on Gen-

eralized Regression Neural Network Ensemble for Single Imputation (GRNN-ESI) algo-

rithm, recursive PCA and wavelet-based PDF to detect incipient blade faults in the WTs.

Towards this, a preprocessing is performed to exclude noise and impute the missing mea-

surements’ values. Then, the recursive PCA method is employed to reduce the data dimen-

sion and obtain enriched features. Finally, the wavelet-based PDF allows the FDD system

to detect blade faults. The original contributions of this study are:

1. Early fault detection is possible thanks to the utilization of the wavelet-based PDF

method, which can accurately estimate the probability density functions of Principal

Components (PCs) and consequently detect the incipient faults.

2. Using the GRNN-ESI algorithm to efficiently impute the missing data, noise, and

disturbances, and therefore intensify the hybrid method accuracy.
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FIGURE 3.2.1: Various components of a typical wind turbine

3. Implementation of a recursive PCA technique that extracts low dimensional features

from the SCADA data is novel as well. It recursively captures the failure dynamics

and improves the failure detection accuracy.

This chapter is organized as follows: Section 3.2 demonstrates the description of the

wind turbine system. The primary theory of the proposed hybrid method is provided in

Section 3.3. Section 3.4 explains the design implementation of the hybrid method and il-

lustrates the experimental test results. A summary of the outcomes is presented in Section

3.5.

3.2 Wind farm description

Wind turbines are electromechanical machines that convert the kinetic energy of wind into

electrical power. They often have a complex structure including several components: 1)

blades, 2) rotor, 3) gearbox, 4) shaft 5) generator, 6) controller, 7) yaw drive and motor, 8)

brake and 9) tower. Figure 3.2.1 depicts various components of a typical wind turbine.

In this research work, the SCADA data from a wind farm in southwestern Ontario is
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FIGURE 3.2.2: The layout of the wind farm

used. Figure 3.2.2 shows the layout of the particular wind farm.

3.3 Primary theory of the proposed hybrid fault detection

method

This section introduces a primary theory of the proposed hybrid system for detecting WT

blade fault. Figure 3.3.1 demonstrates the hybrid fault detection method.

The proposed hybrid fault detection consists of data collection, preprocessing of the

data, recursive PCA, and wavelet-based PDF methods. In the following, first, the pre-

processing phase using the GRNN-ESI method is illustrated. Then, the recursive PCA is

developed. Finally, the wavelet-based PDF method is introduced.

3.3.1 Preprocessing of the data using the GRNN-ESI

The SCADA system gathers data from various sensors in the wind farm. However, the

data acquisition system is not ideal due to instruments errors and disturbance in the sys-
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FIGURE 3.3.1: The proposed hybrid fault detection method

tem. Moreover, wind farm operators often turn off the WTs during low demand periods

or harsh conditions. As a result, the recorded data often contains noisy values, incorrect

measurements, and missing values that it may lead to less accurate estimation [33, 34].

The GRNN-ESI algorithm is a robust preprocessing technique for dealing with incomplete

or noisy data [35]. The GRNN-ESI algorithm, explained in Algorithm 1, constructs an

ensemble model of Generalized Regression Neural Networks (GRNN) [36], presented in

Algorithm 2, and employs a Simulated Annealing Genetic Algorithm (SAGA) to optimize

the ensemble makeup.

Algorithm 1 GRNN-ESI method
1) Setting a training dataset with m variables: x(1), x(2), ..., x(m) each has n measurements:
f = (f1, f2, ..., fn)
2) Normalizing each variable to the range [0, 1] using min-max normalization method.
3) Constructing of prototype Model-P with a set of models P1, P2, ..., Pq in which each
element is a single ensemble model that estimates the conditional mean of a missing value
in an iterative EM-style algorithm including two steps:

• M-step: fitting one model for each of the n missing values using GRNN.

• E-step: Computing missing values using the models fitted in the first M-step

Note that q is the number of missing values.

In Algorithm 1, the following points are to be taken into consideration:

1. In the first iteration, the algorithm divides the data into the complete part and incom-

plete part and then, it fits multiple models on variables with no missing values. Next,

41



3. A FAULT DETECTION METHOD FOR WT BLADES USING RECURSIVE PCA AND WAVELET-BASED PDF

missing values are estimated in the E-step of the first iteration of GRNN-ESI by ap-

plying the models fitted in the first M-step. Thus, the first E-step generates a new

complete dataset. In the next iterations, the M-step of each iteration fits imputation

models for missing values of the original dataset to the data imputed at the E-step

of the last iteration. Then, the new imputation models are utilized to re-estimate the

missing values of the original matrix in the next E-step; thereby, setting a new matrix

which serves as the training sample for the next M-step. The SAGA method is used

in each iteration to choose an optimal features subset. The iterations proceed until

the conditional means of missing values become stable. Note that the new incoming

data goes through the same process.

2. The proposed algorithm GRNN-ESI applies an improved algorithm SAGA [37] for

choosing an optimal subset of features for estimating the missing values. Here,

SAGA employs a combination of the Simulated Annealing (SA) algorithm and the

Genetic Algorithm (GA) to achieve this.

Algorithm 2 GRNN
1) Considering f = (f1, f2, ..., fn) as new input measurements
2) Setting a membership value gi to f based on the Euclidean distanceD using ith prototype
pattern Pi = (Pi1, Pi2, ..., Pin) as follows:

D = D(f, Pi) =

√√√√ n∑
j=1

(fj − Pij)2 (3.3.1)

gi = exp
D2

2σ2
(3.3.2)

Note that n is the total number of measurements, fj is the value of the jth feature of the
presented pattern, Pij is the value of the jth feature of the ith prototype pattern, and σ is the
smoothing function parameter.
3) Estimating the missing value z of the pattern f using the weighted average of the outputs
of all prototype patterns as follows:

z =

∑
i(gi × Pioutput)∑

i gi
(3.3.3)
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3.3.2 PCA algorithm

The PCA technique is a well-known statistical algorithm for data dimensionality reduction

[38, 39]. The PCA performs an orthogonal transformation on the raw data to convert it to

a set of linearly uncorrelated values known as Principal Components (PCs). The PCs are

arranged in a way that the first component has the highest variance, the second component

includes the second high variance and is orthogonal to the first one, and so on. There-

fore, the PCA algorithm creates a new data set where all data columns are orthogonal and

uncorrelated.

Off-line PCA

The PCA technique is an off-line algorithm, which can be computed as explained in Algo-

rithm 3.

Algorithm 3 Off-line PCA
1) Setting a training dataset with m variables: x(1), x(2), ..., x(m).
2) Calculating mean of the dataset:

µ =
1

m

m∑
i=1

x(i) (3.3.4)

3) Constructing a zero-mean dataset by deducting the mean from the dataset (x(i) − µ)
4) Computing the covariance of the dataset:

S =
1

m

m∑
i=1

(x(i) − µ)(x(i) − µ)T (3.3.5)

5) Computing eigenvectors and eigenvalues of the covariance matrix by using Singular
Value Decomposition (SVD) algorithm [40].
6) Sorting eigenvectors using eigenvalues from the highest to the lowest. It allows arranging
the components in decreasing order of significance
7) Discarding those components with lower eigenvalues

Therefore, a new compressed dataset will be created by orthogonal transformation using

sorted eigenvectors and eigenvalues, then, ignoring those eigenvalues which are smaller

than the others. This dataset still holds the main properties of the original dataset and can

be used in data mining algorithms when high-quality dataset of lower size is required.
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The off-line PCA algorithm is simple, yet prevalent in stationary applications. However,

it is not suitable for online applications where the process is non-stationary. To address this

issue, the recursive PCA can be employed to track the dynamic behavior of the system.

Recursive PCA

Here, a recursive PCA is utilized to capture failure dynamics in real-time [41]. To formulate

a recursive version for the PCA, consider that there exists a current training set without

pre-treatment (Xp
k ) and its PCs. We need to update the PCA whenever a new block of data

becomes available. Algorithm 4 was introduced by Li et. al. [41] for recursive PCA.

It is noted that Eqs. (3.3.9) and (3.3.10) are utilized to compute the augmenting new

data block to the previous one and formulate the new correlation matrix. Finally, the new

eigenvalues and eigenvectors are computed from steps 4, 5 and 6 in the off-line PCA.

3.3.3 Wavelet-based PDF method

PDF can be considered for fault detection purposes. For this aim, PDF is applied to de-

termine the probability of the random variable falling within a particular range of values.

PDF can be formulated using Gaussian distribution. In the Gaussian distribution, the mean

and the variance of the distribution are calculated to determine its PDF. However, in real

industrial applications, it is possible for the variables not to be Gaussian. Thus, it is not

realistic to model them with the Gaussian probability formula [42].

In this research work, the a wavelet-based PDF method is utilized to compute the PDF

of the variables. This method neither assumes that the variable is Gaussian nor compute the

means and variance of the distribution. The PDF of each variable is calculated by wavelet

basis function [42].

Wavelet method is implemented using Multi-Resolution Analysis (MRA) to provide a

unique framework to analyze a signal and capture its characteristics. Particularly, Wavelet

method can estimate a signal using a scaling function φ(t) and a wavelet function ψ(t).

This estimation is formulated, as shown in Algorithm 5.

Figure 3.3.2 presents a typical wavelet-based PDF, h(x), for variable x. It is noted
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Algorithm 4 Recursive PCA
1) Let Xp

k ∈ Rnk×m be the last updated training set with the dimension of nk.
2) Implementing the data pre-treatment:

• Calculating the means: bk = 1
nk

(Xp
k)T Ink , Ink = [11...1]T ∈ Rnk

• Calculating the current standard deviation: Σk = diag(σ
(k)
1 , σ

(k)
2 , ...., σ

(k)
m )

• Calculating the current training set after pre-treatment: Xk = (Xp
k − Inkbk

T )Σ−1
k

3) Computing the covariance matrix (Sk) of Xk:

Sk =
1

nk − 1
(Xk)

T (Xk) ∈ Rm×m (3.3.6)

4) Let Xp
k+1 =

(
Xp
k

Xp∗
k+1

)
∈ Rnk+1×m be defined as the new training set without a pre-

treatment.
5) Implementing the data pre-treatment:

• Calculating the means of this new training set

bk+1 =
nk
nk+1

bk +
nk+1 − nk
nk+1

b∗k (3.3.7)

• Calculating the standard deviations of this new training set

Σk+1 =
nk − 1

nk+1 − 1
Σk +

nk+1 − nk − 1

nk+1 − 1
Σ∗k

+
nk

nk+1 − 1
diag(∆bk+1∆bk+1

T (i, i))
(3.3.8)

• Calculating the new training set after pre-treatment

Xk+1 =

(
(XkΣk + Ink∆bk+1)Σ−1

k

X∗k+1

)
(3.3.9)

6) Computing the covariance matrix of Xk+1:

Sk+1 =
nk − 1

nk+1 − 1
Σ−1
k+1ΣkSkΣkΣ

−1
k+1 +

nk+1 − nk − 1

nk+1 − 1
S∗k

+
nk

nk+1 − 1
Σ−1
k+1∆bk+1∆bTk+1Σ−1

k+1

(3.3.10)
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Algorithm 5 Wavelet-based PDF
1) Formulating PDF function using a scaling function φ(t) and a wavelet function ψ(t):

h(t) =
∑
k

akφk(t− k) +
∑
k

∑
j

dj,kψj,k(2
jt− k) (3.3.11)

where ak and dj,k represent approximation coefficients and detailed coefficients, respec-
tively. Indices k and j denote the translation and dilation factors, respectively.
2) Determination of the approximation coefficients, ak, and detailed coefficients, dj,k, using
a filtering procedure [43]:

ak =< h(x), φk(x) >=

∫
φk(x)h(x)dx (3.3.12)

dj,k =< h(x), ψj,k(x) >=

∫
ψj,k(x)h(x)dx (3.3.13)

Note that h(x) denotes a density function, and since
∫
φk(x)h(x)dx is the expectation of

φk(x) and
∫
ψj,k(x)h(x)dx is the expectation of ψj,k(x), thus, ak and dj,k are achieved as

follows.

ak =

∫
φk(x)h(x)dx =

1

n

n∑
t=1

φk(x(t)) (3.3.14)

dj,k =

∫
ψj,k(x)h(x)dx =

1

n

n∑
t=1

ψj,k(x(t)) (3.3.15)

FIGURE 3.3.2: A typical wavelet-based PDF, h(x), for variable x.
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from Figure 3.3.2 that when a variable works at its normal operating points and the system

is healthy, the PDF (h(x)) takes a maximum value in the blue region. However, under an

abnormal condition or when a fault occurs, the variable diverges from the normal range and

takes a lower value in the red region. Therefore, the probability of staying healthy (the PDF

value) at the time of fault begin to decline sharply. We utilize this fact to detect incipient

faults in the system.

3.4 Simulation and test results

In this section, experimental test studies using SCADA data are considered to evaluate

the accuracy of the proposed hybrid fault detection scheme. For this purpose, first, the

experimental data collection and fault scenarios are illustrated. After this, the design im-

plementations of the proposed hybrid method and test results are explained.

3.4.1 Experimental data collection and fault scenarios

Blade faults are the most common malfunctions in wind farms [44]. Many WTs face blade

faults sooner than original manufacturer specifications due to harsh weather conditions

[45].

The major blade faults are outlined below.

1. Fatigue initiated by varying wind loading endured by the blades. Long-term fatigue

can cause cracks on the surface or in the internal structure of a blade that will lessen

the stiffness of the blade [46].

2. Blade surface roughness usually triggered by pollution, icing, blowholes, exfolia-

tion, etc. [47].

3. Deformation usually caused by consecutive unbalanced loading and lessened stiff-

ness of the blade [48].

Figure 3.4.1 illustrates blade erosion and crack. The defective blades can lead to severe

lift reductions and drag increases [49].
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FIGURE 3.4.1: Blade erosion (a) and crack (b)

Here, 10-minute single rate SCADA data of a wind farm, including 88 WTs, located

in southwestern Ontario is studied. The dataset contains 70 blade faults during 3 years of

operation. Various variables from SCADA data are investigated. Table 3.4.1 presents the

measurements studied in this research work.

TABLE 3.4.1: Various types of data studied in this work

Number Data type Units
1 Active power kW
2 Wind speed m/s
3 Rotor speed RPM
4 Ambient temperature ◦C
5 Yaw deg
6 Blade A pitch angle deg
7 Blade B pitch angle deg
8 Blade C pitch angle deg

3.4.2 Design implementations and experimental test results

Design implementation consists of two phases of offline and online. In the offline phase,

the first step is data preprocessing. For this aim, missing measurements, noise, and dis-

turbances are estimated and imputed using an iterative EM-style GRNN-ESI technique,

presented in Algorithm 1.

Here, the PCA technique is implemented to compress SCADA data. To choose the

number of PCs, a cumulative variance of the PCs are computed. Figure 3.4.2 shows the cu-
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FIGURE 3.4.2: The cumulative variance of the PCs.

mulative variance of the PCs. It is seen from Figure 3.4.2 that one PC cannot best describe

the initial data properties because it captures as low as 45%. It is also clear from Figure

3.4.2 that with two principal components, approximately 84% of the initial input data char-

acteristics is captured. Note that, adding additional components beyond two PCs, increases

the complexity of analyzing the result using wavelet-based PDF method. Therefore, two

PCs are kept to approximate the data. Then, the eigenvalues and eigenvectors are calcu-

lated, using PCA. Afterward, the approximation, and detailed coefficients are computed

using Equations (3.3.14) and (3.3.15). Then, PDF is estimated by wavelet-based PDF in

Equation (3.3.11) via the two PCs. Here, Daubechies wavelets with a length of five are em-

ployed in approximation and detailed coefficients which is due to their proper functionality

and performance in estimation and fault diagnosis.

It is worth noting that the variables operate in normal condition most of the time until

a failure occurs in the system. Therefore, the PDF of a variable mainly takes a maximum,
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which shows a normal operating condition. When a failure occurs, the probability of stay-

ing healthy begins to decline, falling below a threshold. This threshold is chosen by trial

and error procedure to make a compromise between early detection and false alarm rate.

In the online phase, at each sampling instant, whenever a new data is available, Eqs.

(3.3.9) and (3.3.10) are recursively applied to augment new data block to the previous one

and obtain the new correlation matrix. Then, the new eigenvalues and eigenvectors are

calculated, and the selected PCs are updated at each iteration. Then, the probability of

staying healthy is computed using the wavelet-based PDF estimated in the offline phase. If

the probability of the failure falls below the defined threshold, the failure will be detected.

Figure 3.4.3 illustrates the PDF h(x) of the first selected PC (x), and PDF h(y) of the

second selected PC (y). Figure 3.4.3 indicates that the blade stays healthy in 95% of time

(blue region). However, whenever a fault occurs, the PCs starts to push away from the

normal condition and the probability of healthy blade decreases sharply, falling into the

faulty region (red region).

3.4.3 Methodology evaluation

To perform a comprehensive analysis of the proposed hybrid method, three metrics includ-

ing the diagnosis accuracy (ACC), True Positive Rate (TPR) and False Positive Rate (FPR)

are introduced as follows:

ACC =
TP + TN

TP + TN + FP + FN
(3.4.1)

TPR =
TP

TP + FN
(3.4.2)

FPR =
FP

TN + FP
(3.4.3)

where TP and FP denote the number of true and false classified faults, respectively.

Note that TN and FN is the number of true and false classified healthy conditions, re-

spectively. Table 3.4.2 discusses the comparison of the proposed hybrid method and SVM
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FIGURE 3.4.3: The PDF h(x) of the first selected PC (x), and PDF h(y) of the second
selected PC (y).
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technique. It is worth noting that 62 WTs are considered as the training set and the remain-

der as the test set. It is noted from Table 3.4.2 that the proposed method with recursive

PCA correctly detect 95.7% of faults with only 33.3% of false classification as a fault, bet-

ter than the proposed method with conventional PCA and SVM with 93.3% and 90.9% of

true classification and 47.1% and 55.6% of false classification as a fault on training set,

respectively. The proposed hybrid method with recursive PCA gives the most accurate

detection (88.7%) compared to the proposed hybrid method with conventional PCA and

SVM technique (82.3% and 77.4% accurate, respectively). Table 3.4.2 also confirms the

same trend for the test set.

TABLE 3.4.2: Method evaluation

fault detection method ACC% TPR% FPR%
The proposed method with Recursive PCA (training set) 88.7 95.7 33.3
SVM (training set) 77.4 90.9 55.6
The proposed method with conventional PCA (training set) 82.3 93.3 47.1
The proposed method with Recursive PCA (test set) 80.8 89.5 42.9
SVM (test set) 69.2 83.3 62.5
The proposed method with conventional PCA (test set) 73.1 84.2 57.1

Therefore, it is concluded that the proposed hybrid method provides a more reliable

fault detection system by improving the accuracy and reducing the false alarm rate in com-

parison with the SVM technique. Here, we have also investigated the time response of the

proposed hybrid method. The data from a wind turbine, T72, installed in 2011 is utilized to

evaluate the time response of the detection system. A blade fault occurred in the WT T72.

For additional qualitative insights into the characteristics of the turbine under study, the

power curve of the WT T72 with a faulty blade in October and November 2017 is shown

in Figure 3.4.4. It is worth noting that the data points far from the normal condition might

be due to turbine operational fault conditions (see red region). However, these data points

could be due to noise, disturbances, or even false alarms, not a failure! Moreover, in the

case of a failure, the time of occurrence of a failure cannot be detected from Figure 3.4.4.

Here, a comparison between the fault detection of the proposed method with recursive

PCA, with conventional PCA, and SVM method is shown in Figure 3.4.5. Note that Y-axis

denotes categorical output variables with two categories: an event of interest (coded as 0
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FIGURE 3.4.4: Power curve of wind Turbine T72 in October and November 2017

as a healthy state) or not (coded as 1 as a faulty state). Figure 3.4.5 shows that a blade fault

in the WT T72 was detected by the proposed hybrid fault detection method with recursive

PCA on March 6th 2018 which indicates an earlier detection compared to SVM method

(March 23rd 2018) and the proposed hybrid fault detection method with conventional PCA

(March 16th 2018).

3.5 Conclusions and future work

This chapter proposed a new real-time hybrid fault detection strategy for wind turbine

blades. The suggested fault detection system employed integrated GRNN-ESI, recursive

PCA, and a wavelet-based PDF method to detect incipient faults in an early stage. The

GRNN-ESI method dealt with the missing values, noise, and disturbances and, therefore,

enhanced the accuracy of the proposed hybrid method. The recursive PCA captured the

fault dynamics and reduced the false alarm rate. Afterward, the wavelet-based PDF method

accurately estimated the density function of the principal components and detected incipi-

ent faults. Experimental test results with SCADA data from a wind farm in southwestern

Ontario indicated that the proposed wavelet-based PDF with recursive PCA could not only

enhance the reliability of the fault detection, by intensifying the accuracy and lowering the
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FIGURE 3.4.5: Blade fault detection in the WT T72

false alarm rate, but it also improved early detection of blade faults over the wavelet-based

PDF with conventional PCA and SVM technique. Finally, some areas for further research

are:

1. Expanding the proposed fault detection method by formulating new performance

indices to determine the amount of damage to the blade surface.

2. Applying classification methods to identify the type of damage such as crack and

erosions in the blade.
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3.6 List of Abbreviations

AE Acoustic Emission

ANFIS Adaptive Neuro-fuzzy inference systems

ARMC Autoregressive model Coefficient

DSF Damage Sensitive Features

EKF Extended Kalman filter

EM Expectation–Maximization

EEMD Ensemble Empirical mode decomposition

FDD Fault detection and diagnosis

FL Fuzzy logic

FPR False Positive Rate

GA Genetic Algorithm

GRNN-ESI Generalized Regression Neural Network Ensemble for Single Imputation

KF Kalman filter

MRA Multi-Resolution Analysis

NN Neural network

PC Principal component

PCA Principal component analysis

PDF Probability density function

SAGA Simulated Annealing Genetic Algorithm

SCADA Supervisory Control and Data Acquisition

SHM Structural Health Monitoring

SNS Structural Neural System

SVM Support Vector Machine

TCM Turbine Condition Monitoring

TPR True Positive Rate

UKF Unscented Kalman Filter

WT Wind Turbine
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CHAPTER 4

A Review of Health Monitoring and

Failure Prognosis of Wind Turbine

Bearings

4.1 Introduction

Wind energy is playing an increasingly pivotal role in global energy systems. According to

the Global Wind Energy Council (GWEC)’s report [1], wind energy capacity could reach

almost 2.1 TW, supplying up to 20% of global electricity by 2030. Wind is also assum-

ing a nascent and growing role in the expanding ancillary services market associated with

evolving grids.

Wind Turbines (WTs) are complex machines, assembled combinations of numerous

technologies, operating in challenging environments. As an integrated system, some of the

components are more critical than others. So, it is essential to identify components with

the highest failure rate and downtime. There have been some fundamental studies in recent

decades on the reliability of wind farm components as reviewed below.

Shafiee et al. [2] showed that, for onshore machines, the most frequent failures are

related to the tower, gearbox, rotor blades, rotor hub, and the transformer in that order

respectively; whereas in offshore settings, the gearbox, rotor blades, generator, tower, and

the transformer have the highest failure rates. Hahn et al. [3] indicated that generator,

gearbox, drive train and rotor blade have the most downtime according to 1467 WT (below

1 MW) data in the period from 1989 until the end of 2004. In Stenberg and Holttinen [4],
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a dataset from 72 operating wind turbines of Finland revealed that the gearbox, hydraulic

system, brake, and generator had the most downtime over a period from 1996 to 2008.

Reviews of these reliability summary studies reveal that the gearbox and generator failure

rates are distinctly high. The downtime for these failures is among the highest of all wind

turbine assemblies.

Numerous studies have sought to obtain the distribution of failures by subassembly in

WTs [5, 6, 7, 8, 9, 10], they have illustrated that the bearings of gearboxes and generators

have significant downtime and subsequently lead to more economic losses for the wind

farm operator.

Wind turbine bearings can be subject to defects induced by corrosive, high-speed, and

high temperature operating conditions. The performance degradation of a bearing is a con-

tinuous irreversible process. Once the bearing is placed in its housing, there are certain

expectations of long-term healthy service life. Eventually, minor early faults can arise that

grow gradually at the initiation. Then, a major bearing failure in wind turbines can cause

catastrophic downtime due to time-consuming reactive maintenance practices. Such lost

production directly affects the wind farm bottom line [6]. Bearing defects can be catego-

rized into two groups including distributed and single-point defects. The distributed defect

is characterized by degradation over large areas of the surface which become rough, irregu-

lar, or deformed. A typical example is the overall surface roughness caused by contamina-

tion or lack of lubricant. This type of fault is difficult to identify by distinct frequencies. On

the contrary, a single-point defect is localized and can be defined by specific frequencies

that typically appear in the machine vibration. A typical example of a localized defect is a

pit or spall [11, 12].

Fault detection and failure prognosis, i.e., estimation of Remaining Useful Life (RUL)

are a critical area of interest for researchers. For this purpose, appropriate Condition Mon-

itoring Systems (CMS) are essential. Health state assessment can be carried out applying

monitoring methods such as Vibration Analysis (VA), acoustic emission, Strain Measure-

ment, Oil Analysis, and thermography. Data is provided at regular time periods using sen-

sors and measurement systems. Defects can be detected and, then, predicted by monitoring

and processing the real-time data. Finally, a proper maintenance approach can be sched-
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uled based on the degradation trend of failure [13]. It is worth noting among all monitoring

systems, VA is the most common method applied to bearings [14].

This chapter presents a literature review of vibration based bearing prognostics. Bearing

failure prognosis is categorized, and the most recent literature is summarized and discussed.

In each group, the principal concept is illustrated, and the pros and cons are given. Some

directions for future studies are also provided.

The work is organized as follows: Section 4.2 demonstrates the definition of prognosis

and its approaches. Bearings are described in Section 4.3. Section 4.4 provides a thorough

review of bearing prognosis. Section 4.5 concludes the chapter with an emphasis on future

research challenges.

4.2 Prognosis definition

The main goal of prognosis is to evaluate how long a faulty component can work under

reliable operating conditions, still achieving desired performance metrics [15].

Data-Driven Methods, which transform historical data into relevant models of the degra-

dation’s behavior, are widely used in bearing prognosis due to the existence of historical

wind farm data. However, a complete set of failure data based on all operating conditions

is required to develop thorough and accurate data-driven prognosis methods [16, 17].

4.3 Bearings

Bearings are mechanical elements that play a critical role in the function of rotary machin-

ery. They not only yield relative motion between two parts with minimum friction, such

as shaft and housing but these parts also transfer loads from the sources to the structure

supporting them [18]. A bearing that transfers loads via rolling elements is expressed as a

rolling bearing. Rolling element bearings are categorized into two classes: ball bearings,

which transmit the load over a tiny contact surface with the raceway, and roller bearings,

which transfer the load via line contact with the raceway. Roller bearings, can support

larger loads than ball bearings. Therefore, heavy engineering applications employ roller
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FIGURE 4.3.1: Rolling bearings components

bearings. Rolling bearings as shown in Figure 4.3.1, are comprised of four primary com-

ponents including rolling elements, inner ring, outer ring, and cage or separator. The guide

ring and seals are employed only in some particular bearings. The inner ring is installed on

the shaft of the machine, whereas the outer ring is fixed in the housing of the device. The

rolling elements, either balls or rollers, rotate against the inner and outer ring raceways and

transfer the load acting on the bearing through small surface contacts separated by a thin

lubricating film [19, 20]. The cage keeps the rolling elements apart to prevent metal-to-

metal contact between them during operation and to decrease the frictional heat generated

in the bearing [21].

In the next section, the literature on modeling methods for bearing prognosis is investi-

gated, principally those that are related to vibration-based prognostics of bearings.

4.4 Review of bearing prognosis

Some common categories for bearing failure prognosis are studied in the following.

65



4. A REVIEW OF HEALTH MONITORING AND FAILURE PROGNOSIS OF WIND TURBINE BEARINGS

4.4.1 Intelligent method-based prognostics

In this section, intelligent prognostic methods are introduced, and various studies on artifi-

cial intelligence failure prognosis of wind turbine bearings are reviewed.

Artificial Neural Networks (ANNs) estimate the RUL of a component using an input-

output representative pattern, known as a black box model, derived from observational

data. ANNs provide a flexible tool for learning and recognizing system failures due to their

ability in learning and generalizing nonlinear relationships between input data and output

data [22].

Networks consist of nodes connected in a layered format. A typical neural network

is comprised of a single input layer, one or more hidden layers and an output layer, each

including one or more nodes. Connections between nodes in adjacent layers are weighted.

An activation function is associated with each node that defines if and how information is

transferred to the following nodes. Estimated values of each node’s function are then used

as inputs to any subsequent nodes[23, 24].

ANNs are capable of handling noisy and incomplete data, and once trained can help

with prediction and generalization at a high rate [25, 26]. ANNs are effective and efficient

at modeling complex non-linear systems. However, they require a significant amount of

data for training data that should be representative of the real data range and its variability

[15].

In Malhi et al. [27], vibration signals from a defect-seeded rolling bearing were pre-

processed using a continuous wavelet transform. The preprocessed data were employed

as candidate inputs to a Recurrent Neural Network (RNN) and, then were clustered for ef-

fective representation into similar stages of bearing defect propagation. Analysis indicated

that the proposed method is more accurate in predicting bearing defect progression than the

incremental training technique.

An approach to predict the RUL of bearings in a wind turbine gearbox was proposed

by Teng et al. [28]. They took an artificial neural network to train data-driven models and

to predict short-term tendencies of feature series. By combining the predicted and train-

ing features, a polynomial curve reflecting the long-term degradation process of bearings
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was fitted. By determining the intersection between the fitted curve and the pre-defined

threshold, the RUL was deduced. The results showed that the combination of the time and

frequency features leads to more accurate prognostic results than those available from the

individual features.

Xie and Zhang [29] developed a fault prognosis scheme employing an Echo State Net-

work (ESN) and Recurrent Multilayer Perceptron (RMLP), based on the vibration signal

of rotating machinery. Both ESN and RMLP are functional forms of a recurrent neural

network. The experimental outcomes on faulty bearings demonstrated that these prognos-

tic methods are capable of enhancing the bearing performance forecast within a relatively

short time interval and even with limited data availability. It was also indicated that the

accuracy of fault prognosis improved considerably.

In Guo et al. [30], an RNN based Health Indicator (RNN-HI) for RUL prediction

of bearings was proposed. The performance of the RNN-HI was validated through two

experimental bearing data sets. The results indicated that the ability of RNN-HI to obtain

better performance than a self-organization map-based method. Cui et al. [31] employed an

RNN for rolling bearing fault prognosis. Their results showed that RNN had good results

in fault prognosis compared to the traditional methods like probability trend analysis.

A study of wavelet neural network classifier bearing fault diagnosis was presented by

Karim et al. [32]. In this work, the statistical features of vibration signals such as stan-

dard deviation, kurtosis, and wavelet energy were employed as input to an ANN classifier.

The results showed that these parameters could be applied as an operational status indi-

cator to distinguish between a safe operational mode and a defective one. Kramti et al.

[33] developed an Elman Neural Network (ENN) architecture for direct RUL estimation

of a High-Speed Shaft Bearing (HSSB) validated by use of real measured data. The pro-

posed method indicated accurate estimation capability even with noisy signals and harsh

environmental conditions.

Senanayaka et al. [34] used an autoencoder and RNN-based prediction algorithm for

the prognosis of bearing life. A two-stage approach using Deep Neural Networks (DNN)

is proposed in Xia et al. [35] to estimate the RUL of bearings. A denoising auto encoder-

based DNN was employed to classify the acquired signals into different degradation states.
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Then, regression models based on shallow neural networks were constructed for each health

state. The proposed approach obtained satisfactory prediction performance on a real bear-

ing degradation dataset with different working conditions.

Li et al. [36] proposed an intelligent RUL prediction method based on deep learn-

ing. Multi-scale feature extraction was executed employing convolutional neural networks.

Experiments on a popular rolling bearing dataset showed a high accuracy on the RUL pre-

diction. A Health Index (HI) based Hierarchical Gated Recurrent Unit Network (HGRUN)

was proposed by Li et al. [37] for rolling bearing health prognosis. The HGRUN was

formed by stacking various hidden layers. An open experimental bearing data was prac-

ticed to validate the capacity of the proposed approach. The results proved that HGRUN

outperforms the other techniques including Back-Propagation (BP) neural network, Sup-

port Vector Machine (SVM), and basic Deep Belief Network (DBN).

In Deutsch and He [38], a deep learning-based method was developed through the com-

bination of a DBN and a Feedforward Neural Network (FNN) algorithm for RUL forecast-

ing of rotating equipment. The proposed DBN FNN algorithm benefits from the feature

learning ability of the DBN and the prediction power of the FNN. The test result indicated

the promising RUL prediction performance of the deep learning-based DBN FNN.

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) method, a combination of fuzzy

logic and NNs, constructs a hybrid intelligent system and benefits from the potentials of

both techniques including the simplicity and strength of NNs and the reasoning of fuzzy

systems. ANFIS forms a series of fuzzy if-then rules with relevant membership functions

to provide the specified input-output pairs. The result contributes to a robust framework for

addressing practical classification problems [39, 40, 41].

A machine condition prognosis approach based on ANFIS was proposed by Chen et

al. [42] to model a fault propagation trend. The high-order particle filtering was, then,

employed to carry out the prediction. The results of experimental data from a faulty bear-

ing demonstrated a higher prediction accuracy compared to RNNs. A methodology based

on a distributed features forecasting approach using ANFIS models was developed by Zu-

rita et al. [43]. The proposed method was validated by means of an accelerated bearing

degradation experimental platform.

68



4. A REVIEW OF HEALTH MONITORING AND FAILURE PROGNOSIS OF WIND TURBINE BEARINGS

TABLE 4.4.1: Summary of intelligent method-based prognostics literature review

Reference Architecture Results
Malhi et al. [27] RNN Mean Square Error (MSE) = 0.04
Teng et al. [28] ANN Error = 12.78%
Xie and Zhang [29] ESN Root Mean Square Error (RMSE) = 0.0136
Xie and Zhang [29] RMLP RMSE = 0.0262
Guo et al. [30] RNN-HI Mean of error = 23.24%
Karim et al. [32] ANN MSE = 10−5

Kramti et al. [33] ENN MSE = 0.0023
Senanayaka et al. [34] DNN Error = 26.25%
Li et al. [36] DNN Mean Absolute Error (MAE) = 30.4%
Li et al. [37] HGRUN Maximum of Absolute Error (MaxAE) = 18.79%
Chen et al. [42] ANFIS RMSE = 0.0812
Zurita et al. [43] ANFIS Error = 14.2%
Cheng et al. [44] ANFIS Average RMSE = 0.0503
Soualhi et al. [45] NFN RMSE = 0.000428

Cheng et al. [44] introduced a case-based data-driven prognostic framework using the

ANFIS. First, large historical data was processed to build an ANFIS model-case library.

Then, the fault prognosis of a new machinery system was implemented by applying the

suitable ANFIS model extracted from the model-case library. The suggested framework

was examined by using the experimental data of bearing faults obtained from a bearing

test rig. It was shown that the prognostic framework has better fault prognostic accuracy

compared to the traditional data-driven systems.

In Soualhi et al. [45], a time series forecasting model, neo-fuzzy neuron, was proposed

to predict the degradation of bearings. The neo-fuzzy neuron (NFN) is an intelligent tool

that contributes to modeling complex systems by the simplicity of its structure, which is

comprised of a single neuron. The Root Mean Square (RMS) extracted from vibration sig-

nals was employed as an input of the neo-fuzzy neuron in order to determine the growth of

the bearing’s degradation in time. A comparative study between the neo-fuzzy neuron and

ANFIS was conducted to evaluate their prediction capabilities. The experimental results

illustrated that the neo-fuzzy model could track the degradation of bearings. The details of

these works are shown in Table 4.4.1.
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4.4.2 Bayesian network-based techniques

Bayesian networks are a type of probabilistic open-chain graphical model for estimating

probabilities. A Bayesian network is comprised of nodes, which correspond to random

variables that can take on distinct states. These are connected by directional arcs represent-

ing conditional dependencies between nodes [46]. A Bayesian network can be utilized to

assess the likelihood of different scenarios being the root cause of an event, or in the case

of time series modeling, determine probabilities associated with a particular future event

[47].

In Hong and Zhou [48], a potential Bayesian machine learning method called Gaussian

Process Regression (GPR) for bearing degradation evaluation was proposed. From the test

results, it was shown that the GPR model application in bearing prognosis could achieve

higher performance compared with the Wavelet Neural Network (WNN).

The most common Bayesian techniques used in engineering prognostics consist of

Markov models, Kalman filters, and Particle filters.

Markov models aim at estimating probabilities of future failure by determining proba-

bilities associated with each state and probabilities associated with transitioning from one

state to another. A primary characteristic of all Markov models is that future states are only

dependent on the immediately prior state. For Markov prognostics purposes, the following

assumptions are considered [15].

• Transition probabilities are independent of time (i.e., a constant failure rate).

• The waiting time in a distinct state has an exponential trend.

• The sum of all transition probabilities for leaving one state and entering different

states must be equal to one.

On the other hand, Semi-Markov models assume that the time spent in a particular state

can be attributed to any distribution. This implies that the sum of probabilities for each

state transitioning into other different states can be less than one. Thus, they are more

advantageous for predicting RUL than traditional Markov chains. Despite Markov and

Semi-Markov models’ explicit flexibility in modeling a number of various system designs
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and failure scenarios, the primary drawback is the underlying assumption of a constant

failure rate, which is quite idealistic [49, 50]. This can be addressed by employing the

hidden and semi-hidden Markov variants.

The Hidden Markov Model (HMM) and Semi-Hidden Markov Model (SHMM) are an

extension of Markov chains in which not all states are directly observable and thus corre-

sponding transition probabilities are not directly assignable. An HMM is characterized by

the number of model states, the number of distinct observation symbols per state, a state

transition probability distribution, an observation symbol probability distribution, and an

initial state distribution [15]. The stochastic model is trained with failure data to overcome

the lack of transition information to and from hidden states.

The main benefit of HMM is its capability in the modeling of both spatial and temporal

phenomena, so time-series data can be analyzed without a physical understanding of the

failure, so long as enough data is available for training. A weakness of all forms of the

Markov model is that it is computationally expensive, even for the simplest models with

few states. The number of calculations to evaluate how well the model fits the observation

data set is proportional to the number of states squared [51].

A fault diagnosis using an HMM method was developed for rolling bearings in Zhang

and Kang [52]. Afterward, failure prognosis was further implemented based on a Hier-

archical Hidden Markov Model (HHMM). Their research work indicated that the accu-

racy of the method depended on the sample size of historical data. In Chen et al. [53], a

Multi-Sensor Hidden Semi-Markov Model was proposed; which is an extension of classi-

cal hidden semi-Markov models. The proposed prognostic methodology was validated on a

practical bearing application. The experimental results revealed that the prognostic method

was promising to achieve more reliable performance than classical hidden semi-Markov

models.

Le et al. [54] developed a multibranch HSMM to deal with a multi-modes deterioration

mechanism. The results, based on deterioration data of a bearing under different operation

conditions, indicated that the proposed multibranch HSMM provided accurate prediction

in the detection of deterioration modes.

The Kalman filter is a recursive processing method applied to determine the unknown
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state of a dynamic system from a set of noisy measurements based on mean squared error

minimization. The Kalman filter accomplishes this goal through linear projections. These

are based on the assumption that process noise and measurement noise are Gaussian, white,

independent of each other, and additive [15].

Singleton et al. [55] applied an Extended Kalman Filter (EKF) for anticipating the RUL

of bearings. For this purpose, an affine function that best approximates the fault degra-

dation is determined and utilized to learn the parameters of the EKF. Then, the learned

EKF is employed to examine data to forecast the RUL of bearing faults under different

operating conditions. Bearing vibration data from the ”PRONOSTIA platform”, an exper-

imental platform for bearings accelerated degradation tests, was applied to the proposed

algorithm. This showed the convergence of the algorithm along with its behavior for dif-

ferent conditions. In Lim and Mba [56], Switching Kalman Filter (SKF) was introduced

for fault diagnosis and prognosis of a gearbox bearing. For this purpose, it was presumed

that the degradation trend would grow through time and the various deterioration processes

were modeled applying a Kalman filter each. The SKF would then practice various mod-

els. From there the most probable one would be selected from the Condition Monitoring

(CM) data through the employment of Bayesian estimation for the RUL forecast. The ex-

perimental results showed that the developed approach was a promising tool to improve

maintenance decision-making.

Particle Filters (PFs) are alternatives to KF for determining the posterior distribution.

These are not restricted by linearity or Gaussian noise assumptions. They are especially

helpful with conditions where the posterior distribution is multivariate and non-standard.

Whereas Kalman filters determine the posterior Probability Density Function (PDF) by

extrapolating from the previous state, particle filters use Sequential Importance Sampling

(SIS) to predict the entire next state in every iteration of the filter [15].

A stochastic modeling method based on particle filter for bearing remaining life pre-

diction was proposed by Wang et al. [57]. Experiments were conducted on a customized

bearing test rig to illustrate the effectiveness of the developed approach. Chen et al. [58]

presented a generic particle-filtering-based framework with application in bearing spalling

fault diagnosis and failure prognosis. The results suggested that the system was capable of
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TABLE 4.4.2: Summary of Bayesian network-based techniques literature review

Reference Architecture Results
Hong and Zhou [48] GPR Relative Error (RE) = 6.32%
Zhang and Kang [52] HHMM Error = 13.64%
Le et al. [54] Multi-branch HSMM Average RMSE = 64.72
Singleton et al. [55] EKF Mean error of OPs = 32.8%, 73.2%, 44%
Lim and Mba [56] SKF Error = 13.3%
Wang et al. [57] PF Error = 3.0%
Chen et al. [58] Generic PF low MSE = 10−2

meeting performance requirements. The details of these efforts are shown Table 4.4.2.

4.4.3 Hybrid prognostic techniques

Hybrid failure prognosis methods are constructed using a combination of various prognos-

tic approaches [59].

In Satish and Sarma [60], a combination of neural networks and fuzzy logic was pro-

posed to develop a Fuzzy BP network for identifying the present state of the bearing and

predict its remaining useful life. The results confirmed that the hybrid approach is well

suited for evaluating the present state of the bearing and the time available for the re-

placement of the bearing. In Caesarendra et al. [61], a combination of Vector Machine

(VM), Logistic Regression (LR), and autoregressive moving average (ARMA)/generalized

autoregressive conditional heteroscedastic (GARCH) models was proposed to assess bear-

ing failure degradation as shown in Figure 4.4.1. The results confirmed the ability of the

proposed method for bearing failure degradation assessment.

In Sun et al. [62], an SVM-based model for bearing prognosis was proposed. In this

model, Principal Component Analysis (PCA) was employed for feature extraction from

a vibration signal, and the SVM parameters were optimized using Particle Swarm Op-

timization (PSO). The expected result based on bearing run-to-failure experimental data

confirmed that the proposed model was more accurate than the classic models.

Chen et al. [63] proposed an approach for bearing prognosis based on Neuro-Fuzzy

Systems (NFSs) and Bayesian algorithms. The NFS was used as a prognostic model to de-

termine degradation with time. A Bayesian algorithm was employed to update the degree
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FIGURE 4.4.1: A combination of VM, LR and ARMA GARCH for bearings RUL estima-
tion [61]

of confidence in the forecasting estimations. The experimental test results confirmed that

the proposed failure prognosis approach could predict bearing conditions more accurately

compared to recurrent neural networks, NFSs, and recurrent NFSs techniques. In Dong and

Luo [64], an approach to determine bearing degradation was developed based on a combi-

nation of PCA and an optimized Least-Squares Support Vector Machine (LSSVM) method

as shown in Figure 4.4.2. Firstly, PCA was employed to decrease the dimension of the ex-

tracted features. Then, the LSSVM model was formed and trained based on the extracted

features for bearing degradation trend estimation. The Pseudo Nearest Neighbor (PNN)

and the PSO were applied for the input number of the model estimation and the LS-SVM

parameters selection, respectively. The experimental results confirmed the effectiveness of

the methodology.

A hybrid approach for prognostics based on the Least Squares Support Vector Regres-

sion (LSSVR), and the HMM was proposed by Liu et al. [65]. Features extracted from

vibration signals were utilized to train HMMs. The LSSVR algorithm was employed to

predict feature trends. The predicted features probabilities for each HMM were estimated

using forward or backward algorithms. Then, these probabilities helped with determining
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FIGURE 4.4.2: A combination of PCA and LSSVM for bearings RUL estimation [64]

future health states and anticipating the RUL. A test was conducted using bearing vibra-

tion signals to validate the proposed method. The results illustrated that the LSSVR/HMM

approach predicted faults before their occurrence.

Hong et al. [66] proposed a combination of Wavelet Packet Decomposition (WPD),

Empirical Mode Decomposition (EMD) and Self-Organizing Map (SOM) neural network

techniques as shown in Figure 4.4.3 for assessing the state of the bearing’s degradation and

estimating the RUL. A health indicator named Confidence Value (CV) was derived from the

SOM network. The results indicated that the CV could effectively identify the degradation

stage and help to estimate the RUL accurately. Later, the CV change rate was used to

classify degradation stages into normal, slight degradation, severe degradation, and failure

stages. Then, the corresponding prognosis models are chosen to determine the health trend

and RUL. The proposed hybrid approach enhanced accuracy when entering the severely

degraded stage compared to the traditional single method such as Wavelet Neural Network

[67].

Soualhi et al. [68] presented a methodology which combines HMM, the multistep time

series prediction, and the ANFIS for providing the imminence of the next degradation state

and estimating the remaining time before the next degradation state. The experimental

results showed the proposed methodology potential for the detection, diagnosis, and prog-
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FIGURE 4.4.3: A combination of WPD, EMD and SOM neural network techniques for
bearings RUL estimation [66]

nosis of faults in roller bearings. A combination of Simplified Fuzzy Adaptive Resonance

Theory Map (SFAM) neural network and Weibull Distribution (WD) was developed by Ali

et al. [69] for bearing prognosis. Experimental results showed that the capability of the

proposed method to learn nonlinear time series and to reliably estimate the RUL of rolling

element bearings based on vibration signals.

In Soualhi et al. [70], an approach that combines the Hilbert Huang Transform (HHT) to

extract feature indexes from raw vibration signals, an SVM to detect the degradation states,

and the Support Vector Regression (SVR) for the estimation of the RUL of ball bearings

was proposed. The experimental results confirmed that the use of the HHT, the SVM,

and the SVR is a suitable strategy to enhance the detection, diagnosis, and prognosis of

bearing degradation. Wang et al. [71] proposed a two-stage strategy prognosis including,

first, estimation of degradation by determining the deviation of extracted features from

a known healthy state and, then, estimating the RUL of the bearing using an enhanced

Kalman filter and an Expectation–Maximization (EM) algorithm. The results confirmed

that their proposed approach can provide higher estimation accuracy and narrower PDFs in

76



4. A REVIEW OF HEALTH MONITORING AND FAILURE PROGNOSIS OF WIND TURBINE BEARINGS

comparison with Gebraeel’s model [72] and Si’s model [73].

Zhao et al. [74] presented a feature extraction system for vibration-based bearing prog-

nosis using Time-Frequency Representation (TFR) and supervised dimensionality reduc-

tion. A combination of TFR, Gaussian pyramid and Local Binary Pattern (LBP) was used

to evaluate lifetime information represented by highly dimensional features. The RULs

are determined by employing simple Multiple Linear Regressions (MLRs). The experi-

mental results demonstrated that the proposed method outperforms techniques employing

traditional statistical features and PCA.

In Jin et al. [75], a health index was proposed to detect bearing health states. A non-

linear form was developed to track the bearings’ degradation process, and an extended

Kalman filter was employed for the RUL prediction. Experimental bearing life data was

utilized to verify the effectiveness of the proposed anomaly detection and fault prognosis

strategy. This showed that the advance warning of bearing failure can be obtained, and

ongoing maintenance can be scheduled by identifying the anomaly successfully. Lu et al.

[76] proposed a prediction method based on LSSVM and PCA to determine the slewing

bearing’s degradation trend. The proposed method was shown to be more accurate and

efficient over conventional slewing bearing failure prognosis strategies.

Jiang et al. [77] proposed an evaluation approach for bearing performance degradation

using a combination of HMM and Nuisance Attribute Projection (NAP) as shown in Figure

4.4.4. It was illustrated that the NAP could remove the impact of nuisance attributes and

the new feature space calculated by the NAP was barely affected by other interference

occurring during operation. The experimental results showed that their approach improved

the accuracy of the bearing performance assessment system.

A prognostic method based on vibration signals including health monitoring method-

ology for wind turbine high-speed shaft bearing was proposed by Saidi et al. [78] using

a Spectral Kurtosis (SK) data-driven approach. It was shown that SK- derived features

could provide an early warning for bearing defects and help with the evaluation of bear-

ing degradation. Aye and Heyns [79] proposed an optimal GPR, an integration of mean

and covariance functions, for capturing the bearing degradation trend. The GPR also cap-

tured the irregularities within the data and, subsequently, improved the RUL estimation for
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FIGURE 4.4.4: A combination of HMM and NAP bearing performance descending evalu-
ation [77]

slow speed bearings. The experimental outcomes indicated that their model demonstrated

improvement over simpler GPR models.

In Lu et al. [80], a prognostic algorithm applying a combination of the Variable Forget-

ting Factor Recursive Least-Square (VFF-RLS), an Auto-Regressive and Moving-Average

(ARMA) model was proposed. To demonstrate the capability of the proposed methodol-

ogy, the accuracy of the prediction of the proposed model is examined utilizing bearing

experimental data compared to an auto-regressive integrated moving average model with-

out adaptation. Results confirmed accurate predictions of the hybrid prognostic method

over the ARIMA model. Elforjani et al. [81] proposed Signal Intensity Estimator (SIE) as

a new indicator to detect individual types of early fault in real-world wind turbine bearings.

This study indicated the ability of the proposed indicator to accurately estimate the RUL

for wind turbine bearings in a combination of regression trees (RT) and multilayer artifi-

cial neural network (ANN) models. The experimental results demonstrated that SIE has an

advantage over the other fault indicators such as Crest Factor (CF) and Kurtosis (KU) if

sufficient data are provided.

A hybrid approach, Local Feature-based Gated Recurrent Unit (LFGRU) network, that

combines handcrafted feature design with automatic feature learning for machine health
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monitoring is proposed in Zhao et al. [82]. Experiments on incipient bearing fault de-

tection and gearbox fault diagnosis indicated the effectiveness of the proposed LFGRU.

Ahmad et al. [83] presented a hybrid method that employed regression-based adaptive

predictive techniques to learn the degradation trend to project the RUL of a bearing. The

approach applied a gradient-based method to determine the Time to Start Prediction (TSP)

accurately using linear regression analysis which contributes to relatively more accurate

RUL predictions.

A deep feature optimization fusion method was proposed by Zhao et al. [84] to ex-

tract centrifugal pump bearing degradation features from large amounts of vibration data.

It benefited from the capability of deep neural networks (DNN) in extracting highly ab-

stracted features that correlate well with bearing degradation. The detailed experiments on

real datasets showed that the developed method has an advantage over other methods and

creates degradation trajectories with potential predictive capabilities, therefore enhancing

the accuracy of RUL prediction.

Elforjani and Shanbr [85] employed the combination of SVMR, multilayer artificial

neural network models, and GPR to estimate the RUL of slow speed bearings by correlating

features with the corresponding natural wear throughout a series of laboratory experiments.

It was concluded that neural networks model with a back propagation learning algorithm

outperformed the other models in predicting the RUL for slow speed bearings. This was

true when the appropriate network structure was chosen and enough data was provided.

Qiu et al. [86] presented a prognostic procedure by combining an HI and PF to determine

the bearing RUL. The process included applying the Structural Information of the Spec-

trum (SIOS) algorithm to build the HI called SIOS-based Indicator (SIOSI) for bearing

deterioration monitoring. Then, they assessed the Initial Degradation Point (IDP) through

an index calculated with a self-zero space observer and predicted the bearing RUL using

the SIOSI and an PF-based algorithm that was aided by a degradation model. Experimental

results have shown that the bearing RUL could be acceptably anticipated by the proposed

method, and its performance was superior to conventional prognostic methods.

Rai et al. [87] introduced a data-driven prognosis approach based on a Nonlinear Auto-

Regressive Exogenous (NARX) neural network model that utilized a wavelet-filter tech-
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nique for bearing RUL estimation. In time domain modeling, an NARX is a nonlinear

autoregressive model that has exogenous inputs. This implies that the model links the cur-

rent value of a time series to past values of the same series and current and past values of

the driving (exogenous) series [88]. As shown in Figure 4.4.5 the approach was comprised

of several steps as follows.

• In order to boost the impulsive aspects of bearing signals and enhance the quality

of fault feature extraction, the vibration signals provided by an experimental test rig

were preprocessed with the proposed wavelet-filter.

• To address the highly non-monotonic behavior of the extracted features due to the

bearing degradation, an HI based on Mahalanobis Distance (MD) criterion [89, 90]

and Cumulative Sum (CUMSUM) chart [91] was introduced.

• The NARX neural network was developed as a Time Delay Neural Network (TDNN)

model which was trained by the introduced HI and bearing age as inputs, and bearing

life percentage as output for bearing RUL estimation.

The results confirmed that the proposed method could accurately predict the RUL of bear-

ings and outperformed the application of the self-organizing map-based indicator.

In Deutsch and He [38], a deep learning-based method was developed through the com-

bination of a DBN and a Feedforward Neural Network (FNN) algorithm for RUL forecast-

ing of rotating equipment. The proposed DBN FNN algorithm benefits from the feature

learning ability of the DBN and the prediction power of the FNN. The test result indicated

the promising RUL prediction performance of the deep learning-based DBN FNN. Hu et

al. [92] presented a real-time performance degradation model based on temperature char-

acteristic parameters for failure prognosis of wind turbine bearings. Here a combination

of the Wiener process for establishing the performance degradation model, the maximum

likelihood estimation method for obtaining the parameters of the developed model, and an

inverse Gaussian distribution approach for RUL prediction was employed to achieve this.

The comparison of the predicted RUL and actual RUL revealed that the hybrid prediction

method was correct and effective. Furthermore, the proposed method can be utilized in CM

of the wind turbine bearings for the Prognostics and health management (PHM).
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FIGURE 4.4.5: Flowchart for prognosis approach based on a NARX neural network model
in association with a wavelet-filter technique for bearing RUL estimation [87]

Hemmer et al. [93] suggested a framework based on three fault classifiers of Convolu-

tional Neural Network (CNN), SVM, and sparse autoencoder-based SVM utilizing transfer

learning. The effectiveness of the proposed technique was examined employing vibra-

tion and acoustic emission signal datasets from roller bearings with artificial damage. The

survey showed the ability of the combination of a trained CNN and SVM for extracting

features and classification, respectively, in detecting faults in roller bearings based on ro-

bustness, easy implementation, and computational weight. However, the combination of a

trained CNN and sparse autoencoder for extracting features and, then, decreasing dimen-

sions of extracted features increased the computational weight and complexity as well as

reducing the accuracy. The details of these efforts are shown in Table 4.4.3.

4.5 Conclusions and Future Guidelines

This study provided a review of recent modeling developments for wind turbine bearing

prognosis. Basic definitions and elemental bearing reliability concepts were also discussed.

The pros and cons of each prognosis method have also been highlighted. Our review has

illustrated that hybrid methods are now the leading tools for turbine bearing failure pre-
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TABLE 4.4.3: Summary of hybrid prognostic techniques literature review

Reference Architecture Results
Satish and Sarma [60] Fuzzy BP network MaxAE = 27.2%
Sun et al. [62] SVM/PCA/PSO Error = 3.2%
Chen et al. [63] NFS/Bayesian Average RMSE = 0.0506
Dong and Luo [64] PCA/LSSVM/PNN/PSO RMSE = 0.000118
Liu et al. [65] LSSVR/HMM MaxAE = 43.75%
Hong et al. [66] WPD/EMD/SOM MaxAE = 51.8%
Ali et al. [69] SFAM neural network/WD Error = 2.23%
Soualhi et al. [70] HHT/SVM/SVR MaxAE = 1.25%
Wang et al. [71] Enhanced KF/EM algorithm Error = 12.09%
Jin et al. [75] Autoregressive model/EKF RMSE = 0.865
Lu et al. [76] LSSVM/PCA/PSO RMSE = 0.1148
Aye and Heyns [79] GPR RMSE = 0.0069
Lu et al. [80] VFF-RLS/ARMA MSE = 0.0164
Zhao et al. [82] LFGRU Error = 6.8%
Ahmad et al. [83] Regression-based hybrid method MaxAE = 32.1%
Qiu et al. [86] SIOS/PF MaxAE = 13.42%
Rai et al. [87] NARX MSE = 0.0059
Hemmer et al. [93] CNN/SVR/Sparse autoencoder-based SVM MaxAE = 27%

diction because of their higher accuracy over individual prognosis methods. Beyond this,

there are a number of challenges that merit further study. We summarize them as follows.

1. Considering operating conditions in monitoring methods.

Bearing prognostic studies have largely been executed over constant environmental

(operating) conditions, and the prognostic techniques are developed using monitor-

ing methods such as VA [36, 74, 83]. However, it is vital to also consider varying

operating conditions which can include environmental variables like wind speed and

ambient temperature. It should be recognized that damage progression can be a func-

tion of the stress and loading applied to bearings, which subsequently affect the RUL

estimation, i.e., classification of operating conditions based on the severity of an en-

vironmental condition.

2. Investigating component interactions for the prognosis task.
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Almost all studies reviewed were for individual bearings [33, 57]. However, compo-

nent interactions should also be considered in the degradation process (for instance,

the interaction between bearings and gears in a gearbox). More signal processing

procedures could also be applied to the machine degradation process to differentiate

bearing fault signals from other component signals.

3. Applying hybrid methods for the prognosis task.

Hybrid methods use a combination of various prognosis techniques which can lead

to higher accuracy compared to individually employed prognosis methods [60, 42].

Hence, it is beneficial to construct more hybrid methods to continue to achieve im-

proved accuracies.

4. Application of Bayesian methods.

Bayesian approaches intrinsically consider probability theory which may be more

appropriate for RUL prediction owing to the probabilistic characteristics of the RUL

task [48, 63]. Therefore, additional emphasis should be applied to the Bayesian style

of analysis.
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4.6 List of Abbreviations

AE Absolute error

ANFIS Adaptive Neuro-fuzzy inference systems

ANN Artificial Neural Network

ARMA Autoregressive moving average

BP Back Propagation

CM Condition monitoring

CNN Convolutional neural network

CUMSUM cumulative sum

CV Confidence value

DBN Deep belief network

DNN Deep neural network

EKF Extended Kalman filter

EM expectation–maximization

EMD Empirical mode decomposition

ENN Elman neural network

ESN Echo state network

FDP Fault diagnosis and prognosis

FL Fuzzy logic

FNN Feedforward neural network

GPR Gaussian process regression

GWEC Global Wind Energy Council

HGRUN Hierarchical gated recurrent unit network

HHHM Hierarchical Hidden Markov model

HHT Hilbert Huang transform

HI Health indicator

HSSB High-speed shaft bearing

HMM Hidden Markov model

IDP Initial degradation point

KF Kalman filter

LBP Local binary pattern
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LFGRU Local feature-based gated recurrent unit

LR Logistic regression

LSSVM Least squares support vector machine

LSSVR least squares support vector regression

MAE Mean absolute error

MD Mahalanobis distance

MLP Multilayer perceptron

MLR Multiple linear regression

MSE Mean Square Error

MaxAE Maximum of absolute error

NARX Nonlinear autoregressive exogenous

NAP Nuisance attribute projection

NFN Neo-fuzzy neuron

NFS Neuro-fuzzy system

NN Neural network

PCA Principal component analysis

PCO Pseudo nearest neighbor

PDF Probability density function

PF Particle filter

PNN Particle swarm optimization

PHM Prognostics and health management

RLS Recursive least-square

RMLP Recurrent multilayer perceptron

RNN Recurrent neural network

RMSE Root mean square error

SKF Switching Kalman Filter

SK Spectral kurtosis

SFAM Simplified fuzzy adaptive resonance theory map

SHMM Semi-hidden Markov model

SIOS Structural information of the spectrum

SIOSI SIOS-based indicator
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SOM Self-organizing map

SVM Support vector machine

SVMR Support vector machine regression

SVR Support vector regression

TDNN time delay neural network

TFR Time-frequency representation

TSP Time to start prediction

VA Vibration analysis

VFF variable forgetting factor

VM Vector machine

WD Weibull distribution

WPD Wavelet packet decomposition
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CHAPTER 5

An Integrated Feature-based Failure

Prognosis Method for Wind Turbine

Bearings

5.1 Introduction

turbines are complex machines functioning in challenging environments. They embody

technologies from aeronautics, mechanical engineering, hydraulics, electrical and elec-

tronic engineering, automation, information technologies, as well as civil engineering in-

frastructure.

As such, for an integrated system, some of the components are more critical than the

others, so, for a wind turbine, it is necessary to rank components based on failure rate and

downtime. There have been some seminal efforts in recent decades on the reliability of

wind farm components as reviewed below.

Nivedh [1] illustrated that the bearings of gearboxes and generators have significant

downtime and subsequently lead to more economic losses for the wind farm operator. Re-

view of the reliability summary studies reveals the gearbox and generator failure rates are

distinctly high. The downtime for these failures is among the highest of all wind turbine

assemblies.

Bearings are critical subassemblies in wind turbines that are prone to faults caused by

the corrosive, high temperature, and high-speed environments in which they usually oper-

ate. The performance deterioration of a bearing is an irreversible and typically continuous
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process. Once the bearing is fixed in its housing, there are hopeful expectations of long,

trouble-free service life. Ultimately, minor early faults can emerge that grow slowly at initi-

ation, then hasten with operating time leading to a complete failure. Major bearing failure in

wind turbines can create significant downtime from time-consuming reactive maintenance

practices. Such lost production directly impacts the wind farm bottom line [2]. Therefore,

fault detection and failure prognosis, i.e., estimation of remaining useful life (RUL) and the

risk for one or more existing failure modes are a primary area of interest for researchers

[3]. Proper condition-monitoring systems (CMS) are an essential component of this pursuit

[4]. Continuous health state evaluation can be conducted using monitoring techniques, in-

cluding vibration analysis (VA), acoustics emission (AE), oil analysis, strain measurement,

and thermography. Data are collected at regular time intervals using sensors and measure-

ment systems. By monitoring and processing the real-time data, faults can be detected and,

then, predicted. Finally, an appropriate maintenance strategy can be chosen based on the

progress of a failure. It is worth noting among all monitoring techniques, vibration analysis

(VA) is the most popular technology applied in WT, especially for rotating equipment [5].

Bearing failure prognosis has recently become an essential topic of research. A prog-

nosis method via robust regression-based curve fitting techniques was developed in Siegel

et al. [6] for oil-cooler helicopter bearing system. Various algorithms in the proposed pre-

diction framework, including feature extraction and selection, health assessment, and RUL

forecasting were investigated in their study. A prognosis method was introduced by Ahmad

et al. [7] using regression-based techniques to learn the degradation trend and project the

RUL of bearings. This RUL approach applied a gradient-based method to determine a time

to start prediction (TSP) using linear regression analysis, which produces a relatively more

accurate RUL prediction. In Chen et al. [8], a Multi-Sensor Hidden Semi-Markov Model,

an extension of classical hidden semi-Markov models, was proposed. The proposed prog-

nostic methodology was validated on a practical bearing application. The experimental

results revealed that the prognostic method was promising to achieve more reliable perfor-

mance than classical hidden semi-Markov models. A model-based prognosis method was

proposed in Singleton et al. [9] by applying an extended Kalman filter to anticipate the

RUL of bearings. An analytical function that best approximated the growth of the failure
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was employed to determine the parameters of the extended Kalman filter. Qiu et al. [10]

presented a new prognostic method by implementing particle filtering (PF) to determine

bearing RUL. The process applied the structural information of the spectrum (SIOS) algo-

rithm to build a new health indicator for bearing deterioration monitoring. Then, the RUL

was predicted using the PF method with the help of the SIOS-based indicator.

In Caesarendra et al. [11], a combination of Vector Machine, Logistic Regression,

and autoregressive moving average/generalized autoregressive conditional heteroscedastic

models was proposed to assess bearing failure degradation. The results confirmed the abil-

ity of the proposed method for bearing failure degradation assessment. Chen et al. [12]

proposed an approach for bearing prognosis based on Neuro-Fuzzy System (NFS) and

Bayesian algorithms. The NFS was used as a prognostic model to determine degradation

path over time. Then, a Bayesian algorithm was employed to update the degree of confi-

dence in the RUL prediction. Experimental test results confirmed that the proposed failure

prognosis approach could predict bearing conditions more accurately in comparison with

the recurrent neural networks, the NFS, and the recurrent NFSs techniques. A integrated

prognosis method was developed by Cheng et al. [13] for a gearbox. Here an ANFIS

was used to estimate the degradation function of the failure. Then, a particle filtering (PF)

approach was applied to predict the RUL of the gearbox based on the learned degradation

function. Soualhi et al. [14] presented a prognosis method which combines Hidden Markov

Model (HMM), the multistep time series prediction, and the adaptive neuro-fuzzy inference

system (ANFIS) to provide the imminence of the next degradation state and estimate the

remaining time before the next degradation state. The experimental results showed the pro-

posed methodology potential for the detection, diagnosis, and prognosis of faults in roller

bearings.

A two-stage approach using Deep Neural Networks (DNN) was proposed in Xia et

al. [15] to estimate the RUL of bearings. A denoising auto encoder-based DNN was em-

ployed to classify the acquired signals into different degradation states. Then, regression

models based on shallow neural networks were constructed for each health state. The pro-

posed approach obtained satisfactory prediction performance on a real bearing degradation

dataset with different working conditions. Wang et al. [16] developed a generalized nonlin-
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ear degradation approach with deterministic and stochastic parameters. The deterministic

parameters were determined using the maximum-likelihood estimation method, while the

stochastic parameter in the degradation trend was updated by the Bayesian method utiliz-

ing a new piece of degradation measurement. The experimental results confirmed that the

proposed method outperforms Gebraeel’s and Si’s approaches. In Soualhi et al. [17], a

prognosis approach that combines the Hilbert Huang Transform (HHT) to extract feature

indexes from raw vibration signals, an SVM to detect the degradation states, and the Sup-

port Vector Regression (SVR) for the estimation of the RUL of ball bearings was proposed.

The experimental results confirmed that the use of the HHT, the SVM, and the SVR is a

suitable strategy to enhance the detection, diagnosis, and prognosis of bearing degradation.

An integrated prognosis approach using support vector machine regression, multilayer ar-

tificial neural network model, and Gaussian process regression was introduced in Elforjani

and Shanbr [18] to estimate the RUL of slow speed bearings. The proposed RUL method

utilized correlating AE features with the corresponding natural wear throughout series of

laboratory experiments.

Fault diagnosis is a well-known task, and it has been widely considered [19, 20, 21,

22]. However, fault prognosis is a relatively new subject, which is often more challenging

owing to the uncertainty inherent in the potential for multiple failure degradation paths

[23]. To overcome this difficulty, an innovative fusion method is developed in this paper

for fault prognosis. The study presented here is driven by data harvested from the turbine.

Hypotheses about the system description and data collection are here provided.

• Integrated Circuit-Piezoelectric (ICP) accelerometers sensors are used to record the

vibration signals here leveraged for failure prognosis.

• Measurement data is recorded and processed by a device known as the “M-system”

that is located in the nacelle of the turbine. Measurements are forwarded to the

Turbine Condition Monitoring (TCM) site server located at wind farm substations

and can be real-time available through the TCM site server.

The objective of this research is to predict the RUL of various bearings in wind turbines.

To achieve this, we design a novel real-time failure prognosis based on a combination of
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signal processing and an adaptive Bayesian algorithm. First, signal processing is engaged to

extract characteristic features from the data. Next, feature selection and de-noising meth-

ods are employed to identify nonlinear dynamics symptomatic of degradation. Then for

each selected feature, an RUL is predicted by means of an adaptive Bayesian algorithm.

Finally, a fusion of various RULs is integrated into a common framework using an ordered

weighted averaging (OWA) operator to provide the RUL of the bearings.

The main contributions of this study are as follows:

• A notable contribution is in the engagement of a fusion method that utilizes an OWA

operator which combines the RULs obtained from various features, to produce a

more accurate RUL prediction.

• Another contribution is in application of proposed signal processing method which

accurately captures the dynamics of the failures through strategic feature extraction

and feature selection. Moreover, de-noising of the signals by way of discrete wavelet

transforms reduce the level of the noise and leads to more reliable results.

• Additional novelty is revealed in the application of the adaptive Bayesian algorithm.

An affine function of time is identified in the performance degradation data obtained

from the characteristic features via a sliding window. The proposed Bayesian algo-

rithm is suitable for modeling the uncertainty inherent in the prediction horizon of

the bearings and is suitable for online implementation.

A comprehensive study using a ten-year historical data on three wind farms in Canada

are conducted. Experimental test results indicate a higher accuracy of the OWA-based

prognosis approach in comparison with the other feature-based methods and also Choquet

integral fusion technique.

This chapter is organized as follows: Section 5.2 demonstrates the description of the

wind turbine drivetrain, bearings and the type of failures. A brief theory of the proposed

fault prognosis method is provided in Section 5.3. Design implementations and experi-

mental test results are presented in 5.4. Finally, a summary of results is provided in Section

5.5.
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FIGURE 5.2.1: Wind turbine drivetrain Schematic including gearbox and Sensor Configu-
ration

5.2 Wind Turbine Drivetrain

This section illustrates the wind turbine drivetrain and its components. The schematic of

a wind turbine drivetrain that includes a rotor, gearbox, and generator is shown in Figure

5.2.1. Attached to three blades, the rotor transforms wind energy into low-speed mechan-

ical energy which in turn is accelerated by the gearbox to produce power in the generator.

For sizeable gear-driven wind turbines, most manufacturers employ a three-stage pattern as

shown in Figure 5.2.1. The low-speed shaft (LSS) planetary gear stage includes the plane-

tary gears in a planet carrier coaxial with a sun gear and a ring gear. Both the intermediate-

speed shaft (IMS) stage and high-speed shaft (HSS) use parallel helical gears [24].

Bearings have several applications in a wind turbine, including yaw, pitch, generator,

main-shaft, and gearbox bearings, which mount in the nacelle. The main-shaft bearings

support the shaft that holds the hub and rotor. The generator bearings provide insulation

against electric currents which reduce the risk of premature bearing failures due to erosion

from electrical currents [25].
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FIGURE 5.3.1: The block diagram of the proposed failure prognosis method.

The vibration data used in this study is provided by accelerometers that monitor the

planet, main-shaft bearing, IMS, HSS, generator drive end (DE) and non-drive end (NDE)

are shown in Figure 5.2.1. In the following subsection, wind turbine bearings are explained.

5.3 A preliminary theory of the proposed fault prognosis

method

This section introduces the preliminary theory of the proposed fault prognosis. Figure 5.3.1

shows the block diagram of the proposed failure prognosis method.

The proposed failure prognosis method includes feature extraction, two-step feature se-

lection, signal de-noising, adaptive Bayesian algorithm, and fusion units. In the following,

different bearing failure types are discussed, and brief underlying theories of the proposed

techniques are presented.
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5.3.1 The bearing failures

Bearing failures can be classified into two categories of distributed and localized defects.

The distributed type describes degradation over large areas of the surface that have become

rough, irregular, or deformed. A typical example is the overall surface roughness caused

by contamination or lack of lubricant. This type of failure is difficult to predict and to

characterize by distinct frequencies. On the contrary, a single-point defect is localized

and can be characterized by distinct frequencies, which typically appear in the machine

vibration. A representative example of a localized defect is a pit or spall. Depending on

which component the bearing has affected, the single point defects can be categorized as

follows [20, 26]:

• Inner raceway defect

• Outer raceway defect

• Rolling element defect

• Cage defect

5.3.2 Feature extraction

For monitoring dynamic elements, in particular, rolling element bearings, the measured

input signals for a condition monitoring system typically consists of vibration signals. In

order to identify the dynamics of bearing failure, vibration signals are analyzed with sig-

nal processing methods which result in several feature categories. Some of the feature

categories are listed as follows:

• Time domain statistical features: They utilize time domain characteristics of signals

to extract features. The most relevant time domain features are [27]:

1) Root mean square (RMS): Helps with distinguishing the differences between vi-

bration signals.

2) Variance: Estimates the distribution of a signal around a reference mean value.
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3) Skewness: Determines whether a signal is negatively or positively skewed.

4) Kurtosis: Estimates the peak value of the probability density function (PDF) and

can reveal if the signal is impulsive.

• Fast Fourier transform (FFT) based features: Convert signals from time to frequency

domain and utilize the frequency domain characteristics of signals to obtain features

[6].

5.3.3 Feature selection

In the feature extraction step, all potential features are obtained from the recorded vibration

data. However, applying all the features for failure prognosis is not beneficial. It may

increase the computational complexity of the system or even lead to reduced accuracy. In

these cases, a subset of the proper features must be selected.

There are many feature selection techniques in the literature. The Filter method and

Wrapper method are two popular examples. Filter-based feature selections employ a sta-

tistical metric to rank each feature. In this method, all the features are sorted based on

the metric. Then, the highest ranked features will be selected. These methods often ap-

ply the features independently. Correlation coefficient scores and information gain are two

examples of filter-based feature selection methods. It is worth noting that selection of the

appropriate metric for effective application of Filter methods is essential [6].

Wrapper methods apply a set of features as a search problem for feature selection,

where various combinations are evaluated and compared to other combinations to select

those most suitable. The wrapper methods are computationally expensive compared to

filter methods due to cross-validation and the repeated learning steps [28].

5.3.4 The discrete wavelet transform method (DWT)

Wavelets are shortwave signals which are identified by localized characteristics in time and

frequency. Discrete wavelet transforms (DWT) are capable in signal processing applica-

tions such as de-noising, fault diagnosis, etc. DWT method can be implemented using
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multi-resolution analysis (MRA) to provide a unique framework to analysis a signal and

capture its characteristics. Particularly, DWT can reconstruct a signal based on a scaling

function φ(t) and a wavelet function ψ(t), as shown in Algorithm 6. This reconstruction

can be formulated as follows. Figure 5.3.2 illustrates signal reconstruction based on MRA

method.

Algorithm 6 DWT Algorithm
1) Formulating signal estimation using a scaling function φ(t) and a wavelet function ψ(t):

h(t) =
∑
k

akφk(t− k) +
∑
k

∑
j

dj,kψj,k(2
jt− k) (5.3.1)

where ak and dj,k represent approximation coefficients and detailed coefficients, respec-
tively. Indices k and j denote the translation and dilation factors, respectively.
2) Determination of the approximation coefficients, ak, and detailed coefficients, dj,k, using
a filtering procedure [29]:

ak =

∫
φk(z)h(z)dz =

1

n

n∑
t=1

φk(z(t)) (5.3.2)

dj,k =

∫
ψj,k(z)h(z)dz =

1

n

n∑
t=1

ψj,k(z(t)) (5.3.3)

Note that h(z) denotes a density function, and since
∫
φk(z)h(z)dz is the expectation of

φk(z) and
∫
ψj,k(z)h(z)dz is the expectation of ψj,k(z), thus, ak and dj,k are achieved using

averaging on their scaling functions and wavelet functions, respectively.

5.3.5 The remaining useful life (RUL)

The RUL of a component or a system is described as the interval between the current time

and the projected end of the useful life which depends on the present state of health and

the operational environment. In this chapter, a new Bayesian method is applied on the de-

noised features to predict the RUL of the system. The proposed RUL prediction method is

summarized in Algorithm 7.

In the algorithm 7, there are some points to be taken into consideration as follow:

• n−m is the length of sliding windows.
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Algorithm 7 Applying Bayesian method
1) Choosing qth feature of S selected features
2) Setting a healthy data set: x(1)

q , x
(2)
q , ..., x

(m−1)
q

3) Setting a training set: the sliding window data with degradation trend is selected:
x

(m)
q , x

(m+1)
q , ..., x

(n)
q

4) Setting the failure threshold (FC):

• Calculating mean of the healthy data set:

µq =
1

m− 1

m−1∑
i=1

x(i)
q (5.3.4)

• Calculating standard deviation of the healthy data set:

σq =

√√√√ 1

m− 1

m−1∑
i=1

(x
(i)
q − µq)2 (5.3.5)

• Calculating the threshold:
FCq = µq + λqσq (5.3.6)

5) Identifying an optimal affine function of discrete time t on the de-noised feature over a
sliding window:

(yt)q = (ĉ1t+ ĉ2 + et)q (5.3.7)

6) Estimating the probability of failure p(Ft0+j) at time t0 + j:

pq(Ft0+j) = pq(Ft0+j|Ht0:t0+j−1)pq(Ht0:t0+j−1) (5.3.8)

pq(Ft0+j|Ht0:t0+j−1) = Qq(
FC − yt0+j

σ
√
j + 1

) (5.3.9)

pq(Ht0:t0+j−1) = [1− p(Ft0+1|Ht0)]q × [1− p(Ft0+2|Ht0:t0+2)]q

· · · × [1− p(Ft0+j−1|Ht0:t0+j−2)]q
(5.3.10)

7) Calculating the RUL:

RULq = (tFailure − tPrediction)q (5.3.11)
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FIGURE 5.3.2: The decomposition of a signal based on MRA method

• λk in Equation 5.3.6 is the complete failure criteria coefficient.

• In Equation 5.3.7, et denotes a Gaussian white noise error and ĉ1 and ĉ2 are estimated

parameters of optimal affine function of time.

• In Equation 5.3.8, p(Ft0+j) is the probability of failure at t0+j. Moreover, pq(Ft0+j|Ht0:t0+j−1)

denotes the probability of being healthy conditional to a failure at t0+j and p(Ht0:t0+j−1)

is the probability of staying healthy until t0+j−1. The derivation of Equation (5.3.8)

can be found in [30].

• The function Q in Equation 5.3.9 is the standard probability Gaussian distribution

function.

• Based on the Equation 5.3.11, RUL is the time difference between the time of a

complete failure, tFailure, defined as the deficiency of the bearing to fulfil its tasks

and the time at which predication is made, tPrediction. Based on Gaussian distribution

theory, the failure probability sequences, p(Ft0+j), of the prediction horizon j exhibit

monotonic growth. Thus, the time of failure, tFailure is determined at a time j where

the probability of failure is at its maximum.
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5.3.6 Fusion method

An ordered weighted averaging (OWA) operator, introduced by Yager et al. [31], is a

powerful tool to aggregate data from various sources to enhance the accuracy of the RUL

prediction. The aggregated RUL is formulated as follows.

RUL =
S∑
q=1

wqRULq (5.3.12)

where S is the number of selected features, RULq is the remaining useful life obtained

by qth feature and wq is its associated weighting factor. The OWA operator task is to opti-

mize the weighting factors for aggregation purposes. For this purpose, several approaches

can be applied. In this paper, a gradient descent strategy is engaged to determine weight-

ing factors. In the following, Algorithm 8 is presented for learning the q weights of the

OWA weighting vector from L observations. It is worth noting that this learning prob-

lem is a constrained optimization problem, as the OWA weights must meet the following

constraints.

S∑
q=1

wq = 1

wq ∈ [0, 1]

(5.3.13)

5.4 Simulation studies and experimental results

This section introduces the structure of the proposed fault prognosis system and considers

experimental test studies to investigate the performance of the RUL method. In the sections

that follow, failure scenarios are illustrated. Afterward, the proposed structure of the fault

prognosis is developed. Then, the accuracy of the proposed prognosis method is evaluated

with historical field data from wind turbine bearings.
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Algorithm 8 Learning weighting factors wq
1) Setting a collection of L observation each comprised of an S−tuple of arguments:
vi1, vi2, ..., viS and an aggregated value: bi (for every i = 1, ..., L) to meet the following
condition.

f(vi1, vi2, ..., viS) = bi (5.3.14)

2) Reordering arguments of the ith observation by ui1, ui2, ..., uiS where uij is the jth largest
element of the argument collection vi1, vi2, ..., viS
3) Simplifying Equation 5.3.14 by taking advantage of the OWA aggregation linearity char-
acteristics with respect to the ordered arguments (for every i = 1, ..., L):

ui1w1 + ui2w2, ...+ uiSwS = bi (5.3.15)

4) Relaxing Equation 5.3.15 by looking for OWA weights that approximate the aggregation
operator by minimizing the instantaneous errors, ei:

ei =
1

2
(ui1w1 + ui2w2 + ...+ uiSwS − bi)2 (5.3.16)

5) Representing the following transformation to circumvent the constraints on the wq (q ∈
[1, S]) in Equation 5.3.13.

wq =
exp ηq∑S
j=1 exp ηj

(5.3.17)

6) Rewriting Equation 5.3.16 with respect to the parameters ηi.

ei =
1

2
(ui1

exp η1∑S
j=1 exp ηj

+ ui2
exp η2∑S
j=1 exp ηj

+

...+ uiS
exp ηS∑S
j=1 exp ηj

− bi)2
(5.3.18)

7) Updating the parameters ηq by using the following rule inspired by the gradient descent
strategy.

ηq(g + 1) = ηq(g)− β ∂ei
∂ηq
|ηq=ηq(g) (5.3.19)

β denotes the learning rate (0 ≤ β ≤ 1) and ηq(g) indicates the estimate of ηq after the gth

iteration. Note that the partial derivative ∂ei
∂ηq

is computed by introducing b̂i as the estimate
of the aggregated value bi for notational simplification as follows.

∂ei
∂ηq

= wq(uiq − b̂i)(b̂i − bi) (5.3.20)
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FIGURE 5.4.1: Outer raceway failure

FIGURE 5.4.2: Inner raceway failure

5.4.1 Failure Scenarios

This study is based on data from three different commercial wind farm sites. Two farms

are based in Southern Ontario and the third is located in Western Prince Edward Island. In

total, data from 136 turbines is considered.

Two bearing failures were prominent among this population, i.e., outer raceway failures

and inner raceway failures. Figure 5.4.1 shows the outer raceway of a main-shaft bearing

on which severe macro-pitting, micro-pitting, and indentations can be observed. Figure

5.4.2 depicts a generator DE bearing with a potential inner race failure.

The failure study was the review of ten-years of raw vibration data that included healthy

and faulty states. It is worth noting that twice a month, vibration signals are recorded for

90 sec at a sampling rate of 6401
s

for the main-shaft bearing and over 4 sec with a sampling
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FIGURE 5.4.3: Vibration signal samples of the main-shaft bearing with outer raceway
failure recorded in healthy and faulty states

rate of 153601
s

for the generator DE bearing. Figure 5.4.3 compares the amplitudes of the

faulty state and the healthy state of the main-shaft bearing. It is evident that the amplitude

of faulty state fluctuates between ¬0.5m
s2

and 0.5m
s2

which is much more than the healthy

state that fluctuates between ¬0.25m
s2

and 0.25m
s2

.

Moreover, the amplitudes of the faulty state and the healthy state of the generator DE

bearing are compared in Figure 5.4.4. It is seen that the amplitude of faulty state fluctuates

between ¬10m
s2

and 10m
s2

which is higher than the amplitude of healthy state fluctuating

between ¬5m
s2

and 5m
s2

.

Remark 1: It should be emphasized that due to the unobservability of the failure dy-

namic in vibration signals, it is necessary to extract next level features from the vibration

data to enable identification of the failure dynamic.

5.4.2 The proposed feature extraction and selection

For this project, time domain statistical methods are engaged to seek the best features for

failure dynamics identification. Many such time domain features can be considered. Cau-

tion must be exercised, as considering all of them may not result in better failure modelling.

Thus, the filter-based selection method is here used to select the most appropriate features.
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FIGURE 5.4.4: Vibration signal samples of the generator DE bearing with the inner race-
way failure recorded in healthy and faulty states

To this end, a two-step filter-based method is proposed. The first step includes selecting the

potential features in identifying failure dynamics by comparing the means and variances

between a healthy and degraded state. Here, if the number of selected features in the first

filtration step is still significant, the second filtration step is executed. In the second step, the

most potential features are selected by developing a correlation metric with bearing wear

size (recorded monthly by maintenance group after fault detection) and each feature. This

implies that the feature magnitude increases in a monotonic manner with bearing damage.

Three features emerged including root mean square (RMS), peak to peak, and variance

are identified as the best candidate features for RUL estimation of the outer raceway failure

category. The degradation trend that was common to the faulty bearings was observable in

these features as shown in Figure 5.4.5. For the inner raceway failure category, root mean

square (RMS), peak to peak and band power were identified as the best features to support

RUL estimation. The ascending tendency typical of the faulty bearings was detectable in

these features as shown in Figure 5.4.6.

Moreover, the complete failure criteria coefficient required in Equation (5.3.6) for each

feature are presented in Table 5.4.1. These coefficients are chosen by careful investigation

of the historical complete failures and previous studies [17, 9, 32].
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FIGURE 5.4.5: Selected features for outer raceway failure

TABLE 5.4.1: Complete failure criteria coefficient λk for each feature

Failure Outer raceway Inner raceway
Variance 9 -
Band power - 18
RMS 6 13.2
Peak to peak 6.9 18.4

Remark 2: The complete failure criteria are usually chosen based on the type of bear-

ing and the nature of the failure.

5.4.3 The proposed de-noising method

Since extracted features are noisy, to improve prognosis accuracy, features required some

de-noising. Here a multi resolution analysis was applied to achieve this. The noisy signals

have major high frequency components that appear mostly in the first detail coefficient, d1

(see Figure 5.3.2). Thus, to eliminate the noise, the noisy features are reconstructed into

detail signal and approximation signal using Equation (5.3.1). Then, just the approximation

signal, a1, (see Figure 5.3.2) is used going forward.
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FIGURE 5.4.6: Selected features for inner raceway failure

5.4.4 The proposed RUL

RUL estimates were facilitated by way of an adaptive Bayesian algorithm applied to fit an

optimal affine function over a sliding window of three months of de-noised feature sig-

nals. For this purpose, an optimal affine model of failure parameter is identified by using

Equation (5.3.7). Then, for the estimation of likelihood function, the failure criterion, deter-

mined through Equations (5.3.4–5.3.6), were substituted into likelihood Equation (5.3.9).

Next, the probability of failure was calculated by substituting Equation (5.3.9) and Equation

(5.3.10) in Equation (5.3.8). Finally, the prediction horizon that maximizes the probability

of failure determines the RUL prediction.

5.4.5 The proposed Fusion

After calculating the RULs obtained from various features, they are combined by the OWA

operator into a unique framework to enhance the accuracy of the prediction. For this pur-

pose, Algorithm 8 is utilized to optimize the weighting factors of the OWA operator. The

learning algorithm is started with initial values ηq(0) = 0, q ∈ [1, 3] (the number of selected
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TABLE 5.4.2: The estimated values of the ηq

Failure Outer raceway Inner raceway
VAR 0.882 -
BP - -0.265
RMS 0.356 0.73
P2P -1.62 -0.065

TABLE 5.4.3: Fusion weights estimated by the OWA operator for each feature

Failure Outer raceway Inner raceway
Variance 0.598 -
Band power - 0.203
RMS 0.353 0.549
Peak to peak 0.049 0.248

features), with initial values of the OWA weights wq = 0.33. A learning rate of β = 0.35

is used. The estimated values of the ηq after 187 iterations for outer raceway failure and

202 iterations for inner raceway failure are shown in Table 5.4.2. As a result, Table 5.4.3

presents the weighting factors for various features in two failure categories. Then, Equation

(5.3.12) is applied to predict the fused RUL.

Furthermore, to evaluate the accuracy of the RUL , a relative accuracy (RA) measure

is considered [30]. The RA index takes a value in a range of [0, 1]. The larger value of the

RA indicates a higher accuracy of the system.

5.4.6 Test results

In this subsection, two bearing failures are examined using experimental data to assess the

performance of the proposed RUL method. In order to evaluate the proposed RUL method,

the RULs obtained by the proposed fusion method (OWA) are compared to the Choquet

integral fusion technique [33] and individual features [34, 6].

Outer raceway failure

The data from the main-shaft bearing of a wind turbine, T31, installed in 2008 is used to

evaluate our proposed approach. This bearing experienced outer raceway failure on June

29th 2017. Figure 5.4.7 displays the RULs obtained by various features, Choquet and OWA.
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FIGURE 5.4.7: Comparison of the RUL estimated by each feature and OWA for outer
raceway failure

The PDFs of the RULs at the chosen sampling points for combined features (Choquet and

OWA) are determined in Figure 5.4.8 for outer raceway failure.

Figures 5.4.7 shows that the anticipated RUL using Choquet fusion method on April

6th 2016 was 406 days. This represents a relative accuracy of 90.4%. Predictions of 417

days (relative accuracy of 92.9%), 197 days (relative accuracy of 43.9%) and 511 days

(relative accuracy of 86.2%) are also shown based on RMS, P2P and the VAR features,

respectively. The integrated RUL that uses the OWA operator yielded an estimate of 462

days; an improved relative accuracy of 97%, better than the Bayesian algorithm achieved

from individual features and Choquet.

For another case, the RUL on September 10th 2016 was 214 days based on the use of

Choquet fusion. This provided a relative accuracy of 73.3%. RULs of 175, 217 and 250

were achieved through utilization of the RMS, P2P and VAR features respectively. Again

here, the integrated RUL driven by the OWA operator provided a better estimate of 222

days with a relative accuracy of 76% compared to Choquet.

From Figure 5.4.8, the following point can be observed. The predicted PDFs of RULs

at the chosen sampling points by OWA are highest compared to Choquet, and can cover

the real RUL well. This means that our approach possesses the highest RUL prediction
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FIGURE 5.4.8: Predicted PDFs of the RULs of outer raceway failure at the chosen sam-
pling points for OWA

accuracy with the smallest prediction uncertainty at the chosen sampling points.

Inner raceway failure

The generator DE bearing of wind turbine, T61, was installed in 2011 in Southwestern

Ontario. This bearing experienced inner raceway failure on September 20th 2018. Figure

5.4.9 reveals the RULs obtained by various features , Choquet and OWA. The PDFs of the

RULs at the chosen sampling points for the combined features (Choquet and OWA) are

shown in Figure 5.4.10 for inner raceway failure.

It is noted from Figures 5.4.9 that the anticipated RUL on November 9th 2017 was

324 days. This represents a relative accuracy of 85.7% based on the Choquet application.

Using RMS, P2P and BP features, estimates of 247, 327 days and 351 days respectively,

were possible. The integrated RUL prediction based on the OWA operator yielded the best

estimate of 289 days (98.6% accurate).

In a second case of March 20th 2018, Choquet approach produced a 164 day estimate

(92.7% accurate). 142 (92.8% accurate), 112 (73.2% accurate) and 190 (75.8% accurate)

day predictions were made by the RMS, P2P and VAR, respectively. Furthermore, the OWA
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FIGURE 5.4.9: Comparison of the RUL estimated by each feature and OWA for inner
raceway failure

estimate was 94.3% accurate at 144 days. The OWA technique again produced the most

accurate prediction compared to the Bayesian algorithm obtained from individual features

and Choquet fusion method.

Again here from Figure 5.4.10, it can be observed that our approach results in the

highest RUL prediction accuracy with the smallest prediction uncertainty at the chosen

sampling points compared to Choquet due to the highest predicted PDFs of RULs at the

chosen sampling points by OWA.

5.5 Conclusion

This chapter proposed a novel real-time RUL prediction method for major bearings critical

to wind turbine operation. Two prominent failure types, outer raceway and inner raceway

degradations, were investigated. The described method employed comprehensive feature

extraction, feature selection, and signal de-nosing to detect dynamic failure characteristics.

Then, the RUL of the bearings was predicted by an adaptive Bayesian algorithm based on

features extracted from raw vibration signals. Finally, a new fusion method built on an

ordered weighted averaging (OWA) operator was applied to combine the RUL obtained
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FIGURE 5.4.10: Predicted PDFs of the RULs of inner raceway failure at the chosen sam-
pling points for OWA

from different features to improve prediction accuracy. Two experimental case studies

demonstrated, for the data considered here, that the proposed real-time fusion RUL method

could notably improve prediction over Bayesian algorithm obtained form single-feature

driven methods and the Choquet integral fusion approach.

The principal advantage of the proposed method includes the ability to accurately cap-

ture the dynamics of the failures through strategic feature extraction and selection. This was

bolstered through the employment of DWT de-noising techniques and the application of a

real-time Bayesian algorithm suitable for modelling the uncertainty inherent in the failure

prediction of bearings. Finally, the engagement of an OWA operator that combined RULs

obtained from various single features revealed a better way to provide relatively accurate

RUL predictions.
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5.6 List of Abbreviations

AE Acoustic Emission

ANFIS Adaptive Neuro-fuzzy inference systems

CMS Condition Monitoring Systems

DE Drive End

DWT Discrete Wavelet Transforms

EKF Extended Kalman filter

FFT Fast Fourier Transform

HHT Hilbert Huang transform

HSS High-Speed Shaft

ICP Integrated Circuit-Piezoelectric

IMS Intermediate-Speed Shaft

LSS Low-Speed Shaft

MRA Multi-Resolution Analysis

NDE Non-Drive End

OA Oil Analysis

OWA Ordered Weighted Averaging

PF Particle filter

SM Strain Measurement

RMS Root Mean Square

RUL Remaining Useful Life

SIOS Structural information of the spectrum

SVR Support vector regression

TCM Turbine Condition Monitoring

TSP Time to Start Prediction

VA Vibration analysis
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CHAPTER 6

RUL Estimation of Wind Turbine

Bearings Under Varying Operating

Conditions

6.1 Introduction

Wind turbine bearings are critical elements to facilitate constrained relative rotation be-

tween two components. Due to high loading, corrosive, high-temperature, and high-speed

environments in which bearings usually operate, faults can emerge on the bearing compo-

nents after a period of service time. Bearing faults such as corrosion, spalling, and pitting

on the raceways will intensify friction, causing overheat and may lead to complete failure

of the bearing. Major bearing failure in wind turbines can create significant downtime from

time-consuming reactive maintenance practices [1]. Therefore, the process of health state

evaluation, fault detection and failure prognosis, i.e., estimation of Remaining Useful Life

(RUL) of bearings can lessen the production downtime and maintenance cost [2]. Proper

Condition-Monitoring Systems (CMS) are an essential component of this pursuit. Vibra-

tion Analysis (VA) has been confirmed to be very useful CMS in assessing the inception

of bearing faults since bearing defects typically cause a machine to vibrate abnormally [3].

Therefore, study on bearing failure prognosis using VA receives much attention in the wind

turbine maintenance field recently.

A prognosis approach is presented by Ahmad et al. [4] using regression-based tech-

niques to learn the degradation trend and project the RUL of bearings. This RUL approach
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employs a gradient-based method to define a Time to Start Prediction (TSP) using lin-

ear regression analysis, which produces a relatively more accurate RUL prediction. Wang

et al. [5] develop a two-stage strategy prognosis including, first, evaluation of degrada-

tion by determining the deviation of extracted features from a known healthy state and,

then, predicting the RUL of the bearing using an enhanced Kalman filter and an Expecta-

tion–Maximization (EM) algorithm. The results confirm that their proposed RUL approach

reach higher estimation accuracy and narrower PDFs in comparison with Gebraeel’s model

[6] and Si’s model [7]. Qiu et al. [8] present a new prognostic method by implementing

Particle Filtering (PF) to determine bearings RUL. The process applies the Structural In-

formation of the Spectrum (SIOS) algorithm to build a new health indicator for bearing

deterioration monitoring. Then, the RUL is predicted using the PF method with the help

of the SIOS-based indicator. Chen et al. [9] present a generic PF-based framework with

application in bearing spalling fault diagnosis and failure prognosis. The results suggest

that the system is capable of meeting performance requirements. Li et al. [10] propose an

intelligent RUL prediction method based on deep learning. Multi-scale feature extraction

is executed employing convolutional neural networks. Experiments on an available rolling

bearing dataset show a high accuracy of the RUL prediction.

Hybrid methods combine various prognosis methods to enhance RUL accuracy [11]. In

Soualhi et al. [12], a hybrid prognosis approach that combines the Hilbert Huang Trans-

form (HHT) to extract feature indexes from raw vibration signals, Support Vector Machine

(SVM) to detect the degradation states, and the Support Vector Regression (SVR) for the

estimation of the RUL of ball bearings is proposed. The experimental results confirm that

the use of the HHT, the SVM, and the SVR is a suitable strategy to enhance the detection,

diagnostic, and prognostic of bearing degradation. A hybrid prognosis approach using

SVM method, Artificial Neural Network (ANN) model, and Gaussian process regression is

introduced by Elforjani and Shanbr [13] to estimate the RUL of slow speed bearings. It is

concluded that neural networks model with a back propagation learning algorithm outper-

forms the other models in predicting the RUL for slow speed bearings. A hybrid prognosis

method based on signal processing and deep learning method is developed in Zhu et al.

[14] for bearings. For this aim, a Time-Frequency Representation (TFR) of the failure is
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identified by Wavelet Transform (WT) with vibration signal. The WT method detects non-

stationary properties of bearing degradation signals. After this, a bilinear interpolation is

implemented on the TFR data to decrease the dimension. Finally, a Multi-Scale Convo-

lutional Neural Network (MSCNN) is utilized to predict the bearing RUL. The test result

with historical data shows a high accuracy of the prognosis method.

In VA-based prognosis methods, degradation dynamics are identified using time do-

main and frequency domain features via vibration signals for all operating conditions.

However, in practice, environmental data such as wind speed and temperature ambient

influence failure dynamics as well. The primary motivation of this research work is to

consider the effect of environmental conditions in real-time VA-based failure prognosis.

Assumptions about the system description and data collection are as follows:

• Integrated Circuit-Piezoelectric (ICP) accelerometers sensors are used to record the

vibration signals leveraged for failure prognosis.

• The SCADA data is collected and processed by a device known as the “M-system”

that is located in the nacelle of the turbine. Then, the SCADA data is forwarded to

the Turbine Condition Monitoring (TCM) site server located at wind farm substations

and can be real-time available through the TCM site server.

In this research work, a hybrid failure prognosis method is proposed to predict the

bearing RUL. Our proposed prognosis approach is implemented in two off-line and online

phases. In the off-line phase, SCADA data is utilized to detect failure severity through a

combination of a Kernel Fuzzy C-Means (KFCM) and a Hidden Markov Model (HMM).

The KFCM clusters various operating states using environmental conditions from SCADA

data. Then, the Viterbi-based HMM is employed to determine the switching time between

the defined operating states and the Viterbi Algorithm is employed to tune and validate the

HMM. Meanwhile, vibration signals are used to identify failure dynamics for each class

of the operating state through the signal processing method using de-noising, feature ex-

traction, and feature selection. Afterward, in the online phase, damage progression models

are determined on features selected from vibration signals, conditional to the defined op-

erating states, using SCADA data. Then, several realizations of HMM are generated for
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anticipating future state in which wind turbine operates. A real-time Bayesian algorithm

is implemented to predict the bearing RUL of each generated realization. Finally, RUL

estimates of realizations are averaged to predict an accurate RUL for faulty bearings.

The main contributions of this study are as follows:

• The damage progression is characterized using the different operating states to mimic

a real condition in which wind turbines operate. This proposed prognosis framework

potentially improves the accuracy of RUL prediction.

• Another notable contribution is the engagement of the KFCM, the HMM methods

and the Viterbi Algorithm. It optimizes the clustering accuracy using fuzzy C means.

Furthermore, the HMM allows the switching between operating states based on prob-

ability transient matrix that correctly utilizes the severe environmental conditions.

Here, the Viterbi Algorithm is employed to tune and validate the HMM.

• Additional novelty is revealed in the implementation of integrated adaptive Bayesian

algorithm and generated realizations of the HMM in the online phase. Generated

realizations of the HMM allows precise prediction of the future state in which wind

turbines operate. Moreover, the Bayesian algorithm is proper to characterize uncer-

tainty inherited in the prediction horizon. This enhances the RUL accuracy.

This chapter is organized as follows: Section 6.2 demonstrates the description of wind

turbine bearings and the type of failures. A brief theory of the proposed fault prognosis

method is provided in Section 6.3. Design implementations and experimental results are

presented in 6.4. Finally, a summary of key findings is provided in Section 6.5.

6.2 Wind Turbine Bearings

Bearings are mechanical parts that facilitate the desired motion between moving parts by

reducing friction. Bearings which transfer loads using rolling elements are known as a

rolling bearing. Primary components of rolling bearings include rolling elements, inner

ring, outer ring, and cage are shown in Figure 6.2.1. The seals are used only in some
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FIGURE 6.2.1: Rolling bearings components

particular applications. The inner ring is located on the shaft of the machine. The outer

ring is fixed to the housing of the device. The rolling elements, either balls or rollers, rotate

against the inner and outer ring raceways. These rolling elements transfer the load acting on

the bearing via small surface contacts separated by a thin lubricating film. The cage keeps

the rolling elements apart to avoid metal-to-metal contact between them during operation.

Bearings applications in a wind turbine comprise of yaw, pitch, generator, main-shaft,

and gearbox bearings, which are mounted in the nacelle. The gearbox bearings include an

Intermediate-Speed Shaft (IMS), High-Speed Shaft (HSS), Low-Speed Shaft (LSS), and

planetary bearings. The generator bearings provide insulation against electric currents,

decreasing the risk of premature bearing failures due to erosion from electrical currents.

The main-shaft bearings support the shaft that holds the hub and rotor [15].

The vibration data used in this study is provided by accelerometers that monitor the

planet, main-shaft bearing, IMS, HSS, generator Drive End (DE) and Non-Drive End
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FIGURE 6.2.2: Bearing Sensors Configuration

(NDE) are shown in Figure 6.2.2.

6.2.1 The bearing failures

Bearing failures can be classified into two categories of distributed and localized defects.

The distributed type describes degradation over large areas of the surface that have become

rough, irregular, or deformed. A typical example is the overall surface roughness caused

by contamination or lack of lubricant. This type of failure is difficult to predict and to

characterize by distinct frequencies. On the other hand, a single-point defect is localized

and can be characterized by distinct frequencies, which typically appear in the machine

vibration. A representative example of a localized defect is a pit or spall. Depending on

which component the bearing has affected, the single point defects can be categorized into

inner raceway and outer raceway defects [16, 17].

6.3 A preliminary theory of the proposed fault prognosis

method

This section introduces the preliminary theory of the proposed failure prognosis. Figure

6.3.1 shows the block diagram of the proposed failure prognosis method.

The procedure of the block diagram is explained as follows. In the off-line phase,
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FIGURE 6.3.1: The block diagram of the proposed failure prognosis method.
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SCADA data is partitioned into C operating condition states employing KFCM. Then,

the most likely sequences between states are determined using an HMM. Here, the Viterbi

Algorithm is employed to tune and validate the HMM. Meanwhile, vibration signals are de-

noised through a Discrete Wavelet Transform (DWT) method. Next, feature extraction and

feature selection are performed on the de-noised vibration signals to capture the dynamic

of failure. In the online phase, C damage progression models are identified on the selected

features conditional toC operation states obtained from SCADA data. Then,R realizations

for future transitions in HMM are generated to determine the most likely state in which

wind turbine will operate in the future. For each realization, RUL is predicted via an

adaptive Bayesian algorithm on C defined damage progression models conditional to the

projected state. Finally, RUL estimates of R realizations are averaged to obtain an accurate

RUL.

In the following, brief underlying theories of the proposed techniques are presented.

6.3.1 KFCM-based clustering

Clustering aims at partitioning a set of multivariate data points into meaningful clusters,

where all members within the same group share similar properties, while data points in

different clusters are highly dissimilar to each other. KFCM, presented in Algorithm 9,

is a robust clustering technique for nonlinear separation of clusters. The KFCM accom-

plishes this goal by mapping the data to a higher dimensional feature space by employing a

nonlinear mapping function Φ, which can be calculated with a kernel function K [18, 19].

The following points concerning Algorithm 9 are worth highlighting.

• The E–M algorithm recursively continue until a convergence condition is satisfied.

• In the E-step, the weight wic is determined by applying Lagrange multipliers to trans-

form the constrained objective
∑C

c=1wic = 1 as an unconstrained optimization model

and forcing the derivatives to zero with respect to wic.

• In the M-step, the distance Φd2ic
is calculated by using a kernel function K [20]. Note

that Algorithm 10 is employed to solve for the kernel function K [18].
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Algorithm 9 Kernel Fuzzy C-Means based clustering
1) Let X = [x1, x2, ..., xN ] (xi ∈ R) be a set of N unlabeled data points.
2) Partitioning the data set X into C clusters by minimizing the distance objective (the
distance Φd2ic

between xi and the centroid vc weighted by wic) with a nonlinear mapping
function Φ in feature space which can be determined using a kernel function K:

min ΣC
c=1ΣN

i=1w
p
icΦd2ic

= min ΣC
c=1ΣN

i=1w
p
ic‖Φ(xi)− Φvc‖2 (6.3.1)

Where p is the exponent.
3) The weight wic and the distance Φd2ic

is updated by the expectation–maximization (E–M)
algorithm:

• E-step:

wic =
1

ΣC
j=1(

Φ
d2
ic

Φ
d2
ij

)
1
p−1

, i = 1, 2, .., N, c = 1, 2, ..., C (6.3.2)

• M-step:

Φd2ic
= Kii − 2×

ΣN
j=1w

p
jcKij

ΣN
j=1w

p
jc

+
ΣN
m=1ΣN

n=1w
p
mcw

p
ncKmn

ΣN
m=1ΣN

n=1w
p
mcw

p
nc

(6.3.3)

6.3.2 Hidden Markov Models and the Viterbi Algorithm

An HMM depicts stochastic sequences of unobservable states as HMM in a probabilistic

form via observable sensor signals. An HMM is a sequence of states, the probability of each

is dependent only on the state instantly preceding it [21]. Let qt ∈ [s1, s2, ..., sn] as the value

of hidden state at time t where n is the number of hidden states and ot ∈ [v1, v2, ..., vm]

as the observed state that the measuring value of sensor where m expresses the possible

number of the observed value corresponding each state, then an HMM is specified by the

following components:

• An initial probability distribution over states, π = (π1, π2, ..., πn)

• A transition probability matrix, A = (aij): indicates the probability that the state is

sj at time t− 1, conditional to, the state is si at time t, as defined as:

aij = P (qt = si|qt−1 = sj), 1 ≤ i, j ≤ n (6.3.8)
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Algorithm 10 Kernal function determination
1) Given the data collection X = [x1, x2, ..., xN ] (xi ∈ R).
2) Estimating the data center v :

v =
1

N
ΣN
i=1xi (6.3.4)

3) Calculating the mean distance d̄ :

d̄ =
1

N
ΣN
i=1di (6.3.5)

Note that di is the distance between data point xi and the data center v.
4) Calculating of the bandwidth h based on the distance variance of all data points in the
collection:

h =
1

N − 1
ΣN
i=1(di − d̄)2 (6.3.6)

5) Determination of kernel function in the form of radial basis function (RBF):

Kij = K(xi, xj) = exp(−‖xi − xj‖
2

h
) (6.3.7)

• A confusion matrix, B = (bjk): : indicates the probability that the hidden state is sj

while vk as the observed state, as described as:

bjk = P (ot = vk|qt = sj), 1 ≤ j ≤ n, 1 ≤ k ≤ m (6.3.9)

Here the challenge is to find the most likely sequence of hidden statesQ = [q1, q2, ..., qt]

based on the system parameter λ = (π,A,B) and observation sequenceO = [o1, o2, ..., ot].

The task of determining the most probable sequence of hidden states based on the sequence

of observations is known as decoding or inference. The Viterbi is a robust decoding algo-

rithm for HMMs which computes the most probable sequence (as well as its probability)

as indicated in Algorithm 11 [22].

6.3.3 Signal de-noising based on DWT method

DWT method is suitable for signal processing applications such as de-noising, fault diag-

nosis, etc. DWT method can be implemented using multi-resolution analysis (MRA) to
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Algorithm 11 Viterbi algorithm
1) Initialization:

δ1(i) = πibio1ψ1(i) = 0, 1 ≤ i ≤ n (6.3.10)

2) Recursion:

δt+1(j) = max
1≤i≤n

[δt(i)aij]bjot+1

ψt+1(j) = arg max
1≤i≤n

[δt(i)aij]bjot+1 , 1 ≤ t ≤ T, 1 ≤ j ≤ n
(6.3.11)

3) Computing States Sequences (with retrospect):

P (Q,O|λ) = max
1≤i≤n

δT (i), Qt−1 = ψt(Qt), T ≥ t ≥ 1 (6.3.12)

provide a unique framework for analyzing a signal and capture its characteristics. Particu-

larly, DWT can reconstruct a signal based on a scaling function φ(t) and a wavelet function

ψ(t). This reconstruction can be formulated as follows.

f(t) =
∑
k

akφ(t− k) +
∑
k

∑
j

dj,kψ(2jt− k) (6.3.13)

where ak and dj,k represent approximation coefficients and detailed coefficients, re-

spectively. Indexes k and j denote the translation and dilation factors, respectively. It is

worth noting that the approximation and detailed coefficients are determined using filtering

procedure introduced by Mallat [23]. Figure 6.3.2 illustrates signal reconstruction based

on MRA method.

Note that detailed coefficient (d1) contain the noise of faulty signals. Therefore, this

coefficient must be discarded to improve the quality of the signals.

Remark 1: It should be emphasized that while vibration data can directly help with

fault diagnosis, it does not directly support failure prognosis due to the unobservability of

the failure dynamic. Rather, it is essential to extract next level features from the vibration

data to enable identification of the failure dynamic.
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FIGURE 6.3.2: The decomposition of a signal based on MRA method

6.3.4 Feature extraction

For monitoring dynamic components, specifically, rolling element bearings, the recorded

input signals for CMS typically includes vibration signals. For identifying the failure dy-

namics, vibration signals are analyzed with signal processing techniques which result in

several feature categories. Time domain statistical methods are engaged to seek the best

features for failure dynamics identification due to their robustness in bearing failure prog-

nosis. They utilize time domain characteristics of signals to extract features. The most

relevant time domain features are shown in Table 6.3.1 [24]:

6.3.5 Feature selection

Applying all potential features obtained in the feature extraction step for failure prognosis

may increase the computational complexity of the system or even lead to reduced accuracy.

In these cases, a subset of the appropriate features must be chosen.

There are several feature selection procedures in the literature. The Filter-based and

Wrapper techniques are two popular examples. Filter-based feature selections apply a sta-

tistical metric to sort features, and the highest ranked features are chosen. Correlation

coefficient scores and information gain are two examples of filter-based feature selection
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TABLE 6.3.1: Time domain features for signal x

Features Formula
Mean A1 = 1

N
ΣN
i=1xi

Standard Deviation A2 =
√

1
N−1

ΣN
i=1(xi − A1)2

Root Mean Square A3 =
√

1
N

ΣN
i=1x

2
i

Variance A4 =
1
N

ΣNi=1(xi−A1)3

[ 1
N

ΣNi=1(xi−A1)2]
3
2

Peak to peak A5 = max (x)−min (x)

Waveform factor A6 = A3
1

N−1
ΣNi=1|xi|

Peak factor A7 =
xpeak
A3

Impulse factor A8 =
xpeak

1
N−1

ΣNi=1|xi|

Margin factor A9 =
xpeak

( 1
N

ΣNi=1|xi|)2

Kurtosis factor A10 =
ΣNi=1x

4
i

N×A3

Skewness A11 = E[(x−A1

A2
)3]

Kurtosis A12 = E[(x−A1

A2
)4]

methods. It is worth noting that the selection of the proper metric for efficient application

of Filter methods is inevitable [25]. These methods often apply the features independently.

However, Wrapper methods use a set of features as a search problem for feature selection,

where various combinations are assessed and compared to select the most suitable. The

wrapper methods are computationally expensive compared to filter methods due to cross-

validation and the repeated learning steps [26].

6.3.6 Bayesian RUL Prediction Algorithm

Bayesian inference is a robust set of tools for the establishment of the mathematical for-

mulation of the observed events and the factors in the models affecting the observed data.

Bayesian method can be employed on the observed data conditional to each operating con-

dition (state) to predict the RUL of the dynamic system as described in Algorithm 12.

The following are key points concerning Algorithm 12.

• The time of a complete failure, tFailure signifies as the deficiency of the bearing to
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Algorithm 12 Bayesian based RUL estimation
1) Choosing qth feature of p selected features
2) Setting a healthy data set: x(1)

q , x
(2)
q , ..., x

(y−1)
q

3) Setting a training set: the sliding window data with degradation trend is selected:
x

(y)
q , x

(y+1)
q , ..., x

(z)
q

4) Setting the failure threshold (FC):

• Calculating mean of the healthy data set:

µq =
1

y − 1

y−1∑
i=1

x(i)
q (6.3.14)

• Calculating standard deviation of the healthy data set:

σq =

√√√√ 1

y − 1

y−1∑
i=1

(x
(i)
q − µq)2 (6.3.15)

• Calculating the threshold:
FCq = µq + λqσq (6.3.16)

5) Identifying an optimal affine function of discrete time t on the de-noised feature over a
sliding window:

(yt)q = (ĉ1t+ ĉ2 + et)q (6.3.17)

6) Estimating the probability of failure p(Ft0+j) at time t0 + j:

pq(Ft0+j) = pq(Ft0+j|Ht0:t0+j−1)pq(Ht0:t0+j−1) (6.3.18)

pq(Ft0+j|Ht0:t0+j−1) = Qq(
FC − yt0+j

σ
√
j + 1

) (6.3.19)

pq(Ht0:t0+j−1) =

[1− p(Ft0+1|Ht0)]q × [1− p(Ft0+2|Ht0:t0+2)]q

· · · × [1− p(Ft0+j−1|Ht0:t0+j−2)]q

(6.3.20)

7) Calculating the RUL:

RULq = (tFailure − tPrediction)q (6.3.21)
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fulfil its tasks and tPrediction is the predicted time. Based on the Gaussian distribution,

tFailure is described as the time at which the probability of failure is at its peak. The

p(Ft0+j) is the probability of failure at t0 + j and p(Ht0:t0+j−1) is the probability of

staying healthy until t0 + j − 1. The derivation of Equation (6.3.18) can be found in

Appendix A [27]. The function Q is the standard probability Gaussian distribution

function.

• et denotes a Gaussian white noise error and ĉ1 and ĉ2 are estimated parameters of

optimal affine function of time.

• y − z is the length of sliding windows.

• λk is the complete failure criteria coefficient.

6.4 Simulation studies and experimental results

This section introduces the structure of the proposed fault prognosis system and considers

experimental test studies to investigate the performance of the RUL method. In the sections

that follow, failure scenarios are illustrated. Afterward, the proposed structure of the fault

prognosis is developed. Then, the accuracy of the proposed prognosis method is evaluated

with historical field data.

6.4.1 Failure Scenarios

This study is based on data from 136 turbines of three different commercial wind farm

sites. Two farms are located in Southern Ontario and the third is based in Western Prince

Edward Island.

Two types of bearing failures were crucial among this population, i.e., outer raceway

failures and inner raceway failures. Figure 6.4.1 indicates the outer raceway of a main-shaft

bearing on which severe macro-pitting, micro-pitting, and indentations can be observed.

Figure 6.4.2 depicts a generator DE bearing with a potential inner race failure.
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FIGURE 6.4.1: Outer raceway failure

FIGURE 6.4.2: Inner raceway failure
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FIGURE 6.4.3: Vibration signal samples of the main-shaft bearing with outer raceway
failure recorded in healthy and faulty states

The failure study was the investigation of 10-minute SCADA date for categorizing dif-

ferent operating states and raw vibration data for identifying damage progression model,

conditional to each state. Twice a month, vibration signals are recorded for 90 sec at a

sampling rate of 6401
s

for the main-shaft bearing and over 4 sec with a sampling rate of

153601
s

for the generator DE bearing. The amplitudes of the faulty phase and the healthy

phase of the main-shaft bearing are compared in Figure 6.4.3. It is seen that the amplitude

of faulty phase fluctuates between ¬0.5m
s2

and 0.5m
s2

which is higher than the healthy phase

that fluctuates between ¬0.25m
s2

and 0.25m
s2

.

Moreover, Figure 6.4.4 compares the amplitudes of the faulty phase and the healthy

phase of the generator DE bearing. It is evident that the amplitude of faulty phase fluc-

tuates between ¬10m
s2

and 10m
s2

which is much more than the amplitude of healthy phase

fluctuating between ¬5m
s2

and 5m
s2

.
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FIGURE 6.4.4: Vibration signal samples of the generator DE bearing with the inner race-
way failure recorded in healthy and faulty states

6.4.2 Off-line phase design implementation

In off-line phase, 10-minute SCADA data including ambient temperature, wind speed, ac-

tive power generated, main-shaft rotational speed, main bearing temperature, generator

rotational speed, and generator DE bearing temperature is used to categorize different op-

erating states. An KFCM is employed to achieve this. As a result, two states, so-called

normal and aggressive states, are partitioned by utilizing Equation 6.3.1. Following the

operating condition is clustered into two states, the wind turbine operating profile is to be

characterized. In this regard, an HMM is trained, and the most likely states sequence is

determined by using the transition probability matrix, Equation 6.3.8. Here, the Viterbi

Algorithm is employed to tune and validate the HMM by applying Equation 6.3.12.

Meanwhile, raw vibration data is considered for identifying damage progression model.

Since vibration signals are noisy, to enhance prognosis accuracy, signals are required some

de-noising. Here a multi-resolution approach is employed to achieve this. The noisy signals

have major high-frequency components that appear principally in the first detail coefficient,

d1 (see Figure 6.3.2). Thus, to remove the noise, the noisy signals are reconstructed into de-

tail signal and approximation signal using Equation (6.3.13). The approximation signal, a1,
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FIGURE 6.4.5: Selected features for the bearing #1 RUL estimation prediction

TABLE 6.4.1: Complete failure criteria coefficient λk for each feature

Failure Outer raceway Inner raceway
Variance 9 -
Band power - 18
RMS 6 13.2
Peak to peak 6.9 18.4

(see Figure 6.3.2) is used going forward. Next, twelve time domain features, introduced in

Table 6.3.1, are extracted. Afterward, two features, root mean square (RMS) and variance

(VAR) are identified as the best candidate features for RUL estimation of the outer race-

way failure category using filter-based methods that compare means and variances. The

degradation trend that is common to the faulty bearings is observable in these features as

shown in Figure 6.4.5. For the inner raceway failure category, root mean square (RMS) and

peak to peak (P2P) are identified as the best features to support RUL estimation employing

filter-based methods that compare means and variances. The ascending tendency typical of

the faulty bearings is detectable in these features as shown in Figure 6.4.6.

The complete failure criteria coefficient required in Equation (6.3.3) for each feature

are presented in Table 6.4.1. These coefficients are chosen by careful investigation of the

historical complete failures and previous studies [12, 28, 29].

Remark 2: The complete failure criteria are usually chosen based on the type of bear-

ing and the nature of the failure.
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FIGURE 6.4.6: Selected features for the bearing #2 RUL estimation prediction

6.4.3 Online phase design implementation

In on-line phase, damage progression models are identified on each selected feature by us-

ing Equation (6.3.17), conditional to each operating state obtained from SCADA data, to

characterize the evolution in time of the fault feature. As a result, two degradation models

are developed precisely associated to normal and aggressive states. For long-term predic-

tion horizons,R realizations of the HMM, i.e. R paths for future transitions in the HMM are

developed based on the transition probability matrix presented in Equation 6.3.8. Then, the

damage progression model associated to the predicted future wind turbine operating state

for each realization is used to predict the RUL. RUL estimates are facilitated by way of an

adaptive Bayesian algorithm in the following steps. First, for the estimation of likelihood

function, the failure criterion, determined through Equations (6.3.14–6.3.16), are substi-

tuted into likelihood Equation (6.3.19). Next, the probability of failure is calculated by

substituting Equation (6.3.19) and Equation (6.3.20) in Equation (6.3.18). Finally, the pre-

diction horizon that maximizes the probability of failure determines the time to failure and

the RUL is estimated using Equation (6.3.21). As a result, R RULs are predicted through

R realizations which are averaged to achieve an accurate RUL of the faulty bearings.

Furthermore, to evaluate the accuracy of the RUL , a relative accuracy (RA) measure

is considered [27]. The RA index takes a value in a range of [0, 1]. The larger value of the

RA indicates a higher accuracy of the system.
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FIGURE 6.4.7: Varying states sequences for outer raceway failure

6.4.4 Test results

In this subsection, two real life bearing failures are utilized to assess the performance of

the proposed RUL method.

Outer raceway failure

The data from the main-shaft bearing of a wind turbine, T31, installed in 2008 is used to

evaluate our proposed approach. This bearing experienced outer raceway failure on June

29th 2017. Figure 6.4.7 displays the varying operating states sequences achieved by using

the HMM algorithm in short-term prediction and by generating realizations in long-term

prediction.

Figure 6.4.8 displays the RULs obtained by averaging 15 selected realizations of vary-

ing operating conditions (VOC) compared to constant operation condition (COC), i.e. with-

out categorizing different states, and real RUL based on the use of RMS and VAR features.

Note that there is no significant change in RUL obtained by averaging more realizations

than 15 realizations as indicated in Table 6.4.2 based on RUL estimates of RMS on July

13th 2016.
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TABLE 6.4.2: Comparison of the RULs estimated by different approach for outer raceway
failure

Approach RA
COC 66.4%
11-realization average 84.6%
13-realization average 88.7%
15-realization average 90.2%
17-realization average 90.8%

FIGURE 6.4.8: Comparison of the RULs estimated by averaging 15 selected realizations
of VOC and COC
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FIGURE 6.4.9: Varying states sequences for inner raceway failure

Figure 6.4.8 shows that the anticipated RUL of the proposed approach on July 13th 2016

was 316.7 days based on the degradation trend of the RMS. This represents an improved

relative accuracy of 90.2% compared to constant operating condition with RA of 66.4%.

Using Variance, estimates of 251 days in COC, was possible. However, considering vary-

ing operating conditions, RUL prediction yielded the best estimate of 332.5 days (94.7%

accurate).

In a second case of March 24th 2017, predictions of 28 days (relative accuracy of 28.8%)

and 37 days (relative accuracy of 38%) are also shown based on RMS, and the variance fea-

tures, respectively. Furthermore, the proposed method estimates were 72.7% at 123.5 days

and 68.6% at 127.5 days based on the degradation trend of the RMS, and the variance fea-

tures, respectively. The proposed technique again produced the most accurate predictions.

Inner raceway failure

The generator DE bearing of wind turbine, T61, was installed in 2011 in Southwestern

Ontario. This bearing experienced inner raceway failure on September 20th 2018. Figure

6.4.9 displays the varying states sequences achieved by using the HMM algorithm in short-

term prediction and by generating realizations in long-term prediction.

Figure 6.4.10 displays the RULs obtained by averaging 12 selected realizations of vary-

ing operating conditions (VOC) compared to constant operation condition (COC), and real
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TABLE 6.4.3: Comparison of the RULs estimated by different approach for inner raceway
failure

Approach RA
COC 87%
8-realization average 85.4%
10-realization average 87.9%
12-realization average 90.8%
14-realization average 91.3%

FIGURE 6.4.10: Comparison of the RULs estimated by averaging 12 selected realizations
of VOC and COC

RUL based on the use of RMS and VAR features. Note that there is no significant change

in RUL obtained by averaging more realizations than 12, as indicated in Table 6.4.3 based

on RUL estimates of RMS on November 9th 2017.

It is noted from Figure 6.4.10 that the anticipated RUL of the proposed approach on

November 9th 2017 was 258 days based on the RMS feature application. This represents

the better relative accuracy of 90.8% compared to constant operating condition with RA of

87%. Peak to peak feature approach produced a 327 days (85% accurate). Besides, VOC

RUL prediction based on the degradation trend of the peak to peak yielded the best estimate
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of 293 days (96.8% accurate).

In a second case of May 1st 2018, 155 (60% accurate) and 96 (86.5% accurate) day

predictions were made by the degradation trend of RMS and peak to peak in constant

operating condition respectively. Improved Relative accuracies of 73.8% and 90% were

achieved through utilization of the RMS and peak to peak features in varying operating

conditions respectively.

6.5 Conclusion

This chapter proposed a novel real-time RUL prediction method for major bearings critical

to wind turbine operation. Two prominent failure types, outer raceway and inner raceway

degradations, were investigated. The described method first employed KFCM to categorize

different operating conditions (states), and, then, applied comprehensive signal de-noising,

feature extraction from de-noised vibration signals, and feature selection to detect dynamic

failure characteristics and identifying damage progression models, conditional to each op-

erating state. An HMM was then used to characterize the most likely states sequence for

short-term prediction, and R realizations of HMM were generated for long-term predic-

tion horizons. Here, the Viterbi Algorithm is employed to tune and validate the HMM by

applying. The damage progression model associated to the predicted future wind turbine

operating state for each realization was used to predict the RUL. Finally, RULs estimates

of generated realizations were averaged to improve prediction accuracy. Two experimental

case studies demonstrated, for the data considered here, that the proposed real-time fu-

sion RUL method could notably improve prediction over considering constant operating

condition.
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6.6 List of Abbreviations

ANFIS Adaptive Neuro-fuzzy inference systems

ANN Artificial Neural Network

CMS Condition Monitoring Systems

COC Constant Operating Condition

DE Drive End

DWT Discrete Wavelet Transforms

EKF Extended Kalman filter

FFT Fast Fourier Transform

HMM Hidden Markov Model

HSS High-Speed Shaft

ICP Integrated Circuit-Piezoelectric

IMS Intermediate-Speed Shaft

LSS Low-Speed Shaft

KFCM Kernel Fuzzy C-Means

MC Markov Chain

MRA Multi-Resolution Analysis

NDE Non-Drive End

OWA Ordered Weighted Averaging

PF Particle filter

P2P Peak to peak

RA Relative Accuracy

SM Strain Measurement

RMS Root Mean Square

RUL Remaining Useful Life

SVM Support Vector Machine

SVR Support vector regression

TCM Turbine Condition Monitoring

VA Vibration analysis

VAR Variance

VOC Varying Operating Condition
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CHAPTER 7

Conclusion

In this dissertation, the task of failure detection and failure prognosis for critical wind

turbine components was investigated from multiple aspects. In this regard, five novel ap-

proaches were examined on wind turbine generators, blades, and bearings. The concluding

remarks of each developed methodology would be briefly outlined in the following sec-

tions.

Chapter 2 focuses on non-parametric and parametric life data analyses to predict the

reliability of the wind turbine generators based on truncated/limited data records. Besides,

a Naive prediction interval procedure is proposed to provide an approximate range for the

RUL of each generator. It is shown how reliable a subset of wind turbine generators is and

how electrical loads may influence turbine generator reliability. These outcomes may be

leveraged further by the research community for companion applications like prognostic

maintenance and investment decision support systems.

In Chapter 3, a new condition monitoring approach for extracting fault signatures in

wind turbine blades by utilizing the data from a real-time Supervisory Control and Data

Acquisition (SCADA) system. A hybrid fault detection system based on a combination

of Generalized Regression Neural Network Ensemble for Single Imputation (GRNN-ESI)

algorithm, Principal Component Analysis (PCA) and wavelet-based Probability Density

Function (PDF) approach is proposed in this Chapter. It is illustrated the effectiveness and

high accuracy of the proposed monitoring approach to detect incipient blade faults.

Chapter 4 focuses thoroughly on a recent literature review on modeling developments

for prediction of the RUL of faulty wind turbine bearings. The pros and cons of each

prognosis method are also highlighted. Furthermore, shortcomings of the existing methods
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are highlighted, and a number of challenges that merit further study are summarized. Note

that most of these challenges are addressed in the next two chapters.

In Chapter 5, a novel hybrid real-time RUL prediction method for major bearings criti-

cal to wind turbine operation is developed. The proposed method employs comprehensive

feature extraction, feature selection, and signal de-noising to detect dynamic failure char-

acteristics. RUL of the faulty bearings is forecast via adaptive Bayesian algorithm using

the extracted features. Next, a robust fusion method based on an ordered weighted averag-

ing (OWA) operator is applied to the RUL obtained from the features to improve accuracy.

The efficiency of the method is evaluated using data from historical failures across three

different Canadian wind farms.

Chapter 6 introduces a hybrid prognosis method using real-time Supervisory Control

and Data Acquisition (SCADA) and vibration signal to predict Remaining Useful Life

(RUL) for wind turbine bearings. The SCADA data is utilized to determine the role of

environmental conditions such as wind speed and ambient temperature in the severity of

failure dynamics using a Kernel Fuzzy C-Means (KFCM) and a Hidden Markov Model

(HMM) that is validated using the Viterbi Algorithm. For this purpose, the KFCM method

is used to categorize different operating states in which wind turbines operate. The HMM

is then used during the prediction stage to characterize epistemically uncertainty associated

with future operating conditions and the most likely switching between different operating

states. Here, clustered data is used to identify a collection of empirical health degradation

models which are conditional on the operating conditions for the plant. Afterward, for each

state, failure dynamics are identified from the vibration signal using a combination of signal

denoising, feature extraction, and feature selection. Finally, RUL of the faulty bearings is

forecasted via adaptive Bayesian Algorithm using the failure dynamics on the selected

features, conditional to each operating state. The efficacy of the method is validated using

experimental data from three different Canadian wind farms.

7.1 Contributions

The most important contributions of this dissertation are summarized as follows:
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• The first contribution of this dissertation is in the application of ALTA lifetime anal-

ysis method for reliability estimation of wind turbine generators to help illustrate a

possible relationship between varying loads and generator reliability.

• An additional contribution is to provide early fault detection due to applying the

wavelet-based PDF method that can accurately estimate the probability density func-

tions of principal components (PCs) and consequently detect incipient wind turbine

blade faults.

• Another contribution is revealed in the application of the adaptive Bayesian algo-

rithm. An affine function of time is identified in the performance degradation data

obtained from the characteristic features. The proposed Bayesian algorithm is suit-

able for modeling the uncertainty inherent in the prediction horizon of the bearings

and is suitable for online implementation.

• A notable contribution is in the engagement of a fusion method that utilizes an OWA

operator which combines the RULs obtained from various features, to produce a

more accurate RUL prediction.

• Finally, the damage progression is characterized using the different operating states

to mimic a real condition in which wind turbines operate. This proposed prognosis

framework potentially improves the accuracy of RUL prediction. The main concept

is to recognize that the damage progression is a function of the stress applied to each

component.

7.2 Future Work

Health monitoring of critical wind turbine components is becoming an increasingly signif-

icant field of research in the years to come and possess the potential to contribute a proper

framework for condition-based maintenance. In the following, some challenges that merit

for future research efforts in this field are highlighted.

• Identifying the type of blade fault.
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Employing Classification approaches to distinguish different wind turbine blade fail-

ure modes, such as crack and erosion in the blade

• Considering components interactions for the prognosis task.

Component interactions should be investigated in the damage progression (for in-

stance, the interaction between bearings and gears in a gearbox). More signal pro-

cessing methods could also be applied to the machine degradation process to distin-

guish components fault signals from each other.

• Application of particle filter

The particle filter is a potential technique to capture the nonlinear dynamics and

enhance the accuracy of failure prognosis. Caution must be exercised, as it may

increase the computation complexity which may be a negative aspect for the real-

time implementation of the method.

• Investigating coincident failures

Developing methods to isolate coincident failures in a system and predict the RUL

of the system

• Considering online health monitoring with the task of the prognosis

It is beneficial to implement an online health assessment to evaluate the accuracy

of the prognosis due to uncertainties associated with the prediction horizon of the

failure.
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APPENDIX A

Bayesian RUL Prediction Algorithm

A recursive RUL scheme based on an adaptive Bayesian algorithm is used in this disserta-

tion to project the remaining lifetime of several faulty wind turbine bearings. The proposed

RUL method is illustrated in Figure 8.0.1. It is noted from Figure 8.0.1 that an optimal

affine function of time can be identified on the extracted feature over a sliding window as

follows [1, 2]:

yt = m̂t+ n̂+ et (A.0.1)

where et ∼ N(0, σ2) is a Gaussian white noise error with zero mean and variance σ2 and

m and n are parameters of optimal affine linear function. Then, yt0 ∼ N(m̂t0 + n̂, σ2), and

any j step ahead prediction distribute in a Gaussian random variable:

ŷt0+j ∼ N(ŷ0 +mj, (j + 1)σ2) (A.0.2)

A non-stationary Bernoulli process can be applied to model failure. A probability space

can be defined by considering healthy state and complete failure state at time tk with Htk

and Ftk notations as follows:

Ωfailure = {Ht0 , Ht0+1, . . . , Ht0+j−1, Ft0+j} (A.0.3)

Ωfailure denotes the probability space including all possible Bernoulli sequences where

the component remains healthy until time t0 + j in which a complete failure occurs in the

component. The probability of failure, p(Ft0+j), at t = t0+j can be obtained by conditional

probability as follows:
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FIGURE A.0.1: The adaptive Bayesian RUL method

p(Ft0+j) =
p(Ft0+j, Ht0:t0+j−1)

p(Ht0:t0+j−1|Ft0+j)
(A.0.4)

p(Ft0+j, Ht0:t0+j−1) is the probability of failure at t = t0 + j and simultaneously being

healthy until t = t0 + j − 1. p(Ht0:t0+j−1|Ft0+j) denotes the probability of being healthy

conditional to a failure at t = t0 + j. p(Ht0:t0+j−1|Ft0+j) is equivalent to one because here

failure in the physical system occurs just once, and Eq. (8.0.4) can be rewritten employing

the joint probability definition as follows:

p(Ft0+j) = p(Ft0+j|Ht0:t0+j−1)p(Ht0:t0+j−1) (A.0.5)

where p(Ht0:t0+j−1) denotes the probability of staying healthy until t = t0 + j − 1. Proba-

bility p(Ft0+j|Ht0:t0+j−1) is known as likelihood function, and can be estimated as follows:

p(Ft0+j|Ht0:t0+j−1) = p(yt0+j > FC)

= Q(
FC − yt0+j

σ
√
j + 1

)
(A.0.6)

The function Q is the tail of the standard probability Gaussian distribution. In this study,

the adaptive Bayesian algorithm is employed to fit an affine function of y(t0+j) to the de-

noised feature data of the bearings over a sliding window, noted from Figure 8.0.1. The

complete failure criterion (FC), threshold, can be obtained as follows:
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FC = µ+ λσ (A.0.7)

Where λ is the failure threshold coefficient. Variables µ and σ are mean and standard

deviation of the healthy data set, respectively, and can be estimated as follow:

µ =
1

m

m∑
i=1

x(i) (A.0.8)

σ =

√√√√ 1

m

m∑
i=1

(x(i) − µ)2 (A.0.9)

After calculating the likelihood function; function p(Ht0:t0+j−1) can then be determined

by using properties of the probability as follows:

p(Ht0:t0+j−1) = [1− p(Ft0+1|Ht0)]× [1− p(Ft0+2|Ht0:t0+2)]

· · · × [1− p(Ft0+j−1|Ht0:t0+j−2)]
(A.0.10)

Based on Gaussian distribution theory, the failure probability sequences, p(Ft0+j) of

the prediction horizon j exhibit monotonic growth. The predicted time of the failure or the

RUL of the system is determined at a time j where the probability of failure is at its peak

[1, 2].
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