

Genetic Algorithm for Artificial Neural Network

Training for the purpose of Automated Part

Recognition

by

Stefan Buys, B.Tech Elec. Eng.

A dissertation submitted in compliance with the full requirements for the degree of

Magister Engineering: Mechatronic

in the

Faculty of Engineering, the Built Environment and Information Technology

Nelson Mandela Metropolitan University

Promoter: Prof. T. I van Niekerk

The copy of this dissertation has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with the Nelson Mandela Metropolitan University

and that no extracts from the thesis or information derived from it may be published without the

author’s prior consent.

I, Stefan Buys,

hereby declare that this work is my original work and all sources used or referred to have been

documented and recognised.

Further this work has not been submitted in full or partial fulfilment of the requirements for any

degree at another recognised educational institute.

Date Author’s Signature

......................

i | P a g e

Abstract

Object or part recognition is of major interest in industrial environments.

Current methods implement expensive camera based solutions. There is a need for a cost effective

alternative to be developed. One of the proposed methods is to overcome the hardware, camera, problem by

implementing a software solution. Artificial Neural Networks (ANN) are to be used as the underlying intelligent

software as they have high tolerance for noise and have the ability to generalize. A colleague has

implemented a basic ANN based system comprising of an ANN and three cost effective laser distance

sensors. However, the system is only able to identify 3 different parts and needed hard coding changes made

by trial and error. This is not practical for industrial use in a production environment where there are a large

quantity of different parts to be identified that change relatively regularly. The ability to easily train more parts

is required. Difficulties associated with traditional mathematically guided training methods are discussed,

which leads to the development of a Genetic Algorithm (GA) based evolutionary training method that

overcomes these difficulties and makes accurate part recognition possible.

An ANN hybridised with GA training is introduced and a general solution encoding scheme which is used to

encode the required ANN connection weights.

Experimental tests were performed in order to determine the ideal GA performance and control parameters as

studies have indicated that different GA control parameters can lead to large differences in training accuracy.

After performing these tests, the training accuracy was analyzed by investigation into GA performance as well

as hardware based part recognition performance. This analysis identified the ideal GA control parameters

when training an ANN for the purpose of part recognition and showed that the ANN generally trained well and

could generalize well on data not presented to it during training.

ii | P a g e

Acknowledgements

I have been indebted in the preparation of this thesis to my supervisor, Prof. T.I van Niekerk, whose patience,

insight and direction, as well as his academic experience, has been invaluable to me.

I am extremely grateful to Mr H. van Rooyen for allowing me access to his research and development into

automated part recognition and artificial neural networks.

The informal support, encouragement and understanding of many friends have been indispensable.

Without the constant support and subtle pressure from my parents this thesis would certainly not have

existed. I have to thank my father, Prof. F. Buys, who by example gave me the inspiration to further my

academic career; it is to him that this research is dedicated.

To Anya, it is inconceivable to think that I would have been able to complete this research without you to help

me get through the difficult times, and for all the emotional support, camaraderie, entertainment, caring and

the endless supply of coffee you provided I thank you.

“If I have seen a little further it is by standing on the shoulders of Giants” – Sir Isaac Newton

iii | P a g e

Table of Contents

Abstract ... i

Acknowledgements ..ii

Table of Contents ... iii

Abbreviations ... vii

List of Figures ... ix

List of Formulae .. xi

List of Graphs .. xii

List of Source Code .. xiii

List of Tables .. xiv

1. Chapter 1 – Introduction .. 1

1.1. Aim... 2

1.2. Objectives of the study ... 2

1.3. Methodological Justification .. 2

1.4. Delimitations ... 4

1.5. Significance of Research .. 4

1.6. Organization of Thesis .. 7

1.7. Conclusion ... 7

2. Chapter 2 – Industrial Automated Part Recognition Neural Network Training and Genetic Algorithm

based Optimization ... 8

2.1. Industrial Applications of Artificial Neural Networks and Genetic Algorithms 8

2.2. Comparing Back propagation and Genetic Algorithm based training.. 9

2.3. Genetic Algorithm based Artificial Neural Network training .. 12

2.4. Genetic Algorithm Control parameters .. 13

2.5. Automated Industrial Part Recognition .. 14

2.6. Conclusion ... 15

3. Chapter 3 – Experimental System Setup and Architecture ... 16

3.1. Experimental System Overview and Operation ... 16

3.1.1. System Training .. 16

3.1.2. Part Identification Operation .. 17

3.2. Hardware Architecture .. 19

iv | P a g e

3.2.1. PLC .. 19

3.2.2. IPC ... 21

3.2.3. Data Collection Sensors .. 21

3.2.4. Conveyor System ... 22

3.3. Software Architecture ... 23

3.3.1. Artificial Neural Network .. 23

3.3.2. Genetic Algorithm ... 24

3.3.3. Conveyor automation and data acquisition .. 25

3.3.4. PLC Simulator .. 29

3.4. Conclusion ... 34

4. Chapter 4 – Neural Network Training Optimized for Part Recognition Applications 35

4.1. Artificial Neural Network operation principle .. 35

4.1.1. Advantages of Artificial Neural Networks ... 36

4.1.2. Artificial Neural Network Applications .. 37

4.1.3. Real-world Artificial Neural Network uses .. 37

4.2. Feed-Forward Back-Propagation Neural Network ... 39

4.3. Activation Functions ... 39

4.3.1. Step function ... 39

4.3.2. Linear function .. 40

4.3.3. Sigmoid .. 41

4.3.4. Ramp Function ... 41

4.3.5. Ramp Function combined with Step Function .. 41

4.4. Artificial Neural Network Architecture .. 42

4.5. Artificial Neural Network Training .. 47

4.5.1. Artificial Neural Network Training Methodologies ... 47

4.5.2. Back-propagation Training .. 48

4.5.3. Genetic Algorithm Training .. 49

4.6. Conclusion ... 52

5. Chapter 5 – Genetic Algorithms Applied to Neural Network Training .. 53

5.1. Background on the way the GA works .. 53

5.1.1. Problem Solution Encoding ... 56

v | P a g e

5.1.2. Population Creation and Initialization... 56

5.1.3. Fitness Evaluation / Fitness Function Definition ... 59

5.1.4. Selection Operators .. 61

5.1.5. Offspring Creation / Reproduction Operators ... 65

5.1.6. Population Sorting Algorithm ... 68

5.1.7. Algorithm Stopping Conditions .. 70

5.2. Real-world Genetic Algorithm uses ... 71

5.2.1. Automotive Design .. 71

5.2.2. Engineering Design... 71

5.2.3. Evolvable Hardware .. 72

5.2.4. Data Mining .. 72

5.2.5. Optimized Telecommunications Routing.. 72

5.2.6. Trip, Traffic and Shipping Routing ... 72

5.2.7. Computer Gaming... 73

5.2.8. Encryption and Code Breaking .. 73

5.2.9. Computer Aided Molecular Design .. 73

5.2.10. Gene Expression Profiling ... 73

5.2.11. Optimizing Chemical Kinetic Analysis .. 73

5.2.12. Metamodeling of discreet-event simulation models .. 74

5.2.13. Robotic Personality Generation ... 74

5.3. Intelligent Part Recognition Training Algorithm Application .. 74

5.4. Conclusion ... 81

6. Chapter 6 – Part Recognition Performance.. 82

6.1. Genetic Algorithm Control Parameters .. 82

6.1.1. Training Set Data .. 82

6.1.2. Population .. 83

6.1.3. Offspring creation ... 84

6.1.4. Genetic Cross-over and Mutation .. 85

6.2. Genetic Algorithm Performance .. 88

6.2.1. Training Data .. 88

6.2.2. Population .. 90

vi | P a g e

6.2.3. Offspring Creation ... 91

6.2.4. Cross-over .. 92

6.2.5. Mutation.. 94

6.2.6. Overview of all test conditions ... 99

6.3. Neural Network Performance with regard to Part Recognition ... 101

6.3.1. PLC Simulator .. 102

6.3.2. Hardware Testing ... 110

7. Chapter 7 - Conclusion .. 118

Bibliography .. 119

Appendices ... 122

i. Hardware Test Best Part ID Results ... 123

ii. Hardware Test Part ID minus Misfire Results .. 128

iii. Converged population for test Conditions 23... 134

iv. Converged population for test Conditions 26 ... 136

v. Training Data ... 138

vi. PLC Simulator Source Code ... 144

vii. Intelligent Neural Network Training utilizing Genetic Algorithm Source Code 145

viii. Step 7 Part Recognition PLC Source Code ... 146

vii | P a g e

Abbreviations

AI Artificial Intelligence

GA Genetic Algorithm

GP Genetic Programming

EP Evolutionary Programming

ANN Artificial Neural Network

AN Artificial Neuron

BN Biological Neuron

BP Back-propagation

PLC Programmable Logic Controller

EC Evolutionary Computation

EA Evolutionary Algorithm

DQM Data Quality Management

EARGP Evolutionary Algorithm for a Genetic Robots Personality

NMMU Nelson Mandela Metropolitan University

SSE Squared Sum Error

MSE Mean Square Error

RSE Root Square Error

RMSE Root Mean Square Error

PCB Printed Circuit Board

IPC Industrial Personal Computer

OS Operating System

OLE Object Linking and Embedding

OPC OLE for Process Control

CPU Central Processing Unit

I/O Input/Output

viii | P a g e

RAM Random Access Memory

DDR3 Data rate type three synchronous dynamic random access memory

GB GigaByte

GUI Graphical User Interface

ix | P a g e

List of Figures

Figure 1 – Adapted from Montana and Davis Experimental Results (Montana & Davis, 1989) 11

Figure 2 - Experimental System Setup Block Diagram .. 18

Figure 3 - PLC Test System ... 19

Figure 4 - Hardware Architecture ... 20

Figure 5 - Conveyor System... 22

Figure 6 - Software Architecture ... 23

Figure 7 - PLC Simulator Weight Data Tab... 30

Figure 8 - PLC Simulator Sensor Data Tab .. 31

Figure 9 - PLC Simulator Settings Tab ... 31

Figure 10 - PLC Simulator Main Neural Network Tab ... 32

Figure 11 - PLC Simulator Overview Excel Output ... 33

Figure 12 - PLC Simulator Individual Part Excel Output .. 33

Figure 13 - Basic Artificial Neuron .. 36

Figure 14 - Step Function ... 40

Figure 15 - Linear Function .. 40

Figure 16 - Ramp Function .. 41

Figure 17 - Ramp and Step Function .. 42

Figure 18 - Complete Neural Network Architecture ... 45

Figure 19 - Neural Network Architecture for each part .. 46

Figure 20 – GA based ANN training Flow Chart ... 51

Figure 21 - Landscape of solution space (Venables & Tan, 2007) .. 53

Figure 22 - Landscape of solution space with optimized solutions (Venables & Tan, 2007) 54

Figure 23 - Basic Genetic Algorithm Flowchart ... 55

Figure 24 - Roulette Wheel Selection Operator .. 62

Figure 25- Rank Based Selection Operator .. 63

Figure 26 - Single Point Cross-over.. 66

Figure 27 – Two-point Cross-over .. 66

Figure 28 - Multi-point Cross-over .. 67

Figure 29 - Mutation operator ... 68

Figure 30 – Part Recognition Main Window .. 75

Figure 31 – Part Recognition General Settings Window ... 76

Figure 32 – Part Recognition Neural Network Settings Tab .. 76

Figure 33 – Part Recognition Neural Network Weights Tab .. 77

Figure 34 – Part Recognition Neural Network Training Data Tab .. 77

Figure 35 – Part Recognition Genetic Algorithm Settings Tab ... 79

Figure 36 - Part Recognition Genetic Algorithm Generation Creation Tab ... 79

Figure 37 - Part Recognition Genetic Algorithm GA Options Tab .. 80

Figure 38 - Part Recognition Genetic Algorithm Output Window ... 80

Figure 39 - Training Data Group Results .. 89

x | P a g e

Figure 40 - Population Group Results (outliers removed).. 90

Figure 41 - Offspring Creation Group Results ... 92

Figure 42 - Cross-over Group Results .. 93

Figure 43 - Simatic Step 7 Part Targets Table .. 110

Figure 44 - Simatic Step 7 Part A Weight Table .. 111

Figure 45 - Simatic Step 7 ANN Output Table .. 111

xi | P a g e

List of Formulae

Equation 1 - Standard Deviation (DeCoster, 1998) ... 25

Equation 2- Artificial Neuron Output ... 36

Equation 3 - Step Function ... 39

Equation 4 - Step Function with binary output... 39

Equation 5 - Linear Function .. 40

Equation 6 - Sigmoid Function ... 41

Equation 7 - Ramp Function... 41

Equation 8 - Hybrid Ramp and Step Function ... 41

Equation 9 - Solution Space Description (Venables & Tan, 2007) ... 53

Equation 10 - Basic Error Calculation ... 60

Equation 11 - RSE Calculation ... 61

Equation 12 - Mutated Gene .. 68

xii | P a g e

List of Graphs

Graph 1 - Part B X-axis Data Capture .. 28

Graph 2 - Part B Y-axis Data Capture .. 28

Graph 3 - Part E X-axis Data Capture .. 29

Graph 4 - Part E Y-axis Data Capture .. 29

Graph 5 - RSE vs. Generation for Cross-over group ... 93

Graph 6 - Mutation Group results ... 97

Graph 7 - Mutation Group results Mutation Factor .. 97

Graph 8 - Error vs Generation for Mutation Factor .. 98

Graph 9 - Genetic Algorithm Training Results - Average with outliers removed ... 100

Graph 10 - PLC Simulation Performance ... 106

Graph 11 - Part OK Identification minus Neural Network Misfires ... 109

Graph 12 - Hardware Test Results ... 116

Graph 13 - Hardware Test Results including Linear Trend .. 117

xiii | P a g e

List of Source Code

Source Code 1 - Population Initialization .. 58

Source Code 2 - Population Initialization to fanin .. 59

Source Code 3 - Population Sorting ... 70

xiv | P a g e

List of Tables

Table 1 - Parts to be identified / recognised .. 6

Table 2 - Average RMSE comparisons (Gupta & Sexton, 1999) ... 10

Table 3 - RMSE Standard Deviations and Mean CPU time (Gupta & Sexton, 1999) 10

Table 4 - Part B X-point Training Data Standard Deviation ... 26

Table 5 - Part B Y-point Training Data Standard Deviation ... 26

Table 6 - Part E X-point Training Data Standard Deviation ... 27

Table 7 - Part E Y-point Training Data Standard Deviation ... 27

Table 8 - RSE Fitness Calculation .. 61

Table 9 - Error Fitness Calculation ... 61

Table 10 - Test Conditions 1 to 19 ... 86

Table 11 - Test Conditions 20 to 35.. 87

Table 12 - Training Data Conditions ... 88

Table 13 - Population Conditions ... 90

Table 14 - Offspring Creation Conditions .. 91

Table 15 - Cross-over Conditions ... 92

Table 16 - Mutation Conditions... 94

Table 17 - Genetic Algorithm Training Results - Average.. 99

Table 18 - PLC Simulator Results Conditions 1 to 11 ... 102

Table 19 - PLC Simulator Results Conditions 12 to 23 ... 103

Table 20 - PLC Simulator Results Conditions 24 to 35 ... 104

Table 21 - PLC Simulation Performance .. 105

Table 22 - Part OK Identification minus Neural Network Misfires .. 108

Table 23- Conditions 4 Optimized Weights ... 112

Table 24 - Part Recognition Test 1 Result Summary .. 112

Table 25 - ANN Output Mapping .. 113

Table 26 - Part Recognition Test 1 Part A .. 114

Table 27 - Conditions 7 Optimized Weights .. 115

Table 28 - Part Recognition Test 2 Result Summary .. 115

Table 29 - Part Recognition Test 1 Part B .. 123

Table 30 - Part Recognition Test 1 Part C .. 124

Table 31 - Part Recognition Test 1 Part D .. 125

Table 32 - Part Recognition Test 1 Part E .. 126

Table 33 - Part Recognition Test 1 Part F... 127

Table 34 - Part Recognition Test 2 Part A .. 128

Table 35 - Part Recognition Test 2 Part B .. 129

Table 36 - Part Recognition Test 2 Part C .. 130

Table 37 - Part Recognition Test 2 Part D .. 131

Table 38 - Part Recognition Test 2 Part E .. 132

Table 39 - Part Recognition Test 2 Part F... 133

xv | P a g e

Table 40- Converged Population Conditions 24 .. 134

Table 41 - Training Data Part A .. 138

Table 42 - Training Data Part B .. 139

Table 43 - Training Data Part C.. 140

Table 44 - Training Data Part D.. 141

Table 45 - Training Data Part E .. 142

Table 46 - Training Data Part F .. 143

1 | P a g e

1. Chapter 1 – Introduction

Humans recognize a multitude of objects in images with little effort. The images of the objects may vary

somewhat in different viewpoints in many different sizes or even when they are translated or rotated. Objects

can even be recognized when they are partially obstructed from view. This task is still a challenge for

computer vision systems in general.

Part recognition is an important problem in industrial vision. Efficient and accurate part identification is

essential for flexible automation of almost all major manufacturing processes such as inspection, assembly

sorting and binning.

At present camera based automated part recognition is the most commonly used method in industry.

The problems associated with this method are:

 Expensive hardware cost.

 Problems associated with lighting conditions.

 Problems associated with reflective surfaces.

 Complex training of new parts by specialist / trained personnel.

 Timely process to train new parts.

A major thrust in algorithmic development is the design of algorithmic models to solve increasingly complex

problems. Enormous successes have been achieved through the modelling of biological and natural

intelligence, resulting in so called “intelligent systems”. These intelligent systems include artificial neural

networks, evolutionary computation, swarm intelligence and fuzzy systems. These systems form part of the

field of Artificial Intelligence (AI).

In this research, two of the main paradigms of AI will be utilized in order to find an alternative solution to the

part recognition problem. These are ANNs and Evolutionary Computation (EC) or GAs.

Multilayered feed-forward ANNs possess a number of properties which make them particularly suited to

complex pattern classification problems. However, their application to some real world problems, such as part

recognition, has been hampered by the lack of a training algorithm which reliably finds a nearly globally

optimal set of weights in a relatively short time. GAs are good at exploring a large and complex solution space

in an intelligent way to find values close to the global optimum. Hence, they are well suited to the problem of

training feed-forward ANNs.

This research will investigate the various GA control parameters with the objective of finding the optimal

conditions for these parameters when utilizing a GA for ANN weight optimization or training for the purpose of

industrial part recognition.

2 | P a g e

1.1. Aim

To design, program and optimize a GA for the training of an ANN for the purpose of industrial part

recognition.

1.2. Objectives of the study

The following objectives were accordingly specified for this project:

 Conduct a literature study in order to gain an understanding of current part recognition methods,

ANNs and their training methods, GAs.

 Design and develop a GA to train an ANN for part recognition.

 Adapt an existing industrial hardware based ANN to this problem.

 Research the optimal GA control parameters and conduct experimentation to evaluate

performance.

 Create a supporting experimental setup using appropriate measurement hardware and software

in order to conduct supporting experimentation.

 Design and develop a system architecture, including all hardware, software and communication,

to implement intelligent system software for industry application.

1.3. Methodological Justification

In order to accomplish the objectives, the fundamental research issues covered in this project include the

following two paradigms of AI:

 ANNs

In his book, Computational Intelligence: An Introduction, Andries P. Engelbrecht describes ANNs as

follows:

“The brain is a complex, nonlinear and parallel computer. It has the ability to perform tasks such as

pattern recognition, perception and motor control much faster than any computer – even though

events occur in the nanosecond range for silicon gates, and milliseconds for neural systems. In

addition to these characteristics, others such as the ability to learn, memorize and still generalize,

prompted research in algorithmic modelling of biological neural systems – referred to as artificial

neural networks (NN)” (Andries, 2007).

An ANN will be trained to recognize a set of six defined parts/shapes.

3 | P a g e

 GAs

A GA is an adaptive heuristic search algorithm based on the evolutionary ideas of natural selection

and genetics. As such they represent an intelligent exploitation of a random search used to solve

optimization problems. Although randomised, GAs are by no means random, instead they exploit

historical information to direct the search into the region of better performance within the search

space. The basic techniques of the GAs are designed to simulate processes in natural systems

necessary for evolution, especially the survival of the fittest or natural selection laid down by Charles

Darwin (Darwin, 1859). Since in nature, competition among individuals for scarce resources results in

the fittest individuals dominating over the weaker ones

“Evolutionary computation (EC) has as its objective to mimic evolution, where the main concept is

survival of the fittest: the weak must die. In natural evolution, survival is achieved through

reproduction. Offspring, reproduced from two parents (sometimes more than two), contain genetic

material of both (or all) parents - hopefully the best characteristics of each parent. Those individuals

that inherit bad characteristics are weak and lose the battle to survive. This is nicely illustrated in

some bird species where one hatchling manages to get more food, gets stronger, and at the end kicks

out all its siblings from the nest to die.

Evolutionary algorithms use a population of individuals, where an individual is referred to as a

chromosome. A chromosome defines the characteristics of individuals in the population. Each

characteristic is referred to as a gene. The value of a gene is referred to as an allele. For each

generation, individuals compete to reproduce offspring. Those individuals with the best survival

capabilities have the best chance reproduce. Offspring are created by combining parts of the parents,

a process referred to as crossover. Each individual in the population can also undergo mutation which

alters some of the allele of the chromosome. The survival strength of an individual is measured using

a fitness function which reflects the objectives and constraints of the problem to be solved. After each

generation, individuals may undergo culling, or individuals may survive to the next generation

(referred to as elitism). Additionally, behavioural characteristics (as encapsulated in phenotypes) can

be used to influence the evolutionary process in two ways: phenotypes may include genetic changes,

and/of behavioural characteristics evolve separately.” (Andries, 2007).

A GA will be developed for the purpose of training an ANN to be able to identify a set of parts.

Although a set of six parts have been specified for this research, the system has been designed to be

adaptable to other parts.

The GA has also been designed to be a reconfigurable system that can be adapted to other

optimization problems and not ANN training only.

4 | P a g e

1.4. Delimitations

Although the system design allows the training of other parts / shapes, this research is limited to the

identification of the six specified components as highlighted in Table 1 (page 6).

The parts were selected based on the following criteria:

 Commonly used and available industrial automation parts.

 Physical size and shape allows them to fit onto the conveyor used as research platform.

 The geometry of the parts provides a wide range of surface shapes such as planes, cylinders, and

spheres since such shapes are common in industrial parts.

Implementation is limited to a S7-300 Programmable Logic Controller (PLC), Festo conveyor and other

hardware in use on the research platform.

The Object Linking and Embedding for Process Control (OPC) server in Section 3.1.2 Part Identification

Operation that connects the Neural Network Visual Basic Application and the PLC is out of scope due to

cost constraints and insignificance to the main research objectives.

1.5. Significance of Research

The automotive industry has an important impact on both the National South African- and especially the

Regional Eastern Cape economy. The local companies primarily focus on production and manufacturing

of motor vehicles and associated sub-components for export to a global market in the northern

hemisphere. This scenario provides the regional economy and industry with a global link to industry and

business.

As the Nelson Mandela Metropolitan University (NMMU) is the largest tertiary institution in the Eastern

Cape with an engineering education program it is seen as one of the industry’s largest sources of well

trained automotive engineers. Due to highly innovative product development in this industry, driven

towards better quality and lower cost, the educational contents of the engineering programs have to follow

fast changing industry trends and needs.

In order to fully equip graduate engineers from the NMMU and enable them to support this demanding

and fast changing industry, the University acquired a Siemens Automation and Motion control laboratory

in the second quarter of 2006. This laboratory is used for accredited Siemens PLC training for industry as

well as control system lecturing for Electrical Engineering students.

The intended applications for this laboratory are two-fold. Firstly it is to integrate PLC training into the

curriculum of the Electrical-, Mechanical-, Industrial- and Mechatronic Engineering programs in order to

prepare the graduates for real-world industrial applications as opposed to pure theoretical training. The

second intended application is to promote and enable research into industrial application of new

5 | P a g e

technology, such as Artificial Intelligence that was previously seen as an Information Technology

component only.

Part recognition plays a vital part in the modern manufacturing process. It is required for material

handling, part sorting and quality control. Currently the most commonly used solutions are camera based

systems. The main problems with these systems are their high cost, susceptibility to ambient light

conditions (and the associated inaccuracy) and the expertise required by maintenance personnel to

maintain them and train new parts.

A proposed alternative to camera based solutions are basic laser distance sensors providing dimensional

data of the parts to a well trained Artificial Intelligence based system utilizing an ANN. While a previous

student has managed to implement an ANN on industrial hardware for the purpose of part recognition, he

had difficulty with training the ANN.

The proposed solution is to use a GA to train the ANN. While other researchers have managed to train

ANNs by using a GA, none have researched the ideal GA control parameters for the application of part

recognition.

This research will attempt to find the ideal control parameters for a GA when used to train an ANN for the

purpose of part recognition.

6 | P a g e

Table 1 - Parts to be identified / recognised

Part ID Part Description Part Picture
Part A Pushbutton

Part B Collar

Part C Contact

Part D Selector Switch

Part E Mushroom E-stop

Part F Cylinder

7 | P a g e

1.6. Organization of Thesis

Overview of what each chapter contains.

Chapter 1 – Objectives, aim, delimitation and research significance are introduced.

Chapter 2 – Analyzes relevant theories, corresponding components, related technology and up-to-date

development in the field of GA ANN training and part recognition in terms of literature study.

Chapter 3 – Describes overall system setup, hardware architecture, software components,

implementation of subsystems and integration thereof to form a platform of intelligent part recognition

ANN training using GAs.

Chapter 4 – ANN training background. Introduction to current back-propagation (BP) methods and the

proposed GA based training.

Chapter 5 – Detailed explanation on the developed GA, overview on the related software components and

their operation.

Chapter 6 – Research on test cases and the performance of each test case regarding GA and part

recognition.

Chapter 7 – Conclusion

1.7. Conclusion

In this chapter the topics of automated object recognition, AI, ANN and GA were introduced. The research

aim, objectives, delimitations and significance were also discussed.

In the next chapter relevant theory, corresponding components, related technology and up-to-date

development in the field of GA based ANN training and automated part recognition is discussed in terms

of a literature study.

8 | P a g e

2. Chapter 2 – Industrial Automated Part Recognition Neural Network Training
and Genetic Algorithm based Optimization

In this chapter relevant theory, corresponding components, related technology and up-to-date development in

the field of GA based ANN training and automated part recognition is discussed in terms of literature study.

Topics covered in the chapter are:

 Industrial applications of GAs and ANNs.

 Comparison of BP and GA based ANN training.

 GA based ANN training methodology.

 GA control parameters.

 Different methodologies of automated part recognition.

2.1. Industrial Applications of Artificial Neural Networks and Genetic
Algorithms

ANNs combined with GAs for both weight optimization as well as architecture design has been

successfully used in various industrial applications.

In their paper Genetic Algorithm-Based Artificial Neural Network for Voltage Stability Assessment Singh

and Srivastava proposed a GA based BP ANN (Singh & Srivastava, 2011) for voltage stability margin

estimation. As the voltage stability margin is an indication of the power system’s proximity to voltage

collapse, a fast and accurate estimation system is required. Their use of GAs in the training algorithm was

included in the hope of avoiding the inherent local minimum problem of BP training. BP searches on the

error surface by means of the gradient descent technique in order to minimize the error. It is therefore

likely to get struck in a local minimum. They found that a GA based ANN learns faster while it at the same

time provides more accurate voltage stability margin estimation when compared to that based on a BP

algorithm.

Goa and Ovaska researched implementation of GA trained ANNs for fault detection in electrical motor

drive systems in their paper Genetic Algorithm Training of Elman Neural Network in Motor Fault Detection

(Gao & Ovaska, 2002). The GA aided training strategy for the ANN was introduced to improve the

approximation accuracy and achieve better detection performance. Experiments with a practical

automobile transmission gearbox with an artificial fault were carried out to verify the effectiveness of their

method. They obtained encouraging fault detection results without any prior information on the gearbox

model.

Demutgal et al. proposed another variation of a GA and ANN hybrid system in their paper Fault Diagnosis

on bottle filling plant using genetic-based neural network (Demutgal, Unal, Tansel, & Yazicioglu, 2011) for

the purpose of timely detection of the pneumatic system problems in industry. They proposed a system

where back propagation is still used for ANN connecting weights optimization but a GA is implemented to

9 | P a g e

find the optimal ANN architecture. They found that the GA was able to establish a better ANN architecture

for accuracy, estimation speed and compactness than the conventional trail-and-error method.

2.2. Comparing Back propagation and Genetic Algorithm based training

Before looking at the benefits of GA based ANN training, we first have to look at the, very popular,

alternative that is BP training.

Hui et al. describe BP training of ANNs as follows:

“Back propagation (BP) is a powerful learning rule used in training feed forward multi-layer perceptrons

that can be applied to a large range of classification problems. The training process aims at minimizing

the difference between the target output and the actual output of the neural network. BP employs a simple

optimization algorithm for this purpose. Because of its simplicity, BP is easy to understand and

implement.” (Hui, Lam, & Chea, 1997).

They also identify two major limitations of BP training of ANNs. A slow convergence rate (attributed to its

optimization component, the steepest descent algorithm) and its tendency to get stuck in a sub optimal

local minima. They recommend the use of GA to escape this local minima (Hui, Lam, & Chea, 1997).

Gupta and Sexton compared the use of a GA and traditional BP training techniques of feed-forward ANNs

in their paper: Comparing backpropagation with a genetic algorithm for neural network training (Gupta &

Sexton, 1999).

The used a chaotic time series as an illustration to compare the GA and BP for effectiveness, ease-of-use

and efficiency for training ANNs. Because ANNs generate complex error surfaces with multiple local

optima, even for simple functions being estimated, BP tends to become trapped in local rather than global

solutions. To overcome this local convergence problem for solving difficult non-linear optimization

problems, such as pattern and part recognition, a number of techniques have been developed. The most

common of these are the Evolutionary Programming (EP) approaches which include the GA.

Gupta and Sexton defined three measures to use for comparison of GA and BP training:

 Effectiveness: Refers to the accuracy of each algorithm in estimating the true functional form. The

Root Mean Squared Error (RMSE) is used for a direct comparison between the GA and BP

solutions.

 Ease-of-use: Deals with the effort needed for finding optimal algorithm settings for each problem.

Finding these optimal control parameters are extremely important as they have a direct influence

on the performance and accuracy of the NN training. Finding these ideal parameters form part of

the main research of this project.

 Efficiency: The time (actual time, epochs or generations) taken by each algorithm to converge

upon the optimal solution.

10 | P a g e

Table 2 - Average RMSE comparisons (Gupta & Sexton, 1999)

Hidden node count 6 4 2
Data sets SBP EDBD GA SBP EDBD GA SBP EDBD GA
In-sample 0.079 0.124 0.041 0.054 0.125 0.043 0.259 0.423 0.145
Test Set 1 0.135 0.183 0.050 0.960 0.174 0.055 0.348 0.478 0.164
Test Set 2 0.166 0.218 0.050 0.147 0.243 0.066 1.108 0.439 0.172

When looking at Table 2 (page 10) comparisons from Gupta and Sexton’s research, one can see that the

GA far outperformed Standard BP (SBP) and Extended Delta-Bar-Delta (EDBD) BP methods in

effectiveness when comparing the Root Mean Square Error (RMSE) that they produced for all hidden

node count scenarios.

Table 3 - RMSE Standard Deviations and Mean CPU time (Gupta & Sexton, 1999)

Hidden node count 6 4 2
Algorithm SBP EDBD GA SBP EDBD GA SBP EDBD GA
Standard Deviation 0.210 0.012 0.007 0.024 0.023 0.010 0.077 0.089 0.013
Mean CPU time 611.200 623.800 329.300 570.300 583.200 245.100 497.900 532.100 134.400

When looking at Table 3 (page 10) time from Gupta and Sexton’s research, one can see that the GA far

outperformed SBP and EDBD BP methods in efficiency when comparing the mean CPU time that they

required for all hidden node count scenarios.

Montana and Davis describe a different genetic algorithm for training feed forward networks in their paper

Training Feed forward Neural Networks Using Genetic Algorithms (Montana & Davis, 1989). In their

research they found that it not only succeeds in its task but it outperforms BP, the standard training

algorithm. They also identified drawbacks of BP:

“There are some drawbacks to back propagation. For one, there is the "scaling problem". Back

propagation works well on simple training problems. However, as the problem complexity increases (due

to increased dimensionality and/or greater complexity of the data), the performance of back propagation

falls off rapidly. The performance degradation appears to stem from the fact that complex spaces have

nearly global minima which are sparse among the local minima. Gradient search techniques tend to get

trapped at local minima. With a high enough gain (or momentum), back propagation can escape these

local minima. However, it leaves them without knowing whether the next one it finds will be better or

worse. When the nearly global minima are well hidden among the local minima, back propagation can end

up bouncing between local minima without much overall improvement, thus making for very slow training.

A second shortcoming of back propagation is the following. To compute a gradient requires

differentiability. Therefore, back propagation cannot handle discontinuous optimality criteria or

discontinuous node transfer functions. This precludes its use on some common node types and simple

optimality criteria.” (Montana & Davis, 1989).

11 | P a g e

Montana and Davis compared the performance of standard BP with GA for training of the feed-forward

ANN. They used the standard BP algorithm with a learning rate of 0.5. The GA utilized two offspring

creation operators namely Mutation and Cross-over.

When comparing them, they considered two generations of the GA to be equivalent to one epoch of BP.

Their reasoning was that BP consists of looping through all training data performing firstly forward

propagation and calculation of errors at the outputs and then secondly error BP and adjusting of weights.

The second step required more computation in their networks of interest. The evaluation function of the

GA performed the same calculations as the first step of BP by forward propagation and calculation of

errors at the outputs and assigning this as fitness. The mutation and cross-over operators do very little

computation.

Their experimental runs consisted of 10000 generations of the GA and 5000 epochs of BP. The results

are shown in Figure 1 (page 11). It can clearly be seen that the GA outperformed BP.

Figure 1 – Adapted from Montana and Davis Experimental Results (Montana & Davis, 1989)

Demetgul et al. also identified two major weaknesses of BP training of ANNs. Convergence to a local

minimum and the need for several trail and error tests to find the optimal structure (Demutgal, Unal,

Tansel, & Yazicioglu, 2011). They also point out the important advantage of GA based ANN training in

avoiding the local minima in non-linear and multimodal optimization problems.

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 3 5 7 9 11 13 15 17 19 21 23

Iterations (e+03)

Genetic Algorithm

Backpropagation

12 | P a g e

2.3. Genetic Algorithm based Artificial Neural Network training

Singh and Srivastava pointed out the advantage of GA ANN training that they operate in a population of

possible solution candidates in parallel, instead of starting with a single candidate and iteratively operate

on it using some sort of heuristics (Singh & Srivastava, 2011). This enables the search for a global

minimum instead of a local as with BP training.

Dorsey et al. (Dorsey, Johnson, & Mayer, 1994) designed a Genetic Adaptive Neural Network Training

algorithm and showed that the GA also works well for optimizing ANNs. This algorithm is different from

other genetic search algorithms in that it uses real values instead of binary representations of the weights.

This is also the case in the GA implemented in this research.

In their paper Genetic Algorithm Training of Elman Neural Network in Motor Fault Detection Goa and

Ovaska note that GAs have the ability to evaluate the fitness of an individual and implement mutation and

crossover operators in parallel. They go on by stating that a GA needs less prior information about the

problem to be solved than conventional optimisation schemes, such as the steepest descent method,

which require derivatives of objective functions. It is therefore attractive to employ a GA to optimise the

parameters and structures of neural networks, instead of using the BP learning algorithm alone. As

previously discussed, they also identify the well known problem of the steepest descent-based method of

easily becoming trapped in local minima in the search space of ANN weights (Gao & Ovaska, 2002).

Goa and Ovaska also found that direct GA-based optimization of ANN weights are not always a better

solution than BP. They found GA based optimization in Elman neural networks time consuming, because

the size of the network grows drastically with the number of hidden nodes (Gao & Ovaska, 2002). Since,

in the ANN architecture in this part recognition application, the amount of neurons in the hidden layers

stays constant at a relatively low value, this is not a problem. The architecture of the ANN is discussed in

Section 4.4.4 Neural Network Architecture.

Montana and Davis (Montana & Davis, 1989) implemented GA based training of ANN as follows:

1. Chromosome Encoding: The weights (and biases) in the neural network are encoded as a list of real

numbers.

2. Evaluation Function: Assign the weights on the chromosome to the links in a network of a given

architecture, run the network over the training set of examples, and return the sum of the squares of

the errors.

3. Initialization Procedure: The weights of the initial members of the population are chosen at random

with a probability distribution given by t| |. This is different from the initial probability distribution of the

weights usually used in back propagation, which is a uniform distribution between -1.0 and 1.0. Our

probability distribution reflects the empirical observation by researchers that optimal solutions tend to

contain weights with small absolute values but can have weights with arbitrarily large absolute values.

We therefore seed the initial population with genetic material which allows the genetic algorithm to

explore the range of all possible solutions but which tends to favour those solutions which are a priori

the most likely.

13 | P a g e

4. Operators: We created a large number of different types of genetic operators. The goal of most of the

experiments we performed was to find out how different operators perform in different situations and

thus to be able to select a good set of operators for the final algorithm.

2.4. Genetic Algorithm Control parameters

There are certain control parameters and limits that need to be specified before a GA can attempt to

optimize the solution for a problem.

Singh & Srivastava defined these control parameters as: “Before executing certain task, GA requires

several parameters to be devised for its proper functioning. Some of them are gene encoding, population

initialization, selection, reproduction, fitness evaluation, and so forth. The basic computing elements in

GAs are genes, which are joined together to form a string of values referred to as a chromosome.

Genes encoding is required to represent weights. To carry out efficient weight optimization in ANN, it is

important to have a proper encoding scheme. There is no definite view in the literature about suitability of

encoding schemes for chromosomes. In the present work, real value coding is adopted for gene

encoding. Size of the population of individuals (chromosomes) is generated randomly to start the genetic

search procedure. The size of population depends upon number of weights to be optimized multiplied by

gene length. The number of weights to be optimized is determined from neural network configuration”

(Singh & Srivastava, 2011).

Montana and Davis (Montana & Davis, 1989) identified five required components for artificial biological

evolution:

 Encoding Solution: A way of encoding solutions to the problem in chromosomes of individuals.

 Fitness Function: A function that returns a rating or evaluation for each individual presented to it.

 Population Initialization: A way of initializing the population of chromosomes to random values

that cover the entire search scope.

 Reproduction Operators: Operators that may be applied to parents when they reproduce to alter

their genetic composition. The most common are mutation, crossover and elitism.

 GA Control Parameters: Parameter settings for the algorithm, the operators and so forth.

Montana and Davis (Montana & Davis, 1989) go on by stating that: “The work described here only

touches the surface of the potential for using genetic algorithms to train neural networks. In the realm of

feed forward networks, there are a host of other operators with which one might experiment.” One of the

main objectives of this research, as defined in Section 1.2 Objectives of the study, is to experiment with

these operators in order to find the ideal parameters for part recognition training.

14 | P a g e

2.5. Automated Industrial Part Recognition

Because of the importance of part recognition on industry, considerable effort has been dedicated to

solving this problem. Until the 1970’s optical techniques was the most common method applied to solving

part recognition problems (Casasent & Psaltis, 1976).

Due to the technological advances in the microelectronics since the 1980’s digital techniques have been

applied (Hsu, Arsenault, & April, 1982).

Currently the most common approach to the problem in industry is implementing costly computerized

camera based solutions.

Part recognition in computer vision is the task of recognizing a specified object in an image or video

stream. The human brain and vision system has the ability to recognize a multitude of objects in images

with little effort, despite the fact that the image of the objects may vary somewhat in different viewpoints,

in many different sizes or even when they are rotated. This task is still a challenge for computer vision

systems in general.

In their book Intelligent Vision Systems for Industry B. Bachelor and P. Helan point out the following

problem with current machine vision systems: “the application of vision to automated assembly can be

impressive to watch, but often deceptive. If one of the pieces to be assembled is rotated or moved slightly,

then the system may not be able to cope with this change in its working environment” (Batchelor &

Whelan, 2002).

Perelmuter et al. presented work on industrial part recognition at the 5th International Conference on

Education, Practice, and Promotion of Computational Methods in Engineering Using Small Computers

(Perelmuter, Carrera, Vellasco, & Pacheco, 1995).

They presented an application of an ANN for object recognition utilizing a camera based system. The

application involved the pre-processing of a 2D-digital image, and its subsequent classification through a

ANN trained with typical patterns extracted from the images of the objects.

One of the main advantages of an intelligent recognition or classifier system over traditional systems that

they identified is that the intelligent classifier is a general purpose recognition system, being able to be

applied to virtually any set of parts. This is also the case in this research project.

The main disadvantage that they identified is that the capture conditions are extremely critical in the

resultant performance of the classifier. They found that adequate conditions, including lighting, is very

important so that the borders extractor can detect the images’ limits correctly.

Applications range from tasks such as industrial machine vision systems which, say, inspect bottles

speeding by on a production line, to research into artificial intelligence and computers or robots that can

comprehend and interpret the world around them.

15 | P a g e

Examples of applications of computer vision include systems for:

 Controlling processes in the field of robotics.

 Navigation in the field of robotics.

 Detecting events such as part counting.

 Organizing information.

 Modelling objects or environments.

 Automatic inspection and quality control in manufacturing applications.

Object recognition methods have the following applications:

 Image panoramas.

 Image watermarking.

 Global robot localization.

 Face Detection.

 Optical Character Recognition.

 Manufacturing Quality Control.

 Content-Based Image Indexing.

 Object Counting and Monitoring.

 Automated vehicle parking systems.

 Visual Positioning and tracking.

 Video Stabilization.

2.6. Conclusion

In this chapter relevant theory, corresponding components, related technology and up-to-date

development in the field of GA based ANN training and automated part recognition has been discussed in

terms of literature study.

ANNs and GAs, their use in industrial applications, GA control parameters and their importance as well as

the various training methodologies were introduced.

While it is clear that a vast amount of research has been performed on different training techniques and

methodologies of ANNs, it can be seen that very little has been investigated with regard to the GA control

parameters for ANN training especially when applied specifically to automated part recognition.

In the next chapter the various hardware and software components, the system architecture and general

operation of the experimental system setup is discussed.

16 | P a g e

3. Chapter 3 – Experimental System Setup and Architecture

In this chapter the research platform, system setup and architecture is described and discussed. In the first

section of the chapter, a broad overview of the experimental test setup is described. As the main components

of the research platform can be subdivided into hardware and software, the rest of the chapter is divided

accordingly. The various hardware components, their operation and selection criteria are discussed in the

second section of the chapter while the software components, their operation and the communication between

them are discussed in the last.

3.1. Experimental System Overview and Operation

An overview of the experimental system setup can be seen in Figure 2 (page 18).

There are two modes of operation for the experimental setup namely system training and part

identification. Each of these modes is described below.

3.1.1. System Training

Before the system can successfully identify parts, the system has to be trained by presenting

examples of the parts to be identified to it. The parts selected for this research was chosen as they

are commonly used industrial components (push buttons, selector switches etc.) and also because

they represent a wide variety of possible shapes. The selected parts can be seen in Table 1 (page 6).

It is important to note that the system can be trained to identify any parts presented to it as long as it

meets the following criteria:

 The part can physically fit onto the conveyor system. Refer to Figure 5 (page 22).

 There is a significant geometric difference between the various parts as the ANN attempts to

classify similar parts into trained groups. Refer to Section 4.1 Artificial Neural Network

operation principle for more information on this generalization capability of ANNs.

The steps and processes in the training procedure are explained below (refer to Figure 5 (page 22)):

a) The part to be trained is placed on the conveyor. The Start sensor detects the parts presence

and starts the conveyor.

b) As the part passes the Time-, X-axis and Y-axis sensors the dimensional data is recorded as

stored in memory on the PLC.

c) The Stop sensor detects the part as it reached the end of the conveyor and the conveyor is

stopped.

d) The captured dimensional data for that training run is transferred to an Excel File by means of

an OPC server. The OPC component has been excluded from the experimental system setup

because of the high cost involved. In the experimental system the captured data is manually

copied from variable monitoring tables to an Excel document on the IPC.

17 | P a g e

e) Depending on the amount of training data sets required for the test condition, steps a) to d) is

repeated.

f) The captured data in the Excel document is loaded into the developed Microsoft Visual Basic

GA training application. This application and its operation are described in detail in Chapter 5

– Genetic Algorithms Applied to Neural Network Training.

g) Once the GA application has evolved and optimized the required ANN connection weights for

the part being trained, they are saved in an Excel document.

h) The optimized connection weights are transferred from the Excel file to assigned PLC

memory variables by means of an OPC server. The OPC component has been excluded from

the experimental system setup because of the high cost involved. In the experimental system

the evolved weights are manually copied from the Excel file on the IPC to the associated

variable monitoring tables on the PLC.

i) Steps a) to h) are repeated for each part, up to a maximum of six, to be trained.

3.1.2. Part Identification Operation

Once the system has been trained to identify the various parts, the part identification process is

executed as follows:

a) The part to be identified is placed on the conveyor. The part is detected by the Start sensor

and the conveyor starts.

b) The leading edge of the part is detected by the Time sensor and a timer is started (Siemens

AG, 2011).

c) The trailing edge of the part is detected by the Time sensor and the timer is stopped. The time

taken for the part to pass is recorded in memory.

d) The leading edge of the part is detected by the X- and Y-Axis sensor. As the part moves past

the X- and Y-sensor, 10 dimensional points are captured and stored in memory.

e) The leading edge of the part is detected by the Stop sensor and the conveyor stops.

f) The captured Time, X- and Y-dimensional points are passed to the ANN as inputs.

g) The ANN identifies the part and the appropriate output is switched HIGH.
h) The process can then be repeated with the next part being loaded onto the conveyor.

18 | P a g e

Genetic Algorithm

Artificial Neural
Network

Data Capturing

OPC Server
Communication

Analogue and Discrete
Input Output Signals

Industrial Computer (IPC)

Programmable Logic Controller (PLC)

Conveyor System & Sensors

Figure 2 - Experimental System Setup Block Diagram

19 | P a g e

3.2. Hardware Architecture

In this section the hardware components of the experimental setup will be discussed. An overview of the

hardware architecture can be seen in Figure 4 (page 20).

The main hardware components of the experimental system setup are the PLC, Industrial PC (IPC), data

collection sensors and the conveyor system.

3.2.1. PLC

The CPU hosts the ANN, data acquisition and conveyor control software while the Input/Output (I/O)

Module captures the analogue and digital signals from the sensors and controls the conveyor with

digital output signals.

The PLC consists of two main components that can be seen in Figure 3 (page 19):

 CPU (Model Number: S7-300 ; Part Number: 313-6CF03-0AB0)

 I/O Module (Part Number: 334-0CE01-0AA0)

Figure 3 - PLC Test System

S7-300 PLC
CPU

Conveyor
System S7-300 I/O

Module

21 | P a g e

3.2.2. IPC

Due to the high cost of IPCs, the computer used in this research was not an industrial

specification PC but a high end laptop computer.

The key specifications of the used computer are (Toshiba Corporation, 2011):

 Model Number: Toshiba Satellite Pro L650-15J.

 Processor: Intel Core i5-450M 2.40/2.66 GHz.

 Operating System: Microsoft Windows 7 Professional 64-bit.

 System memory: 6GB DDR3 1066MHz.

The key specifications of the computer recommended for industrial environments are

(Siemens AG, 2011):

 Model Number: Siemens Simatic IPC547D.

 Processor: Configurable Intel Core up to i7.

 Operating System: Microsoft Windows 7 Ultimate 64-bit.

 System memory: Configurable DDR3 up to 32GB.

As the Operating System (OS) and key hardware specification of the used laptop is very

similar to that of the recommended IPC for industrial environments, the GA performance

results of the research will not be affected.

3.2.3. Data Collection Sensors

In this section the various data collection sensors will be discussed.

3.2.3.1. Time Sensor

The time taken for the part to pass the sensor is measured using a Reflex/Interrupt

FESTO Fibre-optic device. The device operates in the red light frequency range. The

IP65 protection rating of the device makes it a viable option to use in a production

environment. Part number: SOEG-L-Q30-P-A-S-2L (FESTO AG & Co., 2002).

3.2.3.2. Sensor X

The X-axis dimensional data is captured using a red light 2nd class laser FESTO distance

sensor. This sensor has a range of 40 – 150mm and a maximum sampling rate of 1kHz .

The IP67 protection rating of the device makes it a viable option to use in a production

environment. Part number: FESTO SOEG-RTD-Q20-PP-K-2L-T1 (FESTO AG & Co.,

2007).

22 | P a g e

3.2.3.3. Sensor Y

The Y-axis dimensional data is captured using a red light 2nd class laser SICK distance

sensor. This sensor has a range of 50 – 150mm, a response rate of less than 15ms and

an accuracy of ±0.5mm. An analogue 4 - 20mA signal indicating the measured distance is

output. This output is in turn measured by the S7-300 PLCs analogue current input

(Siemens AG, 2011). The IP57 protection rating of the device makes it a viable option to

use in a production environment. Part number: SICK AG DT-20-P254B. (SICK AG, 2008).

3.2.4. Conveyor System

The purpose of the conveyor system is to move the part to be identified past the various data

capturing sensors. The conveyor system (Part Number: MP3-M-PF-700) and the various

sensor placements can be seen in Figure 5 (page 22).

Figure 5 - Conveyor System

X-axis Sensor

Conveyor Stop
Sensor

Y-axis Sensor
Conveyor Start
Sensor

Part to be
identified

Time Sensor

23 | P a g e

3.3. Software Architecture

An overview of the software architecture and the associated communication can be seen in

Figure 6 (page 23). The software components of the research platform consist of three main

components namely:

 ANN.

 Conveyor automation and data acquisition.

 GA.

Figure 6 - Software Architecture

3.3.1. Artificial Neural Network

The main purpose of the ANN is to provide intelligence and decision making to the system.

The ANN calculates, and decides, which of the trained parts is presented to it based on the

inputs provided by the data acquisition component.

Credit for the initial software and concept development of the ANN in this application goes to

Mr. Hennie van Rooyen as he developed this for use in his research into ANN based part

recognition.

Various changes have been made to the originally developed neural network in order to

perform this research into GA training:

 Removal of hard coded X- and Y-Neuron bias weight values. Both the X- and Y-

neuron in the middle layer of the ANN had hard-coded weight values. These were

determined by trial and error which is not practical for real world application as new

parts would need to be added relatively frequently. These bias weights are now

calculated by the GA during the training process.

 Removal of hard coded input weight values. Because of the limited and inaccurate

ANN training the original system provided, the system was intolerant to outliers in

input data or measurements. As a result, certain problematic data capture points

OPC Server
Artificial Neural Network

Siemens Step 7 Application
PLC Based

Automation & Data
Acquisition

Siemens Step 7 Application
PLC Based

Genetic Algorithm

 Visual Basic.Net Application
 IPC Based

Calculated Weight Data

Captured Sensor Data

24 | P a g e

were nulled by manually setting the weight values for these inputs close to, or, zero.

The problematic inputs were identified by manual inspection of input data. This is not

viable in an industrial environment. All weight values are now calculated by the GA

during the training process.

 Removal of hard coded fuzzy logic on the final output stage. Because of the limited

and inaccurate training, the ANN would frequently incorrectly identify a part as

another and thus misfire. As only three parts were used for the initial research, the

misfire of one part for another was predictable. Basic fuzzy logic was hard coded to

prevent this problem. This fuzzy logic can be simply explained as: IF identified as part

A and part B, only fire part A. IF identified as part B only, identify as part B. This is not

practical for real world application as new parts trained would result in a different

fuzzy logic set. Accurate training resulted in avoiding the above misfire problem

without the need for hard coded fuzzy logic.

 Adaption of the ANN architecture (refer to Section 4.4 Neural Network Architecture for

more information). The original ANN was developed to recognize three parts. In order

to increase the amount of parts between which the system can differentiate, more

neurons and their associated connections had to be added to the architecture.

Software development was performed using Siemens Step 7 as this ANN component of

the research platform is executed on a Siemens S7-300 PLC.

3.3.2. Genetic Algorithm

The main purpose of this software component is to train the ANN to correctly identify parts

depending on their captured data vectors presented to it.

Software development was performed using Visual Basic 2008, part of the Microsoft Visual

Studio 2008 suite.

Selection criteria for this programming language are:

 High level of computational power is required because of the complexity of the GA. The

basic hardware specification capable of supplying this required processing power is a 64-

bit quad-core Intel i5 processor with 6GB of DDR3 RAM. A software language developed

to fully utilize this processing power is required.

 Complexity of calculations and programming loops.

 Object orientated programming to simplify operation.

 Complex data structures required (multi-dimensional variable arrays).

 Familiarity with software and development environment.

25 | P a g e

3.3.3. Conveyor automation and data acquisition

The main purpose of this software component is to control the conveyor that moves the part

to be recognized past the Time, X- and Y-axis measurement sensors and to capture the

various input data measurements.

Software development was performed using Siemens Step 7 as this component of the

research platform is executed on a Siemens S7-300 PLC.

Once the leading edge of the part is detected the X- and Y-axis sensors capture ten

measurements as the part passes. Ten part training data sets for the X- and Y-axis of part B

and part E have been charted below (along with the average trend line in bold black). Part B

and part E were randomly selected to be discussed.

Standard deviation is a widely used measure of variability or diversity and shows how much

variation or scattering of data exists from the average. A low standard deviation indicates that

the data points tend to be very close to the mean, whereas high standard deviation indicates

that the data points are spread out over a large range of values.

In addition to expressing the variability of a population, standard deviation is commonly used

to measure confidence in statistical conclusions. By looking at the standard deviation of the

captured data sets we can determine whether there is good repeatability and confidence in

the data capturing method.

The standard deviation is a measure of the average difference of each case from the mean,

and can be calculated as

=
()

1

Equation 1 - Standard Deviation (DeCoster, 1998)

As can be seen in Table 4, 5, 6 and 7 which tables the average, standard deviation, standard

deviation to average percentage and average standard deviation for the captured training

data for X- and Y-points for part B and E, the standard deviation between the various training

sets is very low. This indicates good confidence and repeatability of the data capturing

method.

28 | P a g e

Graph 1 - Part B X-axis Data Capture

Graph 2 - Part B Y-axis Data Capture

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Point
X:1

Point
X:2

Point
X:3

Point
X:4

Point
X:5

Point
X:6

Point
X:7

Point
X:8

Point
X:9

Point
X:10

0

5000

10000

15000

20000

25000

Point
Y:1

Point
Y:2

Point
Y:3

Point
Y:4

Point
Y:5

Point
Y:6

Point
Y:7

Point
Y:8

Point
Y:9

Point
Y:10

29 | P a g e

Graph 3 - Part E X-axis Data Capture

Graph 4 - Part E Y-axis Data Capture

3.3.4. PLC Simulator

Evolved solutions to the ANN weight optimization problem for each of the 35 identified

condition sets (as defined in Section 6.1 Genetic Algorithm Control Parameters) had to be

evaluated using part data sets that were unfamiliar to the ANN in order to test the

generalization ability of the ANN.

Ideally the best solution for each part for each training condition should be tested on the

hardware research platform (as discussed in Section 3.2 Hardware Architecture) a minimum

of 50 iteration sin order to test the quality of the optimized solution. Unfortunately that would

result in 10 500 test iterations (6 parts x 35 conditions x 50 test iterations = 10 500 iterations).

0

5000

10000

15000

20000

25000

30000

Point
X:1

Point
X:2

Point
X:3

Point
X:4

Point
X:5

Point
X:6

Point
X:7

Point
X:8

Point
X:9

Point
X:10

0

2000

4000
6000

8000

10000

12000
14000

16000

18000

20000

Point
Y:1

Point
Y:2

Point
Y:3

Point
Y:4

Point
Y:5

Point
Y:6

Point
Y:7

Point
Y:8

Point
Y:9

Point
Y:10

30 | P a g e

This is impractical due to time required (estimated over 90 hours) as well as possible

hardware damage.

A PLC simulator was developed as a solution to this problem; which fulfils the criteria of

testing the evolved solutions with data sets previously unknown to the system (not used for

training purposes) as well as being practical. Depending on these results, conditions for real-

world hardware testing were selected.

Each part was passed through the conveyor system 50 times and the sensor data sets

recorded for each iteration. These captured data sets were loaded into the PLC simulator

along with the relevant evolved weight values for the relevant test condition set to be tested.

The PLC simulator contains a duplicate of the ANN programmed into the hardware PLC. The

output of the various ANNs for the current input data sets and weight sets are simulated and

recorded to a readable Excel file.

Below are screenshots of the application with explanations of each step in the process.

a) The evolved weight values to be evaluated is loaded into the PLC simulator

application by either reading from an excel file or by manual entry in the Weight Data

tab.

Figure 7 - PLC Simulator Weight Data Tab

31 | P a g e

b) The test data sets previously captured for each of the sensor capturing points is

loaded into the PLC simulator application from excel sheets or by manual entry in the

Sensor Data tab.

Figure 8 - PLC Simulator Sensor Data Tab

c) Directory and file names for the application log files as well as result output files are

specified in the Settings tab.

Figure 9 - PLC Simulator Settings Tab

32 | P a g e

d) In the Neural Network tab the following group boxes are available:

 Conditions to be simulated group box.

i. Specify which of the 35 test conditions is to be evaluated.

ii. Specify which Parts are to be evaluated.

 Activation Function Limits group box.

i. Activation function limits for the final output stage of each of the

Neural Networks.

 Results group box.

i. Results of the Neural Networks simulation.

 Breakdown group box.

i. Summary of the Neural Networks Simulation Results.

Figure 10 - PLC Simulator Main Neural Network Tab

33 | P a g e

e) A result summary is output into the specified Excel file.

Figure 11 - PLC Simulator Overview Excel Output

f) Detailed results for each ANN layer is output to the specified Excel file.

Figure 12 - PLC Simulator Individual Part Excel Output

34 | P a g e

3.4. Conclusion

In this chapter the research platform, system setup and architecture has been described and

discussed. A broad overview of the experimental test setup is described, the various hardware

and software components, their operation and selection criteria are discussed.

A detailed analysis of the data capturing method and actual captured data is performed as the

accuracy of the input data to the ANN is of extreme importance. The analysis revealed that the

data capturing is accurate and repeatable enough to avoid excessive statistical outliers but still

with enough variation to allow the ANN to generalize and not over fit. The results also show that

the selected hardware (sensors, conveyor and control) meets the required criteria.

In the next chapter the mathematical fundamentals, operation, training methodologies,

architectures and parameters of ANNs are discussed.

35 | P a g e

4. Chapter 4 – Neural Network Training Optimized for Part Recognition
Applications

In this chapter the history, operational principles and components of ANNs are discussed. In the first section

of this chapter the mathematical fundamentals, advantages and applications of ANNs are discussed. Various

network architectures, activation functions and finally training methodologies are discussed.

The human brain has the ability to perform amazingly complex tasks namely: we can walk, talk, read, write,

and recognize hundreds of faces and objects, irrespective of colour, distance, orientation and lighting

conditions. In actual fact it is not the brain on its own that perform these tasks but the entire human body. The

brain plays an essential role in this process, but it should be noted that the body itself (the shape or the

anatomy, the sensors, their position on the body) and the materials from which it is constructed also do a lot of

useful work in intelligent behaviour.

There are a variety of ANNs, each with slight advantages to the given task. Although each network may vary

slightly, there is still common ground on which every ANN is based.

ANNs are mathematical models of real world systems which are built by tuning a set of parameters. These

parameters are known as weights which describe the model by mapping a set of values, called inputs, to an

associated set of values, called outputs. Like the human brain, the ANN consists of a number of Artificial

Neurons (AN), which processes information provided to its inputs.

In the past knowledge based expert systems were used to model decision making tasks. These systems were

very accurate but offered little scope and tolerance outside their programmable field. These systems were

reliant on rules and sets of equations which gave specific answers from specific inputs. This was extremely

fast at computing the answer as long as the rules related to the problem were known. For such cases where

the rules relating to the problem were not known they could not be implemented. For this reason ANNs

became more of an interest

4.1. Artificial Neural Network operation principle

An AN is a mathematical function conceived as a crude model, or abstraction of biological neurons (BN).

ANNs consist of multiple ANs networked together with interlinking connections. ANs in one layer are

connected, fully or partially, to the ANs in the next layer. Feedback connections to previous layers are also

possible.

The AN receives one or more inputs (representing the one or more dendrites) and sums them to produce

an output (representing a BNs axon). Usually the sums of each node are weighted with input signals

inhibited or excited through negative and positive numerical weights associated with each connection to

the AN, and the sum is passed through function known as an activation function or transfer function. The

transfer functions usually have a sigmoid shape, but they may also take the form of other non-linear

functions, piecewise linear functions, or step functions.

36 | P a g e

The AN collects all incoming signals, or input vector, and computes a net input signal as a function of the

respective weights. The net input signal serves as input to the activation function which calculates the

output signal of the AN.

The output of an AN is calculated as the weighted sum of all the input signals.

= .

Equation 2- Artificial Neuron Output

Where is the weight of each input .

A typical AN structure is depicted in Figure 9 (page 31).

Figure 13 - Basic Artificial Neuron

4.1.1. Advantages of Artificial Neural Networks

ANNs have the ability to derive meaning from complicated, incomplete or imprecise data sets. This

enables them to extract patterns and detect trends that are too complex to be noticed by either

humans or other computer techniques. A trained ANN can be thought of as an expert in the category

of information it has been given to analyse. This expert can then be used to provide projected results

given new sets of input data.

Other advantages include:

 Adaptive learning.

The ability to learn how to do tasks based on the initial training data available.

 Self-Organisation.

The ability to create its own organisation or representation of the information it receives during the

learning process.

37 | P a g e

 Real Time Operation.

ANN computations may be carried out in parallel. Multi-core processors combined with operating

systems supporting task multi-threading are allowing ANNs to take advantage of this capability.

4.1.2. Artificial Neural Network Applications

ANNs have been successfully implemented in a number for fields and have proven their ability to

solve complex problems. Some of these applications include:

 Classification or pattern recognition.

A set of inputs are grouped together with similar input data sets.

 Pattern completion.

The missing data from an incomplete input data set is predicted.

 Optimization.

The optimal values for parameters in an optimization problem are found.

 Control.

An action is suggested depending on the input data set presented.

 Function approximation.

Functional relationships between input and output vectors are learnt and predicted.

 Data mining / Knowledge discovery.

Discovery of hidden patterns, and thus information, from raw data.

4.1.3. Real-world Artificial Neural Network uses

ANNs have been successfully implemented in a number for real-world applications and have proven

their ability to solve complex problems. Some of these applications include:

 Anomaly detection applications.

ANNs are able to identify certain data records which do not fit the pattern of their peers.

 Data mining, cleaning & validation.

Data mining can be achieved by determining which records suspiciously diverge from the pattern

of their peers.

38 | P a g e

 Handwriting and typewriting recognition.

Hand- and Typewriting recognition can be achieved by imposing a grid over the writing; each

square of the grid then becomes an input to the neural network. This is called Optical Character

Recognition.

 Voice recognition.

Voice recognition can be achieved by analyzing the audio oscilloscope pattern, much like a stock

market graph.

 Medical Applications.

ANNs are an active research area in medicine and it is believed that they will receive extensive

application to biomedical systems in the next few years. At the moment, the research is mostly on

modelling parts of the human body and recognising diseases from various scans.

ANNs are ideal in recognising diseases using scans since there is no need to provide a specific

algorithm on how to identify the disease. ANNs learn by example so the details of how to

recognise the disease are not needed. What is needed is a set of examples, or training data sets,

that are representative of all the variations of the disease.

 Business Applications.

Business is a diverted field with several general areas of specialisation such as accounting or

financial analysis. Almost any ANN application would fit into one business area or financial

analysis.

There is potential for using ANNs for business purposes, including resource allocation and

scheduling. There is also a strong potential for using ANNs for database mining, searching for

patterns implicit within the explicitly stored information in databases.

ANNs have been successfully applied to exchange rate prediction applications (Knowles,

Hussain, Deredy, & Lisboa, 2009), stock return predictions (Shi, Tan, & Ge, 2009), time series

data analysis (Zhang, Ultra High Frequency Trigonometric Higher Order Neural Networks for

Time Series Data Analysis, 2009), financial time series predictions (Liatsis, Hussain, & Milonidis,

2009) and stock index modelling (Chen, Wu, & Wu, 2009).

39 | P a g e

4.2. Feed-Forward Back-Propagation Neural Network

A popular type of ANN, and the type of network implemented in this research, which is often used for

engineering problems, is called a Multi-Layer Feed-Forward Back Propagation Neural Network. It consists

of a layered ANN with feed-forward connections through two hidden layers to the output layer which

process the results. The term feed-forward is used when the network operates in one direction only and

does not loop back into itself. The input layer receives information as discussed in Section 3.2.3 Data

Collection Sensors. The output layer processes the information generated and applies the final binary

activation function. The intelligence of the network lies in the hidden layers. The hidden layers link the

input layer with the output layer. It extracts information from the input layer and remembers useful features

and sub features to predict the outcome of the network. The goal is to map the input vector onto the

output vector with minimum error to the original output data specified during the training process. Most

previous researchers used the supervised learning technique. For each input vector presented to the

network there is an associated output vector. The most widespread implementation of supervised training

employs error BP techniques which will be discussed in Section 4.5.2 Back-propagation Training.

4.3. Activation Functions

The Activation Function () calculates the output of the neuron by analysing the net input signal and

bias. Commonly used activation functions are discussed below:

4.3.1. Step function

The output, () of this transfer function is binary, depending on whether the weighted sum input

meets a specified threshold, . The output is set to 1 if the threshold is met; otherwise it is set to 0.

() =

Equation 3 - Step Function

() = 1
0

Equation 4 - Step Function with binary output

It is especially useful in the last layer of a network intended to perform binary classification of the

inputs.

40 | P a g e

netfAN

net

1

2

Figure 14 - Step Function

4.3.2. Linear function

The output unit is simply the weighted sum of its inputs plus a bias term. A number of such linear

neurons perform a linear transformation of the input vector. This is usually more useful in the first

layers of a network. A number of analysis tools exist based on linear models, such as harmonic

analysis, and they can all be used in neural networks with this linear neuron. The bias term allows us

to make affine transformations to the data. A slope, , can also be applied to the output.

() = ()

Equation 5 - Linear Function

netfAN

net

Figure 15 - Linear Function

41 | P a g e

4.3.3. Sigmoid

A Sigmoid function such as the logistic function also has an easily calculated derivative, which is

important when calculating the weight updates in the network due to low processing overheads. It is

commonly seen in multilayer ANNs using BP training.

() = ()

Equation 6 - Sigmoid Function

4.3.4. Ramp Function

() =
 >

 <

Equation 7 - Ramp Function

netfAN

net

Figure 16 - Ramp Function

4.3.5. Ramp Function combined with Step Function

This function is a hybrid of the ramp- and step function where the output is binary dependant on

predefined limits. This function is applied to the final output stage of the ANN used in this research.

() =
0 >

1
0 <

Equation 8 - Hybrid Ramp and Step Function

42 | P a g e

net

netf AN

Figure 17 - Ramp and Step Function

4.4. Artificial Neural Network Architecture

Any ANN architecture is comprised of one or more layers of neurons, each with their individual activation

function and interconnecting weighted connections. As such, the basic ANN architecture can be classified

as either single-or multi-layer.

 Single-layer feed-forward networks

Single-layer feed-forward ANNs are composed of one layer, excluding the input layer, only.

Haykin describes single-layer networks as follows:

“In a layered neural network the neurons are organized in the form of layers. In the simplest form

of a layered network, we have an input layer of source nodes that projects onto an output layer of

neurons (computational nodes), but not vice versa. In other words, this network is strictly a

feedforward or acyclic type.” (Haykin, Neural Networks: A Comprehensive Foundation, 1999)

“Such a network is called a single layer network, with the designation “single –layer” referring to

the output layer of computational nodes (neurons). We do not count the input layer of source

nodes because no computation is performed there.” (Haykin, Neural Networks: A Comprehensive

Foundation, 1999)

 Multilayer feed-forward ANNs

Multilayer feed-forward ANNs are composed of more than one layer, excluding the input layer.

Haykin describes Single-layer Networks as follows:

“The second class of feed forward neural networks distinguishes itself by the presence of one or

more hidden layers, whose computational nodes are correspondingly called hidden neurons of

hidden units. The function of hidden neurons is to intervene between the external input and the

network output in some useful manner. By adding one or more hidden layers, the network is

43 | P a g e

enabled to extract higher order statistics. In a rather loose sense the network acquires a global

perspective despite its local connectivity due to the extra set of synaptic connections and the

extra dimension if neural interactions” (Haykin, Neural Networks: A Comprehensive Foundation,

1999)

“The source nodes in the input layer of the network supply respective elements of the activation

pattern (input vector), which constitute the input signals applied to the neurons (computational

nodes) in the second layer (i.e., the first hidden layer). The output signals of the second layer are

used as inputs to the third layer, and so on for the rest of the network. Typically the neurons in

each layer of the network have as their inputs the output signals of the preceding network only.

The set of output signals of the neurons in the output (final) layer of the network constitutes the

overall response of the network to the activation pattern supplied by the source nodes in the input

(first) layer.” (Haykin, Neural Networks: A Comprehensive Foundation, 1999)

The architecture implemented in this research is a multilayer, partially connected feed-forward ANN.

In his book, “Neural Networks: A Comprehensive Foundation”, Simon Haykin describes fully and partially

connected neural networks as:

“A Neural Network is said to be fully connected in the sense that every node in each layer of the network

is connected to every other node in the adjacent forward layer. If, however, some communication links

(synaptic connections) are missing from the network, we say that the network is partially connected”

(Haykin, Neural Networks: A Comprehensive Foundation, 1999).

 It is a multilayer ANN in the sense that it consists of four layers namely the input layer, two hidden or

computational layers and an output layer. It is partially connected in the sense that although all neurons in

the input layer connect to all neurons in the 1st hidden layer, all the neurons in the 1st hidden layer do not

connect to all the neurons in the 2nd hidden layer. Please refer to Figure 18 (page 45).

The various layers can be described as follows:

 Input Layer.

The activation function is linear.

Input vectors are based on the measured dimensions from the X-, Y-axis and time laser

sensors.

Z01 – Z10 are linear inputs from the X-axis laser sensor.

Z11 – Z20 are linear inputs from the Y-axis laser sensor.

Z21 is an input from the time sensor.

44 | P a g e

 Middle / Hidden Layers.

The activation function is linear.

Neurons Y1, Y3, Y5, Y7, Y9 and Y11 calculate a weighted sum for the X-axis inputs for their

individual part specific optimized weights.

Neurons Y2, Y4, Y6, Y8, Y10 and Y12 calculate a weighted sum for the Y-axis inputs for their

individual part specific optimized weights.

The time input layer neuron, Z21, is connected to all the 1st hidden layer neurons.

X1, X2, X3, X4, X5 and X6 calculate a weighted sum of their relevant X- and Y-axis neurons.

The output from this layer, the 2nd hidden layer, is linear.

This linear output is used to calculate the fitness of an individual during the training process.

One of the requirements for GA based ANN training is that the calculated fitness value

contains more information than a Boolean True or False answer. This will be discussed in

Section 4.5.3 Genetic Algorithm Training.

 Output Layer.

The sole purpose of this layer is to provide a Boolean output depending on whether the output

from the previous layer falls within a certain target range and thus the associated weight (U1,1

– U6,6) is a constant value of 1. The activation function is a stepped ramp hybrid function as

described in Section 4.3.5 Ramp Function combined with Step Function. A Boolean output

from O1, O2, O3, O4, O5 and O6 indicates whether part A, part B, part C, part D, part E or part

F has been identified.

Because of the partial interconnectivity of the ANN, it is possible to subdivide the network into six logical

and functional separate smaller ANNs, one for each part to be identified as can be seen in Figure 19

(page 46). This is an important feature as it enables the separate training of weights for each part’s ANN.

45 | P a g e

Figure 18 - Complete Neural Network Architecture

46 | P a g e

Figure 19 - Neural Network Architecture for each part

47 | P a g e

4.5. Artificial Neural Network Training

The intelligence of the ANN is embedded in the various weight values assigned to each connection.

These weights are modified by learning rules. The three commonly used types of learning rules are

supervised, reinforcement, and unsupervised.

4.5.1. Artificial Neural Network Training Methodologies

4.5.1.1. Supervised Learning

The term supervised is used both in a very general and narrow technical sense. In the narrow

technical sense supervised means that for a certain input the corresponding output is known, the

ANN is to learn the mapping from inputs to outputs. In supervised learning applications, the

correct output must be known and provided to the learning algorithm. The task of the network

learning algorithm is to find the mapping. The weights are changed depending on the magnitude

of the error that the network produces at the output layer: the larger the error, i.e. the discrepancy

between the output that the network produces (the actual output) and the correct output value (the

desired output), the more the weights change. This is why the term error-correction learning is

also used. The most used example of supervised learning is BP. BP is very powerful and there

are many variations of it. Such learning algorithms are used in the context of feed-forward

networks and requires a multi-layer network. BP will be investigated in this research. Although not

typically used, the GA training used in this research is also a form of supervised learning.

4.5.1.2. Reinforcement Learning

In reinforcement learning, the only known detail of the output is a discreet answer of whether the

output is correct or not. No detail of the amount of error is available.

The problem of attributing the error to the right cause is called the credit assignment or blame

assignment problem. It is fundamental to many learning theories. It is used to designate learning

where a particular behaviour is to be reinforced. An example would be robot training. The robot

receives a positive reinforcement signal if the result was good, no reinforcement or a negative

reinforcement signal if it was bad. If the robot has managed to pick up an object, has found its

way through a maze, or if it has managed to shoot the ball into the goal, it will get a positive

reinforcement. Reinforcement learning is not tied to ANNs: there are many reinforcement learning

algorithms in the field of machine learning in general.

4.5.1.3. Unsupervised Learning

Hebbian learning and competitive learning typically fall under this type of learning. Hebbian

learning is when two nodes are active simultaneously the connection between them is

strengthened.

48 | P a g e

4.5.2. Back-propagation Training

Back-propagation is the most common type of feed-forward ANN training used. The method

processes records one at a time and train or learn by comparing their prediction of the data set output

with the known actual target. The errors from the initial prediction of the first record is fed back into the

network and used to modify the networks algorithm, hence the name back propagation. The term

feed-forward describes how this neural network processes the input data set vector. The BP learning

algorithm calculates the error between the generated output and target output and uses the estimated

error to modify the weight in response to the errors. This method sends the error backwards through

the network adjusting the weights accordingly. The error function is based on the Mean Square Error

(MSE) value used to evaluate the goodness of fit in statistical problems. For problems where the

network prediction closely matches the target solution, the error function will be very small. In

contrast, poor network representations of problems will produce high error values.

The algorithm changes its weight to follow the steepest path towards the bottom of the valley shaped

error surface (an example of the solution / error space or surface can be seen in Figure 21 (page 53)).

This continues until a set of weights, which processes data accurately for the application, is found or

optimized. These weights are normally adjusted based on a gradient-descent technique.

In his book, “An Introduction to the Modeling of Neural Networks”, P. Paretto identifies two of the most

troublesome defects of gradient descent BP training namely the Overshooting Effect and the Gully

Effect. Both of these problems are related to the momentum, or rate of descent, of gradient descent

training methods. If the rate of change is too small, the training algorithm might get stuck in a local

minimum. If the rate of change is too large, the training algorithm might jump over small local

minimum valleys (Paretto, 1994).

Although there is no general rule as to how many training data sets is needed to generate the ideal

weight for the layers, it is known that the highest accuracy and efficiency obtained is by the network

that requires the fewest weights needed to process the training data to a specified accuracy. To

determine the optimal architecture of the ANN there has to be a trade off between the networks being

large enough to learn the relationships but small enough so it can still be generalised and over fitting

is avoided. What is known is that data sets chosen for the training must cover the entire range of

expected inputs to the ANN. Some statistical analysis and manipulation of training data, such as the

removal of outliers generally result in higher accuracy and smoother generalisation (please refer to

Section 3.3.3 Conveyor automation and data acquisition for more information on how outliers were

handled in this research).

After adjusting the connecting weights new inputs are presented to the network and are interpolated.

Each successive round of inputs is called an epoch. The network compares the new input data set

and must recognise whether it is similar to previous patterns. The difference between the output of the

final layer and the desired output is BP to the previous layer and the connection weights are adjusted

accordingly.

49 | P a g e

4.5.3. Genetic Algorithm Training

As previously discussed, the most popular training method for multilayer ANNs is the BP algorithm.

Weights connected to the output layer are adjusted directly from the output error. The errors are back-

propagated and the weights back-adjusted layer by layer from the output layer to the input layer. This

process is repeated for every epoch, or training iteration, until all the available training data have been

used. To accurately train an ANN typically requires many epochs in order to obtain the optimal

connection-strength or weights. The guidance of the connection parameter optimisation process is

based on the gradient of the error.

In their paper, Artificial evolution of neural networks and its application to feedback control, Yun Li and

Alexander Häußler identified the following drawbacks of BP training of ANNs:

1. “Gradient guidance passively adjusts parameters from the performance index, which must be

differentiable or “well-behaved” and thus may not allow modified error terms that suit real

engineering problems;

2. It is difficult to train a direct feedback neurocontroller that meets constraint conditions in

practical applications;

3. The trained parameters may be local optima, although parallel training may overcome this

problem to a certain extent;

4. Different control parameters in ANN training (e.g., the learning rate and momentum rate) may

result in different minimum rms errors for the same (large) number of epochs;

5. The architecture of the network usually needs to be fixed prior to parameter training and thus

optimal architectures or topologies cannot be revealed for different types of data or

applications;

6. Using BP is difficult to obtain an ANN that matches multiple data sets that are extracted from

different operating conditions of the same plant;

7. It is usually difficult to incorporate knowledge and expertise that the designer may already

have on the network design; and

8. It is almost impossible to minimise the input to an ANN.” (Li & Häußler, 1996)

GAs are very effective in searching unknown, irregular and complex spaces for optimisation. GAs

have the ability to simultaneously evaluate performance at multiple points in parallel while intelligently

searching through the solution space and can thus approach the global optima for almost any type of

problem presented to it without the need for differentiation. Recent development in this subset of EC

has shown the strength of GAs in overcoming the drawbacks listed above. As previously discussed in

Chapter 2, training by a GA can be more efficient, in terms of the convergence speed, than BP and

that GA trained networks can effectively lead to a lower error as it searches for a global minimum.

In order to perform the training of an ANN the amount of weights required are encoded as a string of

real values. This string, or array, is then a representation of an individual and its genetic information in

50 | P a g e

the GA. Many such individuals are initially randomly generated to form a population of candidate

solutions.

As can be seen in the ANN architecture depicted in Figure 18 (page 45), 24 weights are required for

each part ANN. These 24 weights are comprised of:

 10 weights for the 10 X-axis dimensional inputs.

 1 weight for the X-axis time input.

 10 weights for the 10 Y-axis dimensional inputs.

 1 weight for the Y-axis time input.

 1 weight for the X-axis neuron to output neuron connection.

 1 weight for the Y-axis neuron to output neuron connection.

As the final output stage neuron, O1, purely acts as a stepped range activation function, a constant

weight value of 1 is used and need not be optimized by the GA.

The learning process is described below (refer to Figure 20 (page 51)):

a) Training data sets are captured and loaded into the GA training/optimization application.

b) An initial population is created and genes initialized to random values within a specified

range.

c) Training set input data is fed into the ANN along with the individual currently being evaluated

gene values as weights.

d) The linear output of the ANN (neuron X1 in Figure 18 (page 45)) is compared to the target

value. This is used to evaluate the fitness of the current individual.

e) Step c) and d) is repeated for each individual in the population.

f) If a defined GA stopping condition (as discussed in Section 5.1.7 Algorithm Stopping

Conditions) is met, the training process terminates. If not, the next generation is created by

selecting parent individuals and creating offspring. The process is then repeated until a

stopping condition is met.

The size of the population, the probability rates for cross-over and mutation, type of cross-over,

mutation rate and parent selection algorithms are all control parameters of the GA.

“The task of selecting crossover and mutation rates in a GA is much easier than determining the

learning and momentum rates in a BP based algorithm. In the optimisation process of ANN

parameters, the GA search is guided by analysis and exploration of the fitness of every individual in

the evolving population. The relative fitness of an individual in the population is the criterion that

determines the probability of its reproduction and survival.” (Li & Häußler, 1996)

51 | P a g e

Figure 20 – GA based ANN training Flow Chart

“Since the GA is a fitness evaluation based search, as opposed to calculus based optimisation,

method, the analytical requirement of the fitness function is thus much more relaxed than an objective

or cost function used in traditional optimisation techniques.” (Li & Häußler, 1996)

If the below criteria are met, the ANN can be trained by a GA:

 The solution space is known and can be encoded as gene values.

 The fitness of each individual is analysable and can be evaluated.

 The calculated fitness value contains more information than a Boolean True or False answer,

as otherwise the reproduction will be completely polarised and the GA will become a multi-

point random search.

52 | P a g e

4.6. Conclusion

In the chapter the general operational principle of ANNs, their advantages, applications, various

architectures and training methods were discussed.

The mathematical and operational foundations of the activation functions as well as the hybrid utilized in

the project are explained in detail.

Various types of commonly used ANNs, their mathematical and operational foundations are introduced.

The type of ANN and the associated selection criteria as used in this research is explained.

The ANN architecture, its various layers and their activation functions, the associated inputs and outputs

as well as the various AN connection weights as used in this project is introduced and discussed in detail.

The most commonly used method of ANN training, BP, is discussed. The methodology of GA based ANN

training as used in this project is explained.

In the next chapter a similar topics will be discussed with regard to GAs. The history, methodology and

real-world uses are discussed. The application specific GA software, its operation, use and development

is also discussed.

53 | P a g e

5. Chapter 5 – Genetic Algorithms Applied to Neural Network Training

In this chapter background on the operating principle and history of GAs as well as the ANN training

application used in this research is discussed. A detailed description and operation guide of the developed GA

training application is also given.

5.1. Background on the way the GA works

The GA in this application can be thought of as the search through the solution space of possible

chromosome values for the set of chromosome values that will result in the lowest possible ANN output

error. In that sense of an Evolutionary Algorithm (EA) is a stochastic search for an optimal solution to a

given problem.

Figure 21 (page 53) and Figure 22 (page 54) describes the solution space for Equation 9 (page 53). In

Figure 21 (page 53) it can be seen that each of the six candidates are represented by its coordinates. In

optimization problems one looks for the lowest valley or highest hill depending on the problem being

optimized.

Equation 9 - Solution Space Description (Venables & Tan, 2007)

(,) = (1) () ()

Figure 21 - Landscape of solution space (Venables & Tan, 2007)

54 | P a g e

Figure 22 - Landscape of solution space with optimized solutions (Venables & Tan, 2007)

In Figure 22 (page 54) it can be seen that the six individuals have, over successive generations,

converged on the optimal solution.

The evolutionary search process is influenced by the following main components:

 Problem solution encoding.

 Population creation and initialization.

 Fitness evaluation / fitness function definition.

 Selection operators.

 Offspring creation / reproduction operators.

 Population sorting algorithms.

 Algorithm stopping conditions.

55 | P a g e

Figure 23 - Basic Genetic Algorithm Flowchart

56 | P a g e

The various components and the specific application of each in this research are described in the

following subsections:

5.1.1. Problem Solution Encoding

“In nature, organisms have certain characteristics that influence their ability to survive and reproduce.

These characteristics are represented by long strings of information contained in the chromosomes of

the organism. Chromosomes are structures of compact intertwined modules of DNA, found in the

nucleus of organic cells. Each chromosome contains a large number of genes, where a gene is the

unit of heredity. Genes determine many aspects of anatomy and physiology through control of protein

production. Each individual has a unique set of genes. An alternative form of a gene in referred to as

an allele.” (Andries, 2007)

In this research the terms chromosome and individual are used interchangeably due to the fact that

each individual is represented by a single chromosome string.

“In the context of EC, each individual represents a candidate solution to an optimization problem. The

characteristics of an individual are represented by a chromosome, also referred to as a genome.

These characteristics refer to the variables of the optimization problem, for which an optimal

assignment is sought. Each variable that needs to be optimized is referred to as a gene, the smallest

unit of information. An assignment of a value from the allowed domain of the corresponding variable is

referred to as an allele.” (Andries, 2007)

“An important step in the design of an EA is to find an appropriate representation of candidate

solutions (i.e. chromosomes). The efficiency and complexity of the search algorithm greatly depends

on the representation scheme. Different EAs from the different paradigms use different representation

schemes. Most EAs represent solutions as vectors of a specific data type.” (Andries, 2007)

In this research each possible solution, or individual, is represented as vectors of float, or double, data

types. As the total number of weights that are required for the part recognition ANN is 24 for each part

(as discussed in Section 4.5.3 Genetic Algorithm Training), each individual is composed of 24 floating

point values.

5.1.2. Population Creation and Initialization

GAs are evolutionary population based algorithms. The first step in the algorithm is to create and

initialize a population of individuals with random genetic material. There are various factors that need

to be considered during this process of which the two most important are initial population size and

initial genetic material range.

5.1.2.1. Population Size

The population size influences the computational complexity and possible search scope.

57 | P a g e

A larger population will result in higher computational complexity for each generation as well as

increase time required to evaluate, sort and evolve each generation. The advantage of a larger

population is that it will increase the search scope in the possible solution space of the problem

being optimized.

5.1.2.2. Initialization values

The initial genetic values assigned to the various individuals in the population directly affect the

range of possible solution space that will be searched by the evolutionary process.

The initial values assigned should be uniformly spread throughout the entire range of allowed

values in order to ensure that the entire solution space is searched. If a certain range of values

are left out of the initialization there is a good chance that that area of the solution space will not

be searched unless values are evolved to that region by mutation.

“Evolutionary algorithms are stochastic, population-based algorithms. Each EA therefore

maintains a population of candidate solutions. The first step in applying an EA to solve an

optimization problem is to generate an initial population. The standard way of generating an initial

population is to assign a random value from the allowed domain to each of the genes of each

chromosome. The goal of random selection is to ensure that the initial population is a uniform

representation of the entire search space. If regions of the search space are not covered by the

initial population, chances are that those parts will be neglected by the search process.

The size of the initial population has consequences in terms of computational complexity and

exploration abilities. Large numbers of individuals increase diversity, thereby improving the

exploration abilities of the population. However, the more the individuals, the higher the

computational complexity per generation. While execution time per generation increases, it may

be the case that fewer generations are needed to locate an acceptable solution. A small

population, on the other hand will represent a small part of the search space. While the time

complexity per generation is low, the EA may need more generations to converge than for a large

population.

In the case of a small population, the EA can be forced to explore more of the search space by

increasing the rate of mutation” (Andries, 2007)

While increasing the mutation rate could force the EA to search a larger area of the solution

space, it could also result in the optimal solution being missed as the smaller areas of the solution

space are not being explored.

58 | P a g e

ReDim Population(PopulationSize, PopulationWidth)

For Individual As Integer = 0 To PopulationSize

For Gene As Integer = 1 To ComponentCount

 Dim number = rand.NextDouble()

 Population(Individual, Gene) = number * PopInitWeight

Next
Next

The Section of source code in Source Code 1 (page 58) is used to initialize the population by

making use of the Random Visual Basic.NET Class. All gene values are initialized to floating

real values in the range [0,1].

The variable PopIniWeight is a user defined variable to allow scaling of the random initialization

value.

In his book, Computational Intelligence: An Introduction, Andries P. Englebrecht discusses

weight initialization methods when using gradient based optimization methods of training of

ANNs. Although gradient based training was not used in this research the theory is still

applicable.

“A sensible weight initialization strategy is to choose small random weights cantered around 0.

This will cause net input signals to be close to zero. Activation functions then output midrange

values regardless of the values of input units. Hence there is no bias toward any solution.

Wessels and Barnard [898] showed that random weights in the range [,] is a good

choice, where fanin is the number of connections leading to a unit.” (Andries, 2007)

As the amount of connections leading to each unit in this application is 24, the range can be

calculated as follows.

Range = [,]

 = [,]

 = [-0.204124, 0.204124]

Source Code 1 - Population Initialization

59 | P a g e

ReDim Population(PopulationSize, PopulationWidth)

fanin = 1 / (Math.Sqrt(ConnectionAmount))

DevidingFactor = 0.5 / fanin

For Individual As Integer = 0 To PopulationSize

For Gene As Integer = 1 To ComponentCount

 Dim number = rand.NextDouble()

 number = number - 0.5

number = number / DevidingFactor

Population(Individual, Gene) = number

Next
Next

The Section of code in Source Code 2 (page 59) is used to initialize the population by making

use of the Random Visual Basic.NET Class. The random values are then scaled to fall within

the calculated range of [-0.204124, 0.204124].

5.1.3. Fitness Evaluation / Fitness Function Definition

The fitness of an individual is a value that indicates how far or close an individual is from the optimal

solution. The fitness function is the problem specific function which calculates and assigns a fitness

value to the individual.

The most difficult and important concept of genetic programming is the fitness function as it is the sole

means of judging the quality of an evolved solution. Hui et al. describe the fitness function as follows:

“In the context of neural network training, the fitness function may be the total error function” (Hui,

Lam, & Chea, 1997)

The fitness evaluation is also important in the parent selection stage as fitter, closer to optimal;

individuals stand a good chance of either being selected as parents or to survive through to the next

generation. This enables them to pass along their good genetic information to the next generation.

“In the Darwinian model of evolution, individuals with the best characteristics have the best chance to

survive and to reproduce. In order to determine the ability of an individual of an EA to survive, a

mathematical function is used to quantify how good the solution represented by a chromosome is.

Source Code 2 - Population Initialization to fanin

60 | P a g e

Usually, the fitness function provides an absolute measure of fitness. That is, the solution represented

by a chromosome is directly evaluated using the objective function. As a final comment on the fitness

function, it is important to emphasize its role in an EA.

The evolutionary operators, e.g. selection, crossover, mutation and elitism, usually make use of the

fitness evaluation of chromosomes. For example, selection operators are inclined towards the most-fit

individuals when selecting parents for crossover, while mutation leans towards the least-fit

individuals.” (Andries, 2007)

Utilizing GAs for design work has been criticized as a lazy method of design. The counter argument is

the amount of effort and planning involved in designing a workable and accurate fitness function.

Even though it is no longer the human designer, but the computerized GA, that comes up with the

final design, it is the human designer who has to design the fitness function. If this is designed

wrongly, the algorithm will either converge on an inappropriate solution, or will have difficulty

converging at all.

Another important design aspect of the fitness function is the efficiency and speed of execution, as a

typical GA must be iterated many times in order to produce a usable result. This is especially the case

for the discussed part recognition application as new parts need to be trained quickly and accurately.

Please refer to Section 4.5.3 Genetic Algorithm Training for more general information on the training

of ANNs by utilizing GAs.

The fitness function implemented in this application can be explained as follows:

 ANN target output for the part being trained is specified by the user.

 Input training sets for the part in training are captured.

 Each of the provided training sets are individually input into a simulated ANN identical to the ANN

programmed into the PLC.

 The output, before applying the step function, of the simulated ANN for each training set is

recorded and the RSE to the ANN target is calculated.

 The sum total of all the training sets RSEs are assigned as the fitness of the individual.

 The lower the fitness value, the better the solution as it indicates a lower error value.

RSE is used as a negative error value would falsely improve the fitness of an individual. Table 8

(page 61) and Table 9 (page 61) illustrate this possibility. As an example, when the fitness of an

individual is evaluated using RSE, its true fitness and error value of 1472.52 is calculated. When

using the basic error calculation results in an incorrect better fitness of 210.54.

=
Equation 10 - Basic Error Calculation

61 | P a g e

= ()
Equation 11 - RSE Calculation

Table 8 - RSE Fitness Calculation

Training Data Set ANN Output ANN Target RSE
Data Set 1 19926.49 20 000.00 73.51
Data Set 2 20259.46 20 000.00 259.46
Data Set 3 19725.71 20 000.00 274.29
Data Set 4 20371.53 20 000.00 371.53
Data Set 5 19506.26 20 000.00 493.74

1 472.52

Table 9 - Error Fitness Calculation

Training Data Set ANN Output ANN Target Error
Data Set 1 19926.49 20 000.00 73.51
Data Set 2 20259.46 20 000.00 -259.46
Data Set 3 19725.71 20 000.00 274.29
Data Set 4 20371.53 20 000.00 -371.53
Data Set 5 19506.26 20 000.00 493.74

210.54

5.1.4. Selection Operators

In order to ensure the preservation of good genetic material, parent selection should be largely based

on the fitness of individuals. This is the main objective of selection operators. At the end of each

generation the population for the next generation is selected. The new population can consist of both

newly created offspring and parents that survive through to the next generation. Although most of the

unfit, genetically bad, individuals are killed off at the end of the generation a few are allowed to

survive as they improve the genetic diversity of the population.

Selection operators are characterized by their selective pressure which relates to the time required for

the population to converge. It is defined as the speed at which the best solution will occupy the entire

population by repeated application of the selection operator alone. An operator with a high selective

pressure decreases diversity of genetic material in the population more rapidly than operators with a

low selective pressure, which may lead to premature convergence to suboptimal, local minimum,

solutions. A high selective pressure limits the exploration abilities of the population.

Generally the more fit individuals, with the lowest error, are selected as parents for cross-over and

mutation operators as they most likely to contain good genetic material.

62 | P a g e

The mutation operator is also applied to less fit individuals as they allow exploration of wider areas of

the solution space for a global optimum where as the elite individuals generally converge in one area

of the solution space which might only be a local optimum.

The most commonly used selection operators are discussed in this section.

5.1.4.1. Roulette Based Selection

Parents are selected according to their fitness. This procedure, also known as fitness

proportionate selection, can be thought of as a roulette wheel being spun once for each available

slot in the next population. Each solution has a portion of the roulette allocated in proportion to

their fitness. In this scheme it is possible to choose the best individual more than once, and

chances are that the worse individual has a very slim chance of being selected and surviving to

the next generation. See Figure 24 (page 62) for an example.

Figure 24 - Roulette Wheel Selection Operator

5.1.4.2. Rank Based Selection

“Rank-based selection uses the rank ordering of fitness values to determine the probability of

selection, and not the absolute fitness values. Selection is therefore independent of actual fitness

values, with the advantage that the best individual will not dominate in the selection process.”

(Andries, 2007)

One of the problems associated with roulette based selection is that, in an situation where the

fitness’s of individuals differs very much and one individual is much better than the rest, the good

individual will be selected numerous times and cause the population to prematurely converge on

Individual 1
60%Individual 2

11%

Individual 3
6%

Individual 4
8%

Individual 5
15%

63 | P a g e

a local minimum. If, for example, the best chromosome fitness is 90% of the roulette wheel then

the other chromosomes will have very few chances to be selected.

Rank based selection first ranks the population and then every chromosome receives fitness from

this ranking. The worst will have a fitness of 1, second worst 2 etc. and the best will have fitness

N (where N is the number of individuals in the population).

After this all the chromosomes have a chance to be selected. But this method can lead to slower

convergence, because the best chromosomes do not differ so much from other ones.

“Rank selection is an alternative method whose purpose is also to prevent too

convergence. In the version proposed by Baker (1985), the individuals in the population are

ranked according to fitness, and the expected value of each individual depends on its rank rather

than on its absolute fitness. There is no need to scale fitnesses in this case, since absolute

differences in fitness are obscured. This discarding of absolute fitness information can have

advantages (using absolute fitness can lead to convergence problems) and disadvantages (in

some cases it might be important to know that one individual is far fitter than its nearest

competitor). Ranking avoids giving the far largest share of offspring to a small group of highly fit

individuals, and thus reduces the selection pressure when the fitness variance is high. It also

keeps up selection pressure when the fitness variance is low: the ratio of expected values of

individuals ranked i and i+1 will be the same whether their absolute fitness differences are high or

low” (Melanie, 1999)

Figure 25 (page 63) shows how the situation changes after changing to a rank based selection

operator.

Figure 25- Rank Based Selection Operator

Individual 1
33%

Individual 2
20%

Individual 3
7%

Individual 4
13%

Individual 5
27%

64 | P a g e

5.1.4.3. Random Selection

Random selection is the simplest selection operator, where each individual has the same

probability to be selected. No fitness information is used, which means that the best and the worst

individuals have exactly the same probability of being selected as parent thus having their genetic

material surviving to the next generation. Random selection has a very low selective pressure.

While it is good to have some randomly selected individuals as it increases the range and variety

of the population’s genetic pool, it also counter acts the base principle of GAs, natural selection.

5.1.4.4. Tournament Selection

Rank scaling requires sorting the entire population by rank which adds computational complexity

and also increases execution time dramatically as it needs to be performed for each generation.

Tournament selection is similar to rank selection in terms of selection pressure, but it is

computationally more efficient and more amenable to parallel implementation.

Two individuals are chosen at random from the population. A random number is then chosen

between 0 and 1. If the random number is smaller than a preset parameter value (for example

0.80), the fitter of the two individuals is selected to be a parent; otherwise the less fit individual is

selected. The two are then returned to the original population and can be selected again.

Another implementation of tournament selection is described by Andries P. Engelbrecht.

“Tournament selection selects a group of nts individuals randomly from the population, where nts <

ns (ns is the total number of individuals in the population). The performance of the selected nts

individuals is compared and the best individual from this group is selected and returned by the

operator. For crossover with two parents, tournament selection is done twice, once for the

selection of each parent.

Provided that the tournament size, nts, is not too large, tournament selection prevents the best

individual from dominating, thus having a lower selection pressure. On the other hand, if nts is too

small, the chances that bad individuals are selected increase.

Even though tournament selection uses fitness information to select the best individual of a

tournament, random selection of the individuals that make up the tournament reduces selective

pressure compared to proportional selection. However, note that the selective pressure is directly

related to nts. If nts = ns, the best individual will always be selected, resulting in a very high

selective pressure. On the other hand, if nts = 1, random selection is obtained.” (Andries, 2007)

65 | P a g e

5.1.4.5. Elitism

Elitism is the selection operator where the best, fittest individuals of the current generation are

allowed to survive through to the next generation. Such individuals can be lost if they are not

selected to reproduce or if they are destroyed by crossover or mutation. The rest of the offspring

is created by classical reproduction operators. Elitism can very rapidly increase performance of

GA, because it prevents losing the best found solution. If a large percentage of offspring creation

is allocated to elitism it can cause the population to prematurely converge on a local, sub-optimal

minimum solution as it drastically decreases the genetic diversity of the population.

5.1.4.6. Hall of Fame

The hall of fame is a selection scheme where the best individual of each generation is selected to

be inserted into a separate population or “hall of fame”. The hall of fame will therefore contain an

archive of the best individuals found from the first generation. This elite genetic material in the hall

of fame can be used as a parent pool for the crossover operator. This method ensures that, as

with elitism, good genetic material isn’t lost by mutation or cross-over but has the advantage that

it can’t cause the population to prematurely converge on a sub-optimal solution.

In this research a combination of elitism and random selection is used as selection operators with the

selective pressure of each defined by the options set in software.

5.1.5. Offspring Creation / Reproduction Operators

Reproduction is the process of producing offspring from selected parents by applying crossover

and/or mutation operators.

5.1.5.1. Elitism

The concept of elitism has already been introduced and discussed in Section 5.1.4.5. Elitism.

5.1.5.2. Crossover

Crossover is the process of creating one or more new individuals through the combination of

genetic material randomly selected from one or more parents.

If parent selection focuses on the most-fit individuals, the selection pressure may cause

premature convergence due to the lack of genetic diversity in the new populations.

Crossover operators can be divided into three main categories based on the number of parents

used. The three main categories are:

 Asexual.

Offspring is created by rearranging the gene values of one individual.

66 | P a g e

 Sexual.

Offspring is created by combining the genetic material of two parent individuals. This is the

most common form of the crossover operator.

 Multi-recombination.

Offspring is created by combining the genetic material of more than two parent individuals.

The sexual crossover category can be further classified as:

 Single Point Crossover.

Both parent chromosomes are split at a randomly determined crossover point. A new

individual, or offspring, is created by appending the second part of the second parent to the

first part of the first parent as illustrated in Figure 26 (page 66).

Parent 1
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Parent 2
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Offspring
A1 A2 A3 A4 A5 A6 B7 B8 B9 B10

Figure 26 - Single Point Cross-over

 Two-point Crossover

In two-point crossover, both parents are split at two points and a new offspring is created by

using parts number one and three from the first, and the middle part from the second parent

chromosome. This is illustrated in Figure 27 (page 66).

Parent 1
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Parent 2
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Offspring
A1 A2 A3 A1 A1 A1 A1 A1 A1 A1

Figure 27 – Two-point Cross-over

67 | P a g e

 Multi-point Crossover

In Multi-point crossover, random chromosomes are selected from each parent individual and
combined to form offspring. This is illustrated in Figure 28 (page 67).

Parent 1
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Parent 2
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Offspring
A1 B2 A3 B4 B5 A6 A7 B8 A9 A10

Figure 28 - Multi-point Cross-over

5.1.5.3. Mutation

In individuals composed of real string values, this can be achieved by randomly modifying the

value of one or more genes in the parent individual of a gene, as illustrated in Figure 29 (page

68).

The problem with the above discussed crossover methods is that no new information is

introduced: each continuous value that was randomly initiated in the initial population is

propagated to the next generation, only in different combinations.

The main objective of mutation is to introduce new genetic material into the population, thereby

increasing genetic diversity. With the new gene values, the GA may be able to arrive at a better

solution than was previously possible. Mutation is an important part of genetic search and

optimization as it helps prevent the population from stagnating at any local minimum in the

solution space.

Applying a large degree of mutation to highly fit individuals could damage good genetic material

from the gene pool. For this reason, very small mutation changes are normally made to genetic

material. The alternative is to increase the mutation amount for less fit individuals. Another

approach is to increase the mutation amount during the first few generations in order to promote

search space exploration in the first generations and then reduce it over time to allow for

exploitation during the final generations.

“A common view in the GA community, dating back to Holland's book Adaptation in Natural and

Artificial Systems, is that crossover is the major instrument of variation and innovation in GAs,

with mutation insuring the population against permanent fixation at any particular locus and thus

playing more of a background role.” (Melanie, 1999)

68 | P a g e

 = +

where is a randomly generated real number
Equation 12 - Mutated Gene

Parent
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Offspring
A1 A2 B1 A4 A5 A6 A7 A8 A9 A10

Figure 29 - Mutation operator

5.1.6. Population Sorting Algorithm

After each new generation has been created and the individual’s fitness’ have been calculated, the

population needs to be sorted accordingly. The lower the amount of error, the higher the individual’s

fitness.

The efficiency of this sorting algorithm is very important as it has a major influence on the

computational complexity and the time taken by each generation.

The sorting algorithm used in this research can be seen in Source Code 3 (page 70). Each repetition

involves reaching through the entire population array from the top down for the individual with the

highest fitness. Once this individual is found, it is moved into a new temporary sorted population array

and subsequently removed from the original array. The process is then repeated to find the next best

individual. Once all the positions in the new temporary array have been filled, the new temporary

population array becomes the active population array.

The algorithm used in this research is similar to a commonly used sorting algorithm called Insertion

Sort. Although it is less efficient on large lists r arrays of data, such as large populations, it does

provide several advantages:

 Simple implementation.

 Efficient for small data sets (as is normally the case with GAs).

 Adaptive for datasets that are already substantially sorted.

 More efficient than most other simple quadratic algorithms such as bubble sort.

 Stable as it does not change the relative order of elements with equal fitness.

 In-place as it only requires a constant amount of memory space.

69 | P a g e

Private Sub SortPopulation()

 ' Logging
 SaveToLogFile("Sorting of Population Started", 2)

 ' Temp Population variable
 Dim SortedPopulation(PopulationSize, PopulationWidth) As Double
 ' Temp to store best individual of that cycle
 Dim BestIndividual(PopulationWidth) As Integer
 ' Best individual number of that cycle
 Dim BestIndividualOfCycle As Integer
 ' Best Fitness of that loop
 Dim BestLoopFitness As Double

 ' Sort Fitness from High to Low
 If radSortHigh.Checked = True Then

 ' Loop through to build sorted population
 For SortedPopCounter As Integer = 0 To PopulationSize

 BestLoopFitness = 0

 For LoopCurPopCounter As Integer = 0 To PopulationSize

 ' If current Indiviual Fitness is better that previous best
fitness
 If Population(LoopCurPopCounter, FitnessPosition) >
BestLoopFitness Then
 ' Save this as new higest fitness
 BestLoopFitness = Population(LoopCurPopCounter,
FitnessPosition)

 BestIndividualOfCycle = LoopCurPopCounter

 End If

 Next

 ' Store best individual of that cycle in new sorted population
 For LoopChromo As Integer = 0 To PopulationWidth
 SortedPopulation(SortedPopCounter, LoopChromo) =
Population(BestIndividualOfCycle, LoopChromo)
 Next

 ' Decrease Best
 Population(BestIndividualOfCycle, FitnessPosition) = 0

 Next

 ' Sort Fitness from Low to High
 ElseIf (radSortLow.Checked = True) Then

 ' Loop through to build sorted population
 For SortedPopCounter As Integer = 0 To PopulationSize

70 | P a g e

 BestLoopFitness = 99999

 For LoopCurPopCounter As Integer = 0 To PopulationSize

 ' If current Indiviual Fitness is better that previous best
fitness
 If Population(LoopCurPopCounter, FitnessPosition) <
BestLoopFitness Then
 ' Save this as new higest fitness
 BestLoopFitness = Population(LoopCurPopCounter,
FitnessPosition)

 BestIndividualOfCycle = LoopCurPopCounter

 End If

 Next

 ' Store best individual of that cycle in new sorted population
 For LoopChromo As Integer = 0 To PopulationWidth
 SortedPopulation(SortedPopCounter, LoopChromo) =
Population(BestIndividualOfCycle, LoopChromo)
 Next

 ' Increase Best
 Population(BestIndividualOfCycle, FitnessPosition) = 99999

 Next

 End If

 ' Sorted Population overrides original unsorted population
 Population = SortedPopulation

 ' Logging
 SaveToLogFile("Sorting of Population Completed", 2)

 End Sub

Source Code 3 - Population Sorting

5.1.7. Algorithm Stopping Conditions

“The number of generations that evolve depends on whether an acceptable solution is reached or a

set number of iterations is exceeded. After a while all the chromosomes and associated costs would

become the same if it were not for mutations. At this point the algorithm should be stopped.” (Haupt,

2004, p. 47)

As can be seen in Figure 23 (page 55) the evolutionary operators are repeatedly applied in the GA

until a stopping condition is satisfied. The simplest stopping condition is to set a limit on the number of

generations that is allowed to be created. This limit should not be too small, otherwise the EA will not

71 | P a g e

have sufficient time to search the solution space. This is especially the case if the population size is

very small.

In addition to the limit on the amount of generations there is normally a criterion to evaluate if the

population has converged, whether this convergence is on a sub-optimal solution or not.

Convergence is loosely defined as the event when the population becomes stagnant. In other words,

when there is no more genetic change in the majority of the population and most of the individuals

have the same genetic makeup.

The last commonly used algorithm stopping condition is to stop the evolutionary process once an

adequate solution has been found.

To summarize the various stopping conditions commonly used:

 A solution is found that results in the minimum error specified.

 A specified number of generations have been reached.

 An allocated time limit has been reached.

 The highest ranking / best fitness individual has reached a plateau and has been stuck in

one area of the solution space for a set number of generations without change. In this

research this is also referred to as Idle Fitness.

 Manual inspection.

 Combinations of the above.

5.2. Real-world Genetic Algorithm uses

GAs have been successfully utilized in the areas described in the following subsections:

5.2.1. Automotive Design

GAs have been used to both design composite materials and aerodynamic shapes for race cars and

regular means of transportation (including aviation) can return combinations of best materials and

best engineering to provide faster, lighter, more fuel efficient and safer vehicles.

5.2.2. Engineering Design

Optimizing a range of materials to optimize the structural and operational design of buildings,

factories, machines, etc. is a rapidly expanding application of GAs. These are being created for such

uses as optimizing the design of heat exchangers, robot gripping arms, satellite booms, building

trusses, flywheels, turbines, and various other computer-assisted engineering design applications.

There is work to combine GAs optimizing particular aspects of engineering problems to work together,

and some of these can not only solve design problems, but also project them forward to analyze

weaknesses and possible point failures in the future so these can be avoided.

72 | P a g e

5.2.3. Evolvable Hardware

Evolvable hardware applications are electronic circuits created by GA computer models that use

stochastic (statistically random) operators to evolve Printed Circuit Board (PCB) routing and

component layout. GAs could evolve combinations of component placing and track routes than

minimize PCB size and weight.

5.2.4. Data Mining

S. Das and B. Saha researched the application of a GA to data mining. Data quality is important to

organizations as it is used as a tool for assessing data quality. The goal of Data Quality Mining (DQM)

is to employ data mining methods in order to detect, quantify, explain and correct data quality

deficiencies in very large databases. They tried to develop Multi-objective GA based approach

utilizing linkage between feature selection and association rule. Their main motivation for using GA in

the discovery of high-level prediction rules is that they perform a global search and cope better with

attribute interaction that the greedy rule induction algorithms often used in data mining. They found

that the use of a multi-objective evolutionary framework for association rule mining offers a

tremendous flexibility to exploit in further work (Das & Saha, 2009).

5.2.5. Optimized Telecommunications Routing

GAs are being developed that will allow for dynamic and anticipatory routing of circuits for

telecommunications networks. These could take notice of a system's instability and anticipate re-

routing needs. Other GAs are being developed to optimize placement and routing of cell towers for

best coverage and ease of switching.

5.2.6. Trip, Traffic and Shipping Routing

GA applications originally designed to solve a well known game theory problem known as the

Travelling Salesman Problem can be used to plan the most efficient routes and scheduling for travel

planners, traffic routers and even shipping companies. The shortest routes for travelling, the timing to

avoid traffic tie-ups and rush hours, most efficient use of transport for shipping, even to including

pickup loads and deliveries along the way can be optimized by GAs.

Khosravi and Co. researched the use of a genetic algorithm–based method that automates the neural

network model selection of a Neural Network used for travel time prediction. Model selection and

parameter adjustment is carried out through minimization of a prediction interval-based cost function,

which depends on the width and coverage probability of constructed prediction intervals. The

experiments that they conducted using the bus and freeway travel time datasets demonstrated the

suitability of their proposed method for improving the quality of constructed prediction intervals in

terms of their length and coverage probability (Khosravi, Mazloumi, Nahavandi, Creighton, & Van Lint,

2011).

73 | P a g e

5.2.7. Computer Gaming

GAs are increasingly being applied to artificial intelligence for computer simulated players in computer

games. These GAs have been programmed to incorporate the most successful strategies from

previous games, the programs learn, and usually incorporate data derived from game theory in their

design. Game theory is useful in most all GA applications for seeking solutions to whatever problems

they are applied to, even if the application really is a game.

5.2.8. Encryption and Code Breaking

On the security front, GAs can be used both to create encryption for sensitive data as well as to break

those codes. Encrypting, decrypting and data have been important in the computer world ever since

there have been computers.

5.2.9. Computer Aided Molecular Design

The design of new chemical molecules is a growing field of applied chemistry in both industry and

medicine. GAs are used to aid in the understanding of protein folding, analyzing the effects of

substitutions on those protein functions, and to predict the binding affinities of various designed

proteins developed by the pharmaceutical industry for treatment of particular diseases. The same sort

of GA optimization and analysis is used for designing industrial chemicals for particular uses, and in

both cases GAs can also be useful for predicting possible adverse consequences. This application

has and will continue to have great impact on the costs associated with development of new

chemicals and drugs.

5.2.10. Gene Expression Profiling

The development of microarray technology for taking snapshots of the genes being expressed in a

cell or group of cells has been a boon to medical research. GAs are being developed to make

analysis of gene expression profiles much quicker and easier. This helps to classify what genes play

a part in various diseases, and further can help to identify genetic causes for the development of

diseases. The ability to do this quickly and efficiently will allow researchers to focus on individual

patients unique genetic and gene expression profiles, enabling the hoped-for personalized medicine.

5.2.11. Optimizing Chemical Kinetic Analysis

GAs are proving very useful toward optimizing designs in transportation, aerospace propulsion and

electrical generation. By being able to predict the chemical kinetics of fuels and the efficiency of

engines, more optimal mixtures and designs can be made available quicker to industry and the public.

Computer modelling applications in this area also simulating the effectiveness of lubricants and can

pinpoint optimized operational vectors, and may lead to greatly increased efficiency all around well

before traditional fuels run out.

74 | P a g e

5.2.12. Metamodeling of discreet-event simulation models

B. Can and C. Harvey researched the use of Genetic Programming (GP) and ANNs in the

development of surrogate models of complex systems. The purpose of their research was to provide

a comparative analysis of GP and ANNs for metamodeling of discrete-event simulation models. Three

stochastic industrial systems were studied: an automated material handling system in semiconductor

manufacturing, an inventory model and a serial production line. The results of the study showed that

GP provides greater accuracy in validation tests, demonstrating a better generalization capability than

ANN. GP however requires more computation in metamodel development than when compared to

ANN (Can & Harvey, 2012).

5.2.13. Robotic Personality Generation

K. Lee investigated a way to generate a robot genome that contributes to defining the personality of a

software robot or an artificial life in a mobile phone that is both complex and feature-rich, but still

plausible by human standards for an emotional life form. He proposed a neural network algorithm for

a genetic robot's personality and an upgraded version of a previously introduced evolutionary

algorithm for a genetic robot's personality (EAGRP). Both tools demonstrated good performance in

generating the robot genome with a personality that was both complex and feature-rich and still

plausible by human standards for an emotional life form. He found that EAGRP showed a

comparative advantage especially in terms of variability and intensity (Lee, 2011).

5.3. Intelligent Part Recognition Training Algorithm Application

The main component of the research platform is the GA software and its related functionality. Previously

captured training data sets for the various parts are loaded into the application and GA control parameters

are specified.

The purpose of this software component is to optimize the problem of ANN weight calculation. Results are

graphically output to the user or saved to Excel files.

Microsoft Visual Basic 2008 was selected as the development tool because of previous knowledge and

familiarity of the development package as well as meeting the required functionality of complex array

handling etc.

The complete software project, including the source code, included components and published installation

file is available on the accompanying compact disk.

The various Graphical User Interface (GUI) windows of the application are described below:

 When the application starts, the main window in Figure 30 (page 75) opens up. The four main

sections of the application are:

 Genetic Algorithm.

This form contains all options and parameter settings for the GA.

75 | P a g e

 Neural Network.

This form contains all options, training set input options and evolved weight outputs.

 Settings.

This form contains all application setting options such as log directories and log levels

as can be seen in Figure 31 (page 76). Four log levels are provided as detailed

logging is extremely processor intensive which negatively influences the performance

of the GA.

 Output.

This form contains the application output window. Data that is output is dependent on

the specified log level and contains info such as parameter options, generation

progression etc. See Figure 38 (page 80).

Figure 30 – Part Recognition Main Window

 The Neural Network form contains the following tabs:

 Training Data.

Training Data sets are loaded for each part from excel files or by manual entry as can

be seen in Figure 34 (page 77).

 Weights.

Evolved weights are displayed in the window. Results can be saved to an Excel file.

See Figure 33 (page 77).

 Settings.

Settings such as source and output excel file directories, amount of X- and Y-axis

data points in training sets, weights quantity to be calculated and training sets

resented are specified here. See Figure 32 (page 76).

76 | P a g e

Figure 31 – Part Recognition General Settings Window

Figure 32 – Part Recognition Neural Network Settings Tab

77 | P a g e

Figure 33 – Part Recognition Neural Network Weights Tab

Figure 34 – Part Recognition Neural Network Training Data Tab

 The Genetic Algorithm form contains the following tabs:

 GA Options.

General parameter settings for the Genetic Algorithm are specified in this tab which

can be seen in Figure 37 (page 80). The various group boxes are:

78 | P a g e

i. Population Options.

Population size and the amount of genes in each individual is specified

here.

ii. Stopping Condition.

Stopping conditions for the GA are specified here. A combination of three

options namely minimum error, maximum generation count and idle error

can be specified. For a detailed discussion on these options please refer

to Section 5.1.7 Algorithm Stopping Conditions.

iii. GA Running Options.

Functionality is provided to execute the training process for multiple part

ANNs successively without user interaction. The training process can

also be executed for multiple iterations should it be required.

iv. Neural Network.

Target output for each part ANN is to be specified here. Two fitness

functions are also provided: Fitness Exponent (used purely for initial GA

optimization functionality testing) and Fitness NN which is used for ANN

weight optimization.

 Generation Creation.

Detailed parameter settings for offspring creation are specified in this tab which can

be seen in Figure 36 (page 79). The various group boxes are:

i. Population Init.

A scaling factor for initial population gene values can be specified.

Functionality to initialize gene values to within limits depending on

neuron connection amount can also be specified. See Section 5.1.2

Population Creation and Initialization for a detailed description of the

latter.

ii. Composition.

Each generation is created by a combination of elitism, cross-over and

mutation. Functionality is provided to specify the percentage of each.

iii. Mutation Options.

The random number generation class of Visual Basic 2008 creates

random values between 0 and 1. These values are used to mutate

individual genes in individuals. A scaling factor for these random values

can be specified. Functionality is provided to select whether a random or

user specified amount of genes are to be mutated and also whether

random or elite individuals are to be mutated.

iv. Cross-over Options.

Functionality is provided for the user to specify how many genes are to

be crossed over as well as parent selection criteria.

79 | P a g e

 Settings.

The population for each generation can be output to a log file. The directory and

filename for this log file is specified. There is an option to disable this logging as this

is extremely processor intensive, negatively influencing the performance of the GA.

Refer to Figure 32 (page 76).

Figure 35 – Part Recognition Genetic Algorithm Settings Tab

Figure 36 - Part Recognition Genetic Algorithm Generation Creation Tab

80 | P a g e

Figure 37 - Part Recognition Genetic Algorithm GA Options Tab

Figure 38 - Part Recognition Genetic Algorithm Output Window

81 | P a g e

5.4. Conclusion

In this chapter background on the operating principle and history of GAs as well as the ANN training

application used in this research was discussed.

The various components of a GA are discussed in detail. Commonly used problem solution encoding

schemes, their importance and the specific type developed for this project is discussed. The initial

population creation and initialization along with the developed associated software and methodology is

discussed. The importance of an accurate fitness function as well as the methodology and mathematical

operational principle developed to accurately calculate the fitness of each individual for this project was

discussed. Various selection operators, offspring creation methods, population sorting algorithms and GA

stopping conditions as well as those implemented in the developed software and included in this research

was discussed in detail.

 The operation of the developed GA software is discussed in detail along with a description of the various

options and GA control parameter settings available to the user in the GUI.

The next chapter described the supporting experimentation that was performed, their methodology as well

as their results.

82 | P a g e

6. Chapter 6 – Part Recognition Performance

In this chapter the performance of the GA training as well as the ANN part recognition is discussed. The first

section describes the various identified GA training control parameters. The rest of the chapter deals with the

test results. First the effects of the various test cases with regard to the GA performance is analysed and

discussed. Secondly the effects of the various test cases with regard to the PLC Simulator performance is

analysed and discussed. Lastly the results of the hardware part recognition tests are discussed.

6.1. Genetic Algorithm Control Parameters

Various GA control parameters have been identified and classified into groups. A range of practical values

for these control parameters were defined and 35 combinations, or test conditions, of these parameters

were defined. In order to isolate the effects of each control parameter, only one set of parameters is

adjusted at a time while the others maintain a preset default condition.

The identified GA control parameters have been classified into four main groups and their effect on the

performance of the GA and ANN part recognition investigated.

6.1.1. Training Set Data

The training set data group consist of the amount of data sets used during the training process as well

as the target value for each ANN.

 Training set quantity.

The effect on the performance of the GA and ANN part recognition as a result of the amount

of training data sets provided is investigated in this section. More training sets could cause

the ANN to over fit, subsequently hampering its ability to generalize. Not enough could result

in inaccurate generalization of the ANN. The amount of training data also has a direct effect

on the amount of time, or generations, taken by the GA to converge on a solution as it adds

complexity to the solution space and drastically increases computational overheads.

The range of values for this control parameter was selected as:

i. 10 Training Data Sets.

ii. 20 Training Data Sets.

 Training Target.

The ANN is trained by the GA to output certain target value for each part. The effect on the

performance of the GA and ANN part recognition as a result of the target values specified is

investigated in this section. If the same targets are specified for all ANN output neurons the

ANN might misfire, too much of a range and ANN loses accuracy as weights cannot

accommodate such a wide range of targets.

83 | P a g e

The range of values for this control parameter was selected as:

i. Target of 20 000 for all part output neurons.

ii. Different targets for each part output neuron.

 Part A – 15 000.

 Part B – 30 000.

 Part C – 45 000.

 Part D – 60 000.

 Part E – 75 000.

 Part F – 90 000.

iii. Different targets for each part output neuron.

 Part A – 16 000.

 Part B – 18 000.

 Part C – 20 000.

 Part D – 22 000.

 Part E – 24 000.

 Part F – 26 000.

6.1.2. Population

The population group consists of the GA population size as well as the initialization of the first

generation population.

 Population Size.

The effect on the performance of the GA and ANN part recognition as a result of the

size of the GA population is investigated in this section. A very large population will

result in a big area of the possible search, or solution, space being searched with each

generation but it will negatively affect the amount of computational processing required

during each generation, increasing the computational time required for each generation.

A very small population will have the inverse affect with a small area of the solution

space searched during each generation, but will decrease the amount of computational

time required to process each generation.

The range of values for this control parameter was selected as:

i. 25 Individuals.

ii. 100 Individuals.

iii. 200 Individuals.

 Population Initialization.

The effect on the performance of the GA and ANN part recognition as a result of the

initial values assigned to the genetic information of each individual is investigated in this

section. If the population is initialized to values within a very large range, it will result in

84 | P a g e

a very large search, or solution, space being covered. This has both advantages and

disadvantages as the optimal solution will most probably fall within the area being

searched, but it will also cause an uneven distribution of individuals throughout the

solution space with large areas between individuals not being searched. If the

initialization range is too small it could also result in the entire solution space not being

searched and the GA converging on a sub-optimal, local minimum.

The range of values for this control parameter was selected as:

i. Scaling factor of 1 × [0; 1].

ii. Scaling factor of 10 × [0; 1].

iii. Random value within range ± .

6.1.3. Offspring creation

The individuals of each new generation can be created by one or more of the following three

reproduction operators: elitism, cross-over and mutation. The effect that the implementation ratio of

these operators has on the performance of the GA and ANN part recognition is investigated in this

section.

While a high ratio of elitism ensures that good genetic information does not get lost during

reproduction, it could also lead to premature convergence of the population on a local, sub-optimal

minimum.

Mutation ensures that new genetic material is introduced into the population, thereby searching all

areas of the solution space. If the ratio of mutation is too high it could lead to the loss of good genetic

information as good- could be mutated into bad genetic information.

The rate of mutation is also an important factor as it controls the size of the mutation change and in

turn, the size of the jump in the solution space. If the mutation rate is too small, it will result in only a

section of the solutions space being searched thus causing the population to converge on a sub-

optimal solution. If the mutation rate is too large, it will result in the GA jumping over a low error point

in the solution space.

Cross-over also assists in keeping good genetic information within the next generation of the

population. The disadvantage of cross-over is that it does not introduce any new genetic information

into the population; it only recombines already existing information. If the ratio of cross-over is too

high it could lead to convergence on a sub-optimal, local minimum.

85 | P a g e

The range of values for this control parameter was selected as:

i. Majority mutation with offspring creation ratio of 10% mutation, 10% cross-over and 80%

elitism.

ii. Majority cross-over with offspring creation ratio of 10% mutation, 80% cross-over and 10%

elitism.

iii. Majority mutation with offspring creation ratio of 80% mutation, 10% cross-over and 30%

elitism.

iv. Evenly distributed offspring creation ratio of 33% mutation, 33% cross-over and 33% elitism.

6.1.4. Genetic Cross-over and Mutation

Both the cross-over and mutation reproductive operators have various control parameters. The effect

that these parameters have on the performance of the GA and ANN part recognition is investigated in

this section.

Cross-over Control Parameters.

 Parent Selection.

Both parents are either randomly selected or one parent is selected from the top 25% of the

current population and the other randomly.

 Gene Cross-over Quantity.

Either one gene is randomly selected to be crossed-over or a random number of genes are

selected to be crossed-over.

Mutation Control Parameters

 Mutation Scaling Factor.

A random value between -0.5 and 0.5 is generated for mutation. This random value can be

scaled by multiplying with 0.5, 1 or 5.

 Negative Gene Values.

During mutation, the possibility exist that gene values could be mutated to a negative value.

This is either allowed or not.

 Gene Mutation Quantity.

Either one gene is randomly selected to be mutated or a random number of genes are

selected to be mutated.

During the investigation into the effects of the cross-over control parameters, 80% of offspring is

created by cross-over in order to accentuate the effects. The same applies to the mutation control

parameter investigation.

Training Set Quantity

Training Target

Population Size

Population Initialization

Elitism

Cross Over

Mutation

Cross-over Parent Selection

Cross-over Quantity

Mutation Factor

Allow Negative Values

Mutate Quantity

Training Set Quantity

Training Target

Population Size

Population Initialization

Elitism

Cross Over

Mutation

Cross-over Parent Selection

Cross-over Quantity

Mutation Factor

Allow Negative Values

Mutate Quantity

88 | P a g e

6.2. Genetic Algorithm Performance

In this section the performance of the GA training under the various testing conditions is discussed.

The three most important performance factors are:

 Absolute Sum Error.
 Generation Count.
 Relative Computational Time.

In order to provide a more accurate representation of the GA performance, the training for each part of the
6 parts was repeated 10 times under each of the 35 defined test conditions. An average of the test results
for each of the 6 parts for each of the 10 test runs was then calculated.

The results of each of the control parameter groups discussed in the previous section are discussed
below.

6.2.1. Training Data

The table below summarizes the test conditions in the training data group.

Table 12 - Training Data Conditions

Training Data

Conditions 1 - Default 10 20000

Conditions 2 10 15k - 90k

Conditions 3 10 16k - 26k

Conditions 4 20 20000

Conditions 5 20 15k - 90k

Conditions 6 20 16k - 26k

The chart below shows the results of the Training Data group.

89 | P a g e

Figure 39 - Training Data Group Results

It can be seen that test Conditions 1 resulted in the lowest average error while test Conditions 5

resulted in the highest. It should be noted that test Conditions 1 had a target output of 20 000 for all

parts while Conditions 5 had a different target output for each part ranging from 15 000 to 90 000. The

higher error in Conditions 5 could be the result of the complex error space resulting from such a wide

target range as well as the ANN that struggles to accommodate such a wide range of target outputs

with its current architecture and amount of connecting weights. A more complex ANN architecture,

with more connecting weight could possibly allow this wide range of target outputs to be

accommodated. The increased amount of generations required for the population to converge as well

as the increased amount of relative computation time can also be attributed to the same reasons as

the increase in error.

Conditions 1 Conditions 2 Conditions 3 Conditions 4 Conditions 5 Conditions 6

SSE 467.95 1126.34 473.42 1205.87 2917.7 1201.45

Generation 3864 3681 3790 4156 4364 4352

Relative Test Run Time 859.95 740.74 692.13 1572.92 1836.81 186.34

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

90 | P a g e

6.2.2. Population

The table below summarizes the test conditions in the population group.

Table 13 - Population Conditions

Population

Conditions 7 25 1

Conditions 8 - Default 100 1

Conditions 9 200 1

Conditions 10 25 10

Conditions 11 100 10

Conditions 12 200 10

Conditions 13 25

Conditions 14 100

Conditions 15 200

The figure below, Figure 40 (page 90), shows the results of the population group.

Figure 40 - Population Group Results (outliers removed)

Conditio
ns 7

Conditio
ns 8

Conditio
ns 9

Conditio
ns 10

Conditio
ns 11

Conditio
ns 12

Conditio
ns 13

Conditio
ns 14

Conditio
ns 15

SSE 572.31 467.95 453.27 61691816. 61046394. 65691474. 23050.25 16067.73 440.86

Generation 3631 3864 4059 500 500 500 3382 3770 3856

Relative Test Run Time 186.34 859.95 1569.44 24.31 100.69 193.29 175.93 726.85 1489.58

0
500

1000
1500
2000
2500
3000
3500
4000
4500

91 | P a g e

It can clearly be seen that the high population initialization scaling factor of test Conditions 10, 11 and

12 resulted in very large error values. This can be attributed to the initial genetic information placing

the individuals outside of the solution space for this specific optimization problem. In Table 17 (page

42) it can be seen that the GA stopping condition for all 60 test runs (6 parts with 10 test runs each)

for all three these test conditions were Squared Sum Error (SSE) Idle. This further gives credibility to

the theory of the individuals being placed outside the solution space by the large initialization scaling

factor as neither cross-over nor mutation could get them inside the solution space before the set limit

of SSE Idle generations was reached.

Although the generations required for the populations to converge is relatively constant for Conditions

7, 8 and 9 and then again for Conditions 13, 14 and 15, there is a clear increase in the relative

computational time when looking at Conditions 7, 8 and 9 and then again with Conditions 13, 14 and

15. This increase is perfectly in line with the increase in population size for these conditions as

predicted in Section 6.1.2 Population.

When looking at Conditions 7, 8 and 9 and again at Conditions 13, 14 and 15 it can be seen that the

larger population size does result in a lower error but this comes at a very large computational

complexity, and thus computational time, cost.

The lowest error was produced by test Condition 15. This can be attributed to the large population

size as well as initialization to the range of ± as discussed in section 5.1.2.2 Initialization

values.

6.2.3. Offspring Creation

The table below summarizes the test conditions in the offspring creation group.

Table 14 - Offspring Creation Conditions

Offspring Creation

Conditions 16 10% 10% 80%

Conditions 17 10% 80% 10%

Conditions 18 80% 10% 10%

Conditions 19 - Default 33% 33% 33%

Figure 41 (page 92) below shows the results of the offspring creation group.

92 | P a g e

Figure 41 - Offspring Creation Group Results

Although Conditions 17, with the highest rate of cross-over, resulted in the lowest error it also resulted

in the highest relative test run time and the second highest generation count required for the

population to converge. The higher computational time can be explained by the slightly more complex

computation required with the cross-over operator as two parents need to be selected and operated

whereas the other two reproduction operators, elitism and mutation, only require one parent to be

selected and operated.

6.2.4. Cross-over

The table below summarizes the test conditions in the cross-over group.

Table 15 - Cross-over Conditions

Cross-over

Conditions 20 RANDOM RANDOM

Conditions 21 RANDOM 1 CHROMO

Conditions 22 TOP 25% RANDOM

Conditions 23 TOP 25% 1 CHROMO

Figure 42 (page 93) below summarizes the test results for the cross-over group.

Conditions 16 Conditions 17 Conditions 18 Conditions 19

SSE 550.84 460.27 582.71 467.95

Generation 3536 3805 3739 3864

Relative Test Run Time 656.25 868.06 702.55 859.95

0
500

1000
1500
2000
2500
3000
3500
4000
4500

93 | P a g e

Figure 42 - Cross-over Group Results

Whilst the lowest error value was obtained by test Conditions 20, test Conditions 23 converged in 10%

fewer generations as well as 30% less relative computational time. Conditions 23 did however

prematurely converge, resulting in an error value 18% higher than Conditions 20.

It can be seen in the Root Square Error (RSE) vs. Generation graph, Graph 5 (page 93), below that

selecting at least one parent from the elite, top 25% of the population (Conditions 23) ensures that the

good genetic information of that generation gets used for the next and in doing so, results in quick

convergence of the population. It does however cause the population to prematurely converge on a

local minimum as the offspring creation does not easily allow for new genetic information to enter the

elite individuals of the population. While test Conditions 20 took longer to find a good solution,

especially in the first few generations, it ultimately found the better global solution.

Graph 5 - RSE vs. Generation for Cross-over group

Conditions 20 Conditions 21 Conditions 22 Conditions 23

SSE 467.95 557.58 486.76 570.87

Generation 3864 3785 3985 3448

Relative Test Run Time 859.95 665.51 865.74 594.91

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0

500

1000

1500

2000

2500

3000

1 250 499 748 997 1246 1495 1744 1993 2242 2491 2740 2989

Generation

Conditions 23

Conditions 20

94 | P a g e

6.2.5. Mutation

The table below summarizes the test conditions in the mutation group.

Table 16 - Mutation Conditions

Mutation

Conditions 24 0.5 TRUE RANDOM

Conditions 25 1 TRUE RANDOM

Conditions 26 5 TRUE RANDOM

Conditions 27 0.5 FALSE RANDOM

Conditions 28 1 FALSE RANDOM

Conditions 29 5 FALSE RANDOM

Conditions 30 0.5 TRUE 1 CHROMO

Conditions 31 1 TRUE 1 CHROMO

Conditions 32 5 TRUE 1 CHROMO

Conditions 33 0.5 FALSE 1 CHROMO

Conditions 34 1 FALSE 1 CHROMO

Conditions 35 5 FALSE 1 CHROMO

The possible solution space has been described as valleys and peak. “The evaluation function

defines a response surface that is much like a topography of hills and valleys, and the problem of

finding the best solution is similar to searching for a peak on a mountain range while walking in a

dense fog. You can only sample new points in your immediate vicinity and you can only make local

decisions about where to walk next. If you always walk uphill, you’ll eventually reach a peak, but this

might not be the highest peak in the mountain range. It might be just a “local optimum.” You might

have to walk downhill for some period of time in order to find a position such that a series of local

decisions within successive neighbourhoods leads to the global peak.” (Michalewicz & Fogel, 2000).

 As we are trying to find a low error value in this GA application, we are looking for the lowest valley

point in the solution space.

As previously discussed in Section 6.1.4 Genetic Cross-over and Mutation, the rate of mutation is an

important factor in offspring creation. A large mutation rate could cause the GA jumping over a local

minimum and a small mutation rate could cause the GA to only search a small area of the solution

space.

95 | P a g e

This can clearly be seen in Graph 7 (page 97) when looking at the error and generation count of test

Condition group 24, 25 and 26 as well as Condition group 31, 31 and 32. As the rate of mutation

increases, the required generation count for the population to converge decreases, but the

convergence is premature as a lower point in the solution space is missed.

This statement is also supported when looking at the results of test Conditions 26. This Condition,

with the highest mutation rate of 5, required the least amount of generations to converge. It is clear

that the convergence was premature at a sub-optimal local minimum when comparing the error value

of 833 that it yielded to the lowest yielded error of 381, 54% less, by Conditions 30.

This can also be seen when looking at the Error vs. Generation Graph, Graph 8 (page 98), where the

error is plotted from a random test run from Conditions 30, 31 and 32. It can be seen that, although

the error initially decreases at a quicker rate with the conditions with higher mutation rates, they do

tend to jump over the smaller minimum valleys in the solution space than the conditions with lower

mutation rates.

The amount of genes that are mutated is also an important factor. When more than one gene is

mutated, the individual is moved in more than one direction/dimension in the solution space. This can

cause a good individual to be moved in the wrong direction in one of the dimensions in the solution

space. Mutating only one gene at a time ensures a more controlled movement through the solution

space as the individual is only moved in one dimension before being re-evaluated by the fitness

function.

This can be seen when looking at the test results. Test Conditions 24 – 29 mutated a random amount

of genes per generation while test Conditions 30 – 35 mutated only 1 gene per generation. The

average error of Conditions 24 – 29 is 611, 24.4% higher than the average error of 461 yielded by test

Conditions 30 – 35.

The above to statements is supported by the test results as test Conditions 30 yielded the lowest

error. This test condition set contains both the smallest mutation factor and only 1 gene mutation per

generation.

If the initial population is initialized to positive values only, as was the case with most test conditions,

mutation is the only way that negative valued genetic information will be introduced into the gene

pool. Allowing mutation of gene values to both positive and negative values doubles the size of the

possible solution space.

When looking at the end application of the gene as a neuron connection weight, a negative weight

value in the neural network will attenuate that specific input signal.

When we investigate the average error of the test conditions where negative values were allowed we

find an error of 527.54 as opposed to the average error value of a non-negative population of 545.51.

The difference in these error values equate to a very small difference of only 3.2%. This small effect

that this large increase in search space has can be explained because negative values would cause

96 | P a g e

non-required attenuation. When looking at the converged example population in appendix iv.

Converged population for test Conditions 26 it can be seen that even though negative values are

allowed, no negative gene values were found as optimal.

Mutation Mutation

1
110
219
328
437
546
655
764
873
982

1091
1200
1309
1418
1527
1636
1745
1854
1963
2072
2181
2290
2399
2508
2617
2726
2835
2944
3053
3162
3271
3380
3489
3598
3707
3816
3925
4034
4143
4252
4361
4470
4579
4688
4797
4906

RSE

99 | P a g e

6.2.6. Overview of all test conditions

Each test Condition had a total of 60 test runs, 10 runs for each of the 6 parts. The average error,

generation count to reach a stopping condition, average test run time, total test run time for all 60 test

runs as well as the stopping conditions are tabled below.

Test Condition 30 resulted in the lowest error but also required the highest number of generations to

converge on a solution.

Table 17 - Genetic Algorithm Training Results - Average

 SSE Generation
Test Run

Time Total Time

Stopping
Condition 1
- Sum Error

Target
Reached

Stopping
Condition 2

- Max
Generations

Stopping
Condition 3
- Sum Error

Idle

Conditions 1 467.95 3864 00:12:23 00 12:23:10 0 25 35

Conditions 2 1126.34 3681 00:10:40 00 10:39:58 0 23 37

Conditions 3 473.42 3790 00:09:58 00 09:57:34 0 27 33

Conditions 4 1205.87 4156 00:22:39 00 22:38:55 0 22 38

Conditions 5 2917.70 4364 00:26:27 01 02:26:44 0 35 25

Conditions 6 1201.45 4352 00:02:41 00 20:32:20 0 35 25

Conditions 7 572.31 3631 00:02:41 00 02:40:31 0 16 44

Conditions 9 453.27 4059 00:22:36 00 22:35:48 0 29 31

Conditions 10 61691816.20 500 00:00:21 00 00:20:56 0 0 60

Conditions 11 61046394.19 500 00:01:27 00 01:27:20 0 0 60

Conditions 12 65691474.83 500 00:02:47 00 02:47:27 0 0 60

Conditions 13 23050.25 3382 00:02:32 00 02:32:19 0 21 39

Conditions 14 16067.73 3770 00:10:28 00 10:27:44 0 27 33

Conditions 15 440.86 3856 00:21:27 00 21:27:29 0 26 34

Conditions 16 550.84 3536 00:09:27 00 09:27:02 0 22 38

Conditions 17 460.27 3805 00:12:30 00 12:30:02 0 23 37

Conditions 18 582.71 3739 00:10:07 00 10:06:54 0 24 36

Conditions 21 557.58 3785 00:09:35 00 09:35:28 0 27 33

Conditions 22 486.76 3985 00:12:28 00 12:27:58 0 29 31

Conditions 23 570.87 3448 00:08:34 00 08:33:39 0 21 39

Conditions 24 473.69 4268 00:11:01 00 11:00:54 0 35 25

Conditions 26 833.38 3235 00:08:32 00 08:32:05 0 15 45

Conditions 27 489.01 4262 00:12:06 00 12:06:03 0 33 27

Conditions 28 539.78 3312 00:08:29 00 08:29:16 0 18 42

Conditions 29 863.33 3338 00:09:05 00 09:05:10 0 16 44

Conditions 30 381.85 4497 00:11:53 00 11:52:47 0 39 21

Conditions 31 420.31 4329 00:11:09 00 11:09:29 0 34 26

Conditions 32 588.10 4063 00:10:42 00 10:41:43 0 28 32

Conditions 33 393.25 4380 00:11:38 00 11:38:00 0 38 22

Conditions 34 410.05 4398 00:11:35 00 11:34:34 0 38 22

Conditions 35 577.64 3992 00:11:11 00 11:11:14 0 30 30

101 | P a g e

6.3. Neural Network Performance with regard to Part Recognition

The previous section discussed the performance of each test Condition with regard to the GAs

performance. What should be noted is that a test condition with very good performance with regard to GA

performance (low error, quick population convergence and low computational complexity) does not

necessarily mean good performance with regard to part recognition.

A test condition that resulted in a very low error might actually cause the ANN to over fit, resulting in bad

generalization and inability to identify part input patterns other than those used for training. Another test

condition, which used more training data sets, might have resulted in a high error value but in turn has an

increased ability to classify and generalize part patterns not previously presented to it.

In this section the performance of the various test Conditions, using the connection weight values they

optimized, are tested with regard to ANN part recognition.

Test results are classified as one or more of the following conditions:

 Identification OK.

 The test part is correctly identified and the appropriate ANN output node has an HIGH (1)

output.

 Example: Part A is placed on the conveyor system. The ANN evaluates the captured data

points and identifies the part as Part A. The output neuron for Part A has a HIGH (1)

output.

 There can be only one OK identification per test run.

 Identification NOK.

 The test part is not identified and the appropriate ANN output node has an LOW (0)

output.

 Example: Part A is placed on the conveyor system. The ANN evaluates the captured data

points and does not identify the part as Part A. The output neuron for Part A has a LOW

(0) output.

 There can be only one NOK identification per test run.

 Neural Network Misfire.

 The test part is incorrectly identified as a different part and one, or more, of the incorrect

ANN output nodes has a HIGH (1) output.

 Example: Part A is placed on the conveyor system. The ANN evaluates the captured data

points and identifies the part as Part C. The output neuron for Part C has a HIGH (1)

output.

 There can be up to 5 Misfires per test runs (Part A can be incorrectly classified as Part B,

C, D, E and F).

102 | P a g e

The weight values calculated using each test Condition is first evaluated for accuracy using a PLC

simulator. The best performing Conditions are then tested on physical hardware.

6.3.1. PLC Simulator

In Section 3.1.4 PLC Simulator, the need for a simulation of the ANN is explained. The results of

these simulation tests are discussed in this section.

6.3.1.1. Result Overview

Detailed results of the ANNs ability to correctly identify part data presented to it whilst loaded with

optimized weight conditions from each test conditions is tabled below.

Table 18 - PLC Simulator Results Conditions 1 to 11

 Part A Data Part B Data Part C Data Part D Data Part E Data Part F Data

Identification OK 49 38 48 47 48 49

Identification NOK 1 12 2 3 2 1

Neural Network Misfire 26 0 1 2 6 0

Identification OK 49 45 49 45 47 46

Identification NOK 1 5 1 5 3 4

Neural Network Misfire 5 0 66 67 6 0

Identification OK 49 38 49 47 48 49

Identification NOK 1 12 1 3 2 1

Neural Network Misfire 59 0 1 2 4 0

Identification OK 50 50 49 47 47 50

Identification NOK 0 0 1 3 3 0

Neural Network Misfire 14 0 8 8 17 0

Identification OK 50 50 49 47 46 46

Identification NOK 0 0 1 3 4 4

Neural Network Misfire 10 0 1 17 8 2

Identification OK 49 46 47 46 43 44

Identification NOK 1 4 3 4 7 6

Neural Network Misfire 16 0 20 3 10 0

Identification OK 49 34 49 48 48 49

Identification NOK 1 16 1 2 2 1

Neural Network Misfire 0 8 1 6 6 0

Identification OK 49 33 49 48 47 50

Identification NOK 1 17 1 2 3 0

Neural Network Misfire 30 27 35 24 16 0

Identification OK 0 0 0 0 0 0

Identification NOK 50 50 50 50 50 50

Neural Network Misfire 0 0 0 0 0 0

Identification OK 0 0 0 0 0 0

Identification NOK 50 50 50 50 50 50

Neural Network Misfire 0 0 0 0 0 0

103 | P a g e

Table 19 - PLC Simulator Results Conditions 12 to 23

 Part A Data Part B Data Part C Data Part D Data Part E Data Part F Data

Identification OK 0 0 0 0 0 0

Identification NOK 50 50 50 50 50 50

Neural Network Misfire 0 0 0 0 0 0

Identification OK 50 31 49 47 47 50

Identification NOK 0 19 1 3 3 0

Neural Network Misfire 5 0 1 13 17 8

Identification OK 49 33 49 47 47 50

Identification NOK 1 17 1 3 3 0

Neural Network Misfire 0 4 8 3 7 0

Identification OK 49 34 49 47 50 49

Identification NOK 1 16 1 3 0 1

Neural Network Misfire 3 32 2 5 12 1

Identification OK 49 34 49 47 49 49

Identification NOK 1 16 1 3 1 1

Neural Network Misfire 1 24 39 15 6 35

Identification OK 49 34 49 47 50 50

Identification NOK 1 16 1 3 0 0

Neural Network Misfire 22 57 3 5 14 0

Identification OK 49 31 49 47 50 49

Identification NOK 1 19 1 3 0 1

Neural Network Misfire 29 28 0 16 16 0

Identification OK 49 36 49 47 48 50

Identification NOK 1 14 1 3 2 0

Neural Network Misfire 24 31 2 2 9 0

Identification OK 49 34 49 50 48 50

Identification NOK 1 16 1 0 2 0

Neural Network Misfire 25 0 1 2 46 2

Identification OK 49 31 49 47 50 49

Identification NOK 1 19 1 3 0 1

Neural Network Misfire 20 15 49 24 12 34

104 | P a g e

Table 20 - PLC Simulator Results Conditions 24 to 35

 Part A Data Part B Data Part C Data Part D Data Part E Data Part F Data

Identification OK 49 41 49 47 48 49

Identification NOK 1 9 1 3 2 1

Neural Network Misfire 12 3 1 3 9 2

Identification OK 49 32 49 47 50 50

Identification NOK 1 18 1 3 0 0

Neural Network Misfire 10 12 46 2 11 1

Identification OK 49 33 49 47 48 50

Identification NOK 1 17 1 3 2 0

Neural Network Misfire 1 47 45 7 30 0

Identification OK 50 42 49 47 48 49

Identification NOK 0 8 1 3 2 1

Neural Network Misfire 11 3 50 7 9 1

Identification OK 49 41 48 47 48 50

Identification NOK 1 9 2 3 2 0

Neural Network Misfire 0 16 90 11 5 0

Identification OK 49 38 49 47 48 49

Identification NOK 1 12 1 3 2 1

Neural Network Misfire 2 29 2 2 15 1

Identification OK 49 34 49 47 47 49

Identification NOK 1 16 1 3 3 1

Neural Network Misfire 38 0 3 7 7 0

Identification OK 50 34 49 50 47 49

Identification NOK 0 16 1 0 3 1

Neural Network Misfire 12 0 1 6 7 39

Identification OK 49 32 49 47 47 49

Identification NOK 1 18 1 3 3 1

Neural Network Misfire 27 8 2 5 13 0

Identification OK 49 34 49 47 47 50

Identification NOK 1 16 1 3 3 0

Neural Network Misfire 6 3 1 2 10 0

Identification OK 49 34 49 49 50 50

Identification NOK 1 16 1 1 0 0

Neural Network Misfire 11 13 1 15 9 0

As previously explained in Section 3.3.4 PLC Simulator, 50 pre-captured data sets of each of the 6

parts is presented to the PLC Simulator. The PLC Simulator contains a duplicate of the ANN in the

PLC software.

105 | P a g e

The total amount of OK, NOK and Miss Fires possible during this testing is:

 OK Identification.

 300 = 50 test runs x 6 parts x 1 correct identification.

 NOK Identification.

 300 = 50 test runs x 6 parts x 1 incorrect identification.

 ANN Miss fires.

 1500 = 50 test runs x 6 parts x 5 incorrect identification.

Table 21 - PLC Simulation Performance

Identification

OK
Identification

NOK

Neural
Network
Misfire

Conditions 1 279 21 35

Conditions 2 281 19 144

Conditions 3 280 20 66

Conditions 4 293 7 47

Conditions 5 288 12 38

Conditions 6 275 25 49

Conditions 7 277 23 21

Conditions 9 276 24 132

Conditions 10 0 300 0

Conditions 11 0 300 0

Conditions 12 0 300 0

Conditions 13 274 26 44

Conditions 14 275 25 22

Conditions 15 278 22 55

Conditions 16 277 23 120

Conditions 17 279 21 101

Conditions 18 275 25 89

Conditions 21 279 21 68

Conditions 22 280 20 76

Conditions 23 275 25 154

Conditions 24 283 17 30

Conditions 26 277 23 82

Conditions 27 276 24 130

Conditions 28 285 15 81

Conditions 29 283 17 122

Conditions 30 280 20 51

Conditions 31 275 25 55

Conditions 32 279 21 65

Conditions 33 273 27 55

Conditions 34 276 24 22

Conditions 35 281 19 49

Conditions 1

Conditions 2
Conditions 3
Conditions 4

Conditions 5
Conditions 6
Conditions 7

Conditions 9
Conditions 10
Conditions 11

Conditions 12
Conditions 13
Conditions 14

Conditions 15
Conditions 16
Conditions 17

Conditions 18
Conditions 21
Conditions 22

Conditions 23
Conditions 24
Conditions 26

Conditions 27
Conditions 28
Conditions 29

Conditions 30
Conditions 31
Conditions 32

Conditions 33
Conditions 34
Conditions 35

Neural Network Fire Count

107 | P a g e

When looking at the test results tabled in Table 18 (page 102), Table 19 (page 103) and

Table 20 (page 104) as well as Graph 10 (page 106) it can be seen that the majority of the

conditions performed reasonably well, with the exception of the very bad performance of

conditions 10, 11 and 12. The bad performance of Conditions 10, 11 and 12 can be explained

by the large error value that resulted from their training conditions (refer to Section 6.2.6

Overview of all test conditions). These three outliers are removed from further analysis.

The majority of Conditions resulted in good, high OK identification counts as well as good, low

NOK identification counts. The standard deviation of OK Identification across the test

Conditions is 4.458 (1.486%) and the standard deviation of NOK Identification is 4.458

(1.486%). This means that performance of all the conditions with respect to OK and NOK

identification are very similar.

This is however not the case when we look at the misfire counts of the various test Conditions

as can be seen in Graph 10 (page 106). The standard deviation is 38.855 (12.952%), a very

large variance in performance.

In order to accurately gauge the performance of each Condition, the misfire count was

deducted from the OK count. These results are tabled below in Table 22 (page 108) and

Graph 11 (page 109).

Two Conditions have been selected to perform part recognition testing using hardware:

 Best OK part Identification .
 Conditions 4 with an OK Identification of 293.

 Best part identification minus misfire.
 Conditions 7 with an OK Identification minus Misfire of 256.

The details and results of these tests are discussed in the following two sections.

108 | P a g e

Table 22 - Part OK Identification minus Neural Network Misfires

Identification

OK

Neural
Network
Misfire

ID OK minus
NN Misfire

Conditions 1 279 35 244

Conditions 2 281 144 137

Conditions 3 280 66 214

Conditions 4 293 47 246

Conditions 5 288 38 250

Conditions 6 275 49 226

Conditions 7 277 21 256

Conditions 9 276 132 144

Conditions 10 0 0 0

Conditions 11 0 0 0

Conditions 12 0 0 0

Conditions 13 274 44 230

Conditions 14 275 22 253

Conditions 15 278 55 223

Conditions 16 277 120 157

Conditions 17 279 101 178

Conditions 18 275 89 186

Conditions 21 279 68 211

Conditions 22 280 76 204

Conditions 23 275 154 121

Conditions 24 283 30 253

Conditions 26 277 82 195

Conditions 27 276 130 146

Conditions 28 285 81 204

Conditions 29 283 122 161

Conditions 30 280 51 229

Conditions 31 275 55 220

Conditions 32 279 65 214

Conditions 33 273 55 218

Conditions 34 276 22 254

Conditions 35 281 49 232

Conditions 1

Conditions 2

Conditions 3

Conditions 4

Conditions 5

Conditions 6

Conditions 7

Conditions 9

Conditions 10

Conditions 11

Conditions 12

Conditions 13

Conditions 14

Conditions 15

Conditions 16

Conditions 17

Conditions 18

Conditions 21

Conditions 22

Conditions 23

Conditions 24

Conditions 26

Conditions 27

Conditions 28

Conditions 29

Conditions 30

Conditions 31

Conditions 32

Conditions 33

Conditions 34

Conditions 35

Neural Network Fire Count

110 | P a g e

6.3.2. Hardware Testing

The two best performing Conditions from the PLC Simulator testing are tested on the hardware

system setup. This is done to ensure that the test results are accurate and that a solution for a real-

life automated part recognition system has been found during this research.

The test procedure is as follows:

a) The optimized weights, using GA control parameters from Conditions 4, are loaded into the

associated variables in the PLC using Siemens Step 7 Variable Tables (Siemens AG, 2009).

See Figure 44 (page 111).

b) The Upper and Lower limits for the output neuron activation function are loaded into the

associated variables in the PLC using Siemens Step 7 Variable Tables (Siemens AG, 2009).

See Figure 43 (page 110).

c) The part to be identified is loaded onto the conveyor system. Time, X-axis and Y-axis values

are automatically captured as the part passes the various sensors.

d) The ANN calculates the outputs of the various Neurons. The part is classified. The results are

shown in the Output Data Variable table and recorded. See Figure 45 (page 111). In this

particular case the part is correctly identified as part A.

e) Step c) and d) is repeated 10 times for each of the 6 parts. A total of 60 test runs.

Figure 43 - Simatic Step 7 Part Targets Table

111 | P a g e

Figure 44 - Simatic Step 7 Part A Weight Table

Figure 45 - Simatic Step 7 ANN Output Table

112 | P a g e

6.3.2.1. Best Part Identification – Conditions 4

Weights optimized by the GA under control parameters of Conditions 4 are tabled below.

Table 23- Conditions 4 Optimized Weights

Conditions 4
 Part A Part B Part C Part D Part E Part F
Weight X: 1 1.4387327 0.0097524 0.2603602 0.4979276 0.5105519 0.4183017
Weight X: 2 1.7862022 0.0055107 0.0234618 0.2428633 0.001404 0.1288028
Weight X: 3 2.1323127 0.0607025 0.2075251 0.6724553 0.4549259 1.2384017
Weight X: 4 0.0428505 0.4852304 1.0198115 0.2298516 0.2796867 0.7706845
Weight X: 5 0.2383607 1.8668086 1.6945628 0.1181348 0.2212333 1.9065886
Weight X: 6 0.5632357 0.051487 0.4807401 1.3293235 0.005709 0.2147844
Weight X: 7 0.1156624 0.2119084 0.7072252 0.0160606 0.0044002 0.4134106
Weight X: 8 0.9819065 0.8147115 0.8319214 0.6974159 0.598667 0.0413434
Weight X: 9 1.5011884 0.0294201 0.3955211 0.7501354 0.7876091 0.0644553
Weight X: 10 0.1621789 0.9573333 0.3926012 0.2048469 0.1055694 0.8433537
Weight X: Time 16.29492 0.1211996 0.8519506 2.7119938 5.3153731 1.1385356
Weight Y: 1 0.3051932 1.2163038 0.0194841 0.7313727 0.3508102 0.5501317
Weight Y: 2 0.128727 1.1044052 0.0443169 0.1619364 1.3810257 1.1492997
Weight Y: 3 0.0656073 0.0569903 0.0137175 0.0672034 0.3038722 0.7274533
Weight Y: 4 0.0046467 0.0227241 0.2867397 0.0656559 0.11208 0.496789
Weight Y: 5 0.1396606 1.5757907 1.7380725 0.2525135 0.3169387 0.2479892
Weight Y: 6 2.0711657 0.7380132 0.0983576 0.0469844 0.3168938 0.6027826
Weight Y: 7 0.4321278 0.843519 2.5786192 0.209078 0.0031125 0.1217318
Weight Y: 8 0.5709586 2.089403 1.2214732 3.2237293 1.4730358 0.1364813
Weight Y: 9 1.3577144 0.0176705 0.1896182 0.5017415 1.0886345 0.8588952
Weight Y: 10 0.3433842 0.0105622 0.078258 2.1101647 2.3149367 0.69286
Weight Y: Time 2.5888222 2.6281954 1.3554803 2.9460632 6.2420023 1.0050278
Weight X: Bias 0.007499 0.4974125 0.3142632 0.122114 0.021169 0.0413651
Weight Y: Bias 0.592715 0.0659691 0.0697927 0.2107958 0.2589287 0.1587502

The results of the hardware tests using these optimized weights are tabled below:

Table 24 - Part Recognition Test 1 Result Summary

 Part A Part B Part C Part D Part E Part F
Part Identification OK 10 10 10 10 10 10
Part Identification NOK 0 0 0 0 0 0
Neural Network Misfire 1 0 0 0 3 0

Detailed results and outputs for each neuron layer during the part A part recognition test can be seen in Table

26 (page 114). The various tabled values relate to the different neuron layers as depicted in the ANN

architecture, Figure 18 (page 45).

Complete results for all parts can be found in Appendix i – Hardware Test Best Part ID Results.

113 | P a g e

Table 25 - ANN Output Mapping

Neuron Architecture
Component

Part A: X Neuron Result Y1
Part A: Y Neuron Result Y2
Part A: Final Neuron Result X1
Part A: Activation Function O1
Part B: X Neuron Result Y3
Part B: Y Neuron Result Y4
Part B: Final Neuron Result X2
Part B: Activation Function O2
Part C: X Neuron Result Y5
Part C: Y Neuron Result Y6
Part C: Final Neuron Result X3
Part C: Activation Function O3
Part D: X Neuron Result Y7
Part D: Y Neuron Result Y8
Part D: Final Neuron Result X4
Part D: Activation Function O4
Part E: X Neuron Result Y9
Part E: Y Neuron Result Y10
Part E: Final Neuron Result X5
Part E: Activation Function O5
Part F: X Neuron Result Y11
Part F: Y Neuron Result Y12
Part F: Final Neuron Result X6
Part F: Activation Function O6

115 | P a g e

6.3.2.2. Best ID minus Misfire – Conditions 7

Weights optimized by the GA under control parameters of Conditions 4 are tabled below.

Table 27 - Conditions 7 Optimized Weights

Conditions 7
 Part A Part B Part C Part D Part E Part F
Weight X: 1 0.2896508 0.2129917 0.2236633 0.643736 0.0169259 0.5605942
Weight X: 2 0.650961 0.1069884 0.626496 0.8100904 0.0197989 0.1417316
Weight X: 3 0.9843429 0.9260315 0.8527593 0.3480191 0.8189701 0.2089701
Weight X: 4 0.4254546 2.3402791 0.2324546 0.3252092 0.398593 0.7814011
Weight X: 5 0.1222026 0.9013037 1.4420261 0.7933724 0.6577362 0.1912165
Weight X: 6 0.0277485 0.6566761 1.0158664 1.0780145 0.1490603 0.3502728
Weight X: 7 1.6750733 0.8314261 0.7332261 0.0130953 0.0297126 1.9709427
Weight X: 8 1.2747416 1.3343229 1.3303655 2.083558 1.5719614 0.4228703
Weight X: 9 0.5438748 0.2269571 1.3068371 0.3746177 0.0739984 0.1440837
Weight X: 10 1.6090906 2.3017007 0.5151782 3.1789466 0.1780303 2.4219242
Weight X: Time 1.2089423 0.6805524 0.3862353 2.9120112 0.0062237 8.1856592
Weight Y: 1 0.8503171 0.9416137 0.0537304 0.779761 0.8765325 0.9806908
Weight Y: 2 1.9380724 0.2007521 0.0831067 0.7266394 0.4548965 0.5592834
Weight Y: 3 2.4752832 0.6398264 0.8024611 0.8585403 1.3770302 1.4760956
Weight Y: 4 0.0298566 0.2120624 0.5255398 0.0855927 0.534863 0.6747847
Weight Y: 5 0.6498714 0.3456385 0.3076583 0.5919261 0.7083291 0.0406149
Weight Y: 6 0.5299015 0.1035231 0.0830483 0.1116966 0.6829214 1.0781444
Weight Y: 7 0.2243483 1.7012191 0.9437965 1.8418689 0.0110735 0.1151873
Weight Y: 8 1.0865299 0.7949521 0.659018 0.8569685 0.7437888 0.6190317
Weight Y: 9 0.0126419 0.5166775 0.4612235 1.7198872 1.0240057 1.2695798
Weight Y: 10 0.9786541 0.0052335 0.3749318 0.8667028 0.4896893 1.3077484
Weight Y: Time 1.2937972 1.9861542 0.5885561 5.0744873 0.1531034 5.9662042
Weight X: Bias 0.0339961 0.1188403 0.1874316 0.1188764 0.0390083 0.0279585
Weight Y: Bias 0.166574 0.1365311 0.1275464 0.0890678 0.1887221 0.1057995

The results of the hardware tests using these optimized weights are tabled below:

Table 28 - Part Recognition Test 2 Result Summary

 Part A Part B Part C Part D Part E Part F
Part Identification OK 10 6 10 10 10 10
Part Identification NOK 0 4 0 0 0 0
Neural Network Misfire 0 1 0 1 1 0

Complete results for all parts can be found in Appendix ii – Hardware Test Best Part ID minus

Misfire Results.

116 | P a g e

6.3.2.3. Summary

As previously discussed in Section 6.3.1 PLC Simulator, the ANN misfire count has to be

subtracted from the part OK identification to present the results as accurately as possible.

The results from the two hardware tests are charted below in Graph 12 (page 116). In order to

give a better graphical representation of each Conditions results, the linear trend for each was

added in Graph 13 (page 117). It is clear that Conditions 4 resulted in more accurate part

identification.

As each of the 6 parts was run through the testing procedure 10 times, there was a possibility of a

total of 60 OK Part Identifications (60 = 10 test runs x 6 parts), 60 NOK Part Identifications (60 =

10 test runs x 6 parts) and 300 ANN Misfires (300 = 10 test runs x 6 parts x 5 misfires).

The weights optimized by the GA under the control parameters set for test Conditions 4 yielded

the following when utilized for ANN based automated part recognition:

 60 instances of OK part identifications. This can be translated into 100% accuracy in part

identification.

 0 instances of NOK Part Identification. This can be translated into 100% accuracy in part

identification.

 4 instances of ANN Misfire. This can be translated into 1.333% neuron misfires.

Graph 12 - Hardware Test Results

Part A Part B Part C Part D Part E Part F

Conditions 4 9 10 10 10 7 10

Conditions 7 10 5 10 9 9 10

0

2

4

6

8

10

12

Conditions 4

Conditions 7

117 | P a g e

Graph 13 - Hardware Test Results including Linear Trend

Part A Part B Part C Part D Part E Part F

Conditions 4 9 10 10 10 7 10

Conditions 7 10 5 10 9 9 10

0

2

4

6

8

10

12

Conditions 4

Conditions 7

Linear (Conditions 4)

Linear (Conditions 7)

118 | P a g e

7. Chapter 7 - Conclusion

In this research an understanding of current part recognition methods, GAs, ANNs and their various training

methods was gained by literature study, software development and supporting experimental research.

The software and architecture of an existing ANN was adapted to accommodate the new GA based training

method and a larger part recognition capacity. A GA was designed and developed to train the before

mentioned ANN in order to successfully recognize industrial parts on the experimental test setup.

Supporting experimental test confirmed that the GA successfully trained the ANN to recognize the trained

parts whilst not over fitting the ANN to allow generalization in part recognition.

A detailed analysis was performed on the influence the various GA control parameters have on both the

performance of the GA and on the intelligent automated part recognition ability of the ANN.

This research identified the ideal control parameters for a GA in order to train an ANN for part recognition.

By developing and implementing an intelligent evolutionary GA based training methodology the original ANN

has been proved to be significantly improved when looking at the following factors:

 The need for trail-and-error based hard coded connecting weight has been eliminated.

 The need for trail-and-error based hard coded fuzzy logic has been eliminated.

 The accuracy of the ANN output when compared to the target output for each part has been greatly

improved.

 The classification, or identification, ability has been significantly improved. Previously only three

predefined parts could be identified. The GA based training method allows any six parts, and possibly

more, to be trained for recognition.

The developed research platform, especially the GA software, can be applied to similar optimization

applications by only creating a new fitness function.

Further future development and expansion could include the following:

 Increase of the dimensional data capturing rate, although this will require a more powerful processor

than currently in use.

 Addition of more dimensional sensors to the experimental test setup.

 Implementation of a higher level GA to further optimize the ideal GA control parameters.

 Optimization of the developed ANN architecture by utilizing GP principles.

119 | P a g e

Bibliography

Andries, P. E. (2007). Computational Intelligence: An Introduction. Pretoria: John Wiley & Sons, Ltd.

Batchelor, B. G., & Whelan, P. F. (2002). Intelligent Vision Systems for Industry. Springer-Verlag.

Can, B., & Harvey, C. (2012). A comparison of genetic programming and artificial neural networks in
metamodeling of discrete-event simulation models. Computers & Operations Research , 424-436.

Casasent, D., & Psaltis, D. (1976). Position, rotation, and scale invariant optical correlation. Applied Optics ,
1795-1799.

Chen, Y., Wu, P., & Wu, Q. (2009). Higher Order Neural Networks for Stock Index Modeling. Artificial Higher
Order Neural Networks for Economics and Business , 113-131.

Darwin, C. (1859). On the Origins of Species. London: John Murray.

Das, S., & Saha, B. (2009). Data Quality Mining using Genetic Algorithm. International Journal of Computer
Science and Security , 105-112.

DeCoster, J. (1998). Intoductory Statistics Notes. Retrieved December 20, 2011, from Intoductory Statistics
Notes: http://www.stat-help.com/notes.html

Demutgal, M., Unal, M., Tansel, I., & Yazicioglu, O. (2011). Fault diagnosis on bottle filling plant using genetic-
based neural network. Advances in Engineering Software , 1051-1058.

Dorsey, R., Johnson, J., & Mayer, W. (1994). A genetic algorithm for the training f feedforward neural
networks. Advances in artificial intelligence in economics, finance and management , 93-111.

FESTO AG & Co. (2002, October 8). 165327_Fibre_Optic_Device_SOEG_L.pdf. FESTO SOEG-L-Q30-P-A-S-2L .
Esslingen, Germany.

FESTO AG & Co. (2007, July). pdf_en_soex_en.pdf. Products 2007 - Opto-electronic sensors . Esslingen,
Germany.

Gao, X., & Ovaska, S. (2002). Genetic Algorithm Training of Elman Neural Newtork in Motor Fault Detection.
Neural Computing and Applications , 37-44.

Gupta, J., & Sexton, R. (1999). Comparing backpropagation with a genetic algorithm for neural network
training. Omega: The International Journal of Management Science , 679-684.

Haupt, R. L. (2004). Practical Genetic Algorithms: Second Edition. Hoboken, New Jersey: Wiley-Interscience.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Pearson Education, Inc.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Patparganj: Pearson Education Hall.

Hsu, Y., Arsenault, H. H., & April, G. (1982). Rotation-invariant digital pattern recognition using circular
harmonic expansion. Applied Optics , 4012-4015.

120 | P a g e

Hui, L. C., Lam, K.-Y., & Chea, C. W. (1997). Global Optimization in Neural Network Training. Neural
Computing and Applications , 58-64.

Khosravi, A., Mazloumi, E., Nahavandi, S., Creighton, D., & Van Lint, J. (2011). A genetic algorithm-based
method for improving quality of travel time prediction intervals. Transportation Research Part C , 1364-1376.

Knowles, A., Hussain, A., Deredy, W. E., & Lisboa, P. G. (2009). Higher Order Neural Networks with Bayesian
Confidence Measure for the Prediction of the EUR/USD Exchange Rate. Artificial Higher Order Neural
Networks for Economics and Business , 48-59.

Koza, J. R., & Rice, J. P. GENETIC GENERATION OF BOTH THE WEIGHTS AND. Stanford.

Lee, K.-H. (2011). Exploring generation of a genetic robot's personality through neural and evolutionary
means. Data & Knowledge Engineering , 923-954.

Li, Y., & Häußler, A. (1996). Artificial evolution of neural networks and its application to feedback control.
Artificial Intelligence in Engineering , 143-152.

Liatsis, P., Hussain, A., & Milonidis, E. (2009). Artificial Higher Order Pipeline Recurrent Neural Networks for
Financial Time Series Prediction. Artificial Higher Order Neural Networks for Economics and Business , 164-
189.

Melanie, M. (1999). An Introduction to Genetic Algorithms. Cambridge, Massachusetts: A Bradford Book The
MIT Press.

Michalewicz, Z., & Fogel, D. B. (2000). How to Solve It: Modern Heuristics. New York: Springer.

Montana, D. J., & Davis, L. (1989). Training Feedforward Neural Networks Using Genetic Algorithms. Machine
Learning , 762 - 767.

Nelson Mandela Metropolitain University. (2009, July 9). Nelson Mandela Metropolitain University. Retrieved
December 08, 2011, from Volkswagen South Africa - DAAD International Chair in Automotive Engineering:
http://www.nmmu.ac.za/vwsadaad

Paretto, P. (1994). An Introduction to the Modeling of Neural Networks. Cambridge: Cambridge University
Press.

Perelmuter, G., Carrera, E. V., Vellasco, M., & Pacheco, M. (1995). Recognition of Industrial Parts Using
Artificial Neural Networks. Proceedings of the 5th International Conference on Education, Practice, and
Promotion of Computational Methods in Engineering Using Small Computers, (pp. 481-486). Macau, China.

Shi, D., Tan, S., & Ge, S. S. (2009). Automatically Identifying Predictor Variables for Stock Return Prediction.
Artificial Higher Order Neural Networks for Economics and Business , 60-78.

SICK AG. (2008, February 4). TI_DT20Hi_en.indd.pdf. DT20 Hi Distance Sensor . Waldkirch, Germany.

Siemens AG. (2011, June). Instruction list S7-300 CPUs and ET200 CPUs. 6ES7398-8FA10-8BA0 . NÜRNBERG,
Germany.

121 | P a g e

Siemens AG. (2011, March). S7-300 Automation System Module Data. 6ES7398-8FA10-8BA0 . NÜRNBERG,
Germany.

Siemens AG. (2011). Simatic IPC Brochure. brochure_simatic_industrial_pc_en.pdf .

Siemens AG. (2009). SIMATIC S7: Programming 1.

Siemens AG. (2009). SIMATIC S7: Programming 2.

Singh, G., & Srivastava, L. (2011). Genetic Algorithm-Based Artificial Neural Network for Voltage Stability
Assessment. Advances in Artificial Neural Systems , 1-9.

Toshiba Corporation. (2011). Satellite Pro L650-1C0. Retrieved December 11, 2011, from Toshiba Computers
Europe: http://za.computers.toshiba-europe.com/innovation/product/Satellite-Pro-L650-
1C0/1091605/printFriendly/true/toshibaShop/false/

Venables, A., & Tan, G. (2007). A ‘Hands on’ Strategy for Teaching Genetic . Journal of Information
Technology Education .

Zhang, M. (2009). Artificial Higher Order Neural Networks for Economics an Business. Hershey: Information
Science Reference.

Zhang, M. (2009). Ultra High Frequency Trigonometric Higher Order Neural Networks for Time Series Data
Analysis. Artificial Higher Order Neural Networks for Economics and Business , 133-163.

122 | P a g e

Appendices

144 | P a g e

vi. PLC Simulator Source Code

Refer to enclosed CD.

145 | P a g e

vii. Intelligent Neural Network Training utilizing Genetic Algorithm Source Code

Refer to enclosed CD.

146 | P a g e

viii. Step 7 Part Recognition PLC Source Code

Refer to enclosed CD.

