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ABSTRACT 

 
In this thesis, a cognitive neural predictive controller system has been designed to guide a 

nonholonomic wheeled mobile robot during continuous and non-continuous trajectory 

tracking and to navigate through static obstacles with collision-free and minimum 

tracking error. The structure of the controller consists of two layers; the first layer is a 

neural network system that controls the mobile robot actuators in order to track a desired 

path. The second layer of the controller is cognitive layer that collects information from 

the environment and plans the optimal path. In addition to this, it detects if there is any 

obstacle in the path so it can be avoided by re-planning the trajectory using particle 

swarm optimisation (PSO) technique.  

Two neural networks models are used: the first model is mdified Elman recurrent neural 

network model that describes the kinematic and dynamic model of the mobile robot and it 

is trained off-line and on-line stages to guarantee that the outputs of the model will 

accurately represent the actual outputs of the mobile robot system. The trained neural 

model acts as the position and orientation identifier. The second model is feedforward 

multi-layer perceptron neural network that describes a feedforward neural controller and 

it is trained off-line and its weights are adapted on-line to find the reference torques, 

which controls the steady-state outputs of the mobile robot system. The feedback neural 

controller is based on the posture neural identifier and quadratic performance index 

predictive optimisation algorithm for N step-ahead prediction in order to find the optimal 

torque action in the transient to stabilise the tracking error of the mobile robot system 

when the trajectory of the robot is drifted from the desired path during transient state.  

Three controller methodologies were developed: the first is the feedback neural 

controller; the second is the nonlinear PID neural feedback controller and the third is 

nonlinear inverse dynamic neural feedback controller, based on the back-stepping method 

and Lyapunov criterion.The main advantages of the presented approaches are to plan an 

optimal path for itself avoiding obstructions by using intelligent (PSO) technique as well 

as the analytically derived control law, which has significantly high computational 

accuracy with predictive optimisation technique to obtain the optimal torques control 

action and lead to minimum tracking error of the mobile robot for different types of 

trajectories.  

The proposed control algorithm has been applied to monitor a nonholonomic wheeled 

mobile robot, has demonstrated the capability of tracking different trajectories with 

continuous gradients (lemniscates and circular) or non-continuous gradients (square) with 

bounded external disturbances and static obstacles. Simulations results and experimental 

work showed the effectiveness of the proposed cognitive neural predictive control 

algorithm; this is demonstrated by the minimised tracking error to less than (1 cm) and 

obtained smoothness of the torque control signal less than maximum torque (0.236 N.m), 

especially when external disturbances are applied and navigating through static obstacles.  

Results show that the five steps-ahead prediction algorithm has better performance 

compared to one step-ahead for all the control methodologies because of a more complex 

control structure and taking into account future values of the desired one, not only the 

current value, as with one step-ahead method. The mean-square error method is used for 

each component of the state error vector to compare between each of the performance 

control methodologies in order to give better control results. 
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Chapter One 

Introduction to Mobile Robots 

1.1. Introduction 

In general, there are many definitions of robots. There seems to be some difficulty in 

suggesting an accurate meaning or definition for the word ‘robot’, and various 

alternatives exist, differing according to points of view. Some view a robot through the 

aspect of reprogram ability, while others are more concerned with the manipulation of 

robot behaviours (intelligence). The popular understanding of the term ‘robot’ generally 

connotes some anthropomorphic (human-like) appearance, as reflected in spin-off terms 

like robot ‘arms’ for welding. Lexically, the word ‘robot’ is actually derived from the 

Czech word ‘robota’, which is loosely translated as ‘menial laborer’ [1]. Robota connotes 

the compulsory service (i.e. slavery) of a physical agent, which can generate an intelligent 

connection between perception and action. However, the current notation of robot 

includes programmable, mechanical capable and flexible. 

Basically, robots can be divided into two categories, fixed and mobile robots. Fixed 

robots are mounted on a fixed surface and materials are brought to the workspace near the 

robot. A fixed robot is normally used in mass production, as in car factories, for welding 

or stamping. Mobile robots have the capability to move around in their environment and 

are not fixed to one physical location; therefore, the mobile robot can be defined as a 

mechanical device that performs automated tasks, whether according to direct human 

supervision, a pre-defined program, or a set of general guidelines, using artificial 

intelligence (AI) techniques [2]. 

Mobility is the robot's capability to move from one place to another in unstructured 

environments to a desired target. Mobile robots can be categorized into wheeled, tracked 

or legged robots, and they are more useful than fixed robots. Mobile robots are 

increasingly used in industry, in service robotics, for factories (e.g. in delivering 

components between assembly stations) and in difficult to access or dangerous areas such 
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as space, military environments, nuclear-waste cleaning and for personal use in the forms 

of domestic vacuum cleaners and lawn mowers [2, 3, 4].  

Over the last decade, the design and engineering of mobile robot systems acting 

autonomously in complex, dynamic and uncertain environments has remained a 

challenge. Such systems have to be able to perform multiple tasks, and therefore must 

integrate a variety of knowledge-intensive information processes on different levels of 

abstractions guaranteeing real-time execution, robustness, adaptability and scalability [5]. 

Cognitive control methodologies have been proven to be a source of inspiration and 

guidance to overcome current limitations in the controller for more complex and adaptive 

systems, and these methodologies have been utilising mobile robot systems as 

demonstrators, serving as an important proof of the concept for cognitive models [6, 7, 8]. 

Cognitive technical systems are capable to perceive the environment as well as to 

aggregate knowledge and to structure this knowledge autonomously. Enhancing a 

complex technical system by cognitive capabilities enables the system to interact in open 

and unknown environments. According to the definition in [9], cognitive systems 

(biological or technical) are characterised by their learning capabilities, representation of 

relevant aspects of the environment and ability to realize situated behaviour. 

1.2. Motivations 

Ever since the advent of mobile robots and throughout the years the problems facing 

robot control have been the subject of continuous and vigorous research, and while the 

basic prediction problems in mapping, path planning and trajectory tracking were well 

understood and solved, plenty of open problems are still there waiting to be addressed. 

These include computational complexity, linearisation effect, association of 

measurements to features, detection of loops in the robot's path and maintaining 

topological consistency as the maps are getting very large [10, 11, 12, 13, 14, 15, 16, 17, 

18].  

The fundamental essence of the motivation for this work is to generate an optimal path 

for mobile robots in order to avoid static obstacles and track the desired trajectory with 

minimum tracking error and save the battery energy of the robot through the design of an 

adaptive robust controller. 
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1.3. Aim and Objectives of the Research 

The aim of the research is to construct a cognitive neural predictive control methodology 

that gives a control signal to the actuators of the nonholonomic wheeled mobile robot, 

which achieves the following objectives: 

1- Detect the obstacle in the path and plan the optimum path for collision-free path 

between a starting and target location.   

2- Overcome the challenge in modelling and identifying the position and orientation 

of the mobile robot for N step-ahead prediction. 

3- The motion of the mobile robot model will track the desired lemniscates, circular 

and square trajectories with minimum tracking error in the steady state and 

controlled transient behaviour in order to minimise the travel time and travelling 

distance of the mobile robot. 

4- Minimisation of a weighted quadratic cost function in the errors which are defined 

as the difference between the desired trajectory (position and orientation) and the 

actual outputs of the mobile robot, also quadratic in the control signals with a 

finite number of time steps-ahead in order to reduce the control effort, with 

vanishes spikes action for saving the energy of batteries of the mobile robot 

driving circuit, and maintaining the smoothness and continuity of the motion of 

the mobile robot without slippage or deviation from the desired trajectory. 

5- Investigation of the controller robustness performance through adding boundary 

unknown disturbances and static obstacles. 

6- Verification of the controller adaptation performance by changing the initial pose 

state and changing the static obstacles locations. 

7- Validation of the controller capability of tracking any trajectories with continuous 

and non-continuous gradients to avoid the static obstacles in the path.  
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1.4. Contributions to Knowledge  

The fundamental essence of the contribution of this work is to modify and improve the 

performance of traditional PID and modern controllers by employing the theory of 

cognitive neural network topology as a basis for a learning and adapting system with the 

capability of planning fairly optimal trajectories that are desired to guide and manoeuvre 

a nonholonomic wheeled mobile robot through pre-defined trajectories (Lemniscates and 

Circular as a continuous and Square as a non-continuous gradients path) with collision-

free navigation. This is done by finding the optimal torque control action that will 

minimise the tracking error (the travel time and travelling distance) of the mobile robot by 

utilising an optimisation predictive algorithm that works to curtail the error between 

desired trajectory and actual mobile robot trajectory, in addition to reducing the control 

effort (i.e. reducing the spike of torque control signals and thus saving battery energy of 

the mobile robot system) encountered, even in the presence of obstacles in the path. 

1.5. Achievements   

Cognitive neural predictive controller plans the desired trajectory of optimal smoothness 

for the mobile robot and executes the trajectory tracking by generating optimal torque 

control actions using the analytically derived control law, which has significantly high 

computational accuracy with five steps-ahead predictive optimisation technique.  

Simulation results and experimental work show the effectiveness of the three proposed 

control methodologies, which achieved excellent tracking for Lemniscates and Circular as 

a continuous and Square as a non-continuous gradients trajectories with collision-free 

path for the actual mobile robot and reduced the tracking error to less than 1cm. The 

actions of the proposed controller were small smooth values of the torques for right and 

left wheels without sharp spikes and less than maximum torque (0.235N.m); therefore, 

the velocity of the actual mobile robot does not exceed the maximum value (0.165m/sec).  

In addition to that, the proposed control algorithm achieves a collision-free path by re-

planning the primary path to generate the smoothness desired trajectory without 

overshooting. The minimum number of the segments based on cubic spline interpolation 

technique and particle swarm optimisation with kinematic constraints on velocity enables 
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the mobile robot to avoid static obstacles and to keep the tracking error at less than 1cm 

with minimum distance. 

1.6. Thesis Organisation 

The remainder of the thesis is organised as follows: 

Chapter two reviews previous studies related to this field. 

Chapter three describes the kinematics and dynamics mathematical model of the 

nonholonomic wheeled mobile robot.  

Chapter four describes the use of modified Elman recurrent neural networks to learn and 

to act as posture neural identifier that overcome the challenge in modelling and 

identifying the position and orientation of the mobile robot for N step-ahead prediction 

and simulation results for modelling and identifying of the mobile robot. 

Chapter five represents the core of the controller. In this chapter, it is suggested that using 

an adaptive neural predictive controller with three control methodologies and 

optimisation predictive algorithm attains specific benefits towards a systematic 

engineering design procedure for adaptive neural predictive control system and 

simulation results. 

Chapter six represents the core of the cognitive neural controller. In this chapter, it is 

suggested that cognitive neural predictive controller be used with two proposed path 

planning algorithms for detection of obstacles in the desired trajectory and re-planning the 

desired path with simulation results. 

Chapter seven presents experimental work and simulation results of the proposed 

cognitive neural predictive controller. 

Finally, chapter eight contains the conclusions of the entire work and suggestions for 

future work.  

 



Chapter Two: Overview of Control Methodologies for Mobile Robots 6 

Chapter Two 

Overview of Control Methodologies 

for Mobile Robots 

2.1. Introduction 

There are many elements of the mobile robot that are critical to robust mobility, such as 

the kinematics of locomotion, sensors for determining the robot's environmental context 

and techniques for localising with respect to its map. The general control scheme for the 

mobile robots navigation is shown in Figure 2.1 [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

It consists of four blocks: perception - the robot must interpret its sensors to extract 

meaningful data; localization - the robot must determine its position in the environment; 

cognition - the robot must decide how to act to achieve its goals; and motion control - the 

robot must modulate its motor outputs to achieve the desired trajectory. If all four blocks 

can be verified, navigation will be successful [2].  
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Figure (2.1): The general control scheme for the mobile robots navigation [2]. 
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2.2. Control Problems of the Mobile Robot  

Most wheeled mobile robots can be classified as nonholonomic mechanical systems. 

Control problems stem from the motion of a wheeled mobile robot in a plane possessing 

three degrees of freedom, while it has to be controlled using only two control inputs under 

the nonholonomic constraint. These control problems have recently attracted considerable 

attention in the control community [19]. During the past few years, many methods have 

been developed to solve mobile robot control problems which can be classified into three 

categories:  

The first category is the sensor-based control approach for navigation problems of the 

mobile robot on interactive motion planning in dynamic environments and obstacle 

motion estimation [20, 21, 22]. Since the working environment for mobile robots is 

unstructured and may change with time, the robot must use its on-board sensors to cope 

with dynamic environmental changes, while for proper motion planning (such as 

environment configuration prediction and obstacle avoidance motion estimation) it uses 

sensory information [23, 24, 25, 26].  

The second category for navigation problems of the mobile robot is path planning. The 

path is generated based on a prior map of the environment and used certain optimisation 

algorithms based on a minimal time, minimal distance and minimal energy performance 

index. Many methods have been developed for avoiding both static and moving obstacles, 

as presented in [27, 28, 29, 30].  

The third category for the navigation problems of mobile robot is designing and 

implementing the motion control that mobile robot needs to execute the desired path 

accurately and to minimise tracking error.  

2.3. Tracking Error of the Mobile Robot 

The trajectory planning of mobile robot aims to provide an optimal path from an initial 

pose to a target pose [31]. Optimal trajectory planning for a mobile robot provides a path, 

which has minimal tracking error and shortest driving time and distance. Tracking errors 

of mobile robots cause collisions with obstacles due to deviations from the planned path, 

which also causes the robot to fail to accomplish the mission successfully. It also causes 
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an increase in traveling time, as well as the travel distance, due to the additional 

adjustments needed to satisfy the driving states. There are three major reasons for 

increasing tracking error for mobile robots:  

The first major reason for tracking error is the discontinuity of the rotation radius on the 

path of the differential driving mobile robot. The rotation radius changes at the 

connecting point of the straight line route and curved route, or at a point of inflection. At 

these points it can be easy for differential driving mobile robot to secede from its 

determined orbit due to the rapid change of direction [32]. Therefore, in order to decrease 

tracking error, the trajectory of the mobile robot must be planned so that the rotation 

radius is maintained at a constant, if possible. 

The second reason for increasing of tracking error due is that the small rotation radius 

interferes with the accuracy of driving the mobile robot. The path of the mobile robot can 

be divided into curved and straight-line segments. While tracking error is not generated in 

the straight-line segment, significant error is produced in the curved segment due to 

centrifugal and centripetal forces, which cause the robot to slide over the surface [33]. 

The third of the major reason for increasing tracking error due to the rotation radius is not 

constant such as complex curvature or random curvature (i.e. the points of inflection exist 

at several locations, necessitating that the mobile robot wheel velocities need to be 

changed whenever the rotation radius and travelling direction are changed [33, 34]. 

In fact, the straight-line segment can be considered as a curved segment whose rotation 

radius is infinity. As the tracking error becomes larger at the curved segment, the 

possibility of a tracking error increases with the decrease of the rotation radius of the 

curved path. Note that a relatively small error occurs at the straight-line path. Tracking 

error can be reduced by applying the control methodologies. 

2.4. Control Strategies and Methodologies for Mobile Robot 

Control system development is necessary to guarantee success in tracking the mobile 

robot on the desired trajectory. While there is an abundance of control methodologies for 

trajectory tracking that can be applied to track the mobile robot, the main aim is to control 

the system cheaply and effectively without sacrificing the robustness and reliability of the 
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controller. The difference in the tracking control strategy implemented depends mostly on 

how the system is modelled and how the information is obtained. The control strategies 

for such a system can be classified into two distinct sections, namely a linear control 

model and a nonlinear control model. Linear control strategies use linearised dynamics 

behaviour for a certain operating point, depending on the mathematical model of the 

mobile robot system. Nonlinear control strategies use the dynamics model of the mobile 

robot system in designing a controller with variables parameters depending on the 

mathematical model of the robot system. Many researchers and designers have recently 

showed an active interest in the development and applications of nonlinear control 

methodologies for three main reasons [35]: 

a- Improvement of existing control system. 

b- Analysis of hard nonlinearities. 

c- Dealing with model uncertainties. 

2.4.1. Previous Works Related to Artificial Intelligent 

Techniques   

The traditional control methods for path tracking the mobile robot used linear or non-

linear feedback control, while AI controllers were carried out using neural networks or 

fuzzy inference [36, 37]. Neural networks (NNs) are recommended for AI control as a 

part of a well-known structure with adaptive critic [38]. Much research has been done on 

the applications of neural networks for control of nonlinear dynamics model of mobile 

robot systems and has been supported by two of the most important capabilities of neural 

networks: their ability to learn and their good performance for the approximation of 

nonlinear functions [39, 40, 41]. The neural network based control of mobile robots has 

recently been the subject of intense research [42]. It is usual to work with kinematic 

models of mobile robot to obtain stable motion control laws for path following or goal 

reaching [43, 44]. Two novel dual adaptive neural control schemes were proposed for 

dynamics control of nonholonomic mobile robots [45]. The first scheme was based on 

Gaussian radial basis function artificial neural networks (ANNs) and the second on 

sigmoid multi-layer perceptron (MLP). ANNs were employed for real-time 



Chapter Two: Overview of Control Methodologies for Mobile Robots 10 

approximation of the robot's nonlinear dynamics functions, which were assumed to be 

unknown. The tracking control of nonholonomic wheeled mobile robot using two cascade 

controllers were proposed in [46]. The first stage was fuzzy controller and second stage 

was adaptive neural fuzzy inference system (ANFIS) controller for the solution of path 

tracking problem of mobile robots. 

2.4.2. Previous Works Related to Sliding Mode Technique  

A trajectory tracking control for a nonholonomic mobile robot by the integration of a 

kinematics controller and neural dynamics controller based on the sliding mode theory 

was presented in [47]. A discrete-time sliding model control for the trajectory tracking 

problem of nonholonomic wheeled mobile robot was presented in [48], in which the 

control algorithm was designed in discrete-time domain in order to avoid problems 

caused by discretisation of continuous-time controller. A new trajectory tracking control 

system of nonholonomic wheeled mobile robot was presented in [49] using sliding-mode 

control and torque control based on radial basis function (RBF) neural networked control.  

2.4.3. Previous Works Related to Back-Stepping Technique 

Integrating the neural networks into back-stepping technique to improve learning 

algorithm of analogue compound orthogonal networks and novel tracking control 

approach for nonholonomic mobile robots was proposed in [50]. Rotation error 

transformation and back-stepping technique were exploited to achieve the control law for 

solving the problem of trajectory tracking for nonholonomic wheeled mobile robot for 

tracking the desired trajectory was explained in [51]. Using the idea of back-stepping in 

the feedback control law of nonholonomic mobile robot, which employs the disturbance 

observer control approach to design an auxiliary wheel velocity controller, in order to 

make the tracking errors as small as possible in consideration of unknown bounded 

disturbance in the kinematics of the mobile robot, was proposed in [52].   

2.4.4. Previous Works Related to Predictive Controller 

There are other techniques for trajectory tracking controllers, such as predictive control 

technique. Predictive approaches to trajectory tracking seem to be very promising because 
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the desired trajectory is known beforehand. Model predictive trajectory tracking control 

was applied to a mobile robot, whereby linearised tracking error dynamics were used to 

predict future system behaviour and a control law was derived from a quadratic cost 

function, penalizing the system tracking error and the control effort [53, 54]. In addition, 

an adaptive trajectory-tracking controller based on the robot kinematics and dynamics 

was proposed in [55, 56, 57, 58] and its stability property was proved using the Lyapunov 

theory. 

2.4.5. Previous Works Related to PID Controller 

An adaptive controller of nonlinear PID-based neural networks was developed for the 

velocity and orientation tracking control of a nonholonomic mobile robot [59]. PID 

controller and simple linearised model of the mobile robot were used as a simple and 

effective solution for the trajectory tracking problem of a mobile robot [60, 61]. A self-

tuning PID control strategy based on a deduced model was proposed for implementing a 

motion control system that stabilises the two-wheeled vehicle and follows the reference 

motion commands [62, 63].   

2.4.6. Previous Works Related to Different Types of 

Controllers 

A variable structure control algorithm was proposed to study the trajectory tracking 

control based on the kinematics model of a 2-wheel differentially driven mobile robot by 

using of the back-stepping method and virtual feedback parameter with the sigmoid 

function [64]. There are other techniques for path-tracking controllers, such as the 

trajectory-tracking controllers designed by pole-assignment approach for mobile robot 

model presented in [65]. The model of the mobile robot from combination of kinematics 

and robust H-infinity ( H ) dynamics tracking controller to design the kinematics 

tracking controller by using the Lyapunov stability theorem was proposed in [66]. 

2.4.7. Previous Works Related to Path Planning Algorithms 

In addition to that, one of the main tasks for mobile robot is to decide how to plan to 

reach the target point according to some optimal standards in unknown, partly unknown 
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or known environment with collision-free navigation. In recent years, many studies on 

robot motion planning used various approaches, such as the explanation-based neural 

network learning algorithm (EBNN), an approach to learn indoor robot navigation tasks 

through trial-and-error method by applying EBNN in the context of reinforcement 

learning, which allows the robot to learn control using dynamic programming as 

explained in [67]. A mobile robot's local path-planning algorithm based on the human's 

heuristic method was explained in [68], and used a new laser finder, one of the active 

vision systems for a free-ranging mobile robot. The problem of generating smooth 

trajectories for a fast-moving mobile robot in a cluttered environment was proposed in 

[69] by using smoothing polynomial curves methods. The cognitive based adaptive path 

planning algorithm (CBAPPA) was proposed in [7] for solving the path planning 

problems for autonomous robotic applications. [12] explained a method to solve the 

problem of path planning for mobile robots based on Ant Colony Optimisation Meta-

Heuristic (ACO-MH) to find the best route according to certain cost functions. A 

comparative study of three proposed algorithms that used occupancy grid map of 

environments to find a path for mobile robot from the given start to the goal was 

explained in [70]. The use of Hopfield-type neural network dynamics for real-time 

collision-free robot path generation in an arbitrarily varying environment was presented 

in [71, 72]. This was also used in neural networks in the algorithm for multi-path 

planning in unknown environment for mobile robot based on genetic optimisation 

algorithm, as proposed in [73, 74, 75, 76]. In addition, the genetic algorithm (GA), 

particle swarm optimisation (PSO) algorithm is widely used in the mobile robot path 

planning in order to find the optimal path and to avoid the static or dynamic obstacles [77, 

78 79, 80]. 

2.5. Summary 

This chapter described the main points of navigation problems for mobile robots and the 

methods that have been developed for solving mobile robot control problems, and 

explained the major reasons for increasing tracking error for mobile robots and many 

methods related to this work. In addition, the chapter presented some of the neural 

networks methodologies for path planning of mobile robots that have used optimisation 

algorithms, such as genetic algorithm and particle swarm optimisation techniques.  
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Chapter Three 

Locomotion, Kinematics and 

Dynamics of Differential Wheeled 

Mobile Robots 

3.1. Introduction 

This chapter describes the basic concept of locomotion for wheeled mobile robot and 

explains the kinematics and dynamics model for the nonholonomic wheeled mobile robot 

under the nonholonomic constraint of pure rolling and non-slipping.  

3.2. Locomotion of Differential Wheeled Mobile Robots 

A mobile robot needs locomotion mechanisms to move unbounded throughout its 

environment. However, there are large varieties of ways to move, and so the section of a 

robot's approach to locomotion is an important aspect of mobile robot design. The most 

popular locomotion mechanism in mobile robotics and fabricated vehicles is the wheel. It 

can achieve good efficiencies and needs a relatively simple mechanical implementation. 

While designing a wheeled mobile robot, the main features concern the type of wheels, 

their arrangement and their actuation systems (eventual steering mechanisms). These 

parameters define the mobility characteristic of the robot. Some robots are omni-

directional [81, 82, 83]; that is, they can instantaneously move in any direction along the 

plane not considering their orientation around the vertical axis.  

However, these kinds of mobile robots are uncommon because they need particular 

wheels or mechanical structures. Other kinds of wheeled robots have a car-like 

configuration, that is, they have four wheels (two of them on a steering mechanism) [84, 

85], that permit a translation in the frontal direction of the vehicle and a rotation around a 
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point that depends on the wheels’ steering angle. It is easy to understand that these kinds 

of robots are not omni-directional; in fact, supposing that the wheels do not slide on the 

floor, a car-like robot can not slip in its lateral direction. 

The two-wheel differential-drive robot is the most popular kind of mobile robot [36, 86, 

87]; a robot with two wheels actuated by two independent motors with a coincident 

rotation axis. However, because the mobile robots need three ground contact points for 

stability, one or two additional passive castor wheels or slider points may be used for 

balancing for differential-drive robot.    

There is a very large range of possible wheel configurations when one considers possible 

techniques for mobile robot locomotion, as there are four major different wheel types [2]: 

a- Standard wheel: two degrees of freedom; rotation around the (motorised) wheel axle 

and the contact point. 

b- Caster wheel: two degrees of freedom; rotation around an offset steering joint. 

c- Swedish wheel: three degrees of freedom; rotation around the (motorised) wheel axle, 

around the rollers, and around the contact point. 

d- Ball or spherical wheel: realization technically difficult.  

 In the differential wheeled mobile robot there are two types of wheel, the standard wheel 

and the castor wheel, each of which has a primary axis of rotation and is thus highly 

directional, as shown in Figure 3.1 [2].  

 

 

 

 

 

 

 

 
 

Figure 3.1: The two basic wheel types. (a) standard wheel and (b) castor wheel [2]. 
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To move in a different direction, the wheel must be steered first along a vertical axis. The 

key difference between these two wheels is that the standard wheel can accomplish this 

steering motion with no side-effects, as the centre of rotation passes through the contact 

patch with the ground, whereas the castor wheel rotates around an offset axis, causing a 

force to be imparted to the robot chassis during steering [2]. The number of variations in 

wheel configuration for rolling mobile robots is quite large. However, there are three 

fundamental characteristics of a robot are governed by these choices: stability, 

maneuverability and controllability. 

3.2.1. Stability 

Stability requires a minimum number of wheels (three) in order to guarantee stable 

balance, with the additional important proviso that the centre of gravity must be contained 

within the triangle formed by the ground contact points of the wheels. Nevertheless, two 

wheeled differential-drive robot can achieve stability if the centre of mass is below the 

wheel axle [53].  

 

3.2.2. Manoeuvrability 

The manoeuvrability of a robot is a combination of the mobility m available based on the 

kinematic sliding constraints of the standard wheels, plus the additional freedom 

contributed by steering and spinning the steerable s standard wheels. These are depicted 

in Figure 3.2. 

 

 

 

 

 Some robots are omni-directional [81, 82, 83], meaning that they can be move at any 

time in any direction along the ground plane (x,y) regardless of the orientation of the 

robot around its vertical axis. Therefore the degree of maneuverability M of omni-

 Figure 3.2: The degree of manoeuvrability of the mobile robot [2]. 
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directional mobile robot is equal to three because the degree of mobility m  is equal to 

three and the degree of steer ability is equal to zero. In differential drive mobile robot [36, 

86], the degree of manoeuvrability is equal to two because the result of degree of mobility 

is equal to two and the degree of steer ability is equal to zero.     

3.2.3. Controllability 

There is generally an inverse correlation between controllability and manoeuvrability 

because the controllability problem for mobile robot systems is subject to kinematic 

constraints on the velocity and its application to collision-free path planning. In a 

differential drive mobile robot, the two motors attached to the two wheels must be driven 

along exactly the same velocity profile, which can be challenging considering variations 

between wheels, motors and environmental differences. Controlling an omni-directional 

robot for specific direction of travel is more difficult and often less accurate when 

compared to less manoeuvrable designs [2]. 

3.3. Kinematics Models of Differential Wheeled Mobile Robots 

 Kinematics is most basic study of how mechanical systems behave. In mobile robotics 

the mechanical behaviour of the robot must be understood, both in order to design 

suitable mobile robots for tasks and to understand how to generate control software, for 

instance mobile robot hardware [88, 89]. In terms of the motion without considering the 

forces that affect it, the study of the mathematics of motion is called kinematics, and it 

deals with the geometric relationships that control the mobile robot system. To explain 

the term nonholonomic wheeled mobile robot see appendix A. The differential drive 

robot platform as a rigid body on wheels, operating on a horizontal plane, is shown in 

Figure 3.3 [90]. 

 

 

 

 

 

 
X-a xis

Y- axis

 

Figure 3.3: Schematic of the nonholonomic mobile robot [90]. 
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The total dimensionality of this robot chassis on the plane is three, two for position in the 

plane and one for orientation along the vertical axis, which is orthogonal to the plane.  

The mobile robot platform has two identical parallel, non-deformable rear wheels, two 

independent DC motors, which are controlled by two independent analogous DC motors 

left and right wheels for motion and orientation and one castor front wheel for stability. 

The two wheels have the same radius denoted by r  and L  as the distance between the 

two wheels. The centre of mass of the mobile robot is located at point c  centre of axis of 

wheels.  

The pose of mobile robot in the global coordinate frame  YXO ,,  and the pose vector in the 

surface is defined as Tyxq ),,(  , where x  and y  are coordinates of point c and   is the 

robotic orientation angle measured from X -axis and these three generalized coordinates 

can describe the configuration of the mobile robot. Sometimes roller-balls can be used but 

from the kinematics point of view, there are no differences in calculations because it can 

rotate freely in all directions. It is assumed that the masses and inertias of the wheels are 

negligible and that the centre of mass of the mobile robot is located in the middle of the 

axis connecting the rear wheels.  

 The plane of each wheel is perpendicular to the ground and the contact between the 

wheels and the ground is ideal for rolling without skidding or slipping; the velocity of the 

centre of mass of the mobile robot is orthogonal to the rear wheels' axis. Under these 

assumptions the wheel has two constraints. The first constraint enforces the concept of 

rolling contact. This means that the wheel must roll in the appropriate direction motion. 

The second constraint enforces the concept of no lateral slippage. This means that the 

wheel must not slide orthogonally to the wheel plane [2]. An idealized rolling wheel is 

shown in Figure 3.4 [91]. 

.  

 

 

 

 

 

 

Xrobot-axis 

 

Xrobot-axis 

 

Yrobot-axis 

 
 

Figure 3.4: Idealized rolling wheel [91]. 
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The wheel is free to rotate about its axis (Yrobot axis). The robot exhibits preferential 

rolling in one direction (Xrobot axis) and a certain amount of lateral slip. The parameters of 

the kinematics model are shown in Table 3.1. 

Table 3.1: Parameters of the model's kinematics. 

r Radius of each wheel (m). 

L Distance between the driving wheels along the robotY  (m). 

Vw Angular velocity of the robot (rad/sec). 

VI Linear velocity of the robot along the robotX  (m/sec). 

VL Linear velocity of the left wheel (m/sec). 

VR Linear velocity of the right wheel (m/sec). 

c Centre of axis of rear wheels. 

 YXO ,,  The pose of mobile robot in the global coordinate frame. 
Tyx ),,(   The pose vector in the surface (the current position and orientation). 

R Instantaneous curvature radius of the robot trajectory (distance from the 

ICR or ICC to the midpoint between the two wheels (c). 

 

At each instant in time the left and right wheels follow a path as show in Figure 3.5 [91] 

that moves around the instantaneous centre of curvature (ICC) or the instantaneous centre 

of rotation (ICR) with the same angular rate [92]. 

 
dt

td
tVw

)(
)(


                                                                                                                 (3.1) 

 

 

 

 

 

 

 

 

 

 

 

thus: 

)()()( tRtVtV wI                                                                                                              (3.2) 

)()
2

)(()( tV
L

tRtV wL                                                                                                     (3.3) 
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Figure 3.5: Instantaneous centre of rotation (ICR) [91]. 
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)()
2

)(()( tV
L

tRtV wR                                                                                                     (3.4) 

By solving equations 3.3 and 3.4, the instantaneous curvature radius of the robot 

trajectory relative to the mid-point axis is given as equation 3.5. 

))()((2

))()((
)(

tVtV

tVtVL
tR

RL

RL




                                                                                                    (3.5) 

The angular velocity of the mobile robot is given as equation 3.6. 

L

tVtV
tV RL

w

)()(
)(


                                                                                                        (3.6) 

The linear velocity of the mobile robot is given as equation 3.7. 

2

)()(
)(

tVtV
tV RL

I


                                                                                                        (3.7) 

By changing the velocities of the two wheels, the instantaneous centre of rotation will 

move and different trajectories will be followed, as shown in Figure 3.6. 

 

 

 

 

 

 

 

 

 

 

A differential drive mobile robot is very sensitive to the relative velocity of the two 

wheels. Small differences between the velocities provided to each wheel cause different 

trajectories. The kinematics equations in the world frame can be represented as follows 

[92, 93, 94]: 

)(cos)()( ttVtx I                                                                                                           (3.8) 

)(sin)()( ttVty I                                                                                                           (3.9) 

)()( tVt w                                                                                                                    (3.10) 

Integrating equations 3.8, 3.9 and 3.10 and they were obtained as follows: 
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R is infinite 
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Case-3: VR=0 

R=0.5L 

Case-4: VL=-VR 

R=0 

Figure 3.6: The different moving possibilities for differential drive [91]. 
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o

t

I xdVtx    )(cos)()(
0

                                                                                        (3.11) 

o

t

I ydVty    )(sin)()(
0

                                                                                        (3.12) 

o

t

w dVt    )()(
0

                                                                                                    (3.13) 

where ( ),, ooo yx  is the initial pose. 

Formulas equations 3.11, 3.12 and 3.13 are valid for all robots capable of moving in a 

particular direction )(t  at a given velocity )(tVI . For the special case of differential drive 

robot, based on equations 3.6 and 3.7, it can be concluded that: 

oL

t

R xdVVtx    )(cos)]()([5.0)(
0

                                                                    (3.14) 

oL

t

R ydVVty    )(sin)]()([5.0)(
0

                                                                    (3.15) 

oR

t

L dVV
L

t    )]()([
1

)(
0

                                                                                  (3.16) 

For a practical realization, the formula equations 3.14, 3.15 and 3.16 can be rewritten for 

discrete timing thus: 

o

k

i
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

)(cos)]()([5.0)(
1

                                                                     (3.17) 

o

k

i

LR ytiiViVky  


)(sin)]()([5.0)(
1

                                                                     (3.18) 

o

k
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RL tiViV
L

k   
1

)]()([
1

)(                                                                                   (3.19) 

where )(),(),( kkykx   are the components of the pose at the k  step of the movement and 

t is the sampling period between two sampling times. In the computer simulation, the 

currently form of the pose equations as follows:    

)1()(cos)]()([5.0)(  kxtkkVkVkx LR                                                               (3.20) 

)1()(sin)]()([5.0)(  kytkkVkVky LR                                                               (3.21) 

)1()]()([
1

)(  ktkVkV
L

k RL                                                                             (3.22) 
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These are the equations used to build a model of the mobile robot and used to simulate 

the mobile robot in Matlab program. 

The kinematics equations 3.8, 3.9 and 3.10 can be represented as follows [64, 95, 96]: 

VqSq )(                                                                                                                     (3.23) 

where )(tq and 13)( tq are defined as: 

Tyxq ),,(  , 
Tyxq ),,(                                                                                       (3.24)  

and the velocity vector 2)( tV  is defined as: 

 TwI VVV                                                                                                                 (3.25)   
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The mobile robot can be steered to any position in a free workspace when it is assumed 

that the mobile robot wheels are ideally installed in each away that they have ideal rolling 

without slipping [90]. But the wheel of a mobile robot cannot move sideways; the 

freedom of motion is limited because no lateral slippage is possible, and the wheel must 

not slide orthogonally to the wheel plane, and the velocity of the point c of the mobile 

robot must be in the direction of the axis of symmetry (x-axis), which is referred as the 

nonholonomic constraint [2, 64, 95, 96], as shown in equation 3.27: 

0)(cos)()(sin)(  ttyttx                                                                                      (3.27) 

Thus the constraint in equation 3.27 for mobile robot can be expressed as matrix: 

0)( qqAT                                                                                                                     (3.28) 

where  

]0)(cos)(sin[)( ttqAT                                                                                   (3.29) 

To check controllability of the nonlinear time variant system in equation 3.30, the 

accessibility rank condition is globally satisfied and has implied controllability [96]. 
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By using Jacobi-Lie-Bracket of f and g  to find ],[ gf see appendix B. 
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If the determent of the matrix in equation 3.35 is equal to 0)/1( 2 L , then the rank of 

matrix is equal to 3; therefore, the system in equation 3.31 is controllable. For 

investigation of trajectory tracking stability for the mobile robot, that the desired 

trajectory can be described by a virtual desired robot with a state vector 
T

rrrr yxq ],,[  , 

an input vector T

WrIrr VVu ],[ as shown in Figure 3.7 [64], under the assumption that the 

virtual desired robot is not at rest ( 0,0  WrIr VV ) when t , has to find a control law 

T
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In the local coordinates with respect to the body of the mobile robot, the configuration 

error T

eeee yxq ],,[  can be presented by )( qqRq roe  : 
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where oR  is the transformation matrix. 

By taking the time derivative of equation 3.37 and rearranging with equations 3.26 and 

3.36, the configuration error for the robot becomes (see appendix C): 
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To reform equation (3.38) in the standard form, eu  will be defined  
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Then the configuration error model of equation 3.38 becomes 
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By linearising the configuration error model of equation 3.40 about the equilibrium point, 

the following is obtained: 
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Figure 3.7: Configuration error of mobile robot [64]. 
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The controllability of the system (3.41) can easily checked, by using standard form of the 

controllability ][ 2BAABBS   [97], and checking that the determent is not equal to 

zero 0S . 

))()(())()(1( 2224

IrwrIrwrwr VVVVVS                                                              (3.42) 

However, from equation 3.42, when the virtual desired robot stops ( 0,0  Irwr VV ), the 

controllable property is lost. 

3.4. Dynamics Model of Differential Wheeled Mobile Robots 

In order to produce motion, forces must be applied to the mobile robot model. These 

forces are modelled by studying of the motion of the dynamic model of the differential 

wheeled mobile robot shown in Figure 3.2. It deals with mass, forces and speed 

associated with this motion. The dynamics model can be described by the following 

dynamic equations based on Euler Lagrange formulation [48, 56, 59, 98]. 

 )()()(),()( qAqBqGqqqCqqM d                                                       (3.43) 

where q is the three dimensional vector of configuration variables equation 3.24. 

nnqM )( is a symmetric positive definite inertia matrix. 

nnqqC ),(  is the centripetal and carioles matrix. 

nqG )( is the gravitational torques vector 

1 n

d  denotes bounded unknown disturbances including unstructured un modeled 

dynamics. 

rnqB )( is the input transformation matrix. 

1 r is input torque vector. 

mnqA )( is the matrix associated with the constraints of equation 3.29. 

1 m is the vector of constraint forces. 

Remark 1: The plane of each wheel is perpendicular to the ground and the contact 

between the wheels and the ground is pure rolling and non-slipping, hence the velocity of 
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the centre of the mass of the mobile robot is orthogonal to the rear wheels' axis. The 

trajectory of mobile robot base is constrained to the horizontal plane, therefore, )(qG is 

equal to zero.  

Remark 2: In this dynamic model, the passive self-adjusted supporting wheel influence is 

not taken into consideration as it is a free wheel. This significantly reduces the 

complexity of the model for the feedback controller design. However, the free wheel may 

be a source of substantial distortion, particularly in the case of changing its movement 

direction. This effect is reduced if the small velocity of the robot is considered [56, 59]. 

Remark 3: The centre of mass for mobile robot is located in the middle of axis connecting 

the rear wheels in c point, as shown in Figure 3.3, therefore ),( qqC  is equal to zero.  

The dynamical equation of the differential wheeled mobile robot can be expressed as: 
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where L and R  are the torques of left and right motors respectively. 

M  and I present the mass and inertia of the mobile robot respectively. 
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where I and a are linear and angular torques respectively. 
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II

da 
                                                                                                                     (3.51) 

In order to reach the normal form, the following transformation is used by differentiating 

equation 3.23 as: 

VqSVqSq  )()(                                                                                                         (3.52) 

Therefore 

II VVx  )cos()sin(                                                                                               (3.53) 

II VVy  )sin()cos(                                                                                                 (3.54) 

WV                                                                                                                            (3.55) 

Comparing equations 3.53, 3.54 and 3.55 with equations 3.49, 3.50 and 3.51 respectively, 

the followings can be written: 
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Multiplying equation 3.56 by cos  and equation 3.57 by sin  
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Adding equations 3.59 and 3.60 the following is obtained: 
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V dI
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Assume d is bounded unknown disturbances.  
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where IV  and WV  are the linear and angular acceleration of the differential wheeled 

mobile robot. 
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The dynamics and the kinematics model structure of the differential wheeled mobile robot 

can be shown in Figure 3.8. 

 

 

 

 

 

 

 

 

 

 

3.5. Summary 

This chapter describes the mathematical model of the nonholonomic wheeled mobile 

robot that has depended on the kinematics and dynamics analysis under the nonholonomic 

constraint of pure rolling and non-slipping. Also, it has described the basic concept of the 

locomotion of the wheeled mobile robot and the fundamental characteristics of the mobile 

robot (stability, manoeuvrability and controllability). 

 

Figure 3.8: The dynamics and the kinematics model structure of the differential wheeled mobile robot. 
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Chapter Four 

Modelling of the Mobile Robot 

Based on Modified Elman 

Recurrent Neural Networks 

Identification 

4.1. Introduction 

The main goal of this chapter is to describe approaches to neural-network based 

modelling and identifying that are found to be practically applicable to a reasonably wide 

class of unknown nonlinear systems. Modelling and identification of nonlinear dynamics 

systems is a challenging task because nonlinear processes are unique in the sense that 

they do not share many properties. Also, system identification is one of the important and 

integral parts of a control system design [99]. The system identification is necessary to 

establish a model based on which the controller can be designed, and it is useful for 

tuning and simulation before applying the controller to the real system. System 

identification is relevant in many applications, including control system design, 

modelling, simulation, prediction, optimization, supervision, fault detection and diagnosis 

components [99, 100, 101, 102, 103, 104, 105]. 

Kinematics and dynamics mobile robot system identification and modelling is a very 

important step in control applications, since it is a pre-requisite for analysis and control 

design. Due to the nonlinear nature of most of the systems encountered in many 

engineering applications, there has been extensive research covering the field of nonlinear 

system identification. However, mathematical models are the most useful in this respect 

[106].  To build a mathematical model of the system, one can use the physical laws that 

govern the system's behaviour. Alternatively, one can observe the signals produced by the 
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system to known inputs and find a model that best reproduces the observed output. The 

former approach is called mathematical modelling, and the latter is called identification. 

If there is insufficient information about the kinematics and dynamics behaviour of the 

mobile robot system for N step-ahead prediction of the position and orientation, 

identification is necessary to make accurate model. 

This chapter focuses on nonlinear kinematics and dynamics mobile robot system 

identification to overcome the challenge in identifying the position and orientation of the 

mobile robot by using modified Elman recurrent neural networks with two stages for 

learning off-line and on-line and used two-configuration serial-parallel and parallel with 

back propagation algorithm for learning neural networks. 

4.2. Neural Networks and System Identification 

The neural networks are a technique for using physical hardware or computer software to 

model computational properties analogous to some that have been postulated for real 

networks of nerves, such as the ability to learn and store relationships [107]. Therefore, 

neural networks have become a very fashionable area of research with a range of potential 

applications that spans AI, engineering and science [101, 102, 103, 104, 105, 107, 108]. 

All these applications are dependent upon training the network and adjusting the weights, 

which define the strength of connection between the neurons in the network. 

There are several capabilities for neural networks, the first of which are perhaps the most 

significant [109, 110]: 

 Neural networks are best suited for the control of nonlinear systems because of the 

flexibly and arbitrarily map nonlinear functions that they contain. 

 Particularly well-suited to multivariable applications due to map interactions and 

cross-couplings readily whilst incorporating many inputs and outputs. 

 Learned off-line and subsequently employed either on- or off-line, or they can be 

learned on-line as part of an adaptive control scheme, or simply a real-time system 

identifier. 
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In an attempt to accurately nonlinear model using identification techniques, a wide 

variety of techniques have been developed for multi-layer perceptron (MLP) in [39, 101, 

103, 111, 112] while recurrent neural networks model (RNN) was researched in [113, 

114].  

Linear models are well established for system identification; however, nonlinear system 

identification has not received as much attention as linear system identification, due to the 

difficulty of devising proper models and algorithms to estimate their parameters [115]. 

Hence, nonlinear systems are normally approximated by using linear models by 

restricting the range of perturbation to fixed and small range. However, such a model is 

restricted to system operations within that range, and to develop a globally valid model 

(valid for all inputs) for nonlinear system, a nonlinear model has to be used. 

4.3. Neural Network Topology for Modelling Approach 

To describe the kinematics and dynamics model of the mobile robot by using artificial 

neurons as the basic building element for the development of multi-layered and higher 

order neural network, the five basic steps shown in Figure 4.1 are used in order to 

overcome the challenge in the identification and modelling of the mobile robot system. 
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Figure 4.1: Steps of modelling and identifying for mobile robot system. 
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4.3.1. The Input-Output Patterns 

The neural networks can be seen as a system transforming a set of input patterns into a set 

of output patterns, and such a network can be trained to provide a desired response to a 

given input. The network achieves such behaviour by adapting its weights during the 

learning phase on the basis of some learning rules. The training of neural networks often 

requires the existence of a set of input and output patterns, called the training set, and this 

kind of learning is called supervised learning [116].  

The learning set of input-output patterns for the nonlinear system is collected during the 

simulations test. One of the most crucial tasks in system identification is the design of 

appropriate excitation signals for gathering identification data, because nonlinear 

dynamics model is significantly more complex, and thus the data must contain 

considerably more information. Consequently, for identification of nonlinear kinematics 

and dynamics model of mobile robot system, the requirements of a suitable data set are 

very high. Therefore, an amplitude modulated pseudo random binary signal (APRBS) is 

used, which is capable of describing the system in all relevant operating conditions. The 

parameters of this signal, whose spectrum can be easily derived, are chosen according to 

the dynamics of the system. Frequency properties of the excitation signal and the 

amplitudes have to be chosen properly to cover all operating regions in order to be able to 

assess the reliability of the model's predictions [99].     

4.3.2. Neural Networks Model Structure 

This section focuses on nonlinear MIMO system identification of nonholonomic wheeled 

mobile robot (position and orientation) using the modified Elman recurrent neural 

network structure to construct the position and orientation neural networks identifier, as 

shown in Figure 4.2, which shows that the structure of modified Elman recurrent neural 

networks consists of the nodes of input layer, hidden layer, context layer and output layer 

[113, 114]. The input and output units interact with the outside environment, while the 

hidden and context units do not. The input units are only buffer units, which pass the 

signal without changing them. The output units are linear units which add the signals fed 

to them. The hidden units are non-linear activation functions.  
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The context units are used only to memorise the previous activations of the hidden units 

in order to increase the speed of learning and minimise the numbers of nodes in hidden 

layer. The context units can be considered to function as one-step time delay.    

The structure shown in Figure 4.2 is based on the following equations [113, 114]: 

}),(),({)( VbbiaskhVCkGVHFkh o                                                                              (4.1) 

)),(()( WbbiaskWhkO                                                                                                  (4.2) 

where VH, VC, and W are weight matrices, Vb and Wb  are weight vectors and F is a non-

linear vector function. The multi-layered modified Elman neural network, shown in 

Figure 4.2 is composed of many interconnected processing units called neurons or nodes 

[113, 114]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The network weights are denoted as follows:  

VH : Weight matrix of the hidden layers. 

VC : Weight matrix of the context layers. 

Vb : Weight vector of the hidden layers. 

W : Weight matrix of the output layer. 

Figure 4.2: The Modified Elman Recurrent Neural Networks [108, 109]. 
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Wb : Weight vector of the output layer. 

Li : Denotes linear node. 

H : Denotes nonlinear node with sigmoid function.  

Modified Elman recurrent neural network was used as opposed to conventional neural 

networks in the posture identifier for these reasons as follows [113, 114, 117]: 

1- To increase the speed of learning and minimise the numbers of nodes in hidden 

layer because it has the context units that are used only to memorise the previous 

activations of the hidden units. 

2- To improve the network memory ability, self-connections (  fixed value) are 

introduced into the context units of the network in order to give these units a 

certain amount of inertia.  

3- To increase the order of the neural model for matching with actual model through 

self-connection in the context units for the Elman network. 

4- To reduces the output oscillation and minimises the error between the actual 

output system and neural network output, because of the order of neural networks 

have approached from the actual system order.  

The output of the c
th

 context unit in the modified Elman network is given by: 

)1()1()( khkhkh j

o

c

o

c                                                                       (4.3) 

where )(kho

c  and )(khc are respectively the output of the context unit and hidden unit and 

 is the feedback gain of the self-connections and is the connection weight from the 

hidden units j
th 

to the context units c
th

 at the context layer.  The value of  and  are 

selected randomly between (0 and 1), not modified by the training algorithm [113, 114, 

117]. To explain these calculations, consider the general j
th

 neuron in the hidden layer 

shown in Figure 4.3 [113, 114], and the inputs to this neuron consist of an i – dimensional 

vector and (i
th

, is the number of the input nodes). Each of the inputs has a weight VH and 

VC associated with it. 

 

 

 

Figure (4.3): Neuron j in the hidden layer. 
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Here, Vb is weight vector for the bias input that it is important input and it's equal to -1 to 

prevent the neurons being quiescent when all inputs of neural may be equal to zero [118]. 

The first calculation within the neuron consists of calculating the weighted sum jnet  of 

the inputs as [113, 114]: 

j

C

c

o

cjc

nh

i

ijij VbbiashVCGVHnet
11

                                                        (4.4) 

where 

 j=c. nh=C number of the hidden nodes and context nodes and G is the input vector.  

The activation function of the hidden nodes is sigmoid function and the activation 

function of the output nodes is linear function as shown in Figures 4.4a and 4.4b 

respectively [118].  

Next the output of the neuron jh is calculated as the continuous sigmoid function of the 

jnet  as: 

jh = H( jnet )                                                                                                                 (4.5) 

H( jnet )= 1
1

2

jnet
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                                                                                         (4.6) 

 

 

 

 

 

 

 

 

 

Once the outputs of the hidden layer are calculated, they are passed to the output layer. In 

the output layer, three linear neurons are used to calculate the weighted sum (neto) of its 

inputs. 
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Figure 4.4: Activation function of neural networks (a) Sigmoid function; (b) linear function. 
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where kjW  is the weight between the hidden neuron jh  and the output neuron. Wb  is the 

weight vector for the output neuron. The three linear neurons then pass the sum (neto k ) 

through a linear function of slope 1 (another slope can be used to scale the output) as: 

 )( kk netoLO                                                                                                                (4.8) 

These outputs of the identifier are the modelling pose vector in the surface is defined as: 

T

mmmm yxq ),,(                                                                                                            (4.9) 

where mx  and my  are modelling coordinates and m  is the modelling orientation angle. 

4.3.3. Learning Algorithm and Model Estimation 

The dynamic back propagation algorithm is used to adjust the weights of the dynamics 

modified Elman recurrent neural networks. The sum of the square of the differences 

between the desired outputs Tyxq ),,( and network outputs T

mmmm yxq ),,( is 

chosen as criterion for estimating the model performance: 
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where np is number of patterns and the factor 0.5 is used to help in differentiating the 

equation 4.10. 

The use of the minus sign accounts for the gradient-descent method in weight-space and 

reflects the search for the direction of the weight change that reduces the value of 

E objective cost function. The learning rate  has a small value for smoothness weights 

changing while a large integration step size means that oscillations may occur and 

stability may be lost. The connection matrix between hidden layer and output layer is kjW , 

using the chain rule differentiation as follows: 
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The connection matrix between input layer and hidden layer is jiVH   
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The connection matrix between context layer and hidden layer is jiVC   
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The connection vector between input bias and output layer is kWb   
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The connection vector between input bias and hidden layer is jVb   
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4.3.4. Dynamics Model Representation  

In analogy to nonlinear system identification, a nonlinear dynamic model can be used in 

two configurations: prediction for one-step and simulation for N-step prediction. 

Prediction means that the neural networks model and the actual system model receive the 

same external inputs, but the output of the actual system becomes as input to the neural 

network model in order to affect the dynamic behaviour of the neural networks model by 

the actual system model; the model predicts one step into the future. The one-step 

prediction configuration is called a series-parallel model, and is shown in Figure 4.5 [39, 

99, 100, 104, 107, 119, 120, 121].  

 

 

 

 

 

 

 

 

For N-step-ahead prediction, simulation means that the neural networks model and the 

actual system model receive the same external inputs; the outputs of the actual system 

model are not used as inputs to the neural networks model. The neural networks model 

output itself can be fed-back and used as part of the neural networks input. The simulation 

configuration is called a parallel model, and is shown in Figure 4.6 [39, 99, 100, 119, 120, 

121]. 

However, if the parallel structure model is employed after using series-parallel structure 

model, it can be guaranteed that the learning neural networks model of the weights will 
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Figure 4.5: The series-parallel structure model [39, 99, 100, 104, 107, 119, 120, 121]. 
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converge or the error between the output of the system model and that of the neural 

networks model will lend to zero and pm yy .  

 

 

 

 

 

 

In this way the neural networks model can be used independently of the actual system 

model. Back-propagation algorithm is used for learning the two models configuration 

series-parallel and parallel identification structure. 

4.3.5. Model Validation 

The end task of identification system is validating the neural network model and the 

model quality. The validation is to check the model quality by using another data set 

called a testing data set. The test data set should excite the system and the neural model. 

The validation process is performed using two different approaches. The first is the 

prediction error between the actual output of the system and neural network model output. 

The second validation can be achieved through visualization of the prediction. This 

visualization is given as graphic representation of the actual outputs and the predictions 

calculated by the neural network model [99, 122].  

Alone of the most important problems that are discovered during validating the model is 

over-learning problem which means the neural network has learned one region and lost 

another region for learning. To solve this problem, the identification process is repeated 
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Figure 4.6: The parallel structure model [39, 99, 100, 119, 120, 121]. 
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with the removal of one hidden node until no over-learning problem occurs [123]. 

Another problem is an insufficient training data or poor model generalization behaviour. 

Rather it can be concluded that model is not flexible enough to describe the underlying 

relationships [99].  In addition to that, if the number of the learning set is high, the 

convergence of the error back-propagation learning algorithm will be slow; therefore, it 

must use the momentum method to accelerate the convergence of the error back-

propagation learning algorithm [118].  

4.4. Simulation Results for the Mobile Robot Modelling  

The first stage in the proposed control methodology is to set the position and orientation 

neural network identifier (posture identifier) in the neural network topology layer. This 

task is performed using series-parallel and parallel identification technique configuration 

with modified Elman recurrent neural networks model. The identification scheme of the 

nonlinear MIMO mobile robot system is needed to input-output training data pattern to 

provide enough information about the kinematic and dynamic mobile robot model to be 

modelled. This can be achieved by injecting a sufficiently rich input signal to excite all 

process modes of interest, while also ensuring that the training patterns adequately covers 

the specified operating region. A hybrid excitation signal has been used for the robot 

model. Figures 4.7a and 4.7b show the input signals )(kR
 and )(kL

, right and left wheel 

torques respectively, and I and a , linear and angular torques respectively.  
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Figures 4.8a and 4.8b show the input signals )(kVR
 and )(kVL

, right and left wheel velocity 

respectively and IV and WV , linear and angular velocity respectively. The training set is 

generated by feeding a pseudo random binary sequence (PRBS) signals, with sampling 

time (Ts) of 0.5 second, to the model and measuring its corresponding outputs, position x 

and y and orientation .  

 

 

 

 

 

 

 

 

 

Figure 4.7: The PRBS input torque signals used to excite the mobile robot model:  

(a) the right and left wheel torque; and (b) linear and angular torque. 
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The minimum number of the nodes in the hidden layer is equal to the number of nodes in 

the input layer, while the number of the nodes in the context layer is equal to the nodes in 

the hidden layer; therefore, back propagation learning algorithm is used with the modified 

Elman recurrent neural network of the structure (5-6-6-3). The number of nodes in the 

input, hidden, context and output layers are 5, 6, 6 and 3 respectively, as shown in Figure 

4.2. The learning algorithm can be developed as in appendix D.  

 

 

 

 

 

 

 

 

Figure 4.8: The velocity signals to the mobile robot model:  

(a) the right and left wheel velocity; (b) the linear and angular velocity. 
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A training set of 125 patterns was used with a learning rate of 0.1. After 2230 epochs, the 

identifier outputs of the neural network, position x, y and orientation , are approximated 

to the actual outputs of the model trajectory, as shown in Figures 4.9a, 4.9b and 4.9c.The 

objective cost function mean square error (MSE) is less than 0.00045, as shown in Figure 

4.10. 
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Figure 4.9: The response of the identifier with the actual mobile robot model output: (a) in 

the X-coordinate; (b) in the Y-coordinate; (c) in the -orientation. 
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Parallel configuration is used to guarantee the similarity between the outputs of the neural 

network identifier and the actual outputs of the mobile robot model trajectory. At 3766 

epochs the same training set patterns has been achieved with an MSE less than 6.9×10
-6

. 

The neural network identifier position and orientation outputs and the mobile robot model 

trajectory are shown in Figure 4.11.  

 

 

 

 

 

 

 

 

 

For testing set, Figure 4.12 shows the input signals )(kR
 and )(kL

, right and left wheel 

torques respectively. The system has been identified with almost identical position and 
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 Figure 4.10: The objective cost function MSE. 

Figure 4.11: The response of the modified Elman neural network model with the actual 

mobile robot model outputs for the training patterns. 
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orientation of the mobile robot and the neural posture model for testing signal, as shown 

in Figure 4.13, therefore the neural posture identifier will be used for the on-line estimate 

for the output of the model position and orientation. To ensure the output of the neural 

posture identifier model will be equal to the output of the mobile robot, an on-line update 

of the weights of the neural model will be done by back propagation algorithm. The 

weights of the posture neural network identifier are shown in appendix E.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

-2

-1.5

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3

X (meters)

Y
 (

m
e
te

rs
)

The mobile robot model trajectory

The neural netw ork identif ier trajectory

 Figure 4.13: The response of the modified Elman neural network model with the actual mobile robot 

model outputs for the testing patterns. 

Figure 4.12: The PRBS input torque signals for testing. 
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4.5. Summary 

In this chapter, the use of modified Elman recurrent neural networks with relation to 

input-output model of nonholonomic wheeled mobile robot kinematics and dynamics is 

outlined in order to predict the posture (position and orientation) of the mobile robot for 

N step-ahead prediction. The focus has been on the network architecture used to present 

the modified Elman recurrent neural networks model and the learning mechanism of that 

network by using back propagation algorithm with two configurations: series-parallel and 

parallel model. 
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Chapter Five 

Adaptive Neural Predictive Controller 

5.1. Introduction 

An adaptive neural predictive control of nonlinear multi-input multi-output MIMO 

mobile robot system is considered in this chapter. The approach used to control the 

trajectory tracking of nonholonomic wheeled mobile robot depends on the information 

available about the mobile robot, using three control methodologies. These control 

methodologies are based on the minimisation of a quadratic performance index function 

of the error between the desired trajectory input and the actual outputs identifier model 

(position and orientation of mobile robot model). The performance of the proposed 

adaptive neural control with three control methodologies will be compared with them in 

terms of minimum tracking error and in generating an optimal torque control action and 

the capability of tracking any trajectories with continuous and non-continuous gradients, 

despite the presence of bounded external disturbances.  

5.2. Model Predictive Control   

The basic structure of the model predictive control is shown in Figure 5.1 [124].  

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Basic structure of model predictive controller [124]. 
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The strategy of this methodology is [124]: 

      a- Explicit use of a model to predict the system output at future time instants. 

      b- Calculation of a control sequence minimising an objective function. 

      c- Receding strategy, so that at each instant the system output at future time instant is 

displaced towards the future, which involves the application of the first control 

signal of the sequence calculated at each step. 

A model is used to predict the future system outputs, based on past and current values and 

on the proposed optimal future control actions. The model is considered as modified 

Elman recurrent neural networks model and acts as posture identifier to predict the 

position and orientation of the mobile robot. The actions are calculated by the optimiser, 

taking into account the cost function (where the future tracking error is considered) as 

well as the constraints (the amount of computation required is ever higher). To apply the 

idea of predictive optimisation algorithm that minimises the difference between the 

predicted error and the desired robot trajectory in certain interval. The first step in the 

procedure of the control structure is the identification of the kinematics and dynamics 

mobile robot model from the input-output data.  In the second step, a feedforward neural 

controller is designed using feedforward multi-layer perceptron neural networks to find 

reference torques that control the steady-state outputs of the mobile robot trajectory. The 

final step uses a robust feedback predictive controller.   

5.3. Adaptive Neural Predictive Controller Structure 

The proposed structure of the mobile robot actuators controller is an adaptive neural 

predictive controller and can be given in the form of the block diagram (shown in Figure 

5.2). 

 It consists of: 

1-   Position and orientation neural network identifier (see chapter four). 

2- Feedforward neural controller. 

3- Feedback neural controller. 
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Three kinds of the control methodologies are proposed and applied.  

First control methodology - the feedback neural controller that consists of position and 

orientation neural network identifier with predictive optimisation algorithm. 

Second control methodology - the nonlinear PID neural feedback controller that consists 

of self-tuning nonlinear PID neural parameters with posture identifier and predictive 

optimisation algorithm. 

Third control methodology - nonlinear inverse-dynamic neural predictive feedback 

controller, which consists of the nonlinear feedback acceleration control equation based 

on Lyapunov criterion stability method and posture neural network identifier with 

optimisation predictive algorithm. These control methodologies are based on the 

minimisation of a quadratic performance index function of the error between the desired 

trajectory input and the actual outputs identifier model (position and orientation of mobile 

robot model).  

The integrated adaptive control structure, which consists of an adaptive feedforward 

neural controller and feedback neural controller with an optimisation predictive 

algorithm, brings together the advantages of the adaptive neural method with the 

robustness of feedback for N-step-ahead prediction. In the following sections, each part of 

the proposed actuators controller is explained in detail. 

Figure 5.2: The proposed structure of the adaptive neural predictive controller  

for the mobile robot actuators system. 
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Figure 5.3: The multi-layer perceptron neural networks act as the feedforward neural controller. 
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5.3.1. Feedforward Neural Controller 

The feedforward neural controller (FFNC) is of prime importance in the structure of the 

controller due to its necessity in keeping the steady-state tracking error at zero. This 

means that the actions of the FFNC, )(1 kref
 and )(2 kref are used as the reference torques 

of the steady state outputs of the mobile robot. Hence, the FFNC is supposed to learn the 

adaptive inverse model of the mobile robot system with off-line and on-line stages to 

calculate mobile robot's reference input torques drive. Reference input torques keep the 

robot on a desired trajectory in the presence of any disturbances or initial state errors. 

To achieve FFNC, a multi-layer perceptron model is used, as shown in Figure 5.3 [118]. 

The system is composed of many interconnected processing units called neurons or 

nodes.  

 

 

 

 

 

 

 

 

 

 

The network notations are as follows: 

Vcont : Weight matrix of the hidden layers. 

cVb : Weight vector of the hidden layers. 

Wcont : Weight matrix of the output layer. 

cWb : Weight vector of the output layer. 

To explain these calculations, consider the general a
th

 neuron in the hidden layer shown in 

Figure 5.3. The inputs to this neuron consist of an n-dimensional vector (n
th

 is the number 

of the input nodes). Each of the inputs has a weight Vcont  associated with it. The first 
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calculation within the neuron consists of calculating the weighted sum anetc  of the inputs 

as [118]: 

a

nhc

a

nana VbcbiasZVcontnetc
1

                           (5.1) 

where nhc is number of the hidden nodes. 

Next the output of the neuron ahc is calculated as the continuous sigmoid function of the 

anetc  as: 

ahc = H( anetc )                                                                   (5.2) 

H( anetc )= 1
1

2
anetc

e
                                             (5.3) 

Once the outputs of the hidden layer are calculated, they are passed to the output layer. In 

the output layer, two linear neurons are used to calculate the weighted sum (netco) of its 

inputs (the output of the hidden layer as in equation 5.4). 

netco b  = b

nhc

a

aba WbcbiashcWcont
1

                                                (5.4) 

where baWcont  is the weight between the hidden neuron ahc  and the output neuron. 

The two linear neurons then pass the sum (netco b ) through a linear function of slope 1 

(another slope can be used to scale the output) as: 

)( bb netcoLOc                                                                             (5.5) 

The outputs of the feedforward neural network controller represent right and left wheels 

torques, )(1 kref  and )(2 kref  respectively.  

The training of the feedforward neural controller is performed off-line as shown in Figure 

5.4, in which the weights are adapted on-line in order to keep the robot on a desired 

trajectory in the presence of any disturbances or initial state errors. The posture neural 

network identifier finds the mobile robot Jacobian through the neural identifier model. 

The indirect learning approach is currently considered as one of the better approaches that 
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can be followed to overcome the lack of initial knowledge, such as initial pose and 

disturbances effect [116]. 

 

 

 

 

 

 

 

 

The dynamic back propagation algorithm is employed to realise the training of the 

weights of feedforward neural controller. The sum of the square of the differences 

between the desired posture 
T

rrrr yxq ),,( and network posture T
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where npc is number of patterns. 

The use of the minus sign accounts for the gradient-descent in weight-space and reflects 

the search for the direction of the weight change that reduces the value of Ec . The 

learning rate  has a small value for smoothness weights changing. Using the chain rule 

differentiation:  

The connection matrix between hidden layer and output layer is baWcont   
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This is achieved in the local coordinates with respect to the body of the mobile robot, 

which is the same output of the position and orientation neural networks identifier. The 

configuration error can be represented by using a transformation matrix as: 
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where rx , ry and r are the reference position and orientation of the mobile robot. 
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For linear activation function in the outputs layers: 
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For nonlinear activation function in the hidden layers: 
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Substituting equations 5.19 and 5.13 into equation 5.12, )1(kWcontba  becomes: 

)))1(())1(())1((()()1( 321

1

jmjmjm
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jbjaba WkeWkeyWkexVHnetfhckWcont     (5.20)              
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)1()()1( kWcontkWcontkWcont bababa                                          (5.21) 

The connection matrix between input layer and hidden layer is anVcont  

an

an
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Ec
kVcont )1(                                                       (5.22) 
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                                   (5.27)    

Substituting equations 5.19 and 5.13 into equation 5.27, )1(kVcontan  becomes: 

nh

j

I

i

jij

B

b

baanan VHnetfWcontnetcfZkVcont
1 11

)()()1(  

                      )))1(())1(())1((( 321 jmjmjm WkeWkeyWkex                  (5.28) 

The B and I are equal to two because there are two outputs in the feedforward neural 

controller.  

)1()()1( kVcontkVcontkVcont ananan                                                               (5.29) 

Once the feedforward neural controller has learned, it generates the torque control action 

to keep the output of the mobile robot at the steady state reference value and to overcome 

any external disturbances during trajectory. The torques will be known as the reference 

torques of the right and left wheels 1ref and 2ref respectively.  

5.3.2. Feedback Neural Controller 

The feedback neural controller is essential to stabilise the tracking error of the mobile 

robot system when the trajectory of the robot drifts from the desired trajectory during 

transient state. The feedback neural controller generates an optimal torque control action 
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that minimises the cumulative error between the desired input trajectory and the output 

trajectory of the mobile robot. The weighted sum of the torque control signal can be 

obtained by minimising a quadratic performance index. The feedback neural controller 

consists of the adaptive weights of the position and orientation neural networks identifier 

and an optimisation algorithm. The quadratic performance index for multi-input/multi-

output system can be expressed as: 

)))()(())()((())1()1((
2

1 2

2

2

1

1

2 kkkkRkqkqQJ LrefRref

N

k

r
  (5.30) 

Hence 

T

rrrr kkykxkq )]1(),1(),1([)1(                           (5.31) 

Tkkykxkq )]1(),1(),1([)1(                                                                           (5.32)             

)()()( 11 kkk refR                                                                    (5.33) 

)()()( 22 kkk refL                                                                            (5.34) 

 (Q, R) are positive weighting factors. 

N is the number of steps ahead. 

Then J will be given as follows:  

N

k

rr kykykxkxQJ
1

22 ))1()1(())1()1(((
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1
 

                                          )))(())((()))1()1(( 2

2

2

1

2 kkRkkr         (5.35) 

The quadratic cost function will not only force the mobile robot output to follow the 

desired trajectory by minimising the cumulative error for N steps-ahead, but also forces 

the torque control actions ( )(1 k  and )(2 k ) in the transient period to be as close as 

possible to the reference  torque control signals ( )(1 kref  and )(2 kref ). 

In addition, J depends on Q and R factors and chooses a set of values of the weighting 

factors Q and R to determine the optimal control action by observing the system 

behaviour [97]. The on-line position and orientation neural networks identifier is used to 

obtain the predicted values of the outputs of the mobile robot system )1(kqm  for N 

steps ahead, instead of running the mobile robot system itself )1(kq  for N steps. This is 

performed to find the optimal torque control actions by using the posture identifier 
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weights and optimisation algorithm depending on the quadratic cost function. Therefore, 

it can be said that: 

)1()1( kqkqm                                  (5.36) 

and the performance index of equation 5.35 can be stated as: 

)))1()1(())1()1(())1()1(((
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1 2

1

22 kkkykykxkxQJ mr

N

k

mrmr  

             )))(())((( 2

2

2

1 kkR                                                                           (5.37) 

To achieve equations 5.36 and 5.37, a modified Elman neural network will be used as 

posture identifier. This task is carried out using an identification technique based on 

series-parallel and parallel configuration with two stages to learn the posture identifier.  

The first stage is an off-line identification, while the second stage is an on-line 

modification of the weights of the obtained position and orientation neural identifier. The 

on-line modifications are necessary to keep tracking any possible variation in the 

kinematics and dynamics parameters of the mobile robot system. Back propagation 

algorithm (BPA) is used to adjust the weights of the posture neural identifier to learn the 

kinematics and dynamics of the mobile robot system, by applying a simple gradient 

decent rule. 

5.3.2.1. Neural Feedback Control Methodology  

The first control methodology of the feedback controller is neural predictive feedback 

controller which consists of position and orientation neural network identifier with 

predictive optimisation algorithm. 

In this section, the two feedback right and left wheels torque control signals, )(1 k  and 

)(2 k  respectively, will be derived for one-step-ahead when N=1. 

 where 

 )1()()1( 111 kkk                  (5.38) 

)1()()1( 222 kkk                                    (5.39) 

The control law is obtained by minimising the quadratic cost function as follows: 
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1
k

J
k                                                  (5.40) 

The use of the minus sign accounts for the gradient-descent in weight-space and reflects 

the search for the direction of the weight change, which reduces the value of J. Using the 

chain rule differentiation, it has:  
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where )1(),1(),1( kekeykex mmm  can be calculated from equation 5.14. 

The modified Elman neural network identifier shown in Figure 5.5 has: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Elman neural networks act as the posture identifier. 
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For the output with a linear activation function 
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Figure 5.5 shows that )(kR is linked to the exciting nodes, 
1jVH  and )(kL  is linked to 

the exciting nodes 
2jVH  then: 
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and for )1(2 k is: 
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The total control action of the nonlinear neural controller became as: 

)1()1()1( 11 kkk refR
                         (5.51)   

)1()1()1( 22 kkk refL                     (5.52) 

This is calculated at each sample time k and applied to mobile robot system and the 

position and orientation identifier model. Then we continue to apply this procedure at the 
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next sampling time (k+1) until the error between the desired trajectory and the identifier 

model output becomes lower than a specified value. 

The weights of the position and orientation neural network identifier and the weights of 

the feedforward neural controller are updated after each sampling time in order to 

minimise the error between Tyxq ],,[  & T

mmmm yxq ],,[  using back propagation 

learning algorithm. For N steps estimation of the two feedback neural controller actions 

)(&)( 21 kk  the techniques of generalized predictive control theory will be used. The N 

steps estimation of )(&)( 21 kk  will be calculated for each sample. The position and 

orientation in the identifier model, shown in Figure 5.5, represent the kinematics and 

dynamics model of the mobile robot system and will be controlled asymptotically. 

Therefore, they can be used to predict future values of the model outputs for the next N 

steps and can be used to find the optimal value of )(&)( 21 kk  using an optimisation 

algorithm. For this purpose, let N be a pre-specified positive integer that is denoted such 

that the future values of the set point are: 

)](),...,3(),2(),1([
,

NtxtxtxtxX rrrrNtr                   (5.53) 

)](),...,3(),2(),1([
,

NtytytytyY rrrrNtr                                             (5.54) 

)](),...,3(),2(),1([
,

Ntttt rrrrNtr                                   (5.55) 

where t represents the time instant. 

Then the predicted outputs of the robot model used the neural identifier, shown in Figure 

5.5, are: 

)](),...,3(),2(),1([
,

NtxtxtxtxX mmmmNtm                   (5.56) 

)](),...,3(),2(),1([
,

NtytytytyY mmmmNtm                   (5.57) 

)](),...,3(),2(),1([
,

Ntttt mmmmNtm                                             (5.58) 

Equations 5.59, 5.60 and 5.61 implement equation 5.14 to calculate the error vectors.  

]()...,3(),2(),1([,, NtextextextexEX mmmmNtm                   (5.59) 

]()...,3(),2(),1([,, NteyteyteyteyEY mmmNtm                   (5.60) 

]()...,3(),2(),1([,, NteteteteE mmmmNtm                   (5.61) 

Two-feedback control signals can be determined by: 
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)]1(),...,2(),1(),([ 1111,1 Ntttt
Nt                     (5.62)        

 )]1(),...,2(),1(),([ 2222,2 Ntttt
Nt                             (5.63)         

Assuming the following objective function: 
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then it is aimed to find 1 and 2  such that J1 is minimised using the gradient descent 

rule. The new control actions will be given by: 
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where k here indicates that calculations are performed at the k
th

 sample; and 
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It can be seen that each element in the above vectors can be obtained such that: 
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where j=c and nh=C are the number of the hidden and context nodes respectively and G  

is the input vector such as  
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Equations 5.71 to 5.76 are the well-known Jacobian vectors, which must be calculated 

using equations 5.81 to 5.86 every time a new control signal has to be determined. This 
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could result in a large computation for a large N. Therefore, recursive methods for 

calculating the Jacobian vectors are developed so that the algorithm can be applied to 

real-time systems. After completing the procedure from n=1 to N the new control actions 

for the next sample will be:  

)()1()1( 11 Ntkk
K

refR                                (5.87) 

)()1()1( 22 Ntkk
K

refL                                        (5.88) 

where )(&)( 21 NtNt
kk  are the final values of the feedback-controlling signals 

calculated by the optimisation algorithm. This is calculated at each sample time k so that 

)1(&)1( kk LR
are torque control actions of the right and the left wheels respectively. 

These actions will be applied to the mobile robot system and the position and orientation 

identifier model at the next sampling time. The application of this procedure will continue 

at the next sampling time (k+1) until the error between the desired input and the actual 

output becomes lower than a pre-specified value.  

5.3.2.2. Nonlinear PID Neural Control Methodology 

Second control methodology of the feedback controller is nonlinear PID neural predictive 

feedback controller which consists of nonlinear PID neural networks and posture 

identifier with predictive optimisation algorithm. A PID controller consists of three terms: 

proportional, integral and derivative. The standard form of a PID controller is given in the 

s-domain as equation 5.89 [125]. 

sK
s

K
KDIPsGc d

i
p)(                                                                              (5.89)  

where Kp, Ki and Kd are called the proportional gain, the integral gain and the derivative 

gain respectively. In time domain, the output of the PID controller u(t) can be described 

as follows [125]: 

dt

tde
KdtteKteKtu dip

)(
)()()(                                                                            (5.90) 

where e(t) is the input to the controller.  

For MIMO nonlinear system cannot use the classical PID controller, therefore the 

nonlinear PID neural controller with self-tuning parameters techniques is necessary to use 
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with this MIMO nonlinear system in order to overcome the external disturbances and 

parameter variations which are unpredictable and cannot be modelled accurately. The 

proposed structure of the nonlinear PID neural controller is shown in Figure 5.6. 

 

 

 

 

 

 

 

 

 

 

The proposed structure of the nonlinear PID neural consists of position and orientation 

nonlinear PID controllers. The position nonlinear PID controller depends on the x-

coordinate error and y-coordinate error while the orientation nonlinear PID controller 

depends on the -angular error. 

The proposed control law of the feedback torque of right and left wheel ( 1  and 2 ) 

respectively can be proposed as follows:  

yx uu1                        (5.91) 

u2                        (5.92) 

where yx uu , and u are the outputs of the neural networks that can be obtained from 

sigmoid activation function which has nonlinear relationship as presented in the following 

function: 
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Figure 5.6: The nonlinear PID neural feedback controller structure. 
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yx netunetu , and netu are calculated from these equations 

xxxx KdkexkexKikexkexKpkexnetu ))1()(())1()(()(                 (5.96) 

yyyy KdkeykeyKikeykeyKpkeynetu ))1()(())1()(()(                            (5.97) 

KdkekeKikekeKpkenetu ))1()(())1()(()(                 (5.98) 

The control parameters KiKp, and Kd are the proportional, integral, and derivative gains 

respectively. The control parameters KiKp, and Kd of the self-tuning nonlinear PID for 

position and orientation controllers are adjusted using the gradient-descent delta rule 

method for one-step-ahead when N=1. 

The update rules for these control parameters are expressed by: 

 )1()()1( kKpkKpkKp                     (5.99)  

)1()()1( kKikKikKi                   (5.100) 

)1()()1( kKdkKdkKd                   (5.101) 
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where  is ,, yx for each time. 

The use of the minus sign accounts for the gradient-descent in weight-space reflecting, 

the seek of the direction for weight, change that reduces the value of J in equation 5.37. 

The learning rate  is small value for smoothness weights changing of the PID 

controllers parameters. 

By applying the chain rule, the terms
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 for position x-coordinate error 

is represented as follows: 
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Figure 5.5 shows that )(kR
is linked to the exciting nodes, 
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nh

j

jjjxx
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and for )1(kKix and )1(kKd x are 
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By applying the chain rule, the terms
))(,,( kKdKiKp

J

yyy

 for position y-coordinate error is 

represented as follows: 
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By applying the chain rule, the terms
))(,,( kKdKiKp

J
 for -orientation error is 

represented as follows: 
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Figure 5.5 shows that )(kL  is linked to the exciting nodes 2jVH  
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while for )1(kKi and )1(kKd can be obtained as follows: 
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After finding these control parameters, 
yx netunetu , and netu  can be calculated, enabling 

the identification of values yx uu , and u . Finally, the feedback control action 

)1(&)1( 21 kk for the next sample can be calculated as the proposed law: 

yx uuk )1(1                     (5.131) 

uk )1(2
                     (5.132) 

The total control action of the nonlinear controller became as: 

)1()1()1( 11 kkk refR
                    (5.133) 

)1()1()1( 22 kkk refL
                  (5.134) 

This is calculated at each sample time k and applied to mobile robot system and the 

position and orientation identifier model. Then we continue to apply this procedure at the 

next sampling time (k+1) until the error between the desired trajectory and the identifier 

model output becomes lower than a specified value. The weights of the position and 

orientation neural network identifier and the weights of the feedforward neural controller 

are updated after each sampling time in order to minimise the error between 

Tyxq ],,[  & 
T

mmmm yxq ],,[  using back propagation learning algorithm. For N 

steps estimation of the two feedback PID neural controller actions )(&)( 21 kk  the 

techniques of generalized predictive control theory will be used. The N steps estimation 

of )(&)( 21 kk  will be calculated for each sample. The position and orientation in the 

identifier model, shown in Figure 5.5, represent the kinematics and dynamics model of 

the mobile robot system and will be controlled asymptotically. Therefore, they can be 

used to predict future values of the model outputs for the next N steps and can be used to 

find the optimal value of )(&)( 21 kk  using an optimisation algorithm.  

For this purpose, let N be a pre-specified positive integer that is denoted such that the 

future values of the set point are: 

)](),...,3(),2(),1([
,

NtxtxtxtxX rrrrNtr                  (5.135) 

)](),...,3(),2(),1([
,

NtytytytyY rrrrNtr                   (5.136) 

)](),...,3(),2(),1([
,

Ntttt rrrrNtr                   (5.137) 

where t represents the time instant.  
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Then the predicted outputs of the robot model used the neural identifier, shown in Figure 

5.5, are: 

)](),...,3(),2(),1([
,

NtxtxtxtxX mmmmNtm                   (5.138) 

)](),...,3(),2(),1([
,

NtytytytyY mmmmNtm
                  (5.139) 

)](),...,3(),2(),1([
,

Ntttt mmmmNtm
                             (5.140) 

Then define the following error vector: 

]()...,3(),2(),1([,, NtextextextexEX mmmmNtm                 (5.141) 

]()...,3(),2(),1([,, NteyteyteyteyEY mmmNtm                 (5.142) 

]()...,3(),2(),1([,, NteteteteE mmmmNtm                 (5.143) 

Two-feedback control signals can be determined by: 

)]1(),...,2(),1(),([ 1111,1 Ntttt
Nt                 (5.144)        

)]1(),...,2(),1(),([ 2222,2 Ntttt
Nt                (5.145)         

Assuming the following objective function: 
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T
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R                                                                             (5.146) 

Then our purpose is to find ,, KiKp and Kd  for position nonlinear PID controller and 

orientation nonlinear PID controller such that J1 is minimised using the gradient descent 

rule,  

K
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                  (5.149) 

then it is aimed to find 1 and 2 ; the new control actions will be given by: 
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K
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K
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K

Nt
U
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1
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where k here indicates that calculations are performed at the k
th

 sample; and 
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where: 
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where: 
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After completing the procedure from n=1 to N, the new control actions for the next 

sample will be:  

)()1()1( 11 Ntkk
K

refR                                (5.205) 

)()1()1( 22 Ntkk
K

refL                          (5.206) 

where )(&)( 21 NtNt
kk  are the final values of the feedback-controlling signals 

calculated by the optimisation algorithm. 
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This is calculated at each sample time k so that )1(&)1( kk LR
are torque control 

actions of the right and the left wheels respectively. These actions will be applied to the 

mobile robot system and the position and orientation identifier model at the next sampling 

time. The application of this procedure will continue at the next sampling time (k+1) until 

the error between the desired input and the actual output becomes lower than a pre-

specified value. 

5.3.2.3 Nonlinear Inverse-Dynamic Neural Control Methodology 

The third control methodology of the feedback controller is nonlinear inverse dynamic 

predictive feedback neural controller, which consists of the nonlinear feedback 

acceleration control equation based on back-stepping technique and Lyapunov stability 

method and posture neural network identifier with optimisation predictive algorithm. This 

methodology has converted the steering system commands (velocities) to torques 

commands and has taken into account the parameters of the actual mobile robot. 

The proposed nonlinear inverse dynamic feedback equation is: 

])([)()
),,,(

,( 1

2,1 2,1 dcmm

rremc

m vqMqB
dt

Kwvqdf
qf                  (5.207) 

where T

mmmm yxq ),,( is identifier network posture state vector.   

The structure of the nonlinear inverse dynamic feedback controller can be shown in 

Figure 5.7. 

 

 

 

 

 

To facilitate the closed loop tracking error system development and stability analysis, a 

global invertible transformation equation 5.14 was used. The configuration error with 

state vector is T

mmmem eeyexq ],,[ . The desired trajectory can be described by a virtual 

desired robot with a state vector 
T

rrrr yxq ],,[  generated by desired mobile robot 

whose equations of motion are: 

 

),,,( Kwvqf rremc  
),(

2,12,1 cm vqf   

dt

dvc  

m

m

m

e

ey

ex

 

kkk yx ,,  

rr wv ,  

2

1

c

c

v

v
 

2

1

c

c

v

v




 

2

1  

Figure 5.7: The nonlinear inverse-dynamic feedback controller (NIDFC) structure. 
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rrr vx cos                       (5.208) 

rrr vy sin                                                                                                                (5.209) 

rr w                                                                                                                         (5.210) 

After taking the time derivative of equation 5.14, the derivation configuration error for 

the mobile robot becomes as follows (see appendix C): 

wr

mrmw

mrimw

m

m

m

vw

evexv

evveyv

e

ye

xe

sin

cos






                                                                              (5.211) 

The reference linear velocity and the reference angular velocity are given by equations 

5.212 and 5.213 respectively [94]. 

22 )()( rrr yxv                      (5.212) 

22 )()( rr

rrrr
r

yx

yxxy
w




                     (5.213) 

with 0rv  and 0rw , for all t , determine a smooth velocity control law 

),,,( Kwvqfv rremcc  such that 0)(lim mr
t

qq is asymptotically stable. 

where emq , rr wv ,  and K  are the tracking posture model error, the reference linear and 

angular velocity and control gain respectively. 

The objective of the nonlinear feedback controller is to design a controller for the 

transformed kinematics model of the mobile robot that forces the actual Cartesian 

position and orientation of the neural network identifier to a constant desired position and 

orientation. Based on this control objective, a differentiable, time-varying controller is 

proposed as follows:  

mrmryr

mxmr

w

i

c evkeyvkw

exkev

v

v
v

sin

cos
                  (5.214) 

where 0,, kkk yx  are design control gain parameters. 

The proposed nonlinear feedback acceleration control input is the time derivative of cv  as 

follows: 
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Assuming that the linear and angular reference velocities are constants obtains: 
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evrk
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


cos0

sin0
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The Lyapunov based nonlinear are the simplest but also successful methods in kinematics 

stabilisation. A constructive Lyapunov functions method is considered based on [126, 

127] as follows: 

)cos1(
1

)(
2

1 22

m

y

mm e
k

eyexV                    (5.217) 

Time derivative of equation 5.217 becomes: 

mm

y

mmmm
k

eyyeexxeV sin
1                     (5.218) 

Substituting equation 5.214 in equation 5.211, the derivative state vector error becomes as 

follows: 

)sin(

sin)sin(
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m
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evexevkeyvkw
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                 (5.219) 

Then 

))sin((sin
1

)sin)sin((

)))sin(((

mmyrm

y

mmrmmrmryr

mmxmmmyrr

ekeykve
k

eyevexevkeyvkw

exexkeyekeykvwV

                (5.220) 

0sin22

m

y

rmx e
k

k
vexkV                   (5.221) 

Clearly, .0V  If .0,0 Vqem If .0,0 Vqem and .0V  If .0,0 Vqem
  If 

.0,0 Vqem
  Then, V becomes a Lyapunov function. 
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So the closed loop system is globally asymptotically stable with three weighting 

parameters of error variables 0),,( kkk yx . The controller gains ),,( kkk yx  are 

determined by two stages as follows: 

0)( *

xxx kkk                      (5.222) 

0)( *

yyy kkk                     (5.223) 

0)( * kkk                     (5.224) 

where ),,( *** kkk yx are determined by comparing the actual and the desired characteristic 

polynomial equations, while ),,( kkk yx  are determined by using the gradient- 

descent delta rule method in order to adjust the parameters of the nonlinear feedback 

acceleration controller.  

The desired characteristic polynomial takes the following form: 

0))()(( 321 zZzZzZ                     (5.225) 

where  

snTw
ez

2

1                                                                                                          (5.226) 

snsn TjwTw
ez

21

3,2                                                                                        (5.227) 

The desired damping coefficient )1,0( and the characteristic frequency rMaxn ww are 

selected. 

where rMaxw  is the maximum allowed mobile robot angular velocity. 

The characteristic polynomial of the closed loop control law after linearization of the 

equation 5.219 is: 

ZkTkvTwTkvTkvkTZkvTkTZAZI xsrsrsyrsrxsrsxs )322()3()det( **22*22**22**3       

).1( *23*23*2222**2**

yrxsrrsyrsrsrxsrsxs kvkTkvwTkvTwTkvkTkvTkT             (5.228) 

For more details, see appendix F. 

Comparing coefficients at the same power of Z in equation 5.225 and equation 5.228 

results in the following: 
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321

** 3 zzzkvTkT rsxs
                   (5.229) 

323121

**22*22**2 322 zzzzzzkTkvTwTkvTkvkT xsrsrsyrsrxs
               (5.230) 

321

*23*23*2222**2** 1 zzzkvkTkvwTkvTwTkvkTkvTkT yrxsrrsyrsrsrxsrsxs
                 (5.231) 

Let ** kkx  to find the solution of equation 5.229, as follows: 

)1(

)3( 321**

rs

x
vT

zzz
kk                    (5.232) 

and yk is determined from equation 5.230 or equation 5.231 as follows: 
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or 
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When rv  is close to zero or sT  is very small sampling time, 
*

yk goes to infinity and the 

stability of the mobile robot system will lose, therefore, 0rv , as proven in the Lyapunov 

function, and to avoid small sampling time, 
*

yk  can be chosen as gain scheduling in [128], 

as in equation 5.235. 

)(* kvk ry                     (5.235) 

where is constant gain. 

So the closed loop system is globally asymptotically stable.  

The control parameters ),,( kkk yx of nonlinear feedback acceleration controllers are 

adjusted by using the gradient-descent delta rule method in order to apply optimisation 

predictive algorithm. For one step-ahead when N=1, the update rules for these control 

parameters are expressed by: 

)1()1()1( * kkkkkk xxx                                                                                 (5.236) 

)1()1()1( * kkkkkk yyy                                                                                 (5.237) 

)1()1()1( * kkkkkk                                                                                  (5.238) 
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)(
)1)((

kk

J
kk                    (5.239)    

where  is ,, yx for each time. 

The use of the minus sign accounts for the gradient-descent in weight-space reflecting the 

seek of the direction for weight, change that reduces the value of J in equation 5.37. The 

learning rate  is a small value to smooth weights changing of nonlinear feedback 

acceleration controller's parameters. 

By applying the chain rule, the term
)(kk

J

x

 for position x-coordinate error is represented 

as: 

)(

))((
2

1

)(

))1()1(((
2

1

)(
)1(

2

1

2

kk

kR

kk

kxkxQ

kk

J
kk

xx

mr

x

x
                         (5.240) 

)(

)(

)(

)1(
)1()1( 1

kk

k
R

kk

kx
kQexkk

xx

m
mx

                (5.241) 

)(

)(

)(

)(

)(

)(

)(

)(

)(

)1(

)(

)1( 1

1

1

1

1

1

1

1

1

1 kk

kv

kv

kv

kv

k

k

k

k

net

net

h

h

net

net

o

o

kx

kk

kx

x

c

c

c

c

R

R

j

j

j

j

m

x

m



             (5.242) 

)(

)(

)(

)(

)(

)(

)(

)(

)()(

)1( 1

1

1

1

1

1

1

kk

kv

kv

kv

kv

k

k

k

k

net

net

h

h

net

kk

kx

x

c

c

c

c

R

R

j

j

j

jx

m



              (5.243) 

)()()( 11
kkk refR

                    (5.244) 

)(

)(

)(

)(

)(

)(

)()(

)1( 1

1

1

1

11

kk

kv

kv

kv

kv

k

k

net

net

h

h

net

kk

kx

x

c

c

c

cR

j

j

j

jx

m



               (5.245) 

Figure 5.5 shows that )(kR
is linked to the exciting nodes, 
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By applying the chain rule, the term
)(kk

J

y

 for position y-coordinate error is represented 

as: 
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Figure 5.5 shows that )(kL
is linked to the exciting nodes, 
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By applying the chain rule, the term
)(kk

J
 for orientation error is represented as: 
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Figure 5.5 shows that )(kL
is linked to the exciting nodes, 
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After identifying these control parameters, the feedback control action 

)1(&)1( 21 kk for the next sample can be calculated. 

The total control action of the nonlinear controller became as: 

)1()1()1( 11 kkk refR
                    (5.267) 

)1()1()1( 22 kkk refL
                  (5.268) 

This is calculated at each sample time k and applied to mobile robot system and the 

position and orientation identifier model. Then this procedure is continually applied at the 

next sampling time (k+1) until the error between the desired trajectory and the identifier 

model output becomes lower than a specified value. 

The weights of the position and orientation neural network identifier and the weights of 

the feedforward neural controller are updated after each sampling time in order to 

minimise the error between Tyxq ],,[  & 
T

mmmm yxq ],,[  using back propagation 

learning algorithm.  

For N steps estimation of the nonlinear inverse dynamic feedback controller actions 

)(&)( 21 kk  the techniques of generalized predictive control theory are used. The N 

steps estimation of )(&)( 21 kk  is calculated for each sample. The position and 

orientation in the identifier model, shown in Figure 5.5, represent the kinematics and 

dynamics model of the mobile robot system and are controlled asymptotically.  
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Therefore, it can be used to predict future values of the model outputs for the next N steps 

and can be used to find the optimal value of )(&)( 21 kk  using an optimisation 

predictive algorithm.  

For this purpose, let N be a pre-specified positive integer that is denoted such that the 

future values of the set point are: 
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)](),...,3(),2(),1([
,
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where t represents the time instant. Then the predicted outputs of the robot model used the 

neural identifier, shown in Figure 5.5, are: 

)](),...,3(),2(),1([
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,
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Then define the following error vector: 
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]()...,3(),2(),1([,, NteyteyteyteyEY mmmmNtm                             (5.278) 

]()...,3(),2(),1([,, NteteteteE mmmmNtm                  (5.279) 

Two-feedback control signals can be determined by: 

)]1(),...,2(),1(),([ 1111,1 Ntttt
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)]1(),...,2(),1(),([ 2222,2 Ntttt
Nt                (5.281)        

Assuming the following objective function: 
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Then our purpose is to adjust the control parameters ),,( kkk yx of nonlinear feedback 

acceleration controllers such that J1 is minimised using the gradient descent rule. 
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After completing the procedure from n=1 to N the new control actions for the next sample 

will be:  

)()1()1( 11 Ntkk
K
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where )(&)( 21 NtNt
kk  are the final values of the feedback-controlling signals 

calculated by the optimisation algorithm. This is calculated at each sample time k so that 

)1(&)1( kk LR
are torque control actions of the right and the left wheels respectively. 

These actions will be applied to the mobile robot system and the position and orientation 

identifier model at the next sampling time. The application of this procedure will continue 

at the next sampling time (k+1) until the error between the desired input and the actual 

output becomes lower than a pre-specified value.  

5.4. Simulation Results 

In this section, several desired trajectories are tracked from nonholonomic wheeled 

mobile robot in order to clarify the features of the adaptive neural predictive controller 

explained in this chapter. The performance of the proposed adaptive neural control with 

three control methodologies will be compared with them in terms of minimum tracking 

error and in generating an optimal torque control action and the capability of tracking any 

trajectories with continuous and non-continuous gradients, despite the presence of 

bounded external disturbances. This comparison has to be made under identical 

conditions in order to specify the differences and similarities (and consequently the 

advantages and disadvantages) of the proposed control methodology. The simulation 

results in this chapter are implemented using Matlab program. 

5.4.1. Case Study 1 

The desired lemniscates trajectory, which has explicitly continuous gradient with rotation 

radius changes, can be described by the following equations: 
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The structure of the feedforward neural controller is multi-layer perceptron neural 

network (8-16-2), as shown in Figure 5.3, where the maximum number of the nodes in the 

hidden layer can be expressed as 2n+1, where n is number of nodes in the input layer [39, 
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116] (see appendix G). The trajectory has been learned by the feedforward neural 

controller with off-line and on-line adaptation stages using back propagation algorithm, as 

shown in Figure 5.4, to find the suitable reference torque control action at steady state. 

Finally the case of tracking a lemniscates trajectory for robot model, as shown in Figure 

5.2, is demonstrated with optimisation algorithm for N-step-ahead prediction. For 

simulation purposes, the desired trajectory is chosen as described in the equations 5.306, 

5.307 and 5.308. The robot model starts from the initial posture 

]2/,25.0,75.0[)0(q  as its initial conditions.  

A disturbance term )2sin(01.0 td  [56, 59, 62] is added to the robot system as 

unmodelled kinematics and dynamics disturbances in order to prove the adaptation and 

robustness ability of the proposed controller. The feedback neural controller seems to 

require more tuning effort of its two parameters (Q and R). Q is the sensitivity weighting 

matrix to the corresponding error between the desired trajectory and identifier trajectory, 

while the weighting matrix R defines the energy of the input torque signals of right and 

left wheels.  

Investigating the feedback control performance of the neural predictive controller can 

easily be obtained by changing the ratio of the weighting matrices (Q and R) in order to 

reduce the tracking error in x-coordinate, y-coordinate and -orientation using mean 

square error method, as shown in Figures 5.8a, 5.8b and 5.8c respectively.  
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This also gives the designer the possibility of obtaining more optimised control action 

depending on MSE of the position and orientation, which is more difficult to obtain in 

other controllers. 
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Figure 5.8: Changing (Q and R) parameters then calculating the mean square error: (a) in x-

coordinate; (b) y-coordinate; (c) in orientation   
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To investigate and demonstrate the effects of (Q and R) parameters on the performance of 

the neural predictive controller and the tracking error of the mobile robot, Q and R have 

taken 0.05 and 10 respectively and the results of control action and the trajectory tracking 

of the mobile robot are shown in Figures 5.9 and 5.10 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the best value of Q parameter is equal to 0.01 and best value of R parameter is 

equal to 1 for obtaining more optimised control action, as shown in Figure 5.8.   
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 Figure 5.10: Actual trajectory of mobile robot and desired trajectory for Q=0.05 and R=10. 
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Figure 5.9: The right and left wheel torque control signal when the feedback 

parameters Q=0.05 and R=10. 
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After picking the best values of Q and R for N is equal to one-step-ahead, it becomes 

necessary to choose the best count for N step-ahead prediction. This is accomplished by 

carrying out the simulation of the desired lemniscates trajectory of the mobile robot with 

optimisation algorithm for different Ns (1 to 10), then calculating the position and 

orientation mean square error for each case in order to select the best count N for smallest 

position and orientation MSE.  

 

 

 

 

 

 

 

 

 

 

Figure 5.11 shows that the best count for N step-ahead is equal to 5, although the position 

and orientation mean square error are the same in case N =6 and N=7; however; it is 

necessary to take the execution time of the simulation when N=6 or N=7 as it takes a long 

time to calculate the optimal control action, so the best count for N step-ahead is equal to 

5.   

The robot trajectory tracking obtained by the proposed adaptive neural predictive 

controller is shown in Figures 5.12a and 5.12b. These Figures demonstrate well position 

and orientation tracking performance for the five steps-ahead predictions in comparison 

with results of one step-ahead.  
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Figure 5.11: The MSE of position and orientation with N parameters. 
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Figure 5.12: Simulation results for one and five steps-ahead predictive: (a) actual trajectory of mobile 

robot and desired lemniscates trajectory; (b) actual orientation of mobile robot and desired orientation. 
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The simulation results demonstrated the effectiveness of the proposed controller by 

showing its ability to generate small values of the control input torques for right and left 

wheels with small sharp spikes, as shown in Figures 5.13a and 5.13b.  
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Figure 5.13: Torque action for N=5: 

(a) the right and left wheel torque; (b) the linear and angular torque. 
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The velocities of the right wheel and the left wheel were smooth values without sharp 

spikes, as shown in Figure 5.14a. The mean of linear velocity of the mobile robot is equal 

to 0.135m/sec, and maximum angular velocity is equal to 0.75rad/sec, as shown in 

Figure 5.14b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.05

0.1

0.15

0.2

0 25 50 75 100

Sampling Time 0.5 Sec

W
h

e
e
l 
V

e
lo

c
it

y
 o

f 
R

ig
h

t 
a
n

d
 L

e
ft

 (
m

/s
e
c
)

The velocity of the right w heel

The velocity of the left w heel

 

a 

Sample (sec) 

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0 25 50 75 100

Sampling Time 0.5 Sec

L
in

e
a
r 

V
e
lo

c
it

y
  
(m

/s
e
c
) 

a
n

d
 A

n
g

u
la

r 
V

e
lo

c
it

y
 (

ra
d

/s
e
c
) 

The Linear Velocity

The Angular Velocity

 
Figure 5.14: Velocity action for N=5: (a) the right and left wheel velocity; (b) the linear and 

angular velocity. 
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The effectiveness of the proposed first methodology of the adaptive neural predictive 

controller with predictive optimisation algorithm is clear by showing the convergence of 

the position and orientation trajectory error for the robot model motion, as shown in 

Figures 5.15a , 5.15b and 5.16 respectively for N=1 and 5 steps-ahead-predictive.  
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Figure 5.15: Position tracking error for two cases N=1 and 5:               

(a) in X-coordinate; (b) in Y-coordinate. 
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The tracking error in the X-coordinate trajectory is between -0.06m and 0.065m for one-

step ahead while for five steps-ahead the absolute X- coordinate error is less than 0.06m. 

For Y-coordinate tracking error is between -0.065m and 0.035m for one step-ahead while 

for five steps-ahead the maximum absolute Y-coordinate errors are less than 0.035m. The 

maximum tracking error in the orientation of the trajectory is equal to 7.0 rad for one 

step-ahead but it is equal to 0.5rad for the five steps-ahead predictions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second control methodology is the nonlinear PID neural feedback controller, which 

consists of eleven parameters: nine PID parameters ),,( KdKiKp where  is ,, yx ; 

and the additional two parameters Q and R. Therefore, the investigation of best 

parameters (Q and R) cannot be easily undertaken. However, the same values of Q and R 

in the first control methodology can be used in order to make the comparison results of 

the simulation under identical conditions to specify the differences and similarities. 

Therefore, the value of Q parameter is equal to 0.01 and the value of R parameter is equal 

to 1 for obtaining more optimised control action. Figure 5.17 shows that the best count for 

N is equal to five, because of minimum position and orientation errors. 

 

 

Figure 5-16: Orientation tracking error for two cases N=1, 5. 
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 The PID parameters can be tuned using many methods; one of these methods is trial-and-

error tuning method, which is used to find the initial PID parameters, and for tuning on-

line, which employs optimised-auto-tuning with identification of the mobile robot model 

as equations 5.99, 5.100 and 5.101. The mobile robot trajectory tracking obtained by the 

proposed adaptive neural predictive controller is shown in Figures 5.18a and 5.18b. These 

Figures demonstrate good position and orientation tracking performance for the five 

steps-ahead predictions in comparison with the results of one step-ahead. 
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Figure 5.17: The MSE of position and orientation with N parameters. 
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In spite of the existence of bounded disturbances, the adaptive learning and robustness of 

neural controller with optimisation algorithm show small effects of these disturbances. 

The simulation results demonstrated the effectiveness of the proposed controller by 

showing its ability to generate small values of the control input torques for right and left 

wheels with small sharp spikes, as shown in Figures 5.19a and 5.19b. 

 

 

 

 

 

 

 

 

 

 

 

 
-0.25

-0.15

-0.05

0.05

0.15

0.25

0 25 50 75 100

Sampling Time 0.5 Sec

T
o

rq
u

e
 N

.m

The Right Wheel Torque

The Left Wheel Torque

 Sample (sec) 

a 

Figure 5.18: Simulation results for one and five steps-ahead predictive: (a) actual trajectory of 

mobile robot and desired lemniscates trajectory; (b) actual orientation of mobile robot and 

desired orientation. 

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80 90 100

Sampling Time 0.5 Sec

O
ri

e
n

ta
ti

o
n

 (
ra

d
)

Desired Orientation

Actual  Mobile Robot Orientation  N=1

Actual  Mobile Robot Orientation  N=5

 Sample 

b 



Chapter Five: Adaptive Neural Predictive Controller 

 

96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The velocities of the simulation results for right and left wheels were smooth values 

without sharp spikes, as shown in Figure 5.20a. The mean of linear velocity of the mobile 

robot is equal to 0.135m/sec, and maximum angular velocity is equal to 0.5rad/sec, as 

shown in Figure 5.20b. 
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Figure 5-19: Torque action for N=5: 

(a) the right and left wheel torque; (b) the linear and angular torque. 
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The effectiveness of the proposed second methodology of the adaptive neural predictive 

controller with predictive optimisation algorithm is clear by showing the convergence of 

the position and orientation trajectory error for the robot model motion as shown in 

Figures 5.21a, 5.21b and 5.22 respectively for N=1 and 5 steps-ahead-predictive. 

The absolute maximum tracking error in the X-coordinate trajectory is less than 0.05m for 

one step-ahead while for five steps-ahead the X- coordinate error is less than 0.03m.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20: Velocity action for N=5: (a) the right and left wheel velocity; (b) the 

linear and angular velocity. 
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Tracking error is less than 0.05m for one step-ahead for Y-coordinate, while for five 

steps-ahead the error has declined to less than 0.025m. The maximum tracking error in 

the orientation of the trajectory is equal to 65.0 rad for one step-ahead but it is equal to 

0.34rad for five steps-ahead 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.22: Orientation tracking error for two cases N=1, 5. 

-0.7

-0.35

0

0.35

0.7

0 10 20 30 40 50 60 70 80 90 100

Sampling Time 0.5 Sec

O
ri

e
n

ta
ti

o
n

 e
rr

o
r 

(r
a

d
)

N=1, one step ahead

N=5, f ive step ahead

 Sample (sec) 

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70 80 90 100

Sampling Time 0.5 Sec

Y
-c

o
o

rd
in

a
te

 e
rr

o
r 

(m
)

N=1, one step ahead

N=5, f ive step ahead

 

Figure 5.21: Position tracking error for two cases N=1 and 5:                         

(a) in X-coordinate; (b) in Y-coordinate. 
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The parameters of the position and orientation nonlinear PID controller ),,( KdKiKp  

are tuned by using optimised-auto-tuning with posture identifier model of the mobile 

robot model, as shown in Figures 5.23 and 5.24 for one step-ahead and five steps-ahead 

respectively, with initial values chosen from trial-and-error tuning method, which are 1, 

0.1 and 0.2 for ),,( KdKiKp respectively. 
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Figure 5.23: The position and orientation PID controller parameters for N=1:                            

(a) proportion gain; (b) integral gain; (c) derivative gain. 
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The optimal value of the orientation derivative gain at sample 40 to 64 is 0.201 in order to 

track the desired orientation and reduce the orientation error to 0.65rad based on the 

equation (5.130). 
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Figure 5.24: The position and orientation PID controller parameters for N=5:                            

(a) proportion gain; (b) integral gain; (c) derivative gain. 
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The third control methodology is nonlinear inverse dynamic neural feedback controller, 

which consists of five parameters for tuning effort ),,,,( RQkkk yx
. The same values have 

been used in the first and second control methodology (Q equal to 0.01 and R equal to 1) 

in order to make the comparison results of the simulation under identical conditions to 

specify the differences and similarities. The values of the parameters ),,( kkk yx of the 

inverse dynamic neural controller is found using equations 5.240 and 5.243, and tuned by 

using equations 5.244, 5.245 and 5.246. The sampling time is equal to 0.5sec and the 

desired damping coefficient is equal to 2.0  for non-oscillation and fast response of 

mobile robot. The characteristic frequency wn is equal to 5rad/sec with constant 

scheduling gain equal to 10. Figure 5.25 shows that the best count for N is equal to 

five because of minimum position and orientation mean square errors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The robot trajectory tracking obtained by the proposed adaptive neural predictive 

controller is shown in Figures 5.26a and 5.26b. These Figures demonstrate excellent 

position and orientation tracking performance for the five steps-ahead predictions in 

comparison with results of one step-ahead.  In spite of the existence of bounded 

disturbances the adaptive learning and robustness of neural controller with optimisation 

algorithm show very small effects of these disturbances. 
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 Figure 5.25: The MSE of position and orientation with N parameters. 
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The simulation results demonstrated the effectiveness of the proposed controller by 

showing its ability to generate small values of the control input torques for right and left 

wheels with small sharp spikes, as shown in Figures 5.27a and 5.27b.  

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-1.5

-1

-0.5

0

0.5

1

1.5

X (meters)

Y
 (

m
e
te

r
s)

 

 

Desired Trajectory Actual Mobile Robot Trajectory for N=5 Actual Mobile Robot Trajectory for N=1

 

Figure 5.26: Simulation results for one and five steps-ahead predictive: (a) actual trajectory 

of mobile robot and desired lemniscates trajectory; (b) actual orientation of mobile robot and 

desired orientation. 
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The velocities of the simulation results for right and left wheels were smooth values 

without sharp spikes, as shown in Figure 5.28a. The mean linear velocity of the mobile 

robot is equal to 0.135m/sec, and maximum angular velocity is equal to 0.65rad/sec, as 

shown in Figure 5.28b. 
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Figure 5.27: Torque action for N=5: 

(a) the right and left wheel torque; (b) the linear and angular torque. 
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The effectiveness of the proposed third methodology of the adaptive neural predictive 

controller with predictive optimisation algorithm is clear by showing the convergence of 

the position and orientation trajectory error for the robot model motion as shown in 

Figures 5.29a, 5.29b and 5.30 respectively for N=1 and 5 steps-ahead-predictive. The 
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Figure 5.28: Velocity action for N=5: 

(a) the right and left wheel velocity; (b) the linear and angular velocity. 
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maximum tracking error in the X-coordinate trajectory is equal to 0.02m for one-step 

ahead while for the five steps ahead the X- coordinate error is less than 0.0075m. The 

maximum tracking error in Y-coordinate is equal to 0.03m for one-step ahead while for 

the five steps ahead the error has declined to less than 0.00125m.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum tracking error in the orientation of the trajectory is equal to 0.5rad for 

one step-ahead but it is equal to 0.25rad for the five steps-ahead. 
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Figure 5.29: Position tracking error for two cases N=1 and 5:  

(a) in X-coordinate; (b) in Y-coordinate. 
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The optimised-auto-tuning with identification of the mobile robot model is used for 

tuning the parameters of the inverse dynamic controller ),,( kkk yx  for one step-ahead 

and five steps-ahead, as shown in Figures 5.31a and 5.31b respectively. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 5.30: Orientation tracking error for two cases N=1, 5. 
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The mean-square error for each component of the state error ),,()( eeeqq yxr
, for the 

five steps-ahead predictive control of each methodology can be shown in Table 5.1. 

 

 

 

 

 
 

The third control methodology has smaller mean square errors for the position (X-

coordinate, Y-coordinate) and the Orientation than first and second control 

methodologies, which have high MSE for the posture, as shown in Table 5.1. Therefore, 

it can be considered that the third control methodology was the best methodology for the 

desired lemniscates trajectory.  

5.4.2 Case Study 2 

The desired circular trajectory, which has explicitly continuous gradient with rotation 

radius constant, can be described by the following equations: 

)
10

cos()(
t

txr                                            (5.309) 

)
10

sin()(
t

tyr                                                       (5.310) 

Table 5.1: MSE of each methodology for five steps-ahead prediction of desired lemniscates 

trajectory.  

),,()( eeeqqMSE yxr
 Methodology1 Methodology2 Methodology3 

MSE of X-coordinate 0.00018 0.00017 0.00015 

MSE of Y-coordinate 0.00081 0.00068 0.00061 

MSE of Orientation 0.00523 0.00232 0.00125 
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Figure 5.31: The inverse dynamic controller parameters: (a) N=1; (b) N=5. 
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t
tr                                                                                   (5.311) 

The mobile robot model starts from the initial position and orientation 

]2/,5.0,1.1[)0(q  as its initial conditions with the external disturbance. The best values 

of Q and R parameters in this case are equal to 0.025 and 1 respectively for minimising 

the position and orientation mean square errors and obtaining more optimised control 

action. Using the same stages of the proposed controller of the first methodology, the 

robot trajectory tracking obtained by the proposed controller is shown in Figures 5.32a 

and 5.32b, which is good pose tracking performance for the five steps-ahead prediction in 

comparison with results of one step-ahead prediction.  
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Figure 5.32: Simulation results for one and five steps-ahead predictive: (a) actual 

trajectory of mobile robot and desired circular trajectory; (b) actual orientation of mobile 

robot and desired orientation. 
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The behaviour of the control action torques for right and left wheels is small, with 

smoothness values without sharp spikes, as shown in Figures 5.33a and 5.33b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The velocities of the right wheel and the left wheel were smooth values without sharp 

spikes, as shown in Figure 5.34a. The mean of linear velocity of the mobile robot is equal 

to 0.0975m/sec, and the rate of the angular velocity is equal to 0.75rad/sec, as shown in 

Figure 5.34b. 
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Figure 5.33: Torque action for N=5: 

(a) the right and left wheel torque; (b) the linear and angular torque. 
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In addition, the convergence of the position and orientation trajectory error for the mobile 

robot model motion is very evident as illustrated in Figures 5.35a, 5.35b and 5.36 

respectively for one and five steps-ahead prediction. The maximum tracking error in the 

X-coordinate trajectory is equal to 0.125m for one step-ahead while for the five steps-

ahead the maximum X coordinate error in the circular trajectory is sloped less than 

0.025m. 
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Figure 5.34: Velocity action for N=5: 

(a) the right and left wheel velocity; (b) the linear and angular velocity. 
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For Y-coordinate tracking error is equal to 0.1m for one step-ahead while for the five 

steps-ahead the error has declined to less than 0.013m. The maximum tracking error in 

the orientation of the trajectory is equal to 0.46rad for one step-ahead, but it is equal to 

0.43rad for five steps-ahead 
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Figure 5.35: Position tracking error for two cases N=1 and 5: 

(a) in X-coordinate; (b) in Y-coordinate. 
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For the second control methodology, the nonlinear PID neural feedback controller is used 

with the initial nonlinear PID parameters ),,( KdKiKp  equal to 1, 0.1 and 0.2 

respectively. The mobile robot trajectory tracking obtained by the proposed adaptive 

neural predictive controller is shown in Figures 5.37a and 5.37b. These Figures 

demonstrate excellent position and orientation tracking performance for the five steps-

ahead predictions in comparison with results of one step-ahead.  

  

  

 

 

 

 

 

 

 

 

 

 

Figure 5.36: Orientation tracking error for two cases N=1, 5. 
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In spite of the existence of bounded disturbances the adaptive learning and robustness of 

neural controller with optimisation algorithm show small effect of these disturbances. The 

simulation results demonstrated the effectiveness of the proposed controller by showing 

its ability to generate small smooth values of the control input torques for right and left 

wheels without sharp spikes. The actions described in Figures 5.38a and 5.38b show that 

smaller power is required to drive the DC motors of the mobile robot model. 
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Figure 5.37: Simulation results for one and five steps-ahead predictive: (a) actual 

trajectory of mobile robot and desired circular trajectory; (b) actual orientation of 

mobile robot and desired orientation. 
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The velocities of the simulation results for right and left wheels were smooth values 

without sharp spikes, as shown in Figure 5.39a. The mean of linear velocity of the mobile 

robot is equal to 0.0975m/sec, and the rate of the angular velocity is equal to 0.77rad/sec, 

as shown in Figure 5.39b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.38: Torque action for N=5: 

(a) the right and left wheel torque; (b) the linear and angular torque. 
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The effectiveness of the proposed adaptive neural predictive control with predictive 

optimisation algorithm is clear by showing the convergence of the position and 

orientation trajectory errors for the robot model motion, as shown in Figures 5.40a, 5.40b 

and 5.41 respectively for N=1 and 5 steps ahead prediction. The maximum tracking error 

in the X-coordinate trajectory is equal to 0.085m for one step-ahead and for five steps-

ahead the X- coordinate error is less than 0.015m.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.39: Velocity action for N=5: 

(a) the right and left wheel velocity; (b) the linear and angular velocity. 
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For Y-coordinate tracking error is equal to 0.1m for one step-ahead and for five steps-

ahead the error has declined to less than 0.01m. The maximum tracking error in the 

orientation of the trajectory is equal to -1.65rad for one step-ahead but it is equal to -

1.5rad for five steps-ahead. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The parameters of the position and orientation nonlinear PID controller ),,( KdKiKp  are 

demonstrated, as shown in Figures 5.42 and 5.43.  

Figure 5.41: Orientation tracking error for two cases N=1, 5. 
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Figure 5.40: Position tracking error for two cases N=1 and 5:  

(a) in X-coordinate; (b) in Y-coordinate. 
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Figure 5.42: The position and orientation PID controller parameters for N=1:                   

(a) proportion gain; (b) integral gain; (c) derivative gain. 
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Figure 5.43: The position and orientation PID controller parameters for N=5:                    

(a) proportion gain; (b) integral gain; (c) derivative gain. 
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For the third control methodology the nonlinear inverse dynamic neural feedback 

controller is used, which has five parameters ),,,,( RQkkk yx
for tuning effort. The robot 

trajectory tracking obtained by the proposed adaptive neural predictive controller is 

shown in Figures 5.44a and 5.44b.  

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These Figures demonstrate very good position and orientation tracking performance for 

five steps-ahead predictions in comparison with results of one step-ahead. In spite of the 
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Figure 5.44: Simulation results for one and five steps-ahead predictive: (a) actual trajectory of 

mobile robot and desired circular trajectory; (b) actual orientation of mobile robot and desired 

orientation. 
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existence of bounded disturbances the adaptive learning and robustness of neural 

controller with optimisation algorithm show that these disturbances have a negligible 

effect. The simulation results demonstrated the effectiveness of the proposed controller by 

showing its ability to generate small smooth values of the control input torques for right 

and left wheels without sharp spikes. The actions described in Figures 5.45a and 5.45b 

show that smaller power is required to drive the DC motors of the mobile robot model 
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Figure 5-45: Torque action for N=5: 

(a) the right and left wheel torque; (b) the linear and angular torque. 
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The velocities of the simulation results for right and left wheels were smooth values 

without sharp spikes, as shown in Figure 5.46a. The mean linear velocity of the mobile 

robot is equal to 0.0975m/sec, and the rate of the angular velocity is equal to 0.75rad/sec, 

as shown in Figure 5.46b.  
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Figure 5.46: Velocity action for N=5: 

(a) the right and left wheel velocity; (b) the linear and angular velocity. 
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The effectiveness of the proposed adaptive neural predictive control with predictive 

optimisation algorithm is clear by showing the convergence of the pose trajectory error 

for the robot model motion for N=1 and 5 steps-ahead, as shown in Figures 5.47a and 

5.47b for position tracking error and Figure 5.48 for orientation tracking error. The 

maximum tracking error in the X-coordinate trajectory is equal to 0.05m for one step-

ahead while for the five steps-ahead the X-coordinate error is equal to 0.025m.  
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Figure 5.47: Position tracking error for two cases N=1 and 5:            

(a) in X-coordinate; (b) in Y-coordinate. 
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For Y-coordinate tracking error is equal to 0.05m for one step-ahead and for five steps-

ahead the error has declined to less than 0.05m. The maximum tracking error in the 

orientation of the trajectory is equal to 0.5rad for one step-ahead but it is equal to 

0.35rad for five steps-ahead. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By using optimised-auto-tuning with posture neural identifier of the mobile robot model, 

the parameters of the inverse dynamic controller ),,( kkk yx
 can be demonstrated, as 

shown in Figures 5.49a and 5.49b.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.48: Orientation tracking error for two cases N=1, 5. 

-0.5

-0.3

-0.1

0.1

0.3

0.5

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Sampling Time 0.5 Sec

O
ri

e
n

ta
ti

o
n

  
E

rr
o

r 
(r

a
d

)

N=1, one step ahead

N=5, five step ahead

 Sample (sec) 

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Sampling Time 0.5 Sec

G
a
in

s
 o

f 
In

v
e
rs

e
 D

y
n

a
m

ic
 C

o
n

tr
o

ll
e
r

X-gain

Y-gain

Orientation gain

 

a 

Sample (sec) 



Chapter Five: Adaptive Neural Predictive Controller 

 

124 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Table 5.2, the mean-square error for each component of the state 

error ),,()( eeeqq yxr
 is used for the five steps-ahead predictive control of each 

methodology. 

 

 

 

 

 

As can be seen from the results of Table 5.2, the second control methodology has the 

smallest MSE of the X-coordinate and the MSE of Y-coordinate is less than for the first 

and third control methodologies. Therefore, it can be stated that second control 

methodology was the best methodology for the desired circular trajectory. 

5.3.3. Case Study 3 

Simulation is also carried out for desired square trajectory, which has explicitly non-

continuous gradient for verification the capability of the proposed adaptive neural 

predictive controller performance. The mobile robot model starts from the initial position 

and orientation ]0,1.0,0[)0(q  as its initial posture with the same external disturbance 

used in case one and case two, and uses the same stages of the proposed controller in the 

Table 5.2: MSE of each methodology for the five steps-ahead prediction of desired circular trajectory 

),,()( eeeqqMSE yxr
 Methodology1 Methodology2 Methodology3 

MSE of X-coordinate 0.000889 0.000284 0.000653 

MSE of Y-coordinate 0.000211 0.000201 0.000209 

MSE of Orientation 0.00248 0.00130 0.00169 
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Figure 5.49: The inverse dynamic controller parameters: (a) N=1; (b) N=5. 
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first methodology, but the best value of Q parameter is equal to 0.02 and best value of R 

parameter is equal to 1 for minimising the position and orientation mean square errors and 

obtaining more optimised control action. Figure 5.50a shows that the mobile robot tracks 

the square desired trajectory quite accurately, but at the end of one side of the square 

there is a sudden increase in position errors of the mobile robot against the desired 

trajectory at the corners of the square, because the desired orientation angle changes 

suddenly at each corner, as shown in Figure 5.50b, therefore the mobile robot takes a 

slow turn. 
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Figure 5.50: Simulation results for one and five steps-ahead predictive: (a) actual 

trajectory of mobile robot and desired square trajectory; (b) actual orientation of mobile 
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In Figures 5.51a and 5.51b, the behaviour of the control action torques for right and left 

wheels is smooth values with sharp spikes, when the desired orientation angle changes 

suddenly at each corner. 
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Figure 5.51: Torque action for N=5: 

(a) the right and left wheel torque; (b) the linear and angular torque. 
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The velocities of the right wheel and the left wheel were smooth values without sharp 

spikes, as shown in Figure 5.52a. The mean linear velocity of the mobile robot is equal to 

0.125m/sec, and the maximum peak of the angular velocity is equal to 1.25rad/sec, as 

shown in Figure 5.52b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to that, the robot tracks the right side of the square desired trajectory and the 

tracking errors sharply drop to small values as shown in Figures 5.53a and 5.53b, for 
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Figure 5.52: Velocity action for N=5: 

(a) the right and left wheel velocity; (b) the linear and angular velocity. 
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position tracking errors. The maximum X-coordinate error in the square trajectory is 

equal to 0.03m for one step-ahead predication while for five steps-ahead prediction the 

maximum error in the X-coordinate is equal to 0.04m.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum Y-coordinate error in the square trajectory is equal to -0.04m for one step-

ahead predication while for five steps-ahead prediction the maximum error in the Y-
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Figure 5.53: Position tracking error for two cases N=1 and 5:  

(a) in X-coordinate; (b) in Y-coordinate. 
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coordinate is equal to 0.04m. Along any one side of the square, the desired orientation 

angle is constant, therefore the orientation error is equal to zero, but at the end of one side 

of the square trajectory the desired orientation angle changes suddenly, therefore the 

orientation error of the mobile robot against the desired trajectory at the corners of the 

square is increasing, as shown in Figure 5.54. 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the second control methodology of the adaptive neural predictive controller, the 

mobile robot trajectory tracking is obtained, as shown in Figures 5.55a and 5.55b.   

  

  

 

 

 

 

 

 

 

 

 

 

Figure 5.54b: Orientation tracking error for N= 1 and 5. 
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These Figures demonstrate excellent position and orientation tracking performance for the 

five steps-ahead prediction in comparison with results of one step-ahead. In spite of the 

existence of bounded disturbances, the adaptive learning and robustness of neural 

controller with optimisation algorithm shows a small effect of these disturbances. The 

simulation results demonstrated the effectiveness of the proposed controller by showing 

its ability to generate small smooth values of the control input torques for right and left 

wheels without sharp spikes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.55: Simulation results for one and five steps-ahead predictive: (a) actual 

trajectory of mobile robot and desired square trajectory; (b) actual orientation of 

mobile robot and desired orientation. 
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The simulation results demonstrated the effectiveness of the proposed controller by 

showing its ability to generate small smooth values of the control input torques for right 

and left wheels without sharp spikes. The actions described in Figures 5.56a and 5.56b 

show that smaller power is required to drive the DC motors of the mobile robot model. 

The velocities of the simulation results for right and left wheels were smooth values 

without sharp spikes are shown in Figures 5.57a and 5.57b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.56: Torque action for N=5: 

(a) the right and left wheel torque; (b) the linear and angular torque. 
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As shown in Figure 5.58a, the maximum X-coordinate error in the square trajectory is 

equal to -0.045m for one step-ahead predication while for five steps-ahead prediction the 

maximum error in the X-coordinate is equal to 0.05m. The maximum Y-coordinate error 

in the square trajectory is equal to -0.04m for one step-ahead predication while for five 

steps-ahead prediction the maximum error in the Y-coordinate is equal to 0.05m, as 

shown in Figure 5.58b.  
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Figure 5.57: Velocity action for N=5: 

(a) the right and left wheel velocity; (b) the linear and angular velocity. 
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The orientation errors for one step-ahead is equal to 0.35rad and for five steps-ahead the 

error is equal to 0.25rad, as shown in Figure 5.59. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The initial values of ),,( KdKiKp are chosen from trial-and-error tuning method, 

giving 1, 0.1 and 0.2 respectively, and the parameters of the position and orientation 

Figure 5.59: Orientation tracking error for N= 1 and 5. 
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Figure 5.58: Position tracking error for two cases N=1 and 5: 

(a) in X-coordinate; (b) in Y-coordinate. 
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nonlinear PID controller can be demonstrated, as shown in Figures 5.60 and 5.61 for one 

and five steps-ahead respectively. 
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Figure 5.60: The position and orientation PID controller parameters for N=1:                  

(a) proportion gain; (b) integral gain; (c) derivative gain. 
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Figure 5.61: The position and orientation PID controller parameters for N=5:                  

(a) proportion gain; (b) integral gain; (c) derivative gain. 
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The third control methodology of the adaptive neural controller is nonlinear inverse 

dynamic neural feedback controller with five parameters ),,,,( RQkkk yx
for tuning effort. 

The same values of Q equal to 0.02 and R equal to 1 have been used in the first and 

second methodology in order to make the comparison results of the simulation under 

identical conditions to specify the differences and similarities.  

The mobile robot trajectory tracking obtained by the proposed adaptive neural predictive 

controller are shown in Figures 5.62a and 5.62b.  
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Figure 5.62: Simulation results for one and five steps-ahead predictive: (a) actual 

trajectory of mobile robot and desired square trajectory; (b) actual orientation of 

mobile robot and desired orientation. 
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These Figures demonstrate excellent position and orientation tracking performance for 

five steps-ahead predictions in comparison with results of one step-ahead. In spite of the 

existence of bounded disturbances the adaptive learning and robustness of neural 

controller with optimisation algorithm show small effect of these disturbances. The 

simulation results demonstrated the effectiveness of the proposed controller by showing 

its ability to generate small smooth values of the control input torques for right and left 

wheels without sharp spikes. The actions described in Figures 5.63a and 5.63b show that 

smaller power is required to drive the DC motors of the mobile robot model. 
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Figure 5.63: Torque action for N=5: 

(a) the right and left wheel torque; (b) the linear and angular torque. 
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The velocities of the simulation results for right and left wheels were smooth values 

without sharp spikes are shown in Figures 5.64a and 5.64b. 
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Figure 5.64: Velocity action for N=5: 

(a) the right and left wheel velocity; (b) the linear and angular velocity. 
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The effectiveness of the proposed adaptive neural predictive control with predictive 

optimisation algorithm is clear by showing the convergence of the position trajectory 

error for the robot model motion for N=1 and 5 steps-ahead, as shown in Figures 5.65a 

and 5.65b, while the orientation tracking error is shown in Figure 5.66. The maximum X-

coordinate error in the square trajectory is equal to 0.03m for one step-ahead 

predication while for five steps-ahead predictions the maximum error in the X-coordinate 

is equal to 0.04m.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Sampling Time 0.5 Sec

X
-c

o
o

rd
in

a
te

 E
rr

o
r 

(m
)

N=5, Five step ahead

N=1, one step ahead

 Sample (sec) 

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Sampling Time 0.5 Sec

Y
-c

o
o

rd
in

a
te

 E
rr

o
r 

(m
)

N=5, Five step ahead

N=1, one step ahead

 
Figure 5.65: Position tracking error for two cases N=1 and 5: 

(a) in X-coordinate; (b) in Y-coordinate. 
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The maximum Y-coordinate error in the square trajectory is equal to -0.04m for one step-

ahead predication while for five steps-ahead predictions the maximum error in the Y-

coordinate is equal to 0.04m. The orientation tracking error for one step-ahead is equal 

to 0.5rad and for five steps-ahead the error is equal to -0.25rad. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The optimised-auto-tuning with identification of the mobile robot model are used for 

tuning the parameters of the inverse dynamic controller ),,( kkk yx
 as shown in Figures 

5.67a and 5.67b.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.66: Orientation tracking error for N= 1 and 5. 
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The mean-square errors for each component of the state error ),,()( eeeqq yxr
 for the 

five steps-ahead predictive control of each methodology are shown in Table 5.3. 

 

 

 

 

 

 

From the results of Table 5.3, the third control methodology has the smallest MSE of the 

X-coordinate and Y-coordinate compared to the first and second methodologies, and the 

MSE of orientation for third control methodology is less than for the first and second 

control methodologies.    

5.5. Summary 

This chapter gives an overview of the basic concepts of the adaptive neural predictive 

control structure, consisting of posture neural identifier, a feedforward neural controller 

and feedback predictive controller with three kinds of control predictive methodologies. 

The first methodology is the feedback neural controller, the second is the nonlinear PID 

Table 5.3: MSE of each methodology for the five steps-ahead-prediction of desired square 

trajectory 

),,()( eeeqqMSE yxr
 Methodology1 Methodology2 Methodology3 

MSE of X-coordinate 0.000433 0.000871 0.000240 

MSE of Y-coordinate 0.000215 0.000255 0.000209 

MSE of Orientation 0.00961 0.00914 0.00745 
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Figure 5.67: The inverse dynamic controller parameters: (a) N=1; (b) N=5. 
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neural controller and the third is nonlinear inverse dynamic predictive controller. The 

performance of the proposed adaptive neural control with three control methodologies 

was tested using Matlab program and the simulation results are compared with them in 

terms of minimum tracking error and in generating an optimal torque control action and 

the capability of tracking any trajectories with continuous and non-continuous gradients, 

despite the presence of bounded external disturbances.  
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Chapter Six 

Cognitive Neural Predictive Controller 

6.1. Introduction 

The cognitive neural predictive controller for mobile robot system is considered in this 

chapter. The approach is used to detect the static obstacle in the desired path of the 

mobile robot based on neural network model and to re-plan optimal smoothness desired 

path for mobile robot by using AI technique in order to avoid the static obstacle with 

minimum distance and to track the desired trajectory by using an adaptive neural 

predictive control methodology.  

6.2. Cognitive Neural Predictive Controller Structure 

The proposed controller can be given in the form of the block diagram shown in Figure 

6.1.  
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Figure 6.1: The proposed structure of the cognitive neural predictive 

controller for the mobile robot system. 
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It consists of: 

1- Neural Network Topology Layer. 

2- Cognitive Layer. 

Neural network topology layer is the execution layer, because it controls the mechanical 

actuators in order to follow the mobile robot's desired trajectory (fed from the cognitive 

layer). The general structure of this layer is explained in chapter five. 

6.2.1. Cognitive Layer 

Cognitive layer is the planning layer, which collects all the information from the 

environment by using sensors such as IR, 2D laser scanner, ultrasound, GPS and camera. 

It contains built-in parameters and constraints on cognition to facilitate a priori 

predictions about behaviours and plan smoothness desired trajectory to minimise the 

travelling time and travel distance, to save the battery energy of the mobile robot. The 

cognitive layer can also re-plan the desired path if any static obstacle in the trajectory is 

detected, in order to avoid the mobile robot colliding with entities in the environment, 

ensuring that the trajectory tracking of the mobile robot allows collision-free navigation. 

6.2.1.1. Cognition Path Planning Algorithm     

Path planning aims to provide the optimum collision-free path between a starting point 

and target locations; therefore, the second layer in the cognitive neural predictive control 

methodology plans the trajectory of the mobile robot. The planned path is usually 

decomposed into line segments between ordered sub-goals or way points, which the 

mobile robot follows toward the target, as shown in Figure 6.2a. It needs to re-plan the 

primary path if there is any obstacle in the path, as shown in Figure 6.2b. 
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Figure 6.2: (a) the normal path; (b) the path around an obstacle. 
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To apply the cognition path planning for the mobile robot, it needs a model of the 

obstacle in the cognitive layer to determine the obstacle's dimensions in order to avoid the 

accident between the mobile robot cart and the obstacle. It also needs an AI method to re-

plan the path with minimum distance to avoid the obstacle and reach the desired path.  

The neural network can be described the obstacle model in the path, as shown in Figure 

6.3 [74, 129]. The structure shown in Figure 6.3 is based on the following equations: 

Im imimm yywxxwIH                              (6.1) 

)( mm IHfOH                                                                                           (6.2) 





M

m

omo OHfC
1

)(                                                                                                       (6.3) 

pre
rf

/1

1
)(


                          (6.4) 

where xi and yi are the coordinate of i
th

 points of the desired path; xwm and ywm  are the 

network weights for xi and yi respectively; and Im is the bias, which is equal to the free 

element in the equation expressing the shape of the obstacle. 

IHm is the weighted input of the m
th

 neuron of the middle layer and the neural activation 

function is (.)f  and p is a parameter that controls the steep of curve shape.  

m is the number of the neurons in the middle layer and it is equal to the number of 

vertices of the obstacle. 

OHm is the output of the m
th

 neuron of the middle layer. 

It is used a repulsive penalty function (RPF) in the output neuron and o is a bias which is 

equal to the number of the vertices of the obstacle decreased by 0.5. 
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Co is the output of the obstacle neural network model of each point in the workspace is 

equal to 0 or 1. If the output is equal to 1, that the coordinate (xi,yi) is in the obstacle 

region, otherwise the point is not in it. The dimensions of the mobile robot cannot be 

ignored, therefore the vertices of the obstacle mVp will increase, as shown in Figure 6.4. 

 

 

 

 

 

 

 

 

 

 

 

 

where  and   are variable parameters that allows identification of optimal 

trajectory,  as follows: robot
robot L

L
 

2
 and robot

robot W
W

 
2

 respectively. 

Wrobot is the cart width of the mobile robot. 

Lrobot is the cart length of the mobile robot. 

To build an optimal and robust path planning algorithm for manoeuvring the mobile robot 

to avoid the obstacle in the environment while minimising costs such as time, energy and 

distance, the following proposed algorithm is used: 

 Re-plan the path using the primary path as a guide to anticipate the object that will 

be encountered.  

 Determine the localisation of the obstacle centre point (obx,oby) with respect to the 

reference point (x0,y0) and determine the dimensions of the obstacle as length Lob 

and width Wob. 

 To avoid the obstacle in the desired path, the start point is required, and a return to 

the desired path after obstacle avoidance, requiring the end point, as shown in 

Figure 6.5. To calculate these main points, neural network obstacle model is used 

(as shown in Figure 6.3) with calculation of the vertices points, as shown in Figure 

    

    

  

    

  

(x0,y0) 

(obx,oby) 
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Vp1 Vp2 

Vp3 Vp4 

Figure (6.4): The obstacle vertices.  
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6.4, as a condition for minimum or maximum distance between mobile robot 

centre point and obstacle centre point using equations 6.1, 6.2, 6.3 and 6.4. 

 

 

 

 

 

 

 The detection of the start point is undertaken by applying (xi,yi) for each 

coordinate point of the desired trajectory in the neural network obstacle model and 

finding the output of the model; if the model output Co=1, the start point in the 

algorithm is detected as (xi-1,yi-1), which means that the mobile robot is 

approaching the obstacle body. After finding the start point, (xj,yj) is applied for 

the coordinate point of the desired trajectory starting from start point in the neural 

network obstacle model, and finding the output of the model if the model output is 

changed from Co=1 to Co=0, the end point in the algorithm is detected as (xj,yj), 

that means the mobile robot is away from the obstacle body and it returns to the 

desired trajectory and the number of points between start and end points is 

denoted as . 

 To find the optimal side of the obstacle that will re-plan the desired path, the 

positions of the three points are used (start point, obstacle centre point and end 

point), as shown in Figure 6.6. 

 

 

 

 

 

 After determining the start and end points and the optimal side for re-planning the 

path, numerical techniques such as cubic spline interpolation polynomial or AI 

technique (e.g. particle swarm optimisation (PSO)) are applied to plan the optimal 

smoothness path without overshooting between the start and end points with 

minimum distance. 
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6.2.1.2. Cubic Spline Interpolation Technique     

There are numerous techniques of interpolation, such as Lagrange interpolation 

polynomial [130, 131], Newton interpolation polynomial [132, 133], Neville interpolation 

polynomial [134], Piecewise interpolation polynomial [135, 136] and cubic spline 

interpolation polynomial [137, 138]. Cubic spline interpolation polynomial was used in 

this study due to its smoothness, predictability, non-overshooting behaviour and 

simplicity. The cubic spline interpolation is third-degree polynomial of the Piecewise 

interpolation, where the higher the degree of spline is the smoother the curve. The cubic 

spline function fi(x) as third order polynomials for each segment is as follows: 

32)( xdxcxbaxf iiiii                                                                                              (6.5) 

where i is the number of segments (i=1, 2, 3…Sg).  

To calculate the parameters of the polynomial in equation 6.5 for each segment see 

appendix H. 

The same number of points is used for the deleted track in order to keep the same 

travelling time for the mobile robot, denoted as  . Therefore, T, which is the travelling 

time between all segments track, is calculated using equation 6.6: 

sTT                            (6.6) 

where   is the number of points. sT is the sampling time. 

It is necessary to calculate the estimation distance of the track segments as equation 6.7 

[92, 94]: 






 
1

1

2

1

2

1 )()(


j

jjjj yyxxD                        (6.7) 

To investigate the optimal travelling time for the mobile robot during to track the optimal 

path, the desired linear velocity of the mobile robot should be not exceed to the VImax. 

This can be calculated as equation 6.8: 

axII VV
T

D
V Im                                         (6.8) 
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6.2.1.3. Particle Swarm Optimisation Technique     

Many AI methods have been used to find the optimal path and to avoid static or dynamic 

obstacles, such as genetic algorithm (GA) and PSO algorithm [74, 77]. PSO is a kind of 

algorithm to search for the best solution by simulating the movement and flocking of 

birds. PSO algorithms use a population of individuals (called particles) whose positions 

represent the potential solutions for the studied problem, with velocities are randomly 

initialized in the search space. The search for optimal solution is performed by updating 

the particle velocities and positions in each iteration [77,139, 140]. 

The aim of the algorithm is to determine the points (xi,yi) (i=1, 2, 3… ) that constitute 

the optimal smoothness path from the starting point to the end point. In order to reduce 

the length of the point's string, the point's xi is determined by using the x-axes of the start 

and end points. Therefore, yi becomes the search space for each via-point of the mobile 

robot trajectory and the via-point candidates are specified by one-dimensional data. 

The conventional evolutionary equations of particle swarm optimisation are as follows 

[77, 139, 140, 141]: 

)()( ,22,,11,

1

,

k

di
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di ygbestrcypbestrcVV 
                    (6.9) 
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  k
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k

di

k

di Vyy                                   (6.10) 

popi ,.....3,2,1  

,.....3,2,1d  

where:  

pop is number of particles. 

k

diV , is the velocity of the i
th

 particle at k iteration. 

k

diy , is the position of the i
th

 particle at k iteration. 

c1 and c2 are the acceleration constants with positive values equal to 2. 

r1 and r2 are random numbers between 0 and 1. 

ipbest is best previous weight of i
th

 particle.   

dgbest is best particle among all the particle in the population. 
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The previous best value is called pbest. pbest is related only to a particular particle. It also 

has another value called gbest, which is the best value of all the pbest particles in the 

swarm. The particles are evaluated using a fitness function to see how close they are to 

the optimal solution and the stability of the PSO algorithm. Two evaluation functions 

must be integrated into a fitness function, the collision avoidance and the shortest 

distance. Collision avoidance is essential to path planning and makes the mobile robot 

travel in the workspace safely.  

Collision avoidance can be described in two main points: 

1- The via-point yi should not be in the obstacle region. 



 


others

Cif
CA

o

Fit
0

01
1                       (6.11) 

2- The section yiyi+1 should not intersect obstacle region. 
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ii
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
                   (6.12) 

The fitness function of the collision avoidance can be expressed as equation 6.13: 

21 & FitFitFit CACACA                       (6.13) 

The minimum distance is the second fitness function which makes the mobile robot travel 

in the workspace with minimum travelling time and travel distance and can be expressed 

as follows  [92, 94]: 
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
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jjjjFit yyxxMD                               (6.14) 

The final fitness function is constructed as shown in equation 6.15: 

FitFit CAMDFit /                       (6.15) 

When the final fitness function reaches the minimum value, the global optimal 

smoothness path is found. To investigate whether the new desired trajectory is optimal 

travelling time for the mobile robot, the desired linear velocity of the mobile robot while 

tracking the optimal path in order to avoid the static obstacle should not exceed the VImax 

and can be calculated using equation 6.16: 

axI
Fit

I VV
T

MD
V Im                                       (6.16) 
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Therefore, T must be calculated, which is the travelling time of the tracking between the 

start and end points, using equation 6.6. 

The steps of PSO for re-planning path for the mobile robot can be described as follows:  

 Step1 Initial searching points 0

1y  and 0

1V  of each particle are usually generated 

randomly within the allowable range. Note that the dimension of search space is 

consists of all the number of points between start and end points. The current 

searching point is set to pbest for each particle. The best-evaluated value of pbest 

is set to gbest and the particle number with the best value is stored.  

 Step2 The objective function value is calculated for each particle by using 

equation 6.15. If the pbest value is better than the current pbest of the particle, the 

pbest value is replaced by the current value. If the best value of pbest is better than 

the current gbest, gbest is replaced by the best value and the particle number with 

the best value is stored. 

 Step3 The current searching point of each particle is updated by using equations 

6.9 and 6.10.   

 Step4 The current iteration number reaches the predetermined maximum iteration 

number, then exit; otherwise, return to step 2. 

6.3. Simulation Results 

In this section, continuous and non-continuous gradients desired trajectories are tracked 

from nonholonomic wheeled mobile robot with existence static obstacle in the path in 

order to clarify the features of the cognitive neural predictive controller. The performance 

of the proposed cognitive neural control with the best control methodology (outlined in 

chapter five) in terms of minimum mean square errors in the position and orientation 

tracking error are taken in order to detect the static obstacle and re-plan the desired path 

to avoid the obstacle, and to reach and follow the original path collision-free. This 

comparison has to be made under identical conditions in order to specify the differences 

and similarities and consequently the advantages and disadvantages each of the proposed 

path planning methodologies. The simulation results in this chapter are implemented 

using Matlab program. 
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6.3.1. Case Study 1 

The desired lemniscates trajectory, which has explicitly continuous gradient with rotation 

radius changes, and the equations of the desired lemniscates trajectory, are stored in the 

cognitive layer to generate the desired position and orientation at each time interval and to 

detect and determine the distance between the mobile robot and the obstacle in order to 

re-plan the path for collision-free navigation. As shown in Table 5.1, the third control 

methodology has smaller MSE of the position (X-coordinate, Y-coordinate) and the 

orientation than start and second control methodologies; therefore, it can be considered 

that the third control methodology was the best methodology for the desired lemniscates 

trajectory.  

A static obstacle is placed in the desired path in order to verify the robustness and 

adaptation of the cognitive neural predictive controller and its capability to track any 

trajectory through re-planning the desired path to avoid the static obstacle with minimum 

tracking error. To re-plan the desired lemniscates path many tasks in the cognitive layer 

of the controller are executed (as a proposed algorithm for obstacle avoidance) as follows: 

From the Figure 6.7, obstacle centre point position (obx,oby) is determined as 

(1.2965,0.998), then the length Lob = 0.18m and width Wob=0.16m of the obstacle body 

are determined, in order to calculate the vertices points of the obstacle, as shown in 

Figure 6.4, and built into the obstacle neural network model as follows: 

1465.11  ixIH                                (6.17) 

446.12  ixIH                       (6.18) 

848.03  iyIH                       (6.19) 

148.14  iyIH                       (6.20) 

where                                                                  

 is equal to 
2

robotL
= 0.06m 

  is equal to 
2

robotW
=0.07m 

Lrobot is the length of the mobile robot cart and it's equal to 0.12m. 

Wrobot is the width of the mobile robot cart and it's equal to 0.14m. 
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The new path that the mobile robot will track to avoid the obstacle consists of two main 

points; start point and end point. These two points are determined depending on the 

obstacle neural network model, here determined as follows: start point (1.1417, 0.844) 

and end point (1.407, 0.8349). 

The best side to re-plan the path is below the obstacle, because this achieves minimum 

distance (depending on the proposed algorithm) as shown in Figure 6.6. Then the cubic 

spline interpolation technique is applied to find the new smoothness path with non-

overshooting behaviour that will reduce the tracking error as follows: 

For first segment, i=1, 2787.11517.1  ix : 

362 1031472.27279.56533.4)( iiiii xxxxy                      (6.21) 

For second segment, i=2, 407.12787.1  ix : 

362 1091473.2728.56533.4)( iiiii xxxxy                      (6.22) 

After planning the new path in the cognitive layer, as shown in Figure 6.8, the number of 

points should be determined that the mobile robot must track, and the linear velocity 

should not exceed VImax equal to 0.165m/sec, as follows: 

It is known the number of points of the deleted track  is equal to seven points with start 

and end points. Equation 6.6 is then applied to find the travelling time of the two 
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Figure 6.7: The obstacle in the desired lemniscates path. 
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segments track (equal to 3.5 sec). Then the distance D between start-point and end-point 

(two segments track) is determined using equation 6.7, equal to 0.3007m. Then the linear 

velocity of the mobile robot is checked to see whether it exceeds VImax or not, using 

equation 6.8; it is equal to 0.08591m/sec. 

 

 

 

 

 

 

 

 

 

 

 

 

The third control methodology with five steps-ahead prediction has the smallest MSE of 

the position (X-coordinate, Y-coordinate) and the orientation, as shown in Table 5.1, for 

trajectory tracking of the mobile robot with obstacle in the lemniscates path. After re-

planning the lemniscates path by the cognitive neural predictive controller, the trajectory 

tracking of the mobile robot is obtained as shown in Figures 6.9a and 6.9b. 
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Figure 6.8: Re-planning the desired lemniscates trajectory of the mobile robot. 
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These Figures demonstrate very good position and orientation tracking performance for 

obstacle avoidance and minimum tracking error in spite of the existence of bounded 

disturbances. The simulation results demonstrated the effectiveness of the proposed 

cognitive neural predictive controller by showing its ability to generate on-line small 

values of the control input torques for right and left wheels with small sharp spikes from 

twelve to eighteen samples, in order to track the new desired path and to avoid the static 

obstacle, as shown in Figure 6.10. 
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Figure 6.10: The torque of the right and left wheel action. 
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Figure 6.9: Actual trajectory of mobile robot and desired lemniscates trajectory with obstacle 

avoidance: (a) overall trajectory tracking; (b) zoom in during obstacle avoidance. 
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The velocities of the right and left wheels are changed during seven samples from 12 to 

18 samples, as shown in Figure 6.11a. The mean linear velocity of the mobile robot is 

equal to 0.08591m/sec, as shown in Figure 6.11b and maximum angular velocity is equal 

to -1rad/sec during these seven samples of avoiding the static obstacle. The overall mean 

linear velocity of the mobile robot is equal to 0.135m/sec. 
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 Figure 6.11: Mobile robot velocity: (a) the right and left wheel velocity action; 

(b) the linear and angular velocity action. 
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PSO technique steps are used to find the new smoothness path without overshooting 

behaviour and minimum distance as shown in Figure 6.12, depending on fitness function 

as in equation 6.15, from the start point (1.1417, 0.846) to the end point (1.407, 0.8349). 

The size of the particle dimension is equal to five and the population of particles is equal 

to 100.  

 

 

 

 

 

 

 

 

 

 

 

 

The distance D between start point and end point is equal to 0.293m using equation 6.14. 

The linear velocity of the mobile robot is then checked to see whether it exceeds VImax or 

not using equation 6.16; it is equal to 0.08378m/sec. After the cognitive neural predictive 

controller re-plans the lemniscates path using the third control methodology, the 

trajectory tracking of the mobile robot is obtained, as shown in Figures 6.13a and 6.13b. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12: Re-planning the desired lemniscates trajectory of the mobile robot. 
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These Figures demonstrate excellent position and orientation tracking performance for 

obstacle avoidance and minimum tracking error in spite of the existence of bounded 

disturbances. The simulation results demonstrated the effectiveness of the proposed 

cognitive neural predictive controller by showing its ability to generate on-line small 

values of the control input torques for right and left wheels with small sharp spikes from 

twelve to eighteen samples in order to track the new desired path and to avoid the static 

obstacle, as shown in Figure 6.14. 
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Figure 6.14: The torque of the right and left wheel action. 
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Figure 6.13: Actual trajectory of mobile robot and desired lemniscates trajectory with obstacle 

avoidance: (a) overall trajectory tracking; (b) zoom in during obstacle avoidance. 
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The velocities of the right and left wheels are changed during seven samples from 12 to 

18 samples, as shown in Figure 6.15a. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mean linear velocity of the mobile robot is equal to 0.08378m/sec during seven 

samples from 12 to 18 samples is shown in Figure 6.15b. The maximum angular velocity 
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Figure 6.15: Mobile robot velocity: (a) the right and left wheel velocity action; 

(b) the linear and angular velocity action. 
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is equal to -0.96rad/sec during these seven samples (avoiding the static obstacle). The 

overall mean linear velocity of the mobile robot is equal to 0.135m/sec. 

The comparison between two techniques (numerical and intelligent) to re-plan the desired 

lemniscates trajectory is shown in Table 6.1. 

 

 

 

 

 

 

The PSO technique is better than cubic spline interpolation technique because the former 

re-plans the path to avoid the static obstacle with minimum distance and minimum linear 

velocity, as well as minimum mean square error for each component of the state error for 

the seven samples from 12 to 18, as shown in Table 6.1.    

6.3.2. Case Study-2 

The desired circular trajectory which has explicitly continuous gradient with rotation 

radius constant and the equations of the desired circular trajectory are stored in the 

cognitive layer to generate the desired position and orientation at each time interval and to 

detect and calculate the distance between the mobile robot and the obstacle in order to re-

plan the path for collision-free navigation. 

Applying the tasks of the cognitive layer to detect and re-plan the desired circular path to 

avoid the static obstacle is undertaken as follows. From Figure 6.16, the obstacle centre 

point position (obx,oby) is determined as (0,1), after which the vertices points of the 

obstacle are determined, as shown in Figure 6.4, and the obstacle neural network model is 

built using the following equations: 

15.01  ixIH                                            (6.23) 

15.02  ixIH                       (6.24) 

85.03  iyIH                       (6.25) 

15.14  iyIH                       (6.26) 

Table 6.1: Numerical and intelligent techniques for minimum distance and linear velocity in the lemniscates 

path.  

Techniques Distance 

(m) 

Velocity 

(m/sec) 

Time 

(sec) 

MSE of X-

coordinate 

MSE of Y-

coordinate 

MSE of 

Orientation 

Cubic spline 

interpolation  

0.3007 0.08591 3.5 1.77 10
-4

 5.1 10
-5

 1.39 10
-3

 

PSO technique 0.2930 0.08378 3.5 9.2 10
-5

 6.85 10
-8

 1.21 10
-4
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The new path that the mobile robot will track to avoid the obstacle consists of two main 

points; start point and end point. These two points are determined depending on the 

obstacle neural network model, and they are found as follows: start-point (0.17, 0.9854) 

and end-point (-0.1782, 0.984). The best side to re-plan the path is below the obstacle, 

because it will achieve minimum distance depending on the proposed algorithm, as 

shown in Figure 6.6. Then the cubic spline interpolation technique is applied to find the 

new smoothness path with non-overshooting behaviour that will reduce the tracking error 

as follows: 

For first segment, i=1, 0052.017.0  ix : 

362 1049716.50536.08038.0)( iiiii xxxxy                      (6.27) 

For second segment, i=2, 178.00052.0  ix : 

362 1059716.50536.08038.0)( iiiii xxxxy                      (6.28) 

After planning the new path in the cognitive layer, as shown in Figure 6.17, the number 

of points that the mobile robot must be track and the linear velocity that should not 

exceed VImax (equal to 0.165m/sec) should be determined, as follows. It is known that the 

number of points of the deleted track  is equal to seven points, with start and end points. 

Equation 6.6 is then applied to find the travelling time of the two segments track; it is 

equal to 3.5 sec. The distance D between start-point and end-point (two segments track) is 

then determined using equation 6.7; it is equal to 0.525m. Then the linear velocity of the 
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Figure 6.16: The obstacle in the desired circular path. 
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mobile robot is checked to see whether it exceeds VImax or not using equation 6.8; it is 

equal to 0.15m/sec. 

 

 

 

 

 

 

 

 

 

 

 

The mobile robot model starts from the initial position and orientation 

]2/,5.0,1.1[)0( q  as its initial conditions with the external disturbance. As shown in 

Table 5.2, the second control methodology with five steps-ahead predictions has the 

smallest MSE of the position (X-coordinate, Y-coordinate) and the orientation, for 

trajectory tracking of the mobile robot with obstacle in the circular path. After re-planning 

the circular path by the cognitive neural predictive controller, the trajectory tracking of 

the mobile robot is obtained as shown in Figures 6.18a and 6.18b. 

 

  

 

 

 

 

 

 

 

 

 

Figure 6-17: Re-planning the desired circular trajectory of the mobile robot. 
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These Figures demonstrate the position and orientation tracking performance for obstacle 

avoidance and minimum tracking error in spite of the existence of bounded disturbances. 

The simulation results demonstrated the effectiveness of the proposed cognitive neural 

predictive controller by showing its ability to generate on-line small values of the control 

input torques for right and left wheels with small sharp spikes from thirty to thirty-six 

samples in order to track the new desired path and to avoid the static obstacle, as shown 

in Figure 6.19. 
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Figure 6.18: Actual trajectory of mobile robot and desired circular trajectory with obstacle 

avoidance: (a) overall trajectory tracking; (b) zoom in during obstacle avoidance. 
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Figure 6-19: The torque of the right and left wheel action. 
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 The velocities of the right and left wheels are changed during seven samples from 30 to 

36 samples, as shown in Figure 6.20a. The mean linear velocity of the mobile robot is 

equal to 0.15m/sec, as shown in Figure 6.20b, and maximum angular velocity is equal to 

0.7rad/sec during these seven samples; it avoided the static obstacle. The overall mean 

linear velocity of the mobile robot is equal to 0.0975m/sec. 
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 Figure 6.20: Mobile robot velocity: (a) the right and left wheel velocity action; 

(b) the linear and angular velocity action. 
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 By using particle swarm optimisation technique steps to find the new smoothness path 

without overshooting behaviour and minimum distance, as shown in Figure 6.21, fitness 

function is used (as in equation 6.15) from the start point (0.17, 0.9854) to the end point  

(-0.1782, 0.984). The size of the particle dimension is equal to five, and the population of 

particles is equal to 100. 

 

 

 

 

 

 

 

 

 

 

 

The distance between start-point and end-point is equal to 0.4983m using equation 6.14. 

The linear velocity of the mobile robot was checked using equation 6.16 to ensure that it 

did not exceed VImax and it was found to be equal to 0.1423m/sec. After re-planning the 

circular path by the cognitive neural predictive controller with second control 

methodology, the trajectory tracking of the mobile robot is obtained, as shown in Figures 

6.22a and 6.22b. 

 

 

 

 

 

 

 

 

 

 

Figure 6.21: Re-planning the desired circular trajectory of the mobile robot. 
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These Figures demonstrate excellent position and orientation tracking performance for 

obstacle avoidance and minimum tracking error in spite of the existence of bounded 

disturbances. The simulation results demonstrated the effectiveness of the proposed 

cognitive neural predictive controller by showing its ability to generate on-line small 

values of the control input torques for right and left wheels with small sharp spikes from 

thirty to thirty-six samples in order to track the new desired path and to avoid the static 

obstacle, as shown in Figure 6.23. 
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Figure (6-23): The torque of the right and left wheel action. 
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Figure 6.22: Actual trajectory of mobile robot and desired circular trajectory with obstacle 

avoidance: (a) overall trajectory tracking; (b) zoom in during obstacle avoidance. 

b 



Chapter Six: Cognitive Neural Predictive Controller 

 

167 

The velocities of the right and left wheels are changed during seven samples from 30 to 

36 samples, as shown in Figure 6.24a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mean of linear velocity of the mobile robot is equal to 0.1423m/sec, as shown in 

Figure 6.24b, and maximum angular velocity is equal to 0.63rad/sec during these seven 

samples; the static obstacle was avoided. The overall mean linear velocity of the mobile 

robot is equal to 0.0975m/sec. 
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Figure 6.24: Mobile robot velocity: (a) the right and left wheel velocity action; 

(b) the linear and angular velocity action. 
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The comparison between two techniques (numerical and intelligent) to re-plan the desired 

circular trajectory is shown in Table 6.2. 

 

 

 

 

 

 

The PSO technique is better than cubic spline interpolation technique because the former 

is re-planning the path to avoid the static obstacle with the minimum distance and 

minimum linear velocity as well as the minimum mean square error for each component 

of the state error for the seven samples from 30 to 36 samples, as shown in Table 6.2. 

6.3.3. Case Study 3 

 The desired square trajectory which has explicitly non-continuous gradient is carried to 

verify the capability of the proposed cognitive neural predictive controller to re-plan the 

desired path in order to avoid the static obstacle as follows. From Figure 6.25 it can be 

seen that the obstacle centre point position (obx,oby) is (0.5,0). The length Lob = 0.18m 

and width Wob=0.16m of the obstacle body are used to calculate the vertices points of the 

obstacle, as shown in Figure 6.4, and built by the obstacle neural network model: 

 

 

 

 

 

 

 

 

 

 
Figure 6.25: The obstacle in the desired square path. 
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Table 6.2: Numerical and intelligent techniques for minimum distance and linear velocity in the circular path.  

Techniques Distance 

(m) 

Velocity 

(m/sec) 

Time 

(sec) 

MSE of X-

coordinate 

MSE of Y-

coordinate 

MSE of 

Orientation 

Cubic spline 

interpolation  

0.5250 0.150 3.5 7.7 10
-3

 8.3 10
-3

 6.94 10
-2

 

PSO technique 0.4983 0.1423 3.5 8.7 10
-4

 2.4 10
-4

 2.33 10
-3
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35.01  ixIH                                           (6.29) 

65.02  ixIH                       (6.30) 

15.03  iyIH                       (6.31) 

15.04  iyIH                       (6.32) 

The new path that the mobile robot will track to avoid the obstacle consists of two main 

points; start point and end point. These two points are determined depending on the 

obstacle neural network model and they are found as follows: start-point (0.3125, 0) and 

end-point (0.6875, 0). The best side to re-plan the path is below the obstacle because it 

will achieve the minimum distance depending on the proposed algorithm, as shown in 

Figure 6.6. Cubic spline interpolation technique is then applied to find the new 

smoothness path with non-overshooting behaviour (to reduce the tracking error) as 

follows: 

For first segment, i=1, 499.03125.0  ix  

372 1039778.4977.40695.1)( iiiii xxxxy                      (6.33) 

For second segment, i=2, 6875.0499.0  ix  

372 1059778.49778.40695.1)( iiiii xxxxy                     (6.34) 

 

 

 

 

 

 

 

 

 

 
 

After planning the new path in the cognitive layer (as shown in Figure 6.26), the number 

of points that the mobile robot must track and the linear velocity that does not exceed the 

VImax (equal to 0.165m/sec) should be determined as follows. It is known that the number 

of points of the deleted track  is equal to seven points, with start and end points, then the 

Figure 6.26: Re-planning the desired square trajectory of the mobile robot. 
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equation 6.6 is applied to find the travelling time of the two segments track; it is equal to 

3.5 sec. Then the distance D between start point and end point (two segments track) is 

determined using equation 6.7; it is equal to 0.536m. Then the linear velocity of the 

mobile robot is checked to see if it exceeds VImax or not using equation 6.8; it is equal to 

0.153m/sec. The mobile robot model starts from the initial position and orientation 

]0,1.0,0[)0( q  as its initial posture and uses the third control methodology with the 

smallest MSE of the posture. After re-planning the square path using the cognitive neural 

predictive controller, the trajectory tracking of the mobile robot is obtained as shown in 

Figures 6.27a and 6.27b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These Figures demonstrate very good position and orientation tracking performance for 

obstacle avoidance and minimum tracking error in spite of the existence of bounded 

disturbances.  
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Figure 6.27: Actual trajectory of mobile robot and desired square trajectory with obstacle 

avoidance: (a) overall trajectory tracking; (b) zoom in during obstacle avoidance. 
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The simulation results demonstrated the effectiveness of the proposed cognitive neural 

predictive controller by showing its ability to generate on-line small values of the control 

input torques for right and left wheels with small sharp spikes from seven to thirteen 

samples in order to track the new desired path and to avoid the static obstacle, as shown 

in Figure 6.28. 

 

 

 

 

 

 

 

 

 

 

 

 

The velocities of the right and left wheels are changed during seven samples from 7 to 13 

samples, as shown in Figure 6.29a. The mean linear velocity of the mobile robot is equal 

to 0.153m/sec, as shown in Figure 6.29b, and maximum angular velocity is equal to 

0.7rad/sec during these seven samples (the static obstacle was avoided). The overall mean 

linear velocity of the mobile robot is equal to 0.125m/sec. 
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Figure 6-28: The torque of the right and left wheel action. 
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Using PSO technique to find the new smoothness path without overshooting behaviour 

and minimum distance is shown in Figure 6.30, depending on fitness function as in 

equation 6.15 from the start point (0.3125, 0) to the end point (0.6875, 0). The size of the 

particle dimension is equal to five, and the population of particles is equal to 100. 
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 Figure 6.29: Mobile robot velocity: (a) the right and left wheel velocity action; 

(b) the linear and angular velocity action. 
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Figure 6-30: Re-planning the desired trajectory of the mobile robot. 
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The distance between start-point and end-point is equal to 0.5144m using equation 6.14. 

The linear velocity of the mobile robot is then checked to see whether it exceeds VImax or 

not using equation 6.16; it is equal to 0.1469m/sec. After re-planning the square path by 

the cognitive neural predictive controller with third control methodology, the trajectory 

tracking of the mobile robot is obtained, as shown in Figures 6.31a and 6.31b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These Figures demonstrate excellent position and orientation tracking performance for 

obstacle avoidance and minimum tracking error in spite of the existence of bounded 

disturbances.  

The simulation results demonstrated the effectiveness of the proposed cognitive neural 

predictive controller by showing its ability to generate on-line small values of the control 
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Figure 6.31: Actual trajectory of mobile robot and desired square trajectory with obstacle 

avoidance: (a) overall trajectory tracking; (b) zoom in during obstacle avoidance. 
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input torques for right and left wheels with small sharp spikes from seven to thirteen 

samples in order to track the new desired path and to avoid the static obstacle, as shown 

in Figure 6.32. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The velocities of the right and left wheels are changed during seven samples from 7 to 13 

samples, as shown in Figure 6.33a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Sample

W
h

e
e
l 
V

e
lo

c
it

y
 o

f 
R

ig
h

t 
a
n

d
 L

e
ft

 (
m

/s
e
c
)

The Velocity of the right w heel

The Velocity of the left w heel

 

a 

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Sample

T
o

rq
u

e
 N

.m

The Right Wheel Torque

The Left Wheel Torque

 
Figure 6-32: The torque of the right and left wheel action. 
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The mean linear velocity of the mobile robot is equal to 0.1469m/sec as shown in Figure 

6.33b and maximum angular velocity is equal to 0.75rad/sec during these seven samples; 

the static obstacle was avoided. The overall mean linear velocity of the mobile robot is 

equal to 0.125m/sec. 

The comparison between the two techniques (numerical and intelligent) to re-plan the 

desired square trajectory is shown in Table 6.3. 

 

 

 

 

 

 

The PSO technique is better than cubic spline interpolation technique because the former 

is re-planning the path to avoid the static obstacle with minimum distance and minimum 

linear velocity as well as minimum mean square error for each component of the state 

error for the seven samples from 7 to 13 samples as shown in Table 6.3. 
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Figure 6.33: Mobile robot velocity: (a) the right and left wheel velocity action; 

(b) the linear and angular velocity action. 

b 

Table 6.3: Numerical and intelligent techniques for minimum distance and linear velocity in the square path.  

Techniques Distance 

(m) 

Velocity 

(m/sec) 

Time 

(sec) 

MSE of X-

coordinate 

MSE of Y-

coordinate 

MSE of 

Orientation 

Cubic spline 

interpolation  

0.536 0.153 3.5 9.7 10
-3

 8.9 10
-3

 7.89 10
-2

 

PSO technique 0.5144 0.1469 3.5 4.6 10
-4

 1.7 10
-4

 2.56 10
-3

 

 

Sample (sec) 
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6.4. Summary 

This chapter gives an overview of the basic concepts of the cognitive neural predictive 

control structure that are based on two layers; neural network topology layer and 

cognitive layer. Neural network topology layer is the execution layer because it controls 

the mechanical actuators in order to follow the mobile robot's desired trajectory fed from 

the cognitive layer. Cognitive layer is the planning layer, which collects all the 

information from the environment using multi-sensors in order to detect the obstacle in 

the desired path and re-plan optimal smoothness desired trajectory to avoid the obstacle. 

The performance of the proposed cognitive neural control with best control methodology 

is implemented using Matlab program using two techniques for re-planning the path: 

cubic spline interpolation as a numerical technique and PSO as an intelligent technique, 

and they were compared in terms of minimum distance and minimum linear velocity as 

well as in generating an optimal torque control action despite the presence of bounded 

external disturbances.  
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Chapter Seven 

Experimental Work 

7.1. Introduction 

In this chapter, several desired trajectories are tracked from nonholonomic wheeled 

mobile robot in order to validate the applicability of the proposed cognitive neural control 

methodologies explained in chapter five. Experiments were executed using an actual 

mobile robot.  

7.2. Boe-Bot Mobile Robot 

The laboratory experiments have been conducted using a Boe-Bot mobile robot type 

nonholonomic wheeled mobile robot (V3), as shown in Figure 7.1.  

 

 

 

 

 

 

 

 

 

 

 

 

The wheeled mobile robot is equipped with BASIC Stamp 2 programmable (BS2) 

microcontroller type (PIC16C57c) consisting of EEPROM 2kByte, a decoding logic unit, 

infrared sensors, PWM generator for differential control of the robot [142, 143]. The 

hardware specifications of the Boe-Bot mobile robot model are summarised in Table 7.1 

Figure 7.1: Boe Bot mobile robot for the experiments. 
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[142, 143]. The wheel radius includes the o-ring used to prevent slippage; the rubber is 

stiff enough so that point contact with the ground can be assumed. 

 

 

 

 

 

 

 

 

7.2.1. Introducing the Continuous Rotation Servo 

The Parallax Continuous Rotation servo shown in Figure 7.2 includes the motors that will 

make the Boe-Bot's wheels turn. This Figure points out the servos' external parts [142].    

 

 

 

 

 

 

 

 

 

 

The pulse width controls speed and direction, determined by the duration of the pulse 

signals that have to be sent to the servo connected to pin 12 or 13 of the BS2 

microcontroller. In order for smooth rotation, the servo needs a 20 ms pause between 

pulses. As the length of the pulse decreases from 1.5 ms, the servo will gradually rotate 

faster in an anti-clockwise direction, as can be seen in Figure 7.3a. Figure 7.3b is a 

sample timing diagram for a centred servo. Likewise, as the length of the pulse increases 

from 1.5 ms, the servo will gradually rotate faster in the clockwise direction, as can be 

seen in Figure 7.3c. 

Table 7.1: Hardware specifications of the mobile robot. 

List Specification 

Size (m) 0.14 0.12 0.1 (L W H) 

Weight 0.65kg 

Inertia  0.36 kg.m
2
 

Distance between Wheels 0.105m 

Radius of wheel 0.033m 

 

 

 
 

 

 

Figure 7.2: Parallax continuous rotation servo [142]. 
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In order to generate these signals from BS2 microcontroller, a PULSOUT and a PAUSE 

command are used. Figuring out the PAUSE command from the timing diagram is easy; 

it is PAUSE 20 for the 20msec between pulses and for PULSOUT command, it needs the 

duration argument as stated in equation 7.1: 

duration argument =
sec2

_ DurationPulse
                                                                         (7.1) 

Table 7.2 shows the following PULSOUT duration. 

 

 

 

 

The general structure of the pulse width controls speed and direction for the mobile robot, 

as shown in Figure 7.4. 

Table 7.2: PULSOUT duration 

Pulse Duration Duration Argument Description 

1.3msec 650 Full Speed anti-cw 

1.5msec 750 Centre No Rotation 

1.7msec 850 Full Speed cw 
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Vdd (5V) 

Vss (0V) 
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b  

Figure 7.3: The duration of the pulse signals in: (a) anti-clockwise direction; (b) 

centre servo direction; (c) clockwise direction. 
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To generate fix sampling time 0.5sec with variable speed of the wheels, equations 7.2 and 

7.3 are proposed: 

TTIL=TCL+TCR+TPd+TCo                                                                                                  (7.2) 

NP=TS/TTIL                                                                                                                      (7.3) 

where 

TTIL is the total time of instructions loop.  

TCL is the time of PULSOUT command left wheel. 

TCR is the time of PULSOUT command right wheel. 

TPd is the time of PAUSE duration equal to 20msec. 

TCo is the time of code overhead equal to 1.6msec. 

Np is the number of pulses. 

TS  is the sampling time equal to 0.5sec. 

However, for each sampling time, a new number of pulses is generated in order to 

achieve the same sampling time; this is equal to 0.5sec. Figure 7.5 shows the practical 

transfer curve for the continuous rotation servo of the actual mobile robot after both servo 

motors are calibrated to make the servo stop turning at 1.5msec pulse, as shown in Figure 

7.3b. The horizontal axis shows the pulse width in msec, and the vertical axis shows the 

rotational velocity in RPM.  
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Figure 7.5: The rotation velocity vs. pulse width for servo motor. 
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Figure 7.4: The pulse width controls speed and direction structure. 
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In this graph, anti-clockwise direction is negative and clockwise direction is positive. This 

particular servo's transfer curve ranges from about -48RPM to 48RPM over the range of 

test pulse widths that range from 1.3msec to 1.7msec. 

Figure 7.6 shows the transfer curve for the converting simulation velocity of the left and 

right wheels to the actual PULSOUT time command for continuous rotation servo. The 

horizontal axis shows the rotational velocity in RPM and the vertical axis shows the pulse 

width in msec. In this graph, anti-clockwise direction is negative and clockwise direction 

is positive. This rotation servo transfer curve ranges from about pulse widths that range 

from 1.3msec to 1.7msec over the range of -48RPM to 48RPM velocity of the servo 

motor. 

 

 

 

 

 

 

 

  

 

 

In order to convert the velocity of the right and left wheels of the mobile robot to pulse 

width value, it is proposed the fourth order polynomial equation that describes the 

variable pulse width (msec) versus rotation velocity (RPM) for the servo motor is as 

follows: 

100/)98.1490134.00014.00002.0106()( 2347 VVVVVT                              (7.4) 

 

A personal computer carries out the cognitive neural predictive control algorithm using 

MATLAB program then transmits the control data to BASIC Stamp Editor Software 

version 2.5 in order to convert it to the Boe-Bot mobile robot action format which admits 

right wheel velocity and left wheel velocity as lookup input duration argument in order to 

convert them to suitable pulse duration control signals. From the pulse duration, it can be 

determined the duration argument as equation 7.1, and the number of pulses sent by the 
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Figure 7.6: The pulse width vs. rotation velocity for servo motor. 
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computer are coded messages which are recognised by the microcontroller. Based on 

received characters, the microcontroller creates control actions for servo motors. The 

output voltages of the two IR sensors for measuring the distance are converted to coded 

messages by microcontroller and sent to the personal computer.  

The data transmitting between the Boe-Bot robot and main computer is modified from 

wire to wireless communication using wireless USB Hub and adapter that has radio speed 

of up to 480Mbps and which is forty times faster than wireless Internet (802.11b) 

protocol [144]. In addition to that, wireless USB was created for laptop users, allowing 

high speed wireless connections with little impact on battery life [144]. Lab experiments 

are carried out by tracking a desired position (x, y) and orientation angle ( ) with a 

lemniscates, circular and square trajectories in the tracking control of the Boe-Bot robot 

and re-planning the desired trajectory in order to avoid the static obstacle, rendering 

collision-free navigation. 

7.3. Experiments and Simulation Results 

To validate the applicability of the proposed cognitive neural predictive control 

methodology, the experiments were carried out using the actual Boe-Bot mobile robot in 

order to track three different types of desired trajectories.  

7.3.1. Tracking Lemniscates Trajectory Case Study 1 

From simulation results for the tracking desired lemniscates trajectory, which has 

explicitly continuous gradient with rotation radius changes, the third control methodology 

has the smallest MSE of the position (X-coordinate, Y-coordinate) and the orientation, 

compared to the first and second control methodologies, which have the highest MSE for 

the posture, as shown in Table 5.1. Therefore, it can be considered that the third control 

methodology was the best methodology for tracking the desired lemniscates trajectory.  In 

the experiments, the best control data action of the simulations was the five steps-ahead 

action of third control methodology, which has the smallest MSE for posture. The 

simulation velocity control data action converted from linear velocity (m/sec) to rotation 

velocity revolution per minute (RPM) is shown in Figure 7.7, using equations 7.5 and 7.6 

for the right and left wheels respectively: 
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The suitable pulse duration is calculated using equation 7.4, as shown in Figure 7.8, and 

finally duration argument is found using equation 7.1, as shown in Figure 7.9. Figure 7.10 

shows the number of pulses for each sample. However, the number of pulses should be an 

integer number; therefore, it is equal to 20, in order to keep the sampling time equal to 

0.5sec. 
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Figure 7.8: The pulse width duration (msec) for right and left PWM converter circuit. 
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Figure 7.7: The rotation velocity (RPM) for the right and left wheels. 
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The data format was converted from MATLAB file of simulations to BASIC Stamp 

Editor Software version 2.5 format as a lookup table, and transmitted to the Boe-Bot 

mobile robot model, which admits right wheel velocity and left wheel velocity as input 

reference signals by using wireless USB hub communication. The duration argument of 

the simulation results for right and left wheels downloaded to the memory of the Boe-Bot 

mobile robot as velocity commands, which have smooth values without sharp spikes, as 

shown in Figure 7.9. The initial pose for the Boe-Bot mobile robot starts at position (0.75-

0.25m) and orientation 1.57rad, and should follow the desired lemniscates trajectory as 

shown in Figure 7.11.   
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Figure 7.10: The number of pulses to keep sampling time 0.5sec. 
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Figure 7.9: The duration argument for the right and left PULSOUT command. 
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The desired trajectory starts at position (0.75, 0m). After 50sec the mobile robot has 

finished the tracking of the desired path and the tracking was reasonably accurate because 

the maximum tracking error in the (X-Y) coordinate trajectory were equal to 0.0175m, 

while the maximum tracking error in the orientation of the trajectory was equal to 

0.5rad and the mean-square error for each component of the state error vector 

),,()( eeeqq yxr
, is )00136.0,00073.0,00018.0()( qqMSE r

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.11: Real set-up experiment of Boe-Bot robot for lemniscates trajectory tracking. 

 

Figure 7.12: Real set-up experiment of Boe-Bot robot for lemniscates trajectory tracking with 

obstacle avoidance. 
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 A static obstacle is placed in the desired path in order to verify the robustness and 

adaptation of the cognitive neural predictive controller and its capability to make the 

mobile robot track any trajectory through re-planning the desired path to avoid the static 

obstacle with minimum tracking error. Experiments were conducted using an actual 

mobile robot required to track the desired lemniscates trajectory with obstacle avoidance, 

as shown in Figure 7.12. The desired trajectory started at position (0.75, 0m) and after 

50sec the mobile robot finished the tracking of the desired path. The tracking was 

reasonably accurate, especially during new path track to avoid the static obstacle and the 

mean-square error, is )00139.0,00076.0,00019.0()( qqMSE r
.The duration 

argument of the simulation results for right and left wheels that make the mobile robot to 

avoid the static obstacle have downloaded to the memory of the Boe-Bot mobile robot as 

velocity commands, which have smooth values without sharp spikes, and can be shown in 

Figure 7.13. 

 

 

 

 

 

 

 

 

 

 

7.3.2. Tracking Circular Trajectory Case Study 2 

In order to verify the applicability of the proposed control methodology to track the 

continuous gradient with rotation radius constant, an experiment was conducted for 

desired circular trajectory by using Boe-Bot mobile robot. According to the simulation 

results of Table 5.2 in chapter five, the second control methodology has the smallest MSE 

of the (X-coordinate and Y-coordinate).  
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  Figure 7.13: The duration argument for the right and left PULSOUT command for 

obstacle avoidance. 
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Therefore, the second control methodology was the best methodology for the desired 

circular trajectory. In the experiments, the best velocities control data action of simulation 

was the five steps-ahead of the second control methodology, which has the smallest MSE. 

These control data were transmitted to the Boe-Bot mobile robot model, which admits 

right wheel velocity and left wheel velocity as input reference signals and pulse width 

duration, as shown in Figures 7.14 and 7.15 respectively. 

 

 

 

 

 

 

 

 

 

 

 

Wireless USB communication was used to download the memory of the mobile robot 

after it converted the data format from MATLAB file of simulations to BASIC Stamp 

Editor Software version 2.5 format, as a lookup table for duration argument data, as 

shown in Figure 7.16. 
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 Figure 7.14: The rotation velocity for the right and left wheels. 
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Figure 7.15: The pulse width duration for right and left PWM converter circuit. 
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The initial pose for the Boe-Bot mobile robot starts at position (1.1, -0.5m) and 

orientation 1.57rad, and should follow desired circular trajectory as show in Figure 7.17.  

The desired trajectory starts at position (1, 0m). After 65sec the mobile robot has finished 

the tracking of the desired trajectory with good performance tracking, because the 

maximum tracking error in the (X-Y) coordinate trajectory was equal to 0.01m, while 

the maximum tracking error in the orientation of the trajectory was equal to 0.25rad 

and the mean-square error for each component of the state error ),,()( eeeqq yxr
 

was )00145.0,000233.0,000302.0()( qqMSE r
respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.17: Real set-up experiment of Boe-Bot robot for circular trajectory tracking. 
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Figure 7.16: The Duration argument for the right and left PULSOUT command. 
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To investigate the applicability of the proposed control methodology for obstacle 

avoidance and tracking the desired circular trajectory, experiments were carried out as 

shown in Figure 7.18. The desired trajectory starts at position (1, 0m) and after 65sec the 

mobile robot finished tracking the desired path and the tracking was reasonably accurate, 

especially during new path track to avoid the static obstacle and the mean-square error for 

each component of the state error  was )00149.0,000237.0,000311.0()( qqMSE r
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.18: Real set-up experiment of Boe-Bot robot for circular trajectory tracking with 

obstacle avoidance. 
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  Figure 7.19: The duration argument for the right and left PULSOUT command for 

obstacle avoidance. 
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The duration argument of the simulation results for right and left wheels that make the 

mobile robot avoid the static obstacle have downloaded to the memory of the Boe-Bot 

mobile robot as velocity commands which have smooth values without sharp spikes, as 

shown in Figure 7.19. 

7.3.3. Tracking Square Trajectory Case Study 3 

From simulation results for the tracking desired square trajectory which has explicitly 

non-continuous gradient, the second and the third control methodologies have the 

smallest MSE of the position (X-coordinate, Y-coordinate) and the orientation compared 

to the first control methodology, which has high MSE for the posture, as shown in Table 

5.3. The third control methodology was used to validate the applicability of the proposed 

cognitive neural predictive controller in the experimental work, in which the mobile robot 

was required to track desired square trajectory. The best control data action of simulations 

was the five steps-ahead action of third control methodology, as shown in Figure 7.20, 

which transmitted to the Boe-Bot mobile robot model, which admits right wheel velocity 

and left wheel velocity as input reference signals as lookup table duration argument data, 

as shown in Figure 7.21. In the experiment, the Boe-Bot mobile robot started at the initial 

position 0 and -0.1 meter and initial orientation 0rad, was to follow the desired square 

trajectory shown in Figure 7.22. 
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Figure 7.20: The rotation velocity (RPM) for the right and left wheels. 
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The desired trajectory starts at position (0, 0m). After 32.5sec the mobile robot finished 

the tracking of the desired trajectory with good performance tracking, because the 

maximum tracking error in the (X-Y) coordinate trajectory was equal to 0.05m at the 

end of one side of the square trajectory while the maximum tracking error in the 

orientation of the trajectory was equal to 0.5rad because the desired orientation angle 

changes suddenly at each corner. The mean-square error for each component of the state 

error ),,()( eeeqq yxr was MSE(qr-q)=(0.000258, 0.000227, 0.00787) respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

In order to investigate the applicability of the proposed cognitive neural control 

methodology, experiments were carried out using the actual mobile robot required to 

track the desired square trajectory with obstacle avoidance, as shown in Figure 7.23. 

 

Figure 7.22: Real set-up experiment of Boe-Bot robot for square trajectory tracking. 
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  Figure 7.21: The Duration argument for the right and left PULSOUT command for 

obstacle avoidance. 
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The desired trajectory starts at zero position and after 32.5sec the mobile robot finished 

the tracking of the desired path; the tracking was reasonably accurate, especially during 

new path track to avoid the static obstacle and The mean-square error for each component 

of the state error was MSE(qr-q)=(0.000263, 0.000236, 0.00799). 

 

 

 

 

 

 

 

 

 

 

The duration argument of the simulation results for right and left wheels that make the 

mobile robot avoid the static obstacle downloaded to the memory of the Boe-Bot mobile 

Figure 7.23: Real set-up experiment of Boe-Bot robot for square trajectory tracking with 

obstacle avoidance. 
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  Figure 7.24: The Duration argument for the right and left PULSOUT command for 

obstacle avoidance. 
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robot as velocity commands with smooth values and without sharp spikes, as shown in 

Figure 7.24 

The difference between simulations results and experimental results caused the residual 

errors in the experimental results due to the inherent friction present in the real system, 

especially during tracking the non-continuous gradient path and modelling errors, due to 

the difficulty of estimating or measuring the geometric, kinematics or inertial parameters, 

or from incomplete knowledge of the components of the system.  

In addition to that, calibration and alignment of the IR sensors for reading X-Y coordinate 

of the mobile robot trajectory caused some error readings which were not presented in the 

simulation. From the simulation results and lab experiments, the five steps-ahead 

predictive for each control methodology gives better control results, which is expected 

because of the more complex control structure, and also due to  taking into account future 

values of the desired, not only the current value, as with one step-ahead. 

The percentage of the mean square error between simulation results for five steps-ahead 

predictions and experimental work for three different types of the desired trajectories 

without static obstacle in the path, as shown in Table 7.3. 

 

 

 

 

The percentage of the mean square error between simulation results for five steps-ahead 

predictions and experimental work for three different types of the desired trajectories with 

static obstacle in the desired path, as shown in Table 7.4. 

 

 

 

 

 

Table 7.3: The percentage of MSE between simulation results and experimental work without obstacle. 

Desired Trajectory Lemniscates 

Trajectory 

Circular 

Trajectory 

Square 

Trajectory 

(MSE of X-coordinate) 100% 16.6% 5.9% 6.9% 

(MSE of Y-coordinate) 100% 16.6% 13.7% 7.9% 

(MSE of Orientation) 100% 8.1% 10.3% 5.3% 

 

Table 7.4: The percentage of MSE between simulation results and experimental work with static obstacle 

in the desired path. 

Desired Trajectory Lemniscates 

Trajectory 

Circular 

Trajectory 

Square 

Trajectory 

(MSE of X-coordinate) 100% 21.5% 8.6% 8.7% 

(MSE of Y-coordinate) 100% 19.7% 17.9% 11.4% 

(MSE of Orientation) 100% 10.1% 12.7% 6.7% 
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7.4. Summary 

This chapter introduced the rotation servo motor of the actual Boe-Bot mobile robot from 

Parallax Inc used in the experimental work with three case studies. The first case study 

was based on lemniscates trajectory, which has explicitly continuous gradient with 

rotation radius changes. The second case study was based on circular trajectory, which 

has explicitly continuous gradient with rotation radius constant. The third case study was 

based on square trajectory, which has explicitly non-continuous gradient with collision 

free navigation. In the experiments, the best control data action of simulations of the best 

control methodology was transmitted to the actual mobile robot model, which admits 

right wheel velocity and left wheel velocity using wireless USB communication to 

download in the memory of the mobile robot after converting the data format from 

MATLAB file of simulation to BASIC Stamp Editor Software version 2.5 format. 
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Chapter Eight 

Conclusions and Suggested Future 

Work 

8.1. Conclusions 

A cognitive neural predictive trajectory tracking control for nonholonomic wheeled 

mobile robot has been presented in this thesis. The proposed controller structure 

consists of two layers: the execution layer and cognition path planning layer. The 

execution layer is a neural network system that controls the mobile robot actuators in 

order to track a desired path, which consisted of two neural networks models that 

describe the kinematic and dynamic mathematical model with velocity constraints of 

the nonholonomic wheeled mobile robot system and a feedforward neural controller. 

The models are modified Elman recurrent neural network and feedforward multi-layer 

perceptron respectively. The position and orientation identifier based on the modified 

Elman recurrent neural network model is trained off-line and on-line stages to 

guarantee that the outputs of the model will accurately represent the actual outputs of 

the mobile robot system and the number of nodes in the input, hidden, context and 

output layers are 5, 6, 6 and 3 respectively.  

The feedforward neural controller structure is based on multi-layer perceptron neural 

network and the number of nodes in the input, hidden and output layers are 8, 16 and 

2 respectively. It is trained off-line and its weights are adapted on-line to find the 

reference torques, which control the steady-state outputs of the mobile robot system. 

The feedback neural controller is based on the posture neural identifier and quadratic 

performance index predictive optimisation algorithm for N step-ahead prediction in 

order to find the optimal torque action in the transient-state to stabilise the tracking 

error of the mobile robot system when the trajectory of the robot drifts from the 

desired path during transient state.  
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The three different types of proposed control methodologies were used in the structure 

of the cognitive neural predictive controller as follows. The first control methodology 

of the feedback controller is neural predictive feedback controller, which consists of 

position and orientation neural network identifier with predictive optimisation 

algorithm. The second control methodology of the feedback controller is nonlinear 

PID neural predictive feedback controller, which consists of position and orientation 

nonlinear PID controllers. The position nonlinear PID controller depends on the x-

coordinate error and y-coordinate error, while the orientation nonlinear PID controller 

depends on the  -angular error and posture identifier with predictive optimisation 

algorithm. The third control methodology of the feedback controller is nonlinear 

inverse dynamic predictive feedback neural controller, which consists of the nonlinear 

feedback acceleration control equation based on Lyapunov stability method and 

posture neural network identifier with optimisation predictive algorithm. 

The second layer in the structure of the proposed controller is cognition path planning 

layer, which collects all the information from the environment and plans the optimal 

smoothness desired path. In addition to this, it detects if there is any obstacle in the 

desired path in order to avoid the static obstacle by re-planning the desired trajectory 

based on two techniques - spline interpolation numerical technique and artificial 

particle swarm optimisation technique - then feeds the desired optimal posture to the 

first layer (neural control layer). 

The main advantages of the presented approach are to plan an optimal or feasible 

path, avoiding obstructions, and the incorporation of AI neural networks structure in 

each of the traditional and modern control structures that lead to the development and 

improvement of the performance of these controllers through adaptation of the control 

gains parameters, such as ( dip kkk ,, ) for PID controller and ( kkk yx ,, ) for inverse 

dynamics controller, because of the analytically derived control law which has 

significantly high computational accuracy with predictive optimisation technique. 

Therefore, the second and third control methodologies are better than first control 

methodology, because they generated smoothness optimal torques control action and 

led to minimum tracking errors of the mobile robot for different types of trajectory. 
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The proposed control algorithm for the nonholonomic wheeled mobile robot has the 

capability of tracking any trajectory, such as lemniscates trajectory, which has 

explicitly continuous gradient with rotation radius changes; and circular trajectory, 

which has explicitly continuous gradient with rotation radius constant and non-

continuous gradients square trajectory. 

From simulation results and experimental work, the five steps-ahead prediction 

control action was better than the one step-ahead for the trajectory tracking of the 

mobile robot for continuous and non-continuous gradient path with the generation of 

small smooth values of the control input torques for right and left wheels without 

sharp spikes, through using actual wireless mobile robot type Boe-Bot robotics. The 

proposed control algorithm has the capability of static obstacle avoidance by re-

planning path with optimal smoothness trajectory based on cubic spline interpolation 

technique and particle swarm optimisation technique for minimum tracking error for 

mobile robot, in order to reduce the travelling time and travel distance without 

exceeding the maximum velocity of the mobile robot's wheels. 

8.2. Suggested Future Work 

The following points are suggested for the development of the work done in this 

thesis such as:  

1- Simulation or an on-line application of the proposed controller to another type 

of mobile robot, such as a holonomic wheeled mobile robot and using dynamic 

obstacles instead of static obstacles in the environment.   

2- Using fast back propagation algorithm to learn the off-line and on-line posture 

identifier of the kinematics and dynamics model of the mobile robot under 

investigation to obtain higher learning speeds for the neural networks needed 

for other types of mobile robot that have smaller sampling times that are less 

than 1msec.  

3- Another method can be worked upon by selecting a different performance 

index to minimise the tracking error and to find optimal control effort. 

4- Neural-fuzzy, wavelet neural network and genetic algorithm may be useful for 

building the posture identifier model. 
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The following points are suggested for future work:  

1- Using multiple mobile robots in master and slave configuration for trajectory 

tracking control system and obstacles avoidance based on hardware and 

software. The hardware consists of two mobile robots type NI RIO 9632 while 

Labview software package is used to build the robust neural predictive 

controller in order to guide the master and slave mobile robots implementing 

intelligent path planning method.     

2- Swarm of mobile robots capable of self-assembling, self-organizing and self-

planning in order to solve problems that a single mobile robot is unable to 

solve. These mobile robots should combine the power of cognitive neural 

networks topology with the flexibility of self reconfiguration and the 

capability of re-planning optimal trajectories as aggregate swarm-mobile 

robots can dynamically change their structure to match environmental 

variations. 

3- A cognitive controller for soccer mobile robots; this controller will be 

implemented on several intelligent robotics that will be based on hybrid neural 

networks layer architecture with two levels: the execution level, in which the 

information is handled numerically for decision making; and the knowledge 

level, whereby the environment is described by a knowledge base containing 

static facts (background knowledge) provided by the designer in addition to 

dynamic facts (symbolic information) corresponding to the data acquired 

through the robot's sensor during its mission.  

4- Developing a mobile robot interface between the human and intelligent 

environment based on robot localisation and navigation by using a cognitive 

controller for mobile robots with environment representations based on swarm 

technique. 

5- Applying cognitive algorithm and neural networks topology in the design of 

an adaptive nonlinear controller for mobile robot to carry out the missions in 

different placements, such as in hospitals as a nurse or a servant in hotels. 
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Appendix A 

Holonomic and Nonholonomic 

Wheeled Mobile Robot 

The term holonomic has broad applicability to several mathematical areas, including 

differential equations, functions and constraint expressions [2]. In mobile robotics, the 

term refers to the kinematic constraints of the robot chassis.  

A nonholonomic mobile robot has the following properties: 

1- The robot configuration is described by three coordinates. Three values are needed to 

describe the location and orientation of the robot. 

2- The robot has two DOF, or three DOF with singularities.      

A holonomic robot is a robot that has zero nonholonomic kinematics constraints. 

Conversely, a nonholonomic robot is a robot with one or more nonholonomic kinematics 

constraints [2]. 

A holonomic kinematics constraint can be expressed as an explicit function of position 

variables ( ,, yx ) only, not using derivatives of these values, such as ( x , y , and  ). 

 

 

 

 

 

 

 

 

 

 

A nonholonomic kinematics constraint requires a differential relationship, such as the 

derivative of a position variable. Furthermore, it cannot be integrated to provide a 

constraint in terms of the position variables only.  
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Figure A-1. 
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Because of this latter point of view, nonholonomic systems are often called non-

intergrable systems, so the differential equations are not integrable to the final position, 

and the measure of the traveled distance of each wheel is not sufficient to calculate the 

final position of the robot as shown in Figure A-1, where S1=S2, S1R=S2R, S1L=S2L, but 

21 xx  and 21 yy  . 

To check that the mobile robot is nonholonomic, a mobile robot as shown in Figure A-2, 

is running along a trajectory )(ts , and every instant of the movement its velocity )(tv is: 

 sincos)(
t

y

t

x

t

s
tv


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 sincos dydxds                                                                                                    (A-2) 

 

 

 

 

 

 

 

 

 

 

 

The function )(tv is said to be integrable (holonomic) if a trajectory function )(ts  exists, 

which can be described by the values ,, yx and  only. 

The condition for integrable function is [100]: 
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with ),,( yxss  ,  

Then ds  becomes as follows: 
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Figure A-2. 
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After applying the condition for an integrable function as in equation A-3: 

0
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Therefore, the differential equation is not integrable and the mobile robot is a 

nonholonomic system. 

A holonomic mobile robot has the following properties: 

1- The robot configuration is described by three coordinates. 

2- The robot has three DOF without singularities. 

3- The robot can instantly develop a wrench in an arbitrary combination of directions (x, 

y and ). 

Holonomic mobile robot offers full mobility with the same number of degrees of freedom 

as the environment. This makes the trajectory tracking easier, because there are no 

constraints that need to be integrated. Implementing reactive behaviours is easy because 

there are no constraints to limit the directions in which the robot can accelerate. 
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Appendix B 

Jacobi-Lie-Bracket 

By using Jacobi-Lie-Bracket of f and g  to find ],[ gf : 
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Appendix C 

Time Derivative of the State Error 

Vector 
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Appendix D 

Back Propagation for Modified 

Elman Recurrent Neural Network 

Given are np training pairs {(
rG ), ( )1( kqr

)} (input), (output). 

where r=1, 2, 3…np 

G  = [ )(),(),(),(),( kkykxkk LR  ] ; )]1(),1(),1([)1(  kkykxkqr   

Start  

Initialize jcji VCVH ,  and kjW  with random values. 

where VH  is ( )1(  ninh ), VC  is ( nhnh ) and W is )3( nh  

Select   

1- r=0 (r: counter initialization) 

cycleE =0 (cycle error initialization) 

2- 1 rr  

rGG   

rkqkq )1()1(   

)1()1()(  khkhkh ccc    

              For (c=1, 2, …C) 

][ 1,

1

,

1

, 



  nijc

C

c

cji

ni

i

ijj VbaishVGVHh   

      For (j=1, 2,…nh) 

][)1( 1

1





  nh

nh

j

jkjmk WbiashWLkq  

      For (k=1, 2 & 3) 

      For (j=1 ,2, … nh) 

3- Error value is computed. 
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                )1()1()1(  kqkqke mm  

           4- Error signals vector m  and h  of both layers are computed.  

                )1(),1(),1()1(  kekeykexke mmmkk    

               



3

1

2)1(
2

1

k

kjkjhj Wh   

                                                     For (j=1,2,…nh) 

           5- Output layer weights are adjusted: 

          jkkjkj hWW   

                                               For (k=1, 2, & 3)  

For (j=1, 2, 3,…nh) 

          baisWW kknhknh     

 

6- Hidden layer weights are adjusted: 

             ihjijij GVHVH  ,,    

                                                         For (j=1, 2, …nh) 

              For (i=1, 2, …ni) 

              baisVHVH hjnhjnhj   1,1,  

  

7- Context layer weights are adjusted: 

             

chccjcj hVCVC  ,,  For (j=1, 2,…nh) 

                For (c=1,2,…C) 

8- Calculate error cycle: 

            )]1()1()1([
2

1 222  kekexkexEE mmmcyclecycle   

                  if r < Z; Then Goto Step 2 

                                  if 
Z

Ecycle
> MSE max ; Then Goto Step 1 

where the MSE max  is the upper bound of the MSE. 

STOP 
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Appendix E 

Weights of the Posture Neural 

Network Identifier 
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Appendix F 

Linearisation of the Closed Loop 

Characteristic Equation 
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By linearization equation F-1 as follows: 
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The closed loop characteristic of the system can be determined by using equation F-3. 
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To convert a continuous-time characteristic equation S to the discrete-time characteristic 

equation Z, the forward difference method is used, as follows: 

T
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Appendix G 

Determination of the Optimal Neural 

Network Size and its Validation 

Basically, the number of nodes required in the hidden layer depends on the inputs of the 

network as well as the number of patterns to be learnt. For J number of input nodes, 2J+1 

number of hidden nodes are usually used; again for learning p different patterns, 

maximum p-1 number of hidden nodes is required [39, 116, 119, 120].  However, to 

obtain the optimum number of hidden layer nodes the following method can be used:  

1- Divide the database into two sets, one for learning (the learning set must have a 

sufficient number of patterns that adequately cover the specific operating region) and the 

other for testing the neural network model after learning. 

2- Use the learning set to train the neural network until it has a sufficiently small MSE, 

defined as follows: 







p

i

ii yy
p

MSE
1

2)()( )(
1

                                                                                              (G-1) 

where 


y  is the predicted value of the observation y, and p is the number of patterns in the 

learning set. Plot the observations (y)s along with the predictions (


y )s of the neural 

network based on the learning and test sets. Now, if the error curve ( )( )()(


 ii yy ; i = 

1,2,…p) obtained based on the learning set is more suppressed than that based on the test 

set (which indicates that the network has learnt the learning patterns in a point wise 

fashion rather than learning the nonlinear functionality that they represent), eliminate one 

hidden node and repeat step 2.  If the error curve obtained based on the learning set is 

approximately the same (in an overall sense) as that obtained based on the test set, the 

number of the hidden nodes will be the optimum one and the neural network has a good 

generalization capability. 
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Appendix H 

Cubic spline Interpolation 

Technique 

The curves are third order polynomials, 
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