25 research outputs found

    Multiseasonal Remote Sensing of Vegetation with One-Class Classification – Possibilities and Limitations in Detecting Habitats of Nature Conservation Value

    Get PDF
    Mapping of habitats relevant for nature conservation often involves the identification of patches of target habitats in a complex mosaic of vegetation types extraneous for conservation planning. In field surveys, this is often a time-consuming and work-intensive task. Limiting the necessary ground reference to a small sample of target habitats and combining it with area-wide remote sensing data could greatly reduce and therefore support the field mapping effort. Conventional supervised classification methods need to be trained with a representative set of samples covering an exhaustive set of all classes. Acquiring such data is work intensive and hence inefficient in cases where only one or few classes are of interest. The usage of one-class classifiers (OCC) seems to be more suitable for this task – but has up until now neither been tested nor applied for large scale mapping and monitoring in programs such as those requested for the Natura 2000 European Habitat Directive or the High Nature Value (HNV) farmland Indicator. It is important to uncover the possibilities and mark the obstacles of this new approach since the usage of remote sensing for conservation purposes is currently controversially discussed in the ecology community as well as in the remote sensing community. Thus, the focal and innovative point of this thesis is to explore possibilities and limitations in the application of one-class classifiers for detecting habitats of nature conservation value with the help of multi-seasonal remote sensing and limited field data. The first study ascertains the usage of an OCC is suitable for mapping Natura 2000 habitat types. Applying the Maxent algorithm in combination with a low number of ground reference points of four habitat types and easily available multi-seasonal satellite imagery resulted in a combined habitat map with reasonable accuracy. There is potential in one-class classification for detecting rare habitats – however, differentiating habitats with very similar species composition remains challenging. Motivated by these positive results, the topic of the second study of this thesis is whether low and HNV grasslands can be differentiated with remotely-sensed reflectance data, field data and one-class classification. This approach could supplement existing field survey-based monitoring approaches such as for the HNV farmland Indicator. Three one-class classifiers together with multi-seasonal, multispectral remote sensing data in combination with sparse field data were analysed for their usage A) to classify HNV grassland against other areas and B) to differentiate between three quality classes of HNV grassland according to the current German HNV monitoring approach. Results indicated reasonable performances of the OCC to identify HNV grassland areas, but clearly showed that a separation into several HNV quality classes is not possible. In the third study the robustness and weak spots of an OCC were tested considering the effect of landscape composition and sample size on accuracy measurements. For this purpose artificial landscapes were generated to avoid the common problem of case-studies which usually can only make locally valid statements on the suitability of a tested approach. Whereas results concerning target sample size and the amount of similar classes in the background confirm conclusions of earlier studies from the field of species distribution modelling, results for background sample size and prevalence of target class give new insights and a basis for further studies and discussions. In conclusion the utilisation of an OCC together with reflectance and sparse field data for addressing rare vegetation types of conservation interest proves to be useful and has to be recommended for further research

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Efficacy of multi-season Sentinel-2 imagery for compositional vegetation classification

    Get PDF
    Vegetation maps are essential tools for the conservation and management of landscapes as they contain essential information for informing conservation decisions. Traditionally, maps have been created using field-based approaches which, due to limitations in costs and time, restrict the size of the area for which they can be created and frequency at which they can be updated. With the increasing availability of satellite sensors providing multi-spectral imagery with high temporal frequency, new methods for efficient and accurate vegetation mapping have been developed. The objective of this study was to investigate to what extent multi-seasonal Sentinel-2 imagery can assist in mapping complex compositional classifications at fine spatial scales. We deliberately chose a challenging case study, namely a visually and structurally homogenous scrub vegetation (known as kwongan) of Western Australia. The classification scheme consists of 24 target classes and a random 60/40 split was used for model building and validation. We compared several multi-temporal (seasonal) feature sets, consisting of numerous combinations of spectral bands, vegetation indices as well as principal component and tasselled cap transformations, as input to four machine learning classifiers (Support Vector Machines; SVM, Nearest Neighbour; NN, Random Forests; RF, and Classification Trees; CT) to separate target classes. The results show that a multi-temporal feature set combining autumn and spring images sufficiently captured the phenological differences between the classes and produced the best results, with SVM (74%) and NN (72%) classifiers returning statistically superior results compared to RF (65%) and CT (50%). The SWIR spectral bands captured during spring, the greenness indices captured during spring and the tasselled cap transformations derived from the autumn image emerged as most informative, which suggests that ecological factors (e.g. shared species, patch dynamics) occurring at a sub-pixel level likely had the biggest impact on class confusion. However, despite these challenges, the results are auspicious and suggest that seasonal Sentinel-2 imagery has the potential to predict compositional vegetation classes with high accuracy. Further work is needed to determine whether these results are replicable in other vegetation types and regions

    Knowledge-Based Classification of Grassland Ecosystem Based on Multi-Temporal WorldView-2 Data and FAO-LCCS Taxonomy

    Get PDF
    Grassland ecosystems can provide a variety of services for humans, such as carbon storage, food production, crop pollination and pest regulation. However, grasslands are today one of the most endangered ecosystems due to land use change, agricultural intensiïŹcation, land abandonment as well as climate change. The present study explores the performance of a knowledge-driven GEOgraphic-Object—based Image Analysis (GEOBIA) learning scheme to classify Very High Resolution(VHR)imagesfornaturalgrasslandecosystemmapping. TheclassiïŹcationwasappliedto a Natura 2000 protected area in Southern Italy. The Food and Agricultural Organization Land Cover ClassiïŹcation System (FAO-LCCS) hierarchical scheme was instantiated in the learning phase of the algorithm. Four multi-temporal WorldView-2 (WV-2) images were classiïŹed by combining plant phenology and agricultural practices rules with prior-image spectral knowledge. Drawing on this knowledge, spectral bands and entropy features from one single date (Post Peak of Biomass) were ïŹrstly used for multiple-scale image segmentation into Small Objects (SO) and Large Objects (LO). Thereafter, SO were labelled by considering spectral and context-sensitive features from the whole multi-seasonal data set available together with ancillary data. Lastly, the labelled SO were overlaid to LO segments and, in turn, the latter were labelled by adopting FAO-LCCS criteria about the SOs presence dominance in each LO. Ground reference samples were used only for validating the SO and LO output maps. The knowledge driven GEOBIA classiïŹer for SO classiïŹcation obtained an OA value of 97.35% with an error of 0.04. For LO classiïŹcation the value was 75.09% with an error of 0.70. At SO scale, grasslands ecosystem was classiïŹed with 92.6%, 99.9% and 96.1% of User’s, Producer’s Accuracy and F1-score, respectively. The ïŹndings reported indicate that the knowledge-driven approach not only can be applied for (semi)natural grasslands ecosystem mapping in vast and not accessible areas but can also reduce the costs of ground truth data acquisition. The approach used may provide diïŹ€erent level of details (small and large objects in the scene) but also indicates how to design and validate local conservation policies

    The utility of new generation multispectral sensors in assessing aboveground biomass of Phragmites australis in wetlands areas in the City of Tshwane Metropolitan Municipality; South Africa.

    Get PDF
    Master of Science in Environmental Science. University of KwaZulu-Natal. Pietermaritzburg, 2017.Abstract available in PDF file

    Measuring beta-diversity by remote sensing: a challenge for biodiversity monitoring

    Get PDF
    Biodiversity includes multiscalar and multitemporal structures and processes, with different levels of functional organization, from genetic to ecosystemic levels. One of the mostly used methods to infer biodiversity is based on taxonomic approaches and community ecology theories. However, gathering extensive data in the field is difficult due to logistic problems, overall when aiming at modelling biodiversity changes in space and time, which assumes statistically sound sampling schemes. In this view, airborne or satellite remote sensing allow to gather information over wide areas in a reasonable time. Most of the biodiversity maps obtained from remote sensing have been based on the inference of species richness by regression analysis. On the contrary, estimating compositional turnover (beta-diversity) might add crucial information related to relative abundance of different species instead of just richness. Presently, few studies have addressed the measurement of species compositional turnover from space. Extending on previous work, in this manuscript we propose novel techniques to measure beta-diversity from airborne or satellite remote sensing, mainly based on: i) multivariate statistical analysis, ii) the spectral species concept, iii) self-organizing feature maps, iv) multi- dimensional distance matrices, and the v) Rao's Q diversity. Each of these measures allow to solve one or several issues related to turnover measurement. This manuscript is the first methodological example encompassing (and enhancing) most of the available methods for estimating beta-diversity from remotely sensed imagery and potentially relate them to species diversity in the field

    Measuring ÎČ-diversity by remote sensing: a challenge for biodiversity monitoring

    Get PDF
    Biodiversity includes multiscalar and multitemporal structures and processes, with different levels of functional organization, from genetic to ecosystemic levels. One of the mostly used methods to infer biodiversity is based on taxonomic approaches and community ecology theories. However, gathering extensive data in the field is difficult due to logistic problems, especially when aiming at modelling biodiversity changes in space and time, which assumes statistically sound sampling schemes. In this context, airborne or satellite remote sensing allows information to be gathered over wide areas in a reasonable time. Most of the biodiversity maps obtained from remote sensing have been based on the inference of species richness by regression analysis. On the contrary, estimating compositional turnover (ÎČ‐diversity) might add crucial information related to relative abundance of different species instead of just richness. Presently, few studies have addressed the measurement of species compositional turnover from space. Extending on previous work, in this manuscript, we propose novel techniques to measure ÎČ‐diversity from airborne or satellite remote sensing, mainly based on: (1) multivariate statistical analysis, (2) the spectral species concept, (3) self‐organizing feature maps, (4) multidimensional distance matrices, and the (5) Rao's Q diversity. Each of these measures addresses one or several issues related to turnover measurement. This manuscript is the first methodological example encompassing (and enhancing) most of the available methods for estimating ÎČ‐diversity from remotely sensed imagery and potentially relating them to species diversity in the field

    Suivi écologique des prairies semi-naturelles : analyse statistique de séries temporelles denses d'images satellite à haute résolution spatiale

    Get PDF
    ID ProdINRA 415874Grasslands are a significant source of biodiversity in farmed landscapes that is important to monitor. New generation satellites such as Sentinel-2 offer new opportunities for grassland’s monitoring thanks to their combined high spatial and temporal resolutions. Conversely, the new type of data provided by these sensors involves big data and high dimensional issues because of the increasing number of pixels to process and the large number of spectro-temporal variables. This thesis explores the potential of the new generation satellites to monitor biodiversity and factors that influence biodiversity in semi-natural grasslands. Tools suitable for the statistical analysis of grasslands using dense satellite image time series (SITS) with high spatial resolution are provided. First, we show that the spectro-temporal response of grasslands is characterized by its variability within and among the grasslands. Then, for the statistical analysis, grasslands are modeled at the object level to be consistent with ecological models that represent grasslands at the field scale. We propose to model the distribution of pixels in a grassland by a Gaussian distribution. Following this modeling, similarity measures between two Gaussian distributions robust to the high dimension are developed for the classification of grasslands using dense SITS: the High-Dimensional Kullback-Leibler Divergence and the α-Gaussian Mean Kernel. The latter out-performs conventional methods used with Support Vector Machines for the classification of grasslands according to their management practices and to their age. Finally, indicators of grassland biodiversity issued from dense SITS are proposed through spectro-temporal heterogeneity measures derived from the unsupervised clustering of grasslands. Their correlation with the Shannon index is significant but low. The results suggest that the spectro-temporal variations measured from SITS at a spatial resolution of 10 meters covering the period when the practices occur are more related to the intensity of management practices than to the species diversity. Therefore, although the spatial and spectral properties of Sentinel-2 seem limited to assess the species diversity in grasslands directly, this satellite should make possible the continuous monitoring of factors influencing biodiversity in grasslands. In this thesis, we provided methods that account for the heterogeneity within grasslands and enable the use of all the spectral andtemporal information provided by new generation satellites.Les prairies reprĂ©sentent une source importante de biodiversitĂ© dans les paysages agricoles qu’il est important de surveiller. Les satellites de nouvelle gĂ©nĂ©ration tels que Sentinel-2 offrent de nouvelles opportunitĂ©s pour le suivi des prairies grĂące Ă  leurs hautes rĂ©solutions spatiale et temporelle combinĂ©es. Cependant, le nouveau type de donnĂ©es fourni par ces satellites implique des problĂšmes liĂ©s au big data et Ă  la grande dimension des donnĂ©es en raison du nombre croissant de pixels Ă  traiter et du nombre Ă©levĂ© de variables spectro-temporelles. Cette thĂšse explore le potentiel des satellites de nouvelle gĂ©nĂ©ration pour le suivi de la biodiversitĂ© et des facteurs qui influencent la biodiversitĂ© dans les prairies semi-naturelles. Des outils adaptĂ©s Ă  l’analyse statistique des prairies Ă  partir de sĂ©ries temporelles d’images satellites (STIS) denses Ă  haute rĂ©solution spatiale sont proposĂ©s. Tout d’abord, nous montrons que la rĂ©ponse spectro-temporelle des prairies est caractĂ©risĂ©e par sa variabilitĂ© au sein des prairies et parmi les prairies. Puis, pour les analyses statistiques, les prairies sont modĂ©lisĂ©es Ă  l’échelle de l’objet pour ĂȘtre cohĂ©rent avec les modĂšles Ă©cologiques qui reprĂ©sentent les prairies Ă  l’échelle de la parcelle. Nous proposons de modĂ©liser la distribution des pixels dans une prairie par une loi gaussienne. A partir de cette modĂ©lisation, des mesures de similaritĂ© entre deux lois gaussiennes robustes Ă  la grande dimension sont dĂ©veloppĂ©es pour la classification des prairies en utilisant des STIS denses: High-Dimensional Kullback-Leibler Divergence et α-Gaussian Mean Kernel. Cette derniĂšre est plus performante que les mĂ©thodes conventionnelles utilisĂ©es avec les machines Ă  vecteur de support (SVM) pour la classification du mode de gestion et de l’ñge des prairies. Enfin, des indicateurs de biodiversitĂ© des prairies issus de STIS denses sont proposĂ©s Ă  travers des mesures d’hĂ©tĂ©rogĂ©nĂ©itĂ© spectro-temporelle dĂ©rivĂ©es du clustering non supervisĂ© des prairies. Leur corrĂ©lation avec l’indice de Shannon est significative mais faible. Les rĂ©sultats suggĂšrent que les variations spectro-temporelles mesurĂ©es Ă  partir de STIS Ă  10 mĂštres de rĂ©solution spatiale et qui couvrent la pĂ©riode oĂč ont lieu les pratiques agricoles sont plus liĂ©es Ă  l’intensitĂ© des pratiques qu’à la diversitĂ© en espĂšces. Ainsi, bien que les propriĂ©tĂ©s spatiales et temporelles de Sentinel-2 semblent limitĂ©es pour estimer directement la diversitĂ© en espĂšces des prairies, ce satellite devrait permettre le suivi continu des facteurs influençant la biodiversitĂ© dans les prairies. Dans cette thĂšse, nous avons proposĂ© des mĂ©thodes qui prennent en compte l’hĂ©tĂ©rogĂ©nĂ©itĂ© au sein des prairies et qui permettent l’utilisation de toute l’information spectrale et temporelle fournie par les satellites de nouvelle gĂ©nĂ©ration

    Seasonality and nutrient-uptake capacity of Sargassum spp. in Western Australia

    Get PDF
    The eight-band high resolution multispectral WorldView-2 satellite imagery demonstrated potential for mapping and monitoring Sargassum spp. beds and other associated coastal marine habitats around Rottnest Island and Point Peron. Sargassum spp. in Western Australian coast showed seasonal changes in canopy cover and mean thallus length which are also significantly influenced by the nutrient concentrations. This study documented the life cycle of Sargassum spinuligerum and successfully cultivated the species for the first time in Western Australia

    Ecological monitoring of semi-natural grasslands : statistical analysis of dense satellite image time series with high spatial resolution

    Get PDF
    Grasslands are a significant source of biodiversity in farmed landscapes that is important to monitor. New generation satellites such as Sentinel-2 offer new opportunities for grassland’s monitoring thanks to their combined high spatial and temporal resolutions. Conversely, the new type of data provided by these sensors involves big data and high dimensional issues because of the increasing number of pixels to process and the large number of spectro-temporal variables. This thesis explores the potential of the new generation satellites to monitor biodiversity and factors that influence biodiversity in semi-natural grasslands. Tools suitable for the statistical analysis of grasslands using dense satellite image time series (SITS) with high spatial resolution are provided. First, we show that the spectro-temporal response of grasslands is characterized by its variability within and among the grasslands. Then, for the statistical analysis, grasslands are modeled at the object level to be consistent with ecological models that represent grasslands at the field scale. We propose to model the distribution of pixels in a grassland by a Gaussian distribution. Following this modeling, similarity measures between two Gaussian distributions robust to the high dimension are developed for the lassification of grasslands using dense SITS: the High-Dimensional Kullback-Leibler Divergence and the -Gaussian Mean Kernel. The latter outperforms conventional methods used with Support Vector Machines for the classification of grasslands according to their management practices and to their age. Finally, indicators of grassland biodiversity issued from dense SITS are proposed through spectro-temporal heterogeneity measures derived from the unsupervised clustering of grasslands. Their correlation with the Shannon index is significant but low. The results suggest that the spectro-temporal variations measured from SITS at a spatial resolution of 10 meters covering the period when the practices occur are more related to the intensity of management practices than to the species diversity. Therefore, although the spatial and spectral properties of Sentinel-2 seem limited to assess the species diversity in grasslands directly, this satellite should make possible the continuous monitoring of factors influencing biodiversity in grasslands. In this thesis, we provided methods that account for the heterogeneity within grasslands and enable the use of all the spectral and temporal information provided by new generation satellites
    corecore