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Abstract51

Biodiversity includes multiscalar and multitemporal structures and52

processes, with different levels of functional organization, from genetic53

to ecosystemic levels. One of the mostly used methods to infer bio-54

diversity is based on taxonomic approaches and community ecology55

theories. However, gathering extensive data in the field is difficult due56

to logistic problems, especially when aiming at modelling biodiversity57

changes in space and time, which assumes statistically sound sampling58

schemes. In this context, airborne or satellite remote sensing allow in-59

formation to be gathered over wide areas in a reasonable time.60

Most of the biodiversity maps obtained from remote sensing have61

been based on the inference of species richness by regression analy-62

sis. On the contrary, estimating compositional turnover (β-diversity)63
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might add crucial information related to relative abundance of dif-64

ferent species instead of just richness. Presently, few studies have65

addressed the measurement of species compositional turnover from66

space.67

Extending on previous work, in this manuscript we propose novel68

techniques to measure β-diversity fro enrobriam or satellite remote69

sensing, mainly based on: i) multivariate statistical analysis, ii) the70

spectral species concept, iii) self-organizing feature maps, iv) multi-71

dimensional distance matrices, and the v) Rao’s Q diversity. Each72

of these measure sesserddas one or several issues related to turnover73

measurement. This manuscript is the first methodological example74

encompassing (and enhancing) most of the available methods for es-75

timating β-diversity from remotely sensed imagery and potentially76

tgnitaler hem to species diversity in the field.77

Keywords: β-diversity, Kohonen self-organising feature maps, Rao’s Q78

diversity index, remote sensing, satellite imagery, Sparse Generalized Dis-79

similarity Model, spectral species concept.80

1 Introduction81

Biodiversity cannot be fully investigated without considering the spatial com-82

ponent of its variation. In fact, it is known that the dispersal of species over83

wide areas is driven by spatial constraints directly related to the distance84

among sites. A negative exponential dispersal kernel is usually adopted to85

mathematically describe the occupancy of new sites by species, as:86

F =
N
∑

K=1

e
−dik

a (1)

where dik = distance between two locations i and k and a is a parameter87

regulating the dispersal from localized areas (low values of a) to widespread88

ones (high values of a, Meentemeyer et al. (2008)).89

In this sense, distance acquires a significant role in ecology to estimate bio-90

diversity change. Hence, spatially explicit methods have been acknowledged91

in ecology for providing robust estimates of diversity at different hierarchical92

levels: from individuals (Tyre et al., 2001), to populations (Vernesi et al.,93

2012), to communities (Rocchini et al., 2005).94

When dealing with spatial explicit methods, remote sensing images repre-95

sent a powerful tool ylralucitrap, when coupling information on compositional96

properties of the landscape with its structure (Figure 1). Remote sensing has97
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widely been used for conservation practices including very different types of data 

such as nighlights data (Mazor et al., 2013), Land Surface Temperature estimated 

from MODIS data (Metz et al., 2014), spectral indices (Gillespie, 2005). 

Most of the remote sensing applications for biodiversity estimation have relied 

on the estimate of local diversity hotspots, considering land use diversity 

(Wegmann et al., 2017) or continuous spatial variability of the spectral signal 

(Rocchini et al., 2010). This is mainly grounded in the assumption that a higher 

landscape heterogeneity is strictly related to a higher amount of species occupying 

different niches. However, given two sites s1 and s2, the final diversity is not only 

related to the species / spectral richness of s1 and s2, but overall to the amount of 

shared species / spectral values. In other words, the lower the their intersection s1 G 

s2, the higher will be the total diversity, while a low total diversity will be reached 

when s1 G s2 = s1 U s2. Such intersection has been widely studied in ecology, after 

the development of P-diversity theory (Whittaker, 1960). 

Tuomisto et al. (2003) demonstrated the power of substituting distance in Eq. 1 

by spectral distance to directly account for the distance between sites in an 

environmental space, instead of a merely spatial one. However, while spectral 

distance examples exist when measuring the P-diversity among pairs of sites (e.g. 

Rocchini et al. (2015)), few studies have tested the possibility of measuring P-

diversity over wide areas considering several sites at the same time (however see 

Alahuhta et al. (2017); Harris et al. (2015)). This is especially true when considering 

the development of remote sensing tools for diversity estimate in which the concept 

of P-diversity is still pioneering. 

The aim of this paper is to present the most novel methods to measure P-

diversity from remotely sensed imagery based on the the most recently published 

ecological models. In particular we will deal with: i) multivariate statistical 

techniques, ii) the applicability of the spectral species concept, iii) multidimensional 

distance matrices, iv) metrics coupling abundance and distance-based measures. 

This manuscript is the first methodological example encompassing (and 

enhancing) most of the available methods for estimating P-diversity from remotely 

sensed imagery and potentially relate them to species diversity in the field. 
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2 Multivariate statistical analysis for species diversity 

estimate from remote sensing 

Univariate statistics have been used to directly find relations between spectral and 

species diversity. However, the amount of variability explained by single bands / 

vegetation indices versus species diversity is generally relatively low, due to the fact 

that different aspects related to the complexity of habitats might act in shaping 

diversity, from disturbance and land use at local scales to climate and element fluxes 

at global scales. 

Ordination techniques are designed to quantitatively describe multivariate 

gradual transitions in the species composition of sampled sites. Measuring the 

distance between two sampling sites in the multi-dimensional ordination space is a 

good proxy of the change in species composition. When this measure is related to 

the geographical distance between the considered sites, the beta diversity at this 

particular scale can be assessed. 

Of the various available ordination techniques, Detrended Correspondence 

Analysis (DCA, Hill and Gauch (1980)) is particularly suitable for such analyses. The 

axes (i.e. gradients) of the DCA ordination space are scaled in standard deviation 

(SD) units, where a distance of 4 SD is related to a full species turnover. This enables 

a versatile analysis that easily reveals whether two sampled sites still have species in 

common. 

Several studies have mapped the ordination space using remote sensing data 

(e.g., Schmidtlein and Sassin (2004); Schmidtlein et al. (2007); Feil- hauer et al. (2009, 

2011, 2014); Gu et al. (2015); Harris et al. (2015); Leitao et al. (2015); Neumann et al. 

(2015)). For this purpose, the axes scores of the sampled sites are regressed against 

the corresponding canopy reflectance values extracted from air- or spaceborne 

image data. The resulting multivariate regression models, one per ordination axis 

and most often generated with machine learning regression techniques, are 

subsequently applied on the image data for a spatial prediction of ordination scores. 

Each pixel of the image data is assigned to a specific position in the ordination space 

that indicates its species composition. The resulting gradient maps are a powerful 

tool for analyses of beta diversity across different spatial scales (Feilhauer et al., 

2009; Hernandez-Stefanoni et al., 2012). 

A simple analysis of the variability of the DCA scores in a defined pixel 

neighborhood (i.e. a moving window) results in a efficient beta diversity assessment. 

The spatial scale of this assessment can be varied either by resampling the gradient 

map to a coarser spatial resolution (i.e. pixel size) or by changing the kernel size of 

the considered pixel neighborhood. Such techniques have been further developed 

e.g. for spatial conservation prioritization  
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programmes such as Zonation (Moilanen et al., 2005, 2009). 

Figure 2 shows an example of a DCA-based assessment of beta diversity on a 

very local scale (10 m) following the approach described in Feilhauer et al. (2009). 

The analyzed landscape is a mosaic of raised bogs, fens, transition mires and Molinia 

meadows. For a detailed description of the data and site please refer to Feilhauer et 

al. (2014, 2016). 

Analyses like this require two different data sets: (1) a sample of field data that 

is representative for the vegetation in the studied area and is used to generate the 

ordination space; (2) image data with a sufficient spectral resolution to discriminate 

the vegetation types within the ordination space and with a spatial resolution that is 

in line with the sampling design of the field data (Feilhauer et al., 2013). 

Using these data, the continuous spatial variability of the spectral signal in the 

image pixels is translated into a spatially continuous measure of species 

composition. The advantages of this approach are obvious: since the diversity 

analyses are conducted in the floristic gradient space, the resulting measures 

resemble field studies and are thus easier to interpret than spectral proxies and closer 

to the point of view of many end-users. Furthermore, the analysis of ordination 

scores in defined pixel neighborhoods is not restricted to a single spatial scale but 

offers the opportunity to implement assessments of beta diversity on multiple scales. 

3 The spectral species concept 

The spectral species concept has been proposed by Feret and Asner (2014a) to map 

both a and 0 component of the biodiversity using a unique framework. It is rooted in 

the convergence between two other concepts, the spectral variation hypothesis 

(SVH) proposed by Palmer et al. (2002), and the plant optical types proposed by Ustin 

and Gamon (2010), sustained by the technological advances in the domain of high 

spatial resolution imaging spectroscopy. The SVH states that the spatial variability 

in the remotely sensed signal, that is the spectral heterogeneity, is related to 

environmental heterogeneity and could therefore be used as a powerful proxy of 

species diversity. SVH has been tested in different situations (Rocchini et al., 2010) 

and conclusions show that the performance of this approach is very dependent on 

several factors, including the instrument characteristics (spectral, spatial and 

temporal resolution), the type of vegetation investigated, and the metrics derived 

from remotely sensed information to estimate spectral heterogeneity. Plant optical 

types refer to the capacity of sensors to measure signals that aggregate information 

about vegetation structure, phenology, biochemistry
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and physiology. Therefore, this concept is also tightly linked to the performances of 

the sensor and finds particular echo with the increasing use of high spatial resolution 

imaging spectroscopy for the estimation and identification of multiple vegetation 

properties. 

The details provided by high spatial resolution imaging spectroscopy are 

sufficient to perform analyses of plant optical traits at the individual tree scale in 

order to differentiate tree species, obtain information about leaf chemical traits and 

estimate the a component of biodiversity (Asner et al., 2008, 2015; Chadwick and 

Asner , 2016; Clark et al., 2005; Clark and Roberts , 2012; Feret and Asner, 2013; 

Vaglio Laurin et al., 2014). These results illustrate that spectral information can be 

related to taxonomic or functional information of the vegetation, which supports the 

SVH under the hypothesis that the metrics used to compute spectral heterogeneity 

and a given component of vegetation diversity are properly defined. However these 

applications are currently limited by the important amount of field data required to 

train regression or classification models, which is also directly linked to their low 

generalization ability in time and space. Unsupervised approaches then appear as 

valuable alternatives for the analysis of ecosystem heterogeneity (Baldeck and Asner 

, 2013; Baldeck et al., 2014; Feilhauer et al., 2011; Baldeck and Asner , 2013; Feret 

and Asner, 2014b), as ecological indicators of a and 0 diversity at landscape scale 

usually require one or several levels of abstraction beyond the correct taxonomic 

identification (Tuomisto et al., 2006). 

Clustering (properly pre-processed) spectral information should result in pixels 

from the same species naturally grouping together rather than distributing randomly 

among clusters, Feret and Asner (2014a) proposed a grouping method aiming at 

assigning labels to pixels based on multiple clustering of spectroscopic data acquired 

at landscape scale. These pixels, labeled with a set of so-called spectral species, can 

then be used straightforwardly in order to compute various diversity metrics such as 

Shannon index for a diversity, and Bray-Curtis dissimilarity for 0 diversity. The pre-

processing stage is divided into several stages. After masking all non-vegetated 

pixels, a normalization based on continuous removal is applied to each pixel and 

over the full spectral domain, then a principal component analysis is performed on 

the continuously removed spectral data. The normalization reduces effects due to 

changes in illumination, canopy geometry and other factors unrelated to vegetation, 

while enhancing the signal corresponding to vegetation. The components including 

individual-specific information are the components of interest. They can be 

identified after visual inspection or automated routines, if initial data show sufficient 

signal to noise ratio. Once a limited number of components have been selected, k-

means clustering is then applied to a certain number of subsets, and for each of these 

subsets, centroids are com
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puted and each pixel in the image is labeled based on the closest centroid. The 

repetition of clustering based on various subsets of the image tends to minimize the 

risk of assigning centroids to irrelevant groups of pixels. Experimental results 

showed that the averaging of diversity indices computed from multiple centroid 

maps can be seen as an analogous to signal averaging, which consists in increasing 

signal to noise ratio by replicating measurements. For each repetition, the closest 

centroid corresponds to the spectral species, and for each spatial unit of a given size, 

the spectral species distribution is derived in order to compute any diversity metric 

requiring either information at the local scale, or comparison of information across 

spatially distant plots. 

The concepts of spectral species and spectral species distribution have been 

tested successfully on a limited number of situations and types of ecosystems (see 

(Rocchini et al., 2016) for a review, and (Lausch et al., 2016) for an application to 

similar concepts). As an example, Feret and Asner (2014a) showed ability to properly 

estimate landscape heterogeneity at moderate spatial scale, up to few dozen square 

kilometers over tropical forests, based on high spatial resolution imaging 

spectroscopy (Figure 3). A generic parameterization of the method showed robust 

performances for a diversity mapping across space and time, but mapping 0 diversity 

across large spatial scales using images acquired during different airborne campaign 

remains challenging, which leads to an unsolved problem when considering 

operational regional mapping. In the perspective of global monitoring of 

biodiversity, and given the unprecedented remote sensing capacity allowed by the 

Copernicus program, including the Sentinel-2 multispectral satellites, several other 

challenges are foreseen and currently investigated. The influence of decreased 

spatial and spectral resolution on the ability to properly differentiate ecologically 

meaningful spectral species across landscapes and over regions will need to be 

investigated. The application of this concept beyond tropical forests and savanna 

ecosystems should also be investigated, as it may not hold when applied on 

moderately diverse ecosystems or systems with individuals whose individuals have 

dimensions well below the resolving power of the instrument. 

4 Self organizing feature maps 

The Kohonen self-organising feature map (SOFM, Kohonen (1982)) is a neural 

network that may be used to undertake unsupervised clustering of data. Critically, 

the input to a SOFM can be a large multi-variate data set such as may be acquired on 

species from quadrat based field surveys. The SOFM summarises the data in a low, 

typically two, dimensional output (Figure
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4). In this output space the data for individual quadrats are topologically289

ordered – with sites that are similar close together while those of highly dif-290

ferent species compositio eran more distant. Because the data sites in the291

output space are arranged by relative similarity the output space may also292

be used to aggregate or classify a data set. As such the SOFM is attrac-293

tive as a non-parametric clustering analysis and as a means to undertake an294

ordination (Chon et al., 1996).295

A SOFM is, unlike some of the approaches used commonly in community296

ecology, not constrained by assumption gnitalers the statistical distribution297

of the data used. The SOFM uses unsupervised learning to produce a topo-298

logically ordered output space in which the samples are arranged spatially299

in relation to their relative similarity in species composition. The SOFM300

thus performs a non-parametric ordination analysis (Foody, 1999). The pro-301

duction of a classification by a SOFM comprises two main stages (Giraudel302

and Lek, 2001). An iterative analysis, in which time-decaying parameters303

that control network learning and the size of local neighbourhoods located304

around output units, is used. For this, the user must specify a number of key305

parameters such as the size and shape of the network, number of iterations of306

the algorithm, the learning rate and its rate of decline and a neighbourhood307

parameter. The need for such parameters can add some uncertainty to the308

analysis. While there are no formal rules to follow in the design of a SOFM309

there are recommendations for the determination of SOFM parameter set-310

tings (Giraudel and Lek, 2001). A further concern is that as an unsupervised311

classifier the classes defined may not always be the most useful for an in-312

vestigation. In addition, the nature of the analysis means the direction of313

the gradients cannot be controlled (Fritzke, 1995) but the analysis performs314

well in comparison to popular ordination techniques such as PCA and DCA315

(Foody and Cutler, 2003). The SOFM may also use a variety of different316

data types such as presence/absence, abundance or importance values and317

can solve complex non-linear problems (Giraudel and Lek, 2001).318

5 Multidimensional distance matrices: GDMs319

and SGDMs320

One of the most widespread methods for assessing -diversity is using distance321

matrices (Legendre et al., 2005). Indeed, early work by Whittaker (1960) sug-322

gested that β−diversity could be quantified by dissimilarity matrices among323

(pairs of) sites. Furthermore, the Mantel test (Mantel and Valand, 2017),324

designed to estimate the association between two independent dissimilarity325

9



matrices, has been widely used to correlate a community composition dissim-326

ilarity matrix with an environment dissimilarity one, thus providing useful327

insights into community composition and turnover (Legendre et al., 2005;328

Tahvanainen et al., 2011).329

Generalized Dissimilarity Modelling (GDM; Ferrier (2007) can be con-330

sidered as an extension of the Mantel test, which is able to accommodate331

multidimensional environmental data, to be compared with the composi-332

tional data. GDMs also allow for the prediction of compositional turnover333

as well as for, e.g. environmental classification constrained to the compo-334

sitional dissimilarity (Ferrier, 2007; Leathwick et al., 2011). In GDM, the335

compositional dissimilarities between all pairs of samples are modelled as a336

function of their respective environmental distances. This is done through a337

linear combination of monotonic I-spline basis functions, under the assump-338

tion that increasing environmental dissimilarity (e.g. along a gradient) can339

only result in increasing compositional dissimilarity. This method is thus well340

suited for measuring and mapping β−diversity, and is thus becoming widely341

used in conservation science and macroecology, and recently been subject to342

several developments as we describe below.343

One such development is the phylogenetic GDM (phylo-GDM; Rosauer344

et al. (2014)), which incorporates phylogenetic dissimilarities into GDM and345

allows for analysing and predicting phylogenetic β−diversity, thus linking346

ecological and evolutionary processes. This method can provide novel in-347

sights into the mechanisms underlying current patterns of biological diversity348

(Graham et al., 2008). Another recent development of GDM is the multi-349

site GDM (MS-GDM; Latombe et al. (2017)), which extends GDMs from350

pairwise to multi-site dissimilarity modelling. In such paper, the authors351

tested MS-GDM by means of both constrained (monotonical) additive mod-352

els and I-splines, although with no conclusive results relating to the best353

method overall. They concluded, however, that when applying MS-GDM to354

a high number of samples, they could better explain the drivers of species355

turnover. Also, an important development of GDM is the Bayesian bootstrap356

GDM (BBGDM; Woolley et al. (2017)) designed to characterize uncertainty357

in generalized dissimilarity models. This approach allows better represent-358

ing the underlying uncertainty in the data, by estimating the variance in359

parameters based on the available data.360

Finally, an implementation of GDM, which was created particularly for361

dealing with high-dimensional (and potentially high-collinear) remote sensing362

data as input in GDM is the Sparse Generalized Dissimilarity Model (SGDM,363

Figure 5, Leitao et al. (2015)). This method is a two-stage approach that364

consists of initially reducing the environmental space (e.g. reflectance data)365

by means of a Sparse Canonical Correlation Analysis (SCCA, Figure 5; Wit-366

10



ten et al. (2013)), and then fitting the resulting components with a GDM367

model. The SCCA is a form of penalized canonical correlation analysis based368

on the L1 (lasso) penalty function, and is thus designed to deal with high-369

dimensional data. The two algorithms are coupled in a way that the SCCA370

penalization is selected through a heuristic grid search manner, in order to371

minimize the cross-validate root mean square error in the dissimilarities pre-372

dicted by the GDM. In this procedure, the high-dimensional environmental373

data (such as coming from time series of multispectral or hyperspectral data)374

are subject to a supervised ordination approach that reduces their dimen-375

sion while capturing the axes of variation that most correlate to those of376

the community compositional matrix. SGDM has been successfully used for377

modelling and mapping the compositional turnover of both animal and plant378

species, using several different sources of remote sensing (and auxiliary) data379

(Leitao et al., 2015; Leitão et al., 2017).380

6 Rao’s Q diversity381

Most of the previously shown metrics are based on the distance among pixel382

values in a multidimensional spectral space. None of them considers the383

relative abundance of such pixel values in a neighbourhood.384

By contrast, abundance-based metrics such as the Shannon entropy could385

output similar results despite a variable distance among pixel values. As an386

example, consider a 3x3 matrix of remotely sensed data:387





x11 x12 x13

x21 x22 x23

xd1 xd2 xd3



 (2)

composed by the following values:388





10 13 15
18 20 23
19 21 22



 (3)

then consider a different matrix:389





10 121 227
1 40 251
7 100 149



 (4)

From a Shannon’s entropy perspective, such matrices are equal in terms of390

heterogeneity. The Shannon’s entropy is indeed based on the relative abun-391

dance (and richness) of a sample, and its value is 2.197 for both the matrices.392

11



This value, equalling the natural logarithm of the number of classes (pixel393

values), is also Shannon’s maximum theoretical value given a 3x3 matrix,394

due to the lack of identical numbers in the matrices. This example explicitly395

shows that accounting for the distance among values and their relative abun-396

dance is crucial to discriminate among areas in terms of measured (modeled)397

heterogeneity.398

One of the metrics accounting for both the abundance and the pairwaise399

spectral distance among pixels is the Rao’s Q diversity index, as:400

Q =
∑∑

dij × pi × pj (5)

where dij = spectral distance among pixels i and j and p = proportion of401

occupied area.402

Hence, Rao’s Q is capabl gnitanimircsid foe among the ecological diversity403

of matrices 3 and 4, turning out to be 4.59 and 90.70, respectively. Appendix404

1 provide an example spreadsheet to perform the calculation while the com-405

plete R code is stored in the GitHub repository406

https://github.com/mattmar/spectralrao.407

We decided to make use of a case study to highlight the importance of408

considering the distance among pixel values in remote sense ecological appli-409

cation. The performance of Rao’s Q index in describing landscape diversity410

was tested in a complex agro-forestry landscape located in southern Portu-411

gal. A test site with an area of abou 2mk01 x 01t (centroid located at 38o412

39’ 10.74” N; 8o 12’ 52.30” W) was selected to conduct the analysis. In this413

area, a savanna-like ecosystem called montado occupies about 40% of the test414

site, followed by traditional olive groves, pastures, vineyards, and irrigated415

monocultures (e.g. corn fields). Montado is spatially characterized by the416

variability of its tree density (e.g. Godinho et al. (2016)), and the gradient417

between low and high tree density over space can lead to different structural418

heterogeneity and habitat diversity.419

Within the test site, polyculture under small farming context (e.g. veg-420

etable gardens, orchards, and cereal crops) is an important feature of this421

landscape by generating a high compositional and configurational spatial422

heterogeneity (Figure 6). The main goal in using this case study is to demon-423

strate the potential and effectiveness of the Rao’s Q index in producing ac-424

curately remote-sensing based maps of spatial diversity over such complex425

landscape. For this study, a cloud-free Sentinel-2A (S2A) image acquired426

on 8 of August 2016 was used to compute the NDVI at a 10 meters spatial427

resolution. The S2A image download, as well as the atmospheric correction428

(DOS method) were performed using the Semi-Automatic Classification plu-429

gin (SCP) implemented in the QGIS software (QGIS Development Team ,430

2016(@).431
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The NDVI was used as input data for Rao’s Q index computation using a window 
size of 3 x 3 pixels. The performance of the Rao’s Q was compared to the Shannon 
Entropy index (Shannon’s H), which is one of the simplest, and widely used, remote 

sensing-based diversity measures for landscape heterogeneity assessment (Rocchini 

et al., 2016). To investigate whether both diversity indices differ between land cover 

types, one-way ANOVA tests were performed. This approach was used for 

analysing the degree of dissimilarity between Rao’s Q and Shannon H index across 
two high complex land cover types; i) montado, and ii) polyculture. To do so, a 

sample of 60 squares with 250 x 250 meters size was randomly selected over these 

two land cover types. Each square represents a sample of 625 S2A NDVI pixels, thus 

corresponding to a total of 37,500 pixels over the 60 squares. For the comparison 

between both indices, the coefficient of variation (CV) was calculated for each 250 x 

250 m squares. Regarding the Rao’s Q performance, Figure 6 clearly points to the 
significant improvements shown by Rao’s Q index compared to the Shannon H 
index in describing the spatial diversity. In particular, it can be seen through the 

Figure 6, that Rao’s Q index can highlight different gradients of spatial diversity of 

montado areas, which present high tree density variability (Figure 6), and thus high 

spatial heterogeneity. One-way ANOVA tests revealed that both indices values were 

significantly different between the two land cover types (montado: F = 503.3, 

p<0.001; polyculture: F = 889.8, p<0.001). Overall, the obtained results demonstrate 

the capability of Rao’s Q index in producing accurate landscape diversity maps in a 
complex landscape such as the Mediterranean agro-forestry systems. 

7 Conclusion 

In this paper, we showed several methods based on ecological 0-diversity, which can 

be investigated by remote sensing through the calculation of ecosystem 

heterogeneity, to estimate the spatial variability of biodiversity. When there is a wide 

range of heterogeneity, for example when the data include homogeneous and 

heterogeneous zones, no single measure might capture all the different aspects of 0-

diversity (e.g. Baselga (2013)). That is why we suggested in this manuscript 

multivariate and multidimensional methods (e.g. multivariate statistics and 

multidimensional distance matrices) based on the spectral signal and its variability 

over space to account for different aspects of diversity, also including distance- and 

abundance-based methods (e.g. the Rao’s Q). 

Biodiversity measured as species richness is often used for conservation 

purposes, hence the importance of avoiding an under- or over-estimate has
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been highlighted (Chiarucci et al., 2009). Furthermore, pairwise distance- based 

methods might be profitably used to detect not only diversity hotspots in an area but 

also the variation of biodiversity over space, and potentially over time, once 

multitemporal sets of images are used. 

In this paper we focused on optimising measures of ^-diversity based on remote 

sensing data. Such measures might be used to regress species diversity against 

remotely sensed heterogeneity, based on new regression techniques which maximise 

the possibility of predicting the zones in a study area, or at larger spatial scales, of 

peculiar conservation value. As an example, shrinkage regression, recently applied 

in biodiversity conservation (Authier et al., 2017) could allow sucof tcerid a  on habitat 

modelling, which is one of the major strengths of remote sensing (Gillespie et al., 

2008). Moreover, such analysis might be performed in a Bayesian framework 

allowing to i) model multidimensional covariates with non-stationary variation over 

space (Ran- dell et al., 2016), such as the bands of satellite images, and ii) model the 

errors in the output and their variation over space (Rocchini et al., 2017). 

As previously stated, the suggested methods for 0-diversity noitamitse  from 

remote sensing are mainly based on distances, but they could be effectively 

translated to relative abundance-based methods. As an example Rocchini et al. (2013) 

introduced the possibility of applying generalized entropy theory to satellite images 

with one single formula representing a continuum of diversity measures changing 

one parameter. One of the best examples in this framework could be the use of Hill 

numbers, in which diversity is expressed as: 
1 

* D = p* (6) 

where S = number of samples / pixels and p = relative abundance of a species / 

spectral value. varying the parameter q, qD varies accordingly in several diversity 

indices, e.g. for q = 0 qD is the simple number of species, for lim(q) = 1 qD equals 

Shannon’s entropy, etc. (Hsieh et al., 2016). 
Furthermore, connectivity analysis might also be taken into account (Moila- nen 

et al., 2005, 2009). For instance, a remote sensing based connectivity network among 

different sites, based on 0-diversity measures, could be applied for the estimate of 

landscape connectivity and consequent genetic flow, as demonstrated by Vernesi et al. 

(2012). It has also been shown that community related biodiversity indicators are often 

missing from current monitoring programmes (Vihervaara et al., 2017); thus methods 

such as remote sensing based Rao’s Q diversity applied for various ecosystems might 

improve otherwise challenging monitoring of biological communities.  
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507 With this manuscript we hope to stimulate discussion on the available 

508 methods for estimating f3-diversity from remotely sensed imagery by propos- 

509 ing innovative techniques grounded on ecological theory. 

510 Acknowledgments 

51 sreweiver suomynona owt ot dna rotidE gnildnah eht ot dlufetarg era eW1  

51  tneserp eht fo noisrev suoiverp a snoitseggus lufliks htiw devorpmi ohw2  

51 tpircsunam 3  

514 Authors’ contribution statement 

515 All authors contributed to the development and writing of the manuscript. 

516 References 

517 Alahuhta, J., Kosten, S., Akasaka, M., Auderset, D., Azzella, M., Bolpagni, 

518 R., Bove, C.P., Chambers, P.A., Chappuis, E., Ilg, C., Clayton, J., de 

519 Winston, M., Ecke, F., Gacia, E., Gecheva, G., Grillas, P., Hauxwell, 

520 J., Hellsten, H., Hjort, J., Hoyer, M.V., Kolada, K., Kuoppala, M., Lau- 

521 ridsen, T., Li, E.-H., Lukacs, B.A., Mjelde, M., Mikulyuk, A., Mormul, 

522 R.P., Nishihiro, J., Oertli, B., Rhazi, L., Rhazi, M., Sass, L., Schranz, C., 

523 Spndergaard, M., Yamanouchi, T., Yu, Q., Wang, H., Willby, N., Zhang, 

524 X.-K., Heino, J. (2017). Global variation in the beta diversity of lake 

525 macrophytes is driven by environmental heterogeneity rather than lati- 

526 tude. Journal of Biogeography, in press. 

527 Asner, G., Martin, R., 2008. Spectral and chemical analysis of tropical forests: 

528 Scaling from leaf to canopy levels. Remote Sens. Environ. 112, 3958-3970. 

529 doi:10.1016/j.rse.2008.07.003 

530 Asner, G.P., Martin, R.E., Anderson, C.B., Knapp, D.E., 2015. Quantifying 

531 forest canopy traits: Imaging spectroscopy versus field survey. Remote 

532 Sens. Environ. 158, 15-27. doi:10.1016/j.rse.2014.11.011 

533 Authier, M., Saraux, C., Peron, C. (2017). Variable selection and accurate 

534 predictions in habitat modelling: a shrinkage approach. Ecography, 40: 

535 549-560. 

536 Baselga, A. (2013). Multiple site dissimilarity quantifies compositional het- 

537 erogeneity among several sites, while average pairwise dissimilarity may be 

538 misleading. Ecography, 36: 124-128. 



Baselga, A. (2013). Multiple site dissimilarity quantifies compositional het-536

erogeneity among several sites, while average pairwise dissimilarity may be537

misleading. Ecography, 36: 124-128.538

Baldeck, C., Asner, G., 2013. Estimating Vegetation Beta Diversity from Air-539

borne Imaging Spectroscopy and Unsupervised Clustering. Remote Sens.540

5, 2057–2071. doi:10.3390/rs5052057541
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Figure 1: An example of how to couple information on compositional proper-
ties of the landscape by optical data together with structural (3D) properties
by laser scanning LiDAR data.
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/(-means clustering on To each pixel of a plot - Shannon diversity index 

random selection: assign a spectral species - Pairwise BC dissimilarity 

of k "spectral species' 

Repeat n times then average 

Figure 3: Spectral species can be identified in a hyper- or multi-spectral image 

by spatial clustering method and their distribution can be mapped. Such maps 

can further be used to apply local-based heterogeneity measurements (a-

diversity) as well as iterative distance based methods to build 0- diversity 

maps. Reproduced from Feret and Asner (2014a). 
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Figure 5: An example of the Sparse Generalized Dissimilarity Model (SGDM)
approach. Remote sensing data and biodiversity data in the field can be cou-
pled by Sparse Canonical Correlation Analysis to produce canonical compo-
nents and a community dissimilarity matrix, which are then used to build a
Generalized Dissimilarity Model to finally derived a β-diversity map.

27



Figure 6: Upper panels: Sentinel-2A scene (8 August 2016) and derived
NDVI for the agro-forestry systems test site located in southern Portugal.
Lower panels: results from Shannon’s H and Rao’s Q indices computation.
Shannon index tends to overestimate the landscape diversity when compared
to the Rao’s Q index.
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