177 research outputs found

    Structuring and composability issues in Petri nets modeling

    Get PDF
    Along Petri nets' history, numerous approaches have been proposed that try to manage model size through the introduction of structuring mechanisms allowing hierarchical representations and model composability. This paper proposes a classification system for Petri nets' structuring mechanisms and discusses each one of them. These include node fusion, node vectors, high-level nets, and object-oriented inspired Petri nets extensions, among others. One running example is used emphasizing the application of the presented mechanisms to specific areas, namely to automation systems modeling, and software engineering, where object-oriented modeling plays a major role

    From types to type requirements: Genericity for model-driven engineering

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-011-0221-0Model-driven engineering (MDE) is a software engineering paradigm that proposes an active use of models during the development process. This paradigm is inherently type-centric, in the sense that models and their manipulation are defined over the types of specific meta-models. This fact hinders the reuse of existing MDE artefacts with other meta-models in new contexts, even if all these meta-models share common characteristics. To increase the reuse opportunities of MDE artefacts, we propose a paradigm shift from type-centric to requirement-centric specifications by bringing genericity into models, meta-models and model management operations. For this purpose, we introduce so-called concepts gathering structural and behavioural requirements for models and meta-models. In this way, model management operations are defined over concepts, enabling the application of the operations to any meta-model satisfying the requirements imposed by the concept. Model templates rely on concepts to define suitable interfaces, hence enabling the definition of reusable model components. Finally, similar to mixin layers, templates can be defined at the meta-model level as well, to define languages in a modular way, as well as layers of functionality to be plugged-in into other meta-models. These ideas have been implemented in MetaDepth, a multi-level meta-modelling tool that integrates action languages from the Epsilon family for model management and code generation.This work has been sponsored by the Spanish Ministry of Science and Innovation with projects METEORIC (TIN2008-02081) and Go Lite (TIN2011-24139), and by the R&D program of the Community of Madrid with project “e-Madrid” (S2009/TIC-1650)

    Petri net model decomposition - a model based approach supporting distributed execution

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Engenharia ElectrotĂ©cnica, Especialidade de Sistemas Digitais, pela Universidade Nova de Lisboa, Faculdade de CiĂȘncias e TecnologiaModel-based systems development has contributed to reducing the enormous difference between the continuous increase of systems complexity and the improvement of methods and methodologies available to support systems development. The choice of the modeling formalism is an important factor for success-fully increasing productivity. Petri nets proved to be a suitable candidate for being chosen as a system specification language due to their natural support of modeling processes with concurrency, synchronization and resource sharing, as well as the mechanisms of composition and decomposition. Also having a formal representation reinforces the choice, given that the use of verification tools is fundamental for complex systems development. This work proposes a method for partitioning Petri net models into concurrent sub-models, supporting their distributed implementation. The IOPT class (Input-Output Place Transition) is used as a reference class. It is extended by directed synchronous communication channels, enabling the com- munication between the generated sub-models. Three rules are proposed to perform the partition, and restrictions of the proposed partition method are identified. It is possible to directly compose models which result from the partitioning operation, through an operation of model addition. This allows the re-use of previously obtained models, as well as the easy modification of the intended system functionalities. The algorithms associated with the implementation of the partition operation are presented, as well as its rules and other procedures. The proposed methods are validated through several case studies emphasizing control components of automation systems

    Feature interaction in composed systems. Proceedings. ECOOP 2001 Workshop #08 in association with the 15th European Conference on Object-Oriented Programming, Budapest, Hungary, June 18-22, 2001

    Get PDF
    Feature interaction is nothing new and not limited to computer science. The problem of undesirable feature interaction (feature interaction problem) has already been investigated in the telecommunication domain. Our goal is the investigation of feature interaction in componet-based systems beyond telecommunication. This Technical Report embraces all position papers accepted at the ECOOP 2001 workshop no. 08 on "Feature Interaction in Composed Systems". The workshop was held on June 18, 2001 at Budapest, Hungary

    FLACOS’08 Workshop proceedings

    Get PDF
    The 2nd Workshop on Formal Languages and Analysis of Contract-Oriented Software (FLACOS’08) is held in Malta. The aim of the workshop is to bring together researchers and practitioners working on language-based solutions to contract-oriented software development. The workshop is partially funded by the Nordunet3 project “COSoDIS” (Contract-Oriented Software Development for Internet Services) and it attracted 25 participants. The program consists of 4 regular papers and 10 invited participant presentations

    Executable system architecting using systems modeling language in conjunction with Colored Petri Nets - a demonstration using the GEOSS network centric system

    Get PDF
    Models and simulation furnish abstractions to manage complexities allowing engineers to visualize the proposed system and to analyze and validate system behavior before constructing it. Unified Modeling Language (UML) and its systems engineering extension, Systems Modeling Language (SysML), provide a rich set of diagrams for systems specification. However, the lack of executable semantics of such notations limits the capability of analyzing and verifying defined specifications. This research has developed an executable system architecting framework based on SysML-CPN transformation, which introduces dynamic model analysis into SysML modeling by mapping SysML notations to Colored Petri Net (CPN), a graphical language for system design, specification, simulation, and verification. A graphic user interface was also integrated into the CPN model to enhance the model-based simulation. A set of methodologies has been developed to achieve this framework. The aim is to investigate system wide properties of the proposed system, which in turn provides a basis for system reconfiguration --Abstract, page iii
    • 

    corecore