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Abstract

Model-based systems development has contributed to reducing the enormous
difference between the continuous increase of systems complexity and the
improvement of methods and methodologies available to support systems
development.

The choice of the modeling formalism is an important factor for success-
fully increasing productivity. Petri nets proved to be a suitable candidate
for being chosen as a system specification language due to their natural sup-
port of modeling processes with concurrency, synchronization and resource
sharing, as well as the mechanisms of composition and decomposition. Also
having a formal representation reinforces the choice, given that the use of
verification tools is fundamental for complex systems development.

This work proposes a method for partitioning Petri net models into con-
current sub-models, supporting their distributed implementation. The IOPT
class (Input-Output Place-Transition) is used as a reference class. It is ex-
tended by directed synchronous communication channels, enabling the com-
munication between the generated sub-models. Three rules are proposed to
perform the partition, and restrictions of the proposed partition method are
identified.

It is possible to directly compose models which result from the parti-
tioning operation, through an operation of model addition. This allows the
re-use of previously obtained models, as well as the easy modification of the
intended system functionalities.

The algorithms associated with the implementation of the partition oper-
ation are presented, as well as its rules and other procedures. The proposed
methods are validated through several case studies emphasizing control com-
ponents of automation systems.
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Resumo

O desenvolvimento de sistemas baseados em modelos tem vindo a contribuir
para reduzir a enorme diferenca entre o aumento continuado observado na
complexidade dos sistemas e os melhoramentos dos métodos e metodologias
disponiveis para suportar o seu desenvolvimento.

A escolha do formalismo de modelacao é um factor importante para o
sucesso do aumento da produtividade. As redes de Petri (RdP) mostraram-
se como sendo um candidato adequado para ser escolhido como linguagem
de especificacao de sistema devido ao suporte natural a mecanismos de mod-
elacao de concorréncia, sincronizacao e partilha de recursos, bem como a
mecanismos de composicao e decomposicao. Também o facto de ter uma
representacao formal reforca a escolha, dado permitir o recurso a ferramen-
tas de verificacao, fundamentais para encarar o desenvolvimento de sistemas
complexos.

Este trabalho propoe um método de particao de modelos de RAP em sub-
modelos concorrentes, permitindo suportar a sua execucao distribuida. Como
classe de referéncia utiliza-se a classe IOPT (Input-Output Place-Transition),
a qual se adicionaram canais de comunicacao sincrono direccionados, per-
mitindo a comunicagao entre os sub-modelos gerados. Sao propostas trés re-
gras para realizar a partigao, bem como identificadas as restri¢oes ao método
de particao proposto.

E possivel realizar a composicao directa de modelos resultantes da operagao
de particao através de uma operacao de adicao de modelos, permitindo re-
utilizar moédulos obtidos previamente, bem como alterar facilmente as fun-
cionalidades pretendidas para o sistema.

Sao apresentados os algoritmos associados a implementagao da operagao
de particao, das suas regras e demais procedimentos. Os métodos propostos
foram validados através de varios casos de estudo dando énfase a componente
de controlo de sistemas de automacao.
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Chapter 1. Introduction

1.1 Embedded Systems

Embedded systems constitute a very wide class of systems. There is no formal
definition for them. However, in the literature, several definitions are avail-
able, most of them defining embedded systems in terms of what they are not
and giving examples of how the term is used. For example in [Hea02], “An
embedded system is a microprocessor-based system that is built to control a
function or range of functions and is not designed to be programmed by the
end user in the same way that a PC is.” In the embedded system glossary
[Bar99, Bar09] we can find the following definition for embedded system: “A
combination of computer hardware and software, and perhaps additional me-
chanical or other parts, designed to perform a dedicated function.” In some
cases, embedded systems are part of a larger system or product, as in the
case of an antilock braking system in a car.

Based on the above cited descriptions, it is possible to say that an embed-
ded system is a part of a more complex system in which it is physically in-
corporated, as its designation suggests. Embedded systems are usually built
to control a given physical environment, composed of some electrical and/or
electronic devices with which the embedded system has direct interaction,
and mechanical equipment with which it has indirect interaction. Thus, to
guarantee the interaction with the environment, there are several sensors and
actuators included in the system [GF09]. Practically, all electronic devices
we use in daily live can be considered as embedded systems; for example cell
phones, microwaves, washing machines etc. The following characteristics are
generally considered as the most important for an embedded system:

e An embedded system is usually developed to support a specific function
for a given application.

e Embedded systems are expected to work continuously; they must op-
erate while the bigger system is also operating.

e An embedded system should keep a permanent interaction with the
environment in which it is inserted. This means that it has to respond
to different stimuli, whose order and timing is unpredictable.

e Embedded systems need to be correctly specified and developed, since
they typically accomplish tasks that are critical, both in terms of re-
liability and safety. A unique error may represent severe losses, either
financial or, even worse, in terms of human lives.

4



1.1. Embedded Systems

In [Cos03] embedded system is characterized as reactive system with ca-
pability for real-time data processing.

Over the last decades of the 20th century the semiconductor technol-
ogy has been continuously growing and technology was improved. This im-
provement at chip level has made it possible to implement more and more
functionalities on one chip, which in turn caused an increase of the system
complexities at an almost exponential rate. Therefore, the traditional devel-
opment of embedded system design or just system design, where the systems
were designed directly at hardware or software low level, is no more feasible.
This leads us to what is usually called the productivity gap generated by
the disparity between the rapid increase of design complexity in comparison
to that of design productivity. One solution to this problem is to raise the
level of abstraction within the systems design process. For this reason the
Computer Aided Design (CAD) tools play a very important role. Some of
the most important features of a specification language which can be used
for embedded systems design with a CAD tool include the following [Hea02]:

e Hierarchy (behavioral and structural);
e State oriented behavior;

e Event-handling;

e Concurrency;

e Synchronization and communication;
e FExecutability;

e Readability;

e Portability and flexibility;

e Appropriate model of computation.

It is difficult to find any formal language which is capable of meeting all these
requirements.

Considering a network of heterogeneous components which interact non-
linearly and exhibit a collective behavior as a complex system, and taking
into account the above mentioned characteristics of embedded systems, we
can assume that embedded systems are complex systems.
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Figure 1.1: From models to code through model partitioning and mapping.

1.2 Motivation

As embedded systems are complex systems, the use of models for system
analysis and system specification can facilitate the communication between
developer teams and other people who are involved in system development -
from the implementation and tester group to the end users.

It follows that using model based development in embedded systems de-
sign can contribute to reducing the productivity gap, because beside the
better communication between the several groups of people involved, it is
possible to use automatic code generators.

As embedded systems are composed of several components, there is a need
to decompose the system model. Figure 1.1 presents a generic overview of
the development of embedded systems using co-design techniques and relying
on a model based approach. Three major phases are identified:



1.2. Motivation

e The first phase, which consists of defining the system model,

e The second phase, where a set of components is built. In terms of
Model Based Development, a component is also a model. The set of
components is obtained based on the partitioning of the initial model
into a set of concurrent sub-models;

e Finally, the third phase, where each component is mapped to a specific
implementation platform.

Several distinct modeling formalisms have already proved their adequacy for
embedded systems design supporting a model-based development approach
[GBCO05a]. Among them, we emphasize the use of control-based formalisms,
where state-based formalisms play a major role. These formalisms include
state diagrams, hierarchical and concurrent state diagrams, statecharts, se-
quence diagrams and Petri nets.

Speaking about embedded systems is necessary to emphasizes that those
systems are intrinsically composed by several components. Some of those
components are commercially available components, like IPs (Intellectual
Property) or libraries which the designer can use as a black box. Using
the above mentioned formalism, these components can be represented in
the system model as a node with several access points, which represent the
communication between the system and the component.

We argue that using Petri nets as system specification language brings
advantages within the embedded system development due to their strong
mathematical definition and well defined semantics. It is possible to define
automatic/semi-automatic model transformations to obtain models at differ-
ent levels of abstraction. Due to well defined semantics and mathematical
support, the model checking techniques can be used for verification purposes.

Focusing on the reactive part of the system in terms of control types,
there are two ways to model such systems: (i) representing the behavior of
the system as one module only, or (ii) building a model of the controller
for each component of the system. However, starting to model each compo-
nent separately without having the rest of the system in mind, those models
usually can not be considered as deployable controllers for the system com-
ponent. To find the component controllers it is convenient to have a global
system model and then decompose it into several components allowing exer-
cising different partitioning strategies, and finding better solutions in terms
of costs, performance, power consumption, or others. Moreover, having the

7
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>

Figure 1.2: The interaction between a sender and a receiver [BACP95].

global system model can bring benefits; it can, for instance, be used for
system property verification purposes.

Several methods to deal with Petri net decomposition are available in the
literature. However, most of them are based on introducing specific semantics
for the communication nodes. A simple example (from [BACP95]) illustrates
the interaction between a sender and a receiver, as presented in Figurel.2.
For this simple example, it is intuitive to consider two components, one as-
sociated with the sender, and the other one with the receiver. Places p, and
ps model the communication between the two components. Places ps and
ps should be included in the cutting set, allowing the splitting of the model.
For example the proposals by Bruno et al. [BACP95] led to a concurrent
application development environment, where the concept of objects supports
the implementation of components. In this proposal, the splitting of the ini-
tial net is accomplished through a set of places, and communication support
depends on a target operating system or communication infrastructure (for
instance, TCP could be used to support communication among objects). The
models to be executed in parallel are presented in Figure 1.3.

Communication among objects is supported by two special types of places:
output places and input places. Output places do not hold tokens, because
when a token is put into an output place, it is immediately delivered to the
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pl p6

2L J—Dp4 pAO—L i

p2
t3 ‘—©p5 p5 t5

p

Figure 1.3: The sender and the receiver modeled as objects [BACP95].

destination object. An output place is drawn as a circle with a triangle in-
scribed. Input places receive tokens from the other objects, and put them
into a queue for consumption. An input place is drawn as a double circle.
This means that it is necessary to consider special semantics for executing
the model and common verification methods are not applicable.

However, using transitions as interface nodes it is possible to avoid the
definition of specific semantics for the interface nodes. Taking into account
the presented example from [BACPO95] it is possible to obtain the solution
presented in Figure 1.4 (using the set of Rules presented in this thesis). It
has to be stressed that the model N of Figure 1.2 is behaviorally equivalent
to the models N,g and Npg of Figure 1.4 as long as the synchronous firing
of transitions 72 and t2m, and T5 and tom are guaranteed.

In practical terms, the splitting of the initial model into two components
is accomplished by considering P4 and P5 in the cutting set and relying on
the usage of transitions with synchronous channels. The input transitions of
the cutting place are duplicated in order to be included within both com-
ponents. Taking the cutting set node P4 as an example, the consequence
of the technique is the splitting of transition t2 at the initial model N into
two transitions T2 and t2m at the models Nys and Npg, linked through a
synchronous communication channel. As far as the firing of 72 and t2m will
be synchronized considering zero-delay time paradigm, the splitting of the
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t2m

;|T6

tbm

P8

Figure 1.4: Sender - Receiver connected through synchronous channels.

S5:4-»6 5r'Te 1: {}

11:8-»1srT1 1: {}

Figure 1.5: Space state graph of Sender - Receiver system models presented
in Figures 1.2 and 1.4.
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Figure 1.6: Respective marking of the states of Figure 1.5.
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Figure 1.7: Sender - Receiver connected through a communication node.

transition can be seen as a graphical convenience to identify components, as,
from the execution point of view, it is completely equivalent to the initial
model.

However, considering a distributed execution of the components, it means
that each of them is executed on a different platform where it is not possible
to use the same execution time domain (clock), and it is therefore necessary to
include a communication module between the components. This module can
be represented at a higher level as a Petri net place between the transitions
T2 and t2m, and TS5 and tom respectively, as shown in Figure 1.7.

To demonstrate that both models (the initial model and the model with
distributed execution) have the same behavior in terms of transitions fir-
ing and place marking, we analyze the space state graph of both models,
represented in Figures 1.5, 1.6, 1.8, and 1.9.

Considering firing only one transition in each execution step, the initial
system model has 9 different states, and model of the distributed system
has 13 states. Comparing those two graphs and the place markings, global
marking states with the same markings in both graphs are identified. For
instance, state 3 in the distributed system model has the same marking as

12
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Figure 1.8: Space state graph of the distributed Sender - Receiver system
model presented in Figure 1.7.

13



Chapter 1. Introduction

1.

sr_com'P11: 17 e
sr_com'P4 1: empty
sr_com'PS 1! empty
sr_com'P8 1: empty
sr_com'P7 1: empty
sr_com'P2 1: empty
sr_com'P3 1: empty
sr_com'P6 1 17 &
sr_com'C_5S 1: empty
sr_com'C_R 1: empty

2.
sr_com'P1 1:
sr_com'P4 1:
sr_com'P5S 1:
sr_com'P8 1:
sr_com'P7 1:
1:
1:

empty
empty
empty
empty
ampty
sr_com'P2 1 a
sr_com'P3 1: empty
sr_com'PE 1: 17 e
sr_com'C_S1:1° e
sr_com'C_R 1: empty

3
sr_com'P1 1:
sr_com'P4 1.
sr_com'P5S 1:
sr_com'P8 1:
sr_com'P7 1:
1.
1.

ampty
1l'e
empty
ampty
empty
sr_com'P21:1° e
sr_com'P3 1: empty
sr_com'P61: 17 e
sr_com'C_S 1: empty
sr_com'C_R 1: empty

4
sr_com'P1 1:
sr_com'P4 1:
sr_com'PS 1:
sr_com'P8
sr_com'P7
sr_com'P21: 17 e
sr_com'P3 1 empty
sr_com'P6 1: empty
sr_com'C_S 1: empty
sr_com'C_R 1: empty

ampty
empty
empty
1. empty
1.1 e

1
1

5
sr_com'P1 1:
sr_com'P4 1.
sr_com'P5 1:
sr_com'P8 1:
sr_com'P7 1:
1.
1.

empty
empty
empty
1" e
empty
sr_com'P21:1'e
sr_com'P3 1: empty
sr_com'P6E 1: empty
sr_com'C_S 1! empty
sr_com'C_R1:17e

5N
sr_com'P1 1:
sr_com'P4 1:
sr_com'P5S 1:
sr_com'P8
sr_com'P7
sr_com'P2
sr_com'P3 1: empty
sr_com'PéE 1: empty
sr_com'C_S 1 empty
sr_com'C_R 1. empty

empty
aempty
1 e
1 e
empty

1:
1:
1.1 e
1:

7.
sr_com'P1 1:
sr_com'P4 1:
sr_com'P5S 1:
sr_com'P8
sr_com'P7
sr_com'P2
sr_com'P3 1: empty
sr_com'Pe 1: 17 e
sr_com'C_5S 1: empty
sr_com'C_R1: 1 e

empty
empty
empty
empty
empty

1:
1:
1:.1°e
1.

8.

sr_com'P1 1:
sr_com'P4 1:
sr_com'P5S 1:
sr_com'P8
sr_com'P7
sr_com'P2
sr_com'P3 1: empty
sr_com'Pe 1 1°e
sr_com'C_5S 1: empty
sr_com'C_R 1: empty

empty
empty
l'e

empty
empty

1:
1:
1:.1°e
1.

Q.
sr_com'P1 1:
sr_com'P4 1:
sr_com'P5S 1:
sr_com'P8
sr_com'P7
sr_com'P2
sr_com'P3 1 1°e
sr_com'P6 1: empty
sr_com'C_5S 1: empty
sr_com'C_R 1: empty

empty
empty
empty
1" e

empty

1:
1:
1. empty
1.

10:
sr_com'P11:
sr_com'P4 1:
sr_com'P5S 1:
sr_com'P8 1:
sr_com'P7 1:
sr_com'P2 1:
srocom'P3 117 e
sr_com'Pe 11 e
sr_com'C_S 1: empty
sr_com'C_R 1: empty

empty
empty
empty
ampty
empty
empty

11:

sr_comPl1:1° e
sr_com'P4 1: empty
sr_com'PS 1! empty
sr_com'P8 1: 17 e
sr_com'P7 1: empty
sr_com'P2 1: empty
sr_com'P3 1: empty
sr_com'P& 1: empty
sr_com'C_S 1: empty
sr_com'C_R 1: empty

12:
sr_com'P1 1:
sr_com'P4 1:
sr_com'P5 1:
sr_com'P8 1:
sr_com'P7 1:
sr_com'P2 1:
sr_com'P3 1: empty
sr_com'P& 1: empty
sr_com'C_S1:1'e
sr_com'C_R 1: empty

ampty
ampty
ampty
1'e
ampty
1" e

13
sr_com'P1 1:
sr_com'P4 1:
sr_com'PS 1:
sr_com'P8 1:
sr_com'P7 1:
1.
1.

empty
l'e
ampty
1'e
empty
sr_com'P21:1° e
sr_com'P3 1: empty
sr_com'P6 1: empty
sr_com'C_S 1: empty
sr_com'C_R 1: empty

Figure 1.9: Respective marking of the states of Figure 1.8.
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state 2 in the initial system model, and state 13 has the same marking as
state 9 in the initial system.

In general, all global marking states of the initial model have a correspon-
dence with some marking state in the distributed model.

For the initial system model, the firing sequence for returning to the
initial state is the following: 72, T4, TS5 followed by T3, T6, T1 in any
possible order being T'1 fired after T'3. For the distributed model, the firing
sequence is: T2, t2m, T4, TS5 than tbm, T6, T3, T1 in any order being 7T'3
fired after thm, and T'1 fired after T'3. Observing these firing sequences, it
can be assumed that to obtain the initial marking, the partial order of the
firing sequence is the same in both cases.

1.3 Problem Statement

Considering the Petri net as a system specification language for embedded
systems development, and considering that there are several classes of Petri
nets, the questions are: which class of Petri nets is most suitable for embed-
ded system modeling, how to split the system model into components, and
how to reuse the obtained components for system modeling?

The answer for the first question was already given. Considering the re-
active part of the system, without data processing, the Petri nets class con-
sidered as the reference is the Input-Output Place-Transition (IOPT) Petri
net[GBCNO7] which was proposed in order to include the input and output
signals/events of the system into the model.

This thesis intends to answer the remaining questions, namely:

e How to split the global system model into components which can be
seen as independent system modules supporting distributed execution
of the initial model?

e How to extend the IOPT Petri net class in order to include the com-
munication between the sub-models?

e How to compose a system model using the “splitted” components?
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1.4 Objectives

The main objective of this work is to propose a method to be used for Petri
net model decomposition in order to obtain several sub-models which can be
executed as independent components. In particular, this thesis proposes a
net operation to be used within the IOPT Petri net class. Moreover the class
is extended with directed synchronous communication channels in order to
include an explicit way of communication between the resulting components
in the model.

Additionally, this thesis indicates how to use the resulting components
for model composition when the objective is to build a distributed system
where several components with the same behavior can be identified.

Most of the known Petri net decomposition methods are based on prop-
erty preservation and the communication between the obtained sub-models
is done using specific semantics as mentioned in the previous subsections.

Our objective is to avoid new definitions and usage of specific semantics
for communication between the sub-models. One goal is to benefit from
semantics associated to the input/output signals and events defined within
IOPT Petri nets. However, the questions of (1) solving conflict situations,
(2) synchronizing processes and (3) proving that the decomposed model has
the same behavior as the initial model, still remain.

Instead of focusing on the property preservation as the most of the other
decomposition methods do, our main drive is in the behavior preservation,
it means that the space state graph for both models (the initial and the
decomposed) should keep the same partial order traces.

1.5 Contribution

This thesis introduces a new Petri net operation, named Net Splitting,
that allows the splitting of a Petri net into several subnets. The resulting
components can be deployed into heterogeneous implementation platforms.
The communication between the components is represented through directed
synchronous communication channels. These channels are attached to tran-
sitions which can be seen as interface transitions. Also the algorithmic rep-
resentations of the splitting rules that were used for implementing a support
tool for the operation are provided.

The author of this thesis has co-authored numerous articles that were
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published during this work period. The article lists are organized in four
groups, according to their relation with the topic of this thesis. All articles
were published after being approved in a peer-reviewing process. All lists are
presented in reverse chronological order.

The articles in the following list present the direct results from the work
explained in this thesis, and were presented in international workshops and
conferences, mostly by the author of this thesis.

1.

[CBGT10] “Properties preservation in distributed execution of Petri
nets models”; Aniké Costa, Paulo Barbosa, Luis Gomes, Franklin Ra-
malho, Jorge Figueiredo, Antonio Junior; DoCEIS’10;

[CGO9] “Petri net partitioning using net splitting operation”; Anikd
Costa, Luis Gomes; INDIN’2009;

[CGO7c] “Petri net Splitting Operation within Embedded Systems Co-
design”; Aniké Costa, Luis Gomes; INDIN’2007;

[CGO07a] “Module Composition within Petri Nets Model-based Devel-
opment”; Aniké Costa, Luis Gomes; SIES’2007;

[CGOT7b] “Particao de redes de Petri integrada em metodologia de co-
design de sistemas embutidos”; Luis Gomes, Aniké Costa; REC’2007;

[GC06a] “Petri nets as supporting formalism within Embedded Systems
Co-design”; Luis Gomes, Aniké Costa, - STES’2006;

[CGO6] “Partitioning of Petri net models amenable for Distributed Ex-
ecution”; Anik6 Costa, Luis Gomes, - ETFA’2006.

The focus of the articles in the following list is not on the work presented
in this thesis itself; however, the results of this thesis play an important role
in these articles because the Net Splitting operation is applied to various case
studies.

1.

[BCGT10] “A MDA-based Contribution for Integrating Web Services
within Embedded System’s Design”; Paulo E. S. Barbosa and Aniké
Costa and Luis Gomes and Franklin Ramalho and Jorge Figueiredo
and Antonio Junior; INDIN’2010;
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2. [FCG10] “Interligacao intra- e inter-circuito de componentes especifica-
dos com Redes de Petri”; Ricardo Ferreira, Aniké Costa, Luis Gomes;
REC’2010;

3. [BRF*10] “Semantic Equations for Formal Models in the Model-Driven
Architecture”; Paulo Barbosa, Franklin Ramalho, Jorge Figueiredo,
Aniké Costa, Luis Gomes, Antonio Junior; DoCEIS’10;

4. [OCGO9] “Configurador de plataformas especificas em Co-design de
Sistemas Embutidos”; Joao Oliveira, Aniké Costa, Luis Gomes;

REC20009;

5. [BCFT09] “Modeling Complex Petri Nets Operations in the Model-
Driven Architecture”; Paulo Barbosa, Aniké Costa, Jorge Figueiredo,
Frankilin Ramalho, Luis Gomes, Antonio Junior; IECON’2009;

6. [BRAFT09] “Checking Semantics Equivalence of MDA Transformations
in Concurrent Systems”; Paulo Barbosa, Franklin Ramalho, Jorge Fi-
gueiredo, Antonio Junior, Aniké Costa, Luis Gomes; JUCS 2009;

7. [CGBT08] “Petri nets tools framework supporting FPGA-based con-
troller implementations”; Anik6 Costa, Luis Gomes, Joao Paulo Bar-
ros, Joao Oliveira, Tiago Reis; IECON’2008;

8. [GCBLO7]| “From Petri net models to VHDL implementation of digital
controllers”; Luis Gomes, Aniké Costa, Joao Paulo Barros, Paulo Lima;
IECON’2007.

The following list includes articles which resulted from collaborative work
done to define the underlying methodology for embedded systems develop-
ment and the IOPT Petri net class:

1. [GBCNO7] “The Input-Output Place-Transition Petri Net Class and
Associated Tools”; Luis Gomes, Joao Paulo Barros, Anik6 Costa, Ri-
cardo Nunes; INDIN’2007;

2. [GBCO7] “Petri Nets Tools and Embedded Systems Design”; Luis Gomes,
Joao Paulo Barros, Aniké Costa; PNSE’07;

3. [GBCT06] “Redes de Petri no co-design de sistemas embutidos: o pro-
jecto FORDESIGN”; Luis Gomes, Joao Paulo Barros, Aniké Costa,
Rui Pais, Filipe Moutinho; REC’2006;
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4. [GBC105d] “Formal methods for Embedded Systems Co-design: the
FORDESIGN project”; Luis Gomes, Joao Paulo Barros, Aniké Costa,
Rui Pais, Filipe Moutinho; ReCoSoC’05;

5. [GBCT05b] “Towards Usage of Formal methods within Embedded Sys-
tems Co-design”; Luis Gomes, Joao P.Barros, Aniké Costa, Rui Pais,
Filipe Moutinho, - ETFA’2005.

The following list of articles include papers which reflect the early prepa-
ration phase of this work.

1. [GCO6b] “Removing ill-structured arcs in Hierarchical and Concurrent
State Diagrams”; Luis Gomes, Aniké Costa, - ETFA’2006;

2. [CGFS06] “Internal event removal in Hierarchical and Concurrent State
Diagrams”; Anik6 Costa, Luis Gomes, Helder Francisco, Bruno Silva,
- DESDes’06;

3. [GCO5b] “Statechart based component partitioning in hardware /software
co-design”; Luis Gomes, Aniké Costa; Jornadas sobre Sistemas Recon-
figurdveis (REC 2005);

4. [GBCO05a] “Modeling Formalisms for Embedded Systems Design”; Luis
Gomes, Joao Paulo Barros, Aniké Costa; “Embedded Systems Hand-
book”;

5. [GCO0ba] “Hardware-level Design Languages”; Luis Gomes, Anik6 Costa;
“The Industrial Information Technology Handbook”;

6. [GBCO05¢| “Structuring Mechanisms in Petri Net Models: From spec-
ification to FPGA based implementations”; Luis Gomes, Joao Paulo
Barros, Aniké Costa; “Design of embedded control systems”.

1.6 Structure of the Dissertation

This section provides an overview of how this dissertation is organized. The
structure of the document is described and each chapter is briefly summa-
rized.

This dissertation is divided into two parts:
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Chapter 1. Introduction

Part I includes chapter 1 to 3 and presents the background of this thesis;

Part II includes chapter 4 to 7 and presents the contribution of this thesis.

Chapter 2 presents existent methodologies for embedded systems design.
It starts by describing computation models and the evolution of sys-
tem development. This is followed by a brief description of the model
based development and the presentation of the Model Driven Architec-
ture approach. Finally, the FORDESIGN project development flow is
explained. This project served as base for the work which led to this
thesis.

Chapter 3 introduces Petri nets, the underlying formalism. Low-level Petri
nets are characterized and the Input-Output Place-Transition Petri net
class, which was defined within the FORDESIGN project and used as
system specification language presented. At the end of this chapter, a
brief overview of the existing Petri net decomposition methods is given.

Chapter 4 is the core of this thesis, describing the proposed Net Spliting
Operation. First, the IOPT Petri net class is extended to include
communication channels, called Directed Synchronous Communication
Channel. Afterwards, an informal description of the splitting rules is
provided, followed by formal definitions and the implementation algo-
rithms description. The chapter ends with a description of the valida-
tion possibilities of the operation.

Chapter 5 presents a method for reusing the resulting models to build a
more complex system model based on composition of the obtained com-
ponents.

Chapter 6 focuses on the applicability of the operation. Three different
case studies are described.

Chapter 7 presents the conclusions and future works.
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Chapter 2

Related Methodologies
Overview

Summary

This chapter provides an overview of the methodologies and
models of computation most frequently used for embedded sys-
tem design. Moreover, the approach used within the FORDE-
SIGN project is presented.

Contents
2.1 Models of Computation Used in Embedded Sys-
tem Development ... ............... 22
2.2 Embedded Systems Development Framework Evo-
Iution . . . . . . . . L e e e e 23
2.3 Model Based Development . . . . . ... ... .. 27
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2.1 Models of Computation Used in Embed-
ded System Development

The traditional models of computation which rely on sequential processing
are not suitable for embedded systems modeling. Other models which are
capable of describing concurrency are more adequate. These models include
the following:

e Communicating Finite State Machines (CFSM) [BZ83]: a collec-
tion of several finite state machines communicating with each other;

e StateCharts [Har87]: CFSMs with the possibility to be structured
hierarchically;

e SDL [SDL09]: a System Description Language, based on processes
which communicate through asynchronous message passing;

e MSC [Ren99]: Message Sequence Chart is a graphical representation
of scheduling, where the vertical dimension usually represents time and
the horizontal dimension shows actors or geographical distribution;

e Petri net [Mur89]: a state based formalism, focusing on the causal
dependencies, representing the flow relation depending on conditions
and events;

e UML [OMGOS8]: Unified Modeling Language is a set of diagrams to
characterize the system in different ways.

All these formalisms have advantages and disadvantages when used for em-
bedded systems modeling.

For example CFSMs and Statecharts are suitable when the system is
composed of several components which are executed in parallel. Statecharts
also have advantages when the system can be characterized hierarchically.
Yet, when implemented on distributed platforms, Statechart is not adequate
because of its shared memory and broadcast communication mechanisms.
On the other hand, SDL is applicable for modeling distributed applications.
Each process is associated with a first-in first-out (FIFO) message queue.
SDL does not support hierarchy in the same way as Statecharts but the
processes can be grouped hierarchically into blocks, which are called process
interaction diagrams at the lowest level and systems at the highest level.
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SDL also can support operations on data and time modeling timers which
can be set or reset.

MSCs are appropriate for scheduling, but carry no information about
necessary synchronization.

Petri nets are suitable for modeling synchronization and concurrency,
among others. Another advantage of Petri nets for system modeling is the
possibility to use formal methods for property verification due to their strong
mathematical representation.

UML was defined for software development and is supported by com-
mercial tools. However, as the amount of software is increasing in embedded
systems, UML gains more and more importance for embedded systems devel-
opment as well. Some of the UML diagrams can be considered as a variant
of the above mentioned diagrams. For example, Sequence Diagrams are very
similar to MSC, State machine diagrams are a variant of Statecharts, and
Activity diagrams are very close to Petri nets.

All these diagrams and languages have a graphical representation and
many of them also a standardized textual representation, such as it is the
case for Petri nets in the form of PNML (Petri Net Markup Language)
[SC05, BCvHT03].

Even though these modeling formalisms can be used for system modeling,
a way to model the physical interactions with the system is still missing. In
the case of UML several profiles were defined to allow the modeling of real-
time interactions, which is needed for embedded system modeling. Petri nets
also have several classes which allow us to model different characteristics. For
instance in Coloured Petri nets [Jen92], tokens have an associated data
structure and can be differentiated from others. Another example is the
IOPT (Input Output Place Transition) Petri net [GBCNO7], which is an
extended class of the Place-Transition class [Rei85] that includes signals and
events which interact with the environment.

2.2 Embedded Systems Development Frame-
work Evolution
An increase in system complexity leads to changes in the design flow. During

the final decades of the 20th century, the design flow was concentrated on
capturing and simulating, while at the end of the century it shifted to de-
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scribing and synthesizing [GAGS09]. In the era of capturing and simulating,
software and hardware design were separated, which caused a system gap.
Software designers wrote specifications that were used by hardware design-
ers. Verification of the design was only possible at the end of the gate-level
design. Usually, the specification then had to be changed to be compliant
with the implementation.

The methodology called describe-and-synthesize used tools for logic syn-
thesis which drastically altered the design flow. For specification, designers
used finite state machines or Boolean equations and synthesis tools to gener-
ate the implementation. This way it became possible to first characterize the
system’s behavior or functions and afterward the implementation structure.
Another advantage of this methodology is that these descriptions can be sim-
ulated and thus allow a more efficient verification. However, the system gap
still persists.

From the beginning of the 21st century, major emphasis was given to fill-
ing the gap, including abstraction at system level and introducing method-
ologies which take into account both software and hardware design. These
methodologies are usually referred to as specify, explore-and-refine. However,
for these methodologies to be efficient, they need models with well-defined
semantics.

Several design flows and tools were proposed to be used considering co-
design techniques.

e OCTOPUS design flow [AKZ96] - dedicated to the design of embed-
ded software. Used by Nokia for the following phases:
— system requirements - applying use case diagrams;
— system architecture - decomposing the system into subsystems;

— subsystem analysis - generating class diagrams for each subsys-
tem, the behavior can be described in different ways, for example
through Statecharts;

— subsystem design - including outlines for processes and threads,
classes and interprocess messages;

— subsystem implementation - including code generation.

e COSYMA design flow [EHBT96] - a set of tools for embedded systems
design; starts with specification expressed in an extended version of the
C language called C,.
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e SpecC methodology [GZD"00] - starts with specification captured
with SpecC creating an executable model which can be simulated. The
next step is architecture exploration defining allocation, partitioning
and scheduling, afterward the communication synthesis. The models
of all these phases are compiled and simulated for validation, analysis
and estimation purposes. Then, in the implementation phase, the codes
for software and hardware are generated, creating the implementation
model which is also compiled and simulated before manufacturing.

e Ptolemy II [Dep] - based on modeling, simulation and design of het-
erogeneous systems with mixed technologies, such as analog and digital
electronics, electrical and mechanical devices. Supports different types
of applications with the following communication models:

— communicating sequential processes;
— continuous time;

— discrete event model;

— distributed discrete events;

— finite state machines;

— process networks;

— synchronous data-flow;

— synchronous/reactive model of computation.

Another, no less important, concern of embedded systems development is
that the designers use the synchronous paradigm for specification purposes,
which is useful because it allows the designer to separate timing and function-
ality. This way the specification and verification of the reactive part of the
system can be simplified. However, implementing the synchronous paradigm
using a global clock has some problems. It must often be implemented on
an architecture that is not compatible with the synchronous paradigm (like
distributed systems or system-on-chip).

On the other hand, for industrial applications, the asynchronous design
style is unattractive due to the lack of commercial tool support and the high
overhead associated with timing variations. [DLKSV04] suggest a proposal
for how to take advantages of the best of both: asynchronous implementa-
tions of synchronous specification. They propose a desynchronization proce-
dure based on splitting the registers into master and slave latches. Moreover,
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for each latch, a latch controller is introduced to replace the global clock. The
controllers communicate using request and acknowledge signals. This solu-
tion is a more specific instance of the more general method described in
[BCCSVO03].

Another proposal to solve this problem is GALS Globally Asynchronous
Locally Synchronous architecture, which draws together the advantages of
both the synchronous and asynchronous approaches when implementing com-
plex specifications in both hardware and software systems. In a GALS
system, the locally clocked synchronous components are connected through
asynchronous communication lines.

GALS systems are intended to address two problems [PBCO05]:

e A synchronous application has to read asynchronous inputs and sched-
ule them into reaction before transmitting them to the program. This
scheduling includes the introduction of missing not present values.

e The implementation must preserve the semantics of the synchronous
specification, meaning that the set of asynchronous observations of the
specification must be identical to the set of observations of the imple-
mentation.

Semantics preservation is particularly important because of the advantages
of using verification tools for synchronous specifications. Solving this prob-
lem is even more important when the synchronous specification has to be
implemented over a distributed architecture.

[PBCO05] address the problem of desynchronizing a modular synchronous
specification using asynchronous FIFOs for communication between the mod-
ules. They define a model to use within the asynchronous implementation
of synchronous specification. The model covers classical implementations,
where a notion of global synchronization is preserved by means of signal-
ing and globally asynchronous locally synchronous (GALS) implementations
where the global clock is removed. Communication uses directed channels;
it means one module sends a message and another module reads it. This
message passing is implemented by using asynchronous FIFOs.

Another approach to solving the problem of the distributed implementa-
tion of a synchronous model is using the Loosely Time-Triggered Archi-
tecture [CB08|, where the communication mechanism is characterized by
communication by sampling. This technique assumes the following:
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e Writings and readings are performed independently at all nodes con-
nected to the medium, using different local clocks;

e the communication medium behaves like a shared memory.

This architecture is very flexible and efficient as it does not require any clock
synchronization, and blocks neither for writes nor reads.

2.3 Model Based Development

At first, “Model based development” sounds like using diagrams instead
of code, although model based development means much more than that.
[SAHPO02] explain it as a paradigm for systems development that, besides
using domain-specific languages, includes explicit and operational descrip-
tions of relevant entities. They divide the development in terms of process
and product models, where process models describe the development activ-
ities and product models are the entities which describe the artifacts under
development as well as their environment. The activities of the process mod-
els are defined as entities of the process model.

Moreover, the process and product models can be organized and struc-
tured horizontally and vertically. The horizontal description includes dif-
ferent aspects such as structure, functionality, communication, data types,
time and scheduling. The vertical description represents the different levels
of abstraction of each horizontal description.

The advantages of the model-based development include the platform
independent representation. A model can be translated into several imple-
mentation codes, depending on the implementation platform. Moreover, an
executable model can be used for simulation and requirements documenta-
tion as well.

The advantages of embedded systems development using a model based
methodology are notable [GF09]. Models used at the early stages of the de-
velopment process can provide a better understanding of the system through
requirements documentation and system functionalities analysis. Using for-
malisms which have representations in graphical and text form can help with
the communication between the developers and the end users or customers.
Operational models can be used for simulation or verification purposes gen-
erating test cases. Moreover, the use of automatic code generators is another
advantage that the model based development can offer.
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2.3.1 Model driven architecture

The Model Driven Architecture (MDA) is an emerging approach which pro-
vided several ways to define models representing a system, and transforma-
tions between these models. In MDA, a model is an abstract or concrete rep-
resentation of a domain that enables communication between parts. Models
are classified as platform independent models (PIMs) and platform specific
models (PSMs). Furthermore, models are described by metamodels which
specify the elements that can appear in the models. Another important con-
cept in MDA is model transformation; a set of definition rules that describe
how to generate an output model from an input model. Metamodels play an
important role in the definition rules because they express the concepts and
formalisms involved in the transformations. Currently, there is a wide range
of tools that enable the transformation between models.

According to [OMGO09], a model transformation can have vertical or hori-
zontal dimensions. In horizontal transformations, the source and target mod-
els reside in the same level of abstraction, while in vertical transformations,
they are in different levels of abstraction. Model abstraction and model re-
finement are examples of vertical transformations, whereas model refactoring
is an example of a horizontal transformation.

Model-Driven Architecture is a software development approach that fo-
cuses on models, metamodels and transformations to define the elements of
a system. Models are also key elements to direct the course of understand-
ing, documentation and generation of artifacts that will become part of the
overall solution. It is supported by the Object Management Group (OMG)
[OMGO09].

Models are primary artifacts to generate implementations by applying
transformations. Three models are at the core of MDA. The first is the Plat-
form Independent Model (PIM) which captures the requirements and design
of a computational system independently from any target implementation
platform. It describes, for instance, a software system that supports some
business, no matter if it will be implemented with a relational database or
as an application server. The second is the Platform Specific Model (PSM),
which is the result of a transformation of the PIM. A PSM specifies the
system in terms of a specific implementation technology. Moreover, is pos-
sible to obtain a generated PSM from a PIM for each specific technology
according to the project requirements and finally, obtains the Code model.
It is the final step in the development and result of the transformation of
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each PSM. These transformations are relatively straightforward because of
the PSM completeness.
There are two kinds of transformations:

e Vertical model transformations are used to refine or abstract a model,
they affect the abstraction level of the model specification.

e Horizontal model transformations do not affect the abstraction of the
model; they are mainly used to restructure it.

PIM-to-PSM and PSM-to-PIM transformations are examples of ver-
tical transformations. The PIM-to-PSM transformations are performed once
the PIM is elaborated enough to be associated to the characteristics of the
platform, and PSM-to-PIM transformations are model reverse engineering
transformations, they relate to abstraction of models into more general con-
cepts.

All the MDA artifacts (models, metamodels and transformations) are or-
ganized according to the four-layer architecture provided by the OMG con-
sortium [KWBO03]. Figure 2.1 shows the architecture in the context of two
models involved in a transformation: the input model (on the left hand side)
and the output model (on the right hand side). The layer MO describes the
concrete syntax of a given model. For instance, in programming languages it
is the final executable code coupled to the chosen technology. M1 expresses
artifacts which have similar characteristics in a model. M2 provides the
metamodel which serves as a grammar to check the correctness of the model
syntax developed at the layer M1. The highest layer, named M3, describes
the layer M2 by using MOF (Meta-Object Facility). As MOF describes it-
self, it does not require further metamodels. The model transformations are
able to automatically generate output models from input models at the layer
M1. They are defined in terms of metamodel descriptions and cope only with
syntactic/structural aspects.

In addition, the OMG put forward some standards to specify the main
artifacts of the MDA infrastructure, such as PIMs, PSMs, metamodels and
transformations. Examples of these standards are:

e Meta-Object Facility (MOF), a language to specify metamodels;

e Unified Modeling Language (UML), as the main modeling language
to specify PIMs and PSMs (by means of UML profiles), but other
languages and formalisms can be used, such as Petri nets;
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Figure 2.1: Four-layered MDA architecture

e Object Constrain Language (OCL), a language to define constraints to
avoid ambiguous model definitions;

e Query/View/Transformations (QVT), that is a standard to define trans-
formations, through the Atlas Transformation Language (ATL) [Bezivin
et al. 2003] is the most popular QVT-compliant language.

Most of the OMG standards are built for the reuse and alignment between
themselves.

For instance, MOF is based on UML and OCL, and allows building meta-
models as class diagrams annotated with OCL constraints, i.e., describing the
concepts and their relations using classes, attributes, operations, associations
and invariants on classes. Thus, MOF reuses constructs from UML class di-
agrams and OCL constraints at the meta-level layer.
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2.3. Model Based Development

2.3.2 FORDESIGN development flow
The FORDESIGN project [GBC*05b, GBCT06, GBC07] is a Portuguese na-

tional project with the main objective of developing a convenient and com-
plete set of tools, which can be used for embedded systems development.
The financed period for this project was 2005-2008. The project develop-
ment team is convinced that the choice of Petri nets as underlying system
specification language can bring advantages due to their strong mathemati-
cal support beyond the graphical representation. The project thus integrates
the use of Petri nets in a development life-cycle for embedded systems. Yet,
Petri nets are not seen as a mandatory language to be used by developers or
even modelers. Instead, Petri nets are used as a “neutral” language to which
models in other languages can be translated. These other languages include
the following:

e State diagrams;

Statecharts;

UML Sequence Diagrams;

Hierarchical and Concurrent Finite State Machines;

Other Petri net classes.

The project is decomposed into four main tasks [GBCT05d], namely:

Task 1 - From selected models of computation to Petri nets;

Task 2 - Composability and hierarchical representations with Petri net
based specifications;

Task 3 - Partitioning of selected models of computation;

Task 4 - From Petri nets to code through automatic code generators.

One important aspect is the use of the PNML interchange format as a
way to maximize the interoperability with tools already available, especially
model verification tools, and between the tools under development.

The first task assumes a previous analysis step where the requirements
are collected with the help of use cases. From this use case list, the modeler
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chooses the most adequate formalism, namely the most adequate behavior
language. Several behavior languages are unified through translations to
a unique class of non-autonomous Petri nets that act as a base universal
language within the design phase.

In the implementation phase, all behavior formalisms are translated to
models using this Petri nets class, which, after property verification and
hypotetical partitioning into components, are then translated to C or to the
hardware description language VHDL.

The project emphasizes the use of pragmatic and useful new ways to
integrate and specify model composition, relying on the definition of a set of
net operations, including net addition, and supporting top-down, bottom-up
and crosscutting composition of models.

Another main focus is the identification of methods for model partition
allowing distributed execution and generation of components to be mapped
into hardware or software platforms, according to specific performance and
cost requirements. The objective is to obtain several parallel sub-models that
can be separately implemented in distinct software or hardware components.

Finally, the ultimate objective is the automatic generation of executable
code for distinct platforms, namely FPGAs and System-On-Chip solutions,
where several components can cooperate, integrating software and hardware
solutions for different components.

Underlying methodology

The system development flow for embedded system co-design, proposed by
the FORDESIGN project, is presented in Figure 2.2, and can be briefly
described as follows. The methodology starts with the description of system’s
functionalities through UML (Unified Modeling Language) use cases. Each
of the identified use cases will be further translated into a set of operational
formal models. The system model is built through the composition of the
partial models obtained from the use cases analysis; this system model is
amenable to support property verification and to be translated into code,
after partitioning into components and mapping to specific implementation
platforms. From our point of view, the preferred implementation platforms
include FPGAs (Field Programmable Gate Arrays), as programmable logic
devices can be an effective support for prototyping. It is important to note
that the very same methodology can also be used to support SoC (System-on-
Chip) and SoPC (System-on-Programmable-Chip) design, as far as adequate
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tools are considered at the implementation level.

In this sense, the system’s initial requirements are kept in UML use cases.
Complex and also primitive functionalities are captured in an informal /semi-
formal way, constructing a set of use cases, allowing the validation by users at
the very beginning of the design process. The system’s requirements will be
translated into formal models, which mean that each use case will generate an
associated partial model (at this phase of the development, the translation of
use cases into models is accomplished manually). As indicated, the foreseen
formalisms include several behavioral notations, namely state diagrams, hier-
archical and concurrent state diagrams, statecharts, sequence diagrams and
Petri nets. We argue that all these behavioral models can be translated into
a behaviorally equivalent Petri net model, which in turn could be composed
by additional partial models (from translation of the different use cases).
The referred composability of the Petri net models, as presented in [GB05],
can be adequately supported using the net addition operation, allowing the
addition of orthogonal behaviors and of crosscutting functionalities as well
[BGO4a].

The main result of the modeling phase is the behavioral model of the
system, which can be used for specification and verification of properties (as
system complexity grows the necessity of having formal property verifica-
tion becomes increasingly important), and afterwards for implementation. A
second outcome of this phase should be the characterization of the system
architecture. From the whole Petri net system model it is possible to obtain
a set of components (characterized as sub-models) through the partitioning
of the Petri net model (this is the task where the works contained in this
thesis contribute to the project). The set of criteria for this partitioning
activity is highly application dependent, and it is not surprising to have a
close matching between the components we get and the models associated
with each use case from where we started. The process of model composition
and further partitioning will take into account the communication mecha-
nisms among components, which was not the case when considering isolated
models. Having in mind the distributed execution of the system model, each
of these components will be the basis for code generation for each of the
distributed controllers.

As a final constraint of the methodology, it is important to refer that
the validation of the whole distributed implementation of the initial Petri
net model is possible with the composition of the models associated with
the distributed controllers in addition with the models for communication
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channels to support the interaction between controllers. The new model for
the whole system (associated with the distributed execution of the initial
Petri net model) can be used for system property verification and additional
validation procedures, if convenient, before entering into the code generation
phase.

The presented development flow can be seen as an MDA approach, namely,
as model transformation within the layer M1.

Tools overview

The FORDESIGN project emphasizes the use of tools (2.3): already existent
ones and new tools developed within the project. The first group includes
UML-based tools, and in particular Use Case diagrams. These will mainly be
used in the requirements and analysis phase. The second group, encompasses
the development of several interrelated tools which can be classified in the
following four basic groups:

1. Modeling;
2. Simulation;
3. Verification;

4. Synthesis.

The Modeling group includes:

e The Graphical Editor - includes support for bottom-up and top-down
model construction and animation capabilities [GBCNO7];

e Conflict resolution - supported by the generation and recommendation
of specific arbiters to handle structural or effective conflicts;

e OPNML2PNML - for model composition [BG04b];

e Split tool - to decompose PNML models into a set of concurrent sub-
models (obtained as a contribution of the works supporting this thesis).

Within the Simulation group the following tools were considered:

e Time Simulator - accepts external input signals and allows the testing
of the resulting output signals;
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e Animator - allowing the automatic generation of an animated synoptic
based on the association of the characteristics of an IOPT model with
specific characteristics of the graphical user interface through a set of
dedicated rules [LGOS];

The Verification group includes:

e PNML2StateSpace - a state-space generator and analyzer that uses
generated C-code;

The Synthesis group is composed by the following:
e PNML2C - translator from PNML to C,

e PNML2VHDL - translator from PNML to VHDL [GCBLO07].

e Configurators - to adapt the generated code to the deployment platform
[CGB*08, OCGO09].

The main rationale for having a relatively large number of tools is to increase
flexibility through modularity, much like the philosophy of the well-known
UNIX operating system. In particular, this approach eases model inter-
change with existent tools (available from the community); especially UML
based tools, verification tools and tools for automatic graph layout.

Fig. 2.3 shows the interdependencies and communication between the dif-
ferent foreseen components. Tools are represented as ovals, files as rectangles
and information flow as arrows.

The graphical editor is the central tool. It generates PNML and OPNML
(Operational PNML) specifications, which are used by most of the other
tools. The editor serves as an interface to several tools without a graphical
user interface. Through the graphical editor, the modeler will be able to
execute the following tasks:

1. Reading and writing of PNML based specifications [SC05, BCvH'03];
2. Creation of PNML and OPNML models|BG04b];

3. Structured creation of Petri net diagrams [GBCO05c];

4. Conflict resolution;
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common code base will be used for all three tasks;
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Automatic code generators are presented in the center of Figure 2.3, al-
lowing the translation of PNML into VHDL and C code. The code generators
are able to optimize the generated code, after an initial execution, namely
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by optimized memory consumption based on upper bounds for place mark-
ings, obtained through associated state space construction. This code can
be executed on multiple platforms where the language C is available. Yet,
the main focus will be reconfigurable computing platforms, namely FPGAs.
Also, the solutions are completely compliant with SoC design. The configu-
rator tool allows the specification of several details allowing a code generation
optimized for the given platform.

Beyond the above presented classification, the developed tools can be
grouped into three main groups:

e First group: Modeling, simulation and verification activities, focusing
on modeling with IOPT nets and associated PNML representations;
the PNML representations have the central role for this set of tools.

e Second group: Design automation environment, built around the “Con-
figurator” tool, addressing the configuration of a specific embedded
system, and producing application code to be deployed into a specific
embedded target platform.

e Third group: Design automation environment, built around the “Ani-
mator” tool, addressing the configuration and automatic code genera-
tion for an animated synoptic to be executed under Windows OS PC
platform.

The first group of activities starts with using the graphical editor to
produce the system models in PNML format. The editor supports animated
simulation for the model execution (from the point of view of the autonomous
part of the IOPT model) and invokes external applications to perform specific
operations, namely the OPNML2PNML tool and the Split tool. The former
allows the composition of nets using the net addition operation. The later
allows the specification of a cutting set to decompose the model into a set
of concurrent sub-models [CGO7b, CG0O7c, CG09]. These concurrent models
can be seen as components to be further mapped into software or hardware
platforms. For that purpose, translators to C and VHDL are available. It is
important to note that the generated C code can be used for several goals,
namely final execution, but also for simulation and verification activities.

The second group of activities supports the deployment into monolithic
or heterogeneous platforms, containing one or more reconfigurable devices,
microcontrollers and microprocessors. Figure 1.1 presents a small number
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of possible mappings of the components into specific implementation plat-
forms considering different types of support for inter-component communi-
cation. Currently, a small set of platforms is being considered, including
Xilinx Spartan-3 FPGA, Xilinx Virtex-II Pro FPGA, and Microchip PIC
18F4620 microcontroller, as well as the MicroBlaze microprocessor IP for
Xilinx FPGAs.

The third group of activities addresses the generation of synoptic applica-
tions to be executed under Windows OS PC platforms and takes advantage
of the association of the IOPT model characteristics and graphical charac-
teristics of the synoptic. As a result, an autonomous application is generated
allowing the interaction with a simulator and receiving visual feedback from
the net model status.

Summarizing, the developed set of tools is amenable to support specifica-
tion, simulation, verification and implementation, including composition of
sub-models, partitioning into components, co-simulation, co-verification and
automatic code generation. Hence, the whole embedded systems develop-
ment flow is supported by tools.
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Chapter 3

Petri Nets

Summary

This chapter presents an introduction to Petri nets, start-
ing with basic definitions followed by a characterisation of the
nets as autonomous and non-autonomous. Then the non-
autonomous IOPT Petri net class is presented. A brief dis-
cussion about Petri net model decomposition and the commu-
nication between sub-models is presented.
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3.1 Introduction

Petri nets were invented by Carl Adam Petri (12 July 1926 - 2 July 2010) - at
the age of 13 (in 1939) - for the purpose of describing chemical processes. He
documented his invention in 1962 as part of his dissertation, Kommunikation
mit Automaten (communication with automata). Of course, it was not Carl
Adam Petri who coined the term Petri net; other scientists later referred to
several classes of nets as Petri nets. Most of the authors when proposing a
new definition of Petri net, do not introduce something completely new. They
base their work on the concepts defined by Petri and add some extension or
new features of the net, depending on the purpose of the net which they
define.

An extensive introduction to Petri nets is not provided here, but in the
following subsections, basic definitions and some general characteristics of
the nets are given, complemented with some specific classes which are of
special interest for this work.

3.2 Basic Definitions

The following definitions of a net are common to all classes of Petri nets; they
have been chosen from [Rei98|. Each definition follows the same structure:
two different components representing the “passive” and “active” aspects of
the system, which are combined by an abstract relation, always connecting
elements of different sources.

Definition 1. (from [Rei98]) Let P and T be two disjoint sets, and let F' C
(PXT)YU(T X P). Then N = (P,T,F) is called a net.

Where P, T, and F are called places, transitions, and arcs, respectively. F
is sometimes referred to as the flow relation of the net. Places represent the
“passive” elements and transitions the “active” elements.

For graphical representation of a net, we use circles for places, boxes or
thin rectangles for transitions and arrows for arcs.

Definition 2. (Adapted from [Rei98]) Let N = (P,T,F) be a net.

e N.P,N.T and N.F denote P, T and F, respectively. By abuse of nota-
tion, N often stands for the set P\JT, and aFb for (a,b) € F'.
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@)

=
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Figure 3.1: Isolated (a), Connected (b) and Strongly connected (c) nets.

o As usual, F~1,F* and F* denote the inverse relation, the transitive
closure, and the reflective and transitive closure of F, respectively, i.e.,
aF~'b iff bFa, a F*b iff aFciFcy...c, Fb for some ci,...,c, € N and
aF*b iff a Ftb or a = b. Fora € N, let F(a) = {b| aFb}.

o Whenever F can be assumed from the context, for a € N we write
ea instead F~'(a) and ae instead F(a). This notation is translated to
subsets A C N by oA = (J,c,%a and Ae = J . ae. oA and Ae
are called the pre-set (containing the pre-elements) and the post-set
(containing the post-elements) of A.

Definition 3. (Adapted from [Rei98]) Let N be a net.
e z € N is isolated iff ex|Jze = 0.
e N is connected iff for all z,y € N : z(F|J F~1)*y.
e N is strongly connected iff for all x,y € N : x(F*)y.

Figure 3.1 illustrates each of the listed net types.

A Petri net is composed of two components; a net and an initial marking
[DE95]. The net, as defined above, is a directed graph with two types of
nodes (places and transitions), without edges between the same type of nodes.
Places, as the passive elements, can store tokens represented by black dots.
The distribution of the tokens over the places is called marking and describes
the state of the system which is represented by the Petri net. Transitions,
as the active elements of the net, are enabled when all their input places
contain at least one token. An enabled transition can fire. When firing, a
transition removes tokens from its input places and generates the tokens into
its output places. This rule is common for all class of Petri nets; however,
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the concrete execution semantic can be slightly different, depending on the
class of the net.
Two transitions are in conflict when both have the same place as an input
node and the firing of one of the transitions disables the other one from firing.
As was mentioned before, there are many classes of Petri nets. In [Gom97],
they are organized in two groups; autonomous and non-autonomous.

3.3 Autonomous Petri Nets

As the name suggests, autonomous nets are nets where the dynamics do not
depend on external conditions but only on the graph dependency; in other
words, the execution of the net depends only on the state of the net, which
means on the marking of the net. The firing rule is the same as presented
before.

The classes which are considered within this group can be subdivided into
the following reference levels:

e The first level includes classes where the places may contain zero or one
tokens, and the tokens have no associated structure; places represent
conditions.

e The second level includes classes where the places may contain zero or
several tokens; tokens have no associated structure; places can be seen
as containers.

e The third level includes classes where the places may contain tokens
with associated structure, which means that they are different from
each other. These Petri net classes are usually called high-level Petri
nets, as opposed to the classes associated with the previous categories,
which are called low-level Petri nets.

Examples belonging to the first level are the Condition-Event [Rei85] and
Free-choice net [DE95] classes, among others. An example at the second
level is the Place-Transition net, which is by some authors considered as
a generalized Petri net [Mur89]. This class is normally used for modeling
automation and control systems (which is our focus). Examples at the third
level are the Coloured Petri net [JK09] and the Object Petri net [Lak96],
among others.
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As our objective is to use Petri nets for embedded systems modeling,
namely for system behavior modeling, the autonomous nets class which suits
best is the place-transition Petri net, which is normally used for automation
control modeling.

Definition 4. (Adapted from [Mur89]) A Place/Transition Petri net (P/T
net) is defined by a tuple N = (P, T, F, W) where

e P is a finite set of places;
e T is a finite set of transitions — PJT = 0;
e Fis a flow relation F C (P x T)U (T x P) for the set of arcs;

o W is a weight function, W : F — NT.

3.4 Non-autonomous Petri Nets

Using a class of the autonomous group is not satisfactory for modeling some
important aspects of the system, such as time relation and external signal
dependencies. To make the Petri net more adequate for specific application
areas, several extensions were introduced to the nets. Namely, the new net
classes have to (i) integrate into the graph references and characteristics of
the real system, such as control signals; (ii) include the capability to test if
a place has any tokens; (iii) include the capability to integrate temporal de-
pendencies. The first group includes the Synchronized Petri nets [Dav91]and
the Interpreted Petri net [Sil85]. These extensions were proposed to include
capabilities for modeling deterministic control systems. The latter includes
events and conditions associated to the transitions. The second group encom-
passes the classes which permit to test the number of tokens in a place, for
example the class with inhibitor arc and priority [Hac75]. Having priorities
associated with transitions allows solving conflicts automatically. The third
group includes classes such as the Generalized Stochastic Petri net [Mar89]
and the Timed Coloured Petri net [JK09]. However, these extensions seem
not to be sufficient for modeling embedded systems behavior. Each of them
was proposed to solve a specific problem, so naturally they cannot include
all characteristics needed for embedded systems behavior modeling. Hence,
a new class which tries to include all features necessary for reactive system
modeling was proposed by the FORDESIGN project [FOR07] research team.
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3.4.1 Input-Output Place-Transition Petri net

The IOPT Petri net class is an extension of the class of place-transition Petri
nets (e.g. [Rei85]) which allows the interaction between the net that models
a controller and the environment. From the net model point of view, and
thus from the modeler point of view, the environment is seen as a set of input
and output events and signals. These impose some restrictions upon the net
model behavior. Hence, the net becomes non-autonomous, in the sense of the
interpreted and synchronized nets of David and Alla, and Silva [DA92, Sil85].
Several other works propose some kind of non-autonomous extensions to
Petri nets with special attention to factory automation applications, e.g.
[VZJ94, FM00, HLOO].

A preliminary version of the Input-Output Place-Transition Petri net was
proposed in [PBGO05] and was called Input OQutput Petri Net. Tt included the
communication with the environment through input and output signals. In
[GBCNO07] an updated version of the IOPT Petri net class was presented.
The following characteristics were added to the definition of the IOPT Petri
net with respect to Place-Transition nets:

1. Priorities in transitions;

2. A bound attribute for places;

3. Input events (defined using an edge level on signals);
4. Two types for input and output signal values;

5. An explicit specification for sets of conflicting transitions (conflict sets

- ConfS);

6. An explicit specification for sets of synchronous transitions (synchronous

sets - SS);
7. Test arcs.

From the point of view of the modeler, the most relevant changes, when
comparing IOPT [GBCNO7] to IOPN [PBGO5], are the addition of test arcs
and priorities associated with transitions; both have severe impacts when
addressing the topic of conflict resolution. As a matter of fact, the priority
attribute allows a simple solution for conflict resolution (even unfair) and
test arcs allow the usage of fair arbiters [Gom05].
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The goal associated with the bound attribute for places is to feed an
automatic code generation tool with relevant information for implementation,
giving specific hints about needed resources to support place implementation
(it does not stand for the common maximum capacity semantics). In fact,
it is only filled with the maximum reachable marking after the verification
of properties by the PNML2StateSpace tool, which initially runs without
defined bound attributes. The objective is to allow memory consumption
optimization, in the code generation phase. For this reason, it does not
affect the net execution or the model behavior.

The edge level for events has the expected semantics: it specifies which
variation of an input signal is considered as relevant. We also allow the
modeler to distinguish between two types of signal values: Integer ranges or
Boolean values.

Finally, the model representation can also encompass one or more sets
of conflicting transitions (the conflict set - ConfS), as well as synchronous
transitions. The latter have “fusion semantics”, which means that all the
transitions in the set behave as a single one with the input and output arcs
of all the set transitions. Hence, these sets can be seen as transition fusion
sets.

Within the scope of embedded systems design, the IOPT Petri net is
used for modeling the control part of the system. The controller can be
characterized by two main components:

1. Description of the physical interaction with the controlled system (the
interface of the controller);

2. Description of the behavioral model, which is expressed through a
IOPT model.
The controller interface

As already stated, from the net modeler point of view, the controller is a set
of active input and output signals and events.

Definition 5 (System interface). (from [PBG05]) The interface of controlled
system with an IOPT net is a tuple ICS = (IS,IE,0S,OF) satisfying the
following requirements:

1. IS is a finite set of input signals.
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2. IFE is a finite set of input events.
3. OS is a finite set of output signals.
4. OF 1is a finite set of output events.

5. ISNIENOSNOE = 0.
A stub code allows input events to be seen as another kind of input signal.

Definition 6 (System input state). (from [PBG05]) Given an interface
ICS = (IS,IE,0S,0F) with a controlled system (Def. 5), a system in-
put state is defined by a pair SIS = (ISB,IEB) satisfying the following
requirements:

1. ISB is a finite set of input signal bindings: 1SB C IS x Ny.

2. IEB is a finite set of input event bindings: [IEB C IE x B.

Input-Output Place-Transition nets definition

The IOPT nets definition assumes the use of an inscription language, as a
concrete syntax, allowing the specification of algebraic expressions, variables,
and functions for the specification of transition guards and conditions in out-
put actions associated to places. In both places, the Petri Net Type Defini-
tion forces the specification of the concrete syntax, usually a programming
language. Preferably, this should be the one targeted for code generation.
Currently, we are using C and VHDL, in what concerns with software and
hardware implementations.

The following definition extends the one presented in [PBGO05]. The set
of Boolean expressions is named BE and the function Var(E) returns the
set of variables in a given expression F.

Definition 7 (IOPT net). (from [GBCNO7]) Given a controller with an in-
terface IC'S = (IS, IE,OS,OF), an IOPT net is a tuple N = (P,T, A, TA, M,
weight, weightTest, priority, isg, ie, oe, 0sc) satisfying the following require-
ments:

1. P is a finite set of places.

2. T is a finite set of transitions (disjoint from P).
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3.

10.

11.

12.

A is a set of arcs, such that A C (P x T)U (T x P)).

. TA is a set of test arcs, such that TA C (P x T).

M s the marking function: M : P — Ng.
weight : A — Np.
weightTest : TA — Ng.

priority is a partial function applying transitions to non-negative in-
tegers: priority : T"— Ny.

1sg 1s an input signal guard partial function applying transitions to
boolean expressions (where all variables are input signals): isg : T —
BE, where Yeb € isg(T),Var(eb) C IS.

e 1s an input event partial function applying transitions to input events:
ee: T — IFE.

oe 1s an output event partial function applying transitions to output
events: ee: T'— OF.

osc is an output signal condition function from places into sets of rules:
osc: P — P(RULES), where RULES C (BES x OS x Ny), BES C
BE and Ve € BES,Var(e) C ML with ML the set of identifiers for
each place marking after a given execution step: each place marking
has an associated identifier, which is used when executing the generated
code.

Transitions have associated priorities, input and output events. They
can also have guards which are functions of external input signals. Output
signals can be changed, based on transition firing (output events), or at the
end of each execution step, based on place markings through.

The IOPT nets have maximal step semantics: whenever a transition is
enabled, and the associated external condition is true (the input event and
the input signal guard are both true), the transition is fired. The synchro-
nized paradigm also implies that the net evolution is only possible at specific
instants in time named tics. These are defined by an external global clock.
An execution step is the period between two tics.
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Chapter 3. Petri Nets

In the following definitions is used M (p) to denote the marking of place
p in a net with marking M, and et to denote the input places of a given
transition ¢ or a given set of transitions S: et = {p|(p,t) € A}; &S =
{p|(p,t) € ANt € S}, ot ={p|(p,t) € TA}; oS ={p|(p,t) e TANt € S}.

Definition 8 (Enable condition). (from [GBCNO07]) Given a net N = (P,T
LA, TA, M, weight, weightTest, priority,isg,ie, oe,0sc) and a system inter-
face ICS = (IS, IE,0S,OF) between N and a system input state SIS =
(ISB,IEB), a transition t, with no structural conflicts, is enabled to fire, at
a giwven tic, iff the following conditions are satisfied:

1. Vp € ot, M(p) > weight(p,1).
2. Vp € ot, M(p) > weightTest(p,t).

3. The transition t input signal guard evaluates to true for the given input
signal binding: isg(t) < ISB >.

4. (ie(t),true) € IEB.

Additionally, a transition t in a structural conflict with other transitions is
only enabled if it has the mazimum priority among the transitions in the
respective conflict set CS: Vt' € CS,t' # t = priority(t') < priority(t)

Definition 9 (IOPT net step). (adapted from [PBG05]) Let N = (P, T,
A, TA, M,weight,weightTest, priority,isg, ie,oe,o0sc) be a net and ICS =
(IS, IE,0S,0F) a system interface between N and a system with input state
SIS = (ISB,IEB). Let also ET C T be the set of all enabled transitions
as defined by Def. 8. Then, Y is a step in N iff the following condition is
satisfied:

Y C ETAVE € (ET\Y),3SY C Y, (ot N eSY) # OA
dp € (ot;1 NeSY),

(weight(p,t1) + Z weight(p,t) > M(p))

teSY

An TOPT net step is a maximal step. This means that no additional
transition can be fired without becoming in effective conflict with some tran-
sition in the chosen maximal step. An IOPT net step occurrence and the
respective successor marking is defined as following:
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3.5. Petri Net decomposition Methods

Definition 10 (Step occurrence and successor marking). (from [GBCNO7])
Given anet N = (P, T, A, T A, M, weight, weightTest, priority,isg, ie, oe, 0sc)
and a system interface 1CS = (IS, 1E,0S8,OF) between N and a system
with input state SIS = (ISB,IEB), the occurrence of a step Y in net N
returns the net N' = (P,T,A,TA, M’ weight,

weightTest, priority,isg,ie,oe, osc), equal to the net N except for the suc-
cessor marking M’ which is given by the following expression:

M = {(p,m— Z weight(p,t)+

teY A(pt)EA

Z weight(t,p)) € (Px No)’

teYA(t,p)EA

(p,m)EM}

3.5 Petri Net decomposition Methods

Most of the proposed methods which are related to the structure of Petri
nets emphasize model composition; for example the hierarchical structural
mechanisms can be seen as model composition [GB03].

Most of the net decomposition mechanisms available in literature are
based on properties preservation and focus on net analysis.

For example, [CP00] discuss the modular analysis of Petri nets based on
shared places or shared transitions. They demonstrate that it is possible to
obtain the same place invariants for the total system and the decomposed
one using shared places or shared transitions. With their method, the net is
divided into several subsystems, but those subnets can not be executed in a
distributed way.

In [Zai06], a logical equation based decomposition method is proposed.
The main concern is to decompose a Petri net into functional subnets while
preserving properties. The resulting subnets include input and output places
as node interfaces. These places have no input or output transitions, respec-
tively. By merging the places, the original net is obtained.

[NMO7] apply decomposition and optimization methods for Petri nets
to solve a general scheduling problem. The proposed method for Petri net
decomposition is also based on the presumption that a Petri net can have
input and output places. The methods are different, but the resulting subnets
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Chapter 3. Petri Nets

are very similar; input and output places are duplicated within the subnets.
An input place of one specific subnet is an output place of another subnet.

[AI02] present a decomposition method based on the analysis of the net
structure identifying a net segment which can be considered as an overlapped
section. All places and transitions in the overlapping part of n subnets are
repeated n times and each repeated place and/or transition is assigned to
a different subnet. Arcs between such places and/or transitions are also re-
peated, and each repeated arc is assigned the same weight as the original arc.
Moreover, between any two repeated places, two transitions with proper arcs
are added, such that each transition, when fired, transfers one token from
one repeated place to the other. In order to guarantee that the decomposed
net has the same marking as the original one, all the tokens that are initially
assigned to a place in an overlapping part of the original Petri net are as-
signed only to one of the repeated places corresponding to that place. The
numbers of tokens in any place, which is not in any overlapping part, remain
unchanged.

A method for the distributed execution of a concurrent application was
proposed in [BACP95]. A language named Protob is used for the modeling
and development of event-driven systems. This language is a combination of
the most important features of high-level timed Petri nets and data-flows, and
is organized in an object oriented framework. The objects are considered as
nets which interact sending and receiving tokens. They also consider special
places, like input and output places in order to represent the communication
between the objects.

3.5.1 Communication between sub-models

When a model is decomposed into sub-models, those sub-models need to
communicate among each other. Most of the proposed communication mech-
anisms were considered for composition purposes rather than to solve the
communication problem between two sub-models, resulting from a decompo-
sition method.

For instance, a synchronous channel for communication was first con-
sidered for Coloured Petri nets in [CH92]. They proposed an extension
of Coloured Petri net with channels allowing transitions to communicate
through so-called coloured communication channels. The communication
transitions are divided into two groups: !?’-transitions, and ?!-transitions.
The communication between two transitions is only possible if one of the
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3.5. Petri Net decomposition Methods

transitions is a !7-transition and the other is a ?!-transition, and they use
the same channel. Although the transitions are differentiated, no direction
of communication is intended.

The communication through a channel ch is enabled if and only if there
are two communication transitions t1 and t2 with communication expres-
sions exprl and expr2, and two bindings b1l and b2 such that:

e transition t1 and t2 are enabled for the bindings b1 and b2 respectively,
i.e. there are sufficient tokens of the correct colors on the input places;

e t1 has a communication expression of the form exprl !?ch;
e t2 has a communication expression of the form expr2 ?!ch;

o ecxpr < bl >=expr2 < b2 >, i.e., exprl and expr2 have the same value
when they are evaluated in the bindings for which the two transitions
occur.

In other words, all transitions within the same channel must agree on the
name of the channel and on a set of parameters, before they can engage in
the synchronization. In [Kum99| this concept was generalized by allowing
transitions in different net instances to synchronize. The initiator of syn-
chronization has to know the other net instances. Two types of inscriptions
for the transitions were defined; downlink and uplink. The downlink iden-
tified by the net reference and the channel is associated with the initiating
transition. Transitions having the uplink associated can respond to everyone.
They do not need to know the identifier of the initiator, but they need to have
the same channel. Generally, transitions with an uplink cannot fire without
being requested by another transition with a matching downlink. This con-
cept is used in the Petri net editor and simulator Renew [KWD10], [KW09].
There, each transition can be associated with more than one downlink and
also an uplink [CH92].

Although the definition of the communication channel for Petri nets is
commonly known, its usage for the communication between the decomposed
components is not. As this section illustrated, most of the decomposition
methods consider places as interface node. Usually, a different graphical
representation is used for places, and specific semantics are associated with
the interface places. For example, in [BACP95] the place which represents the
sending of the messages is a circle with a triangle inside and the place which
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represents the receiving of the message is a circle with a rectangle inside.
The semantics associated with these places is different than the semantics
used for other places.
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Chapter 4

The Net Splitting Operation

Summary

This chapter presents the proposed Net Splitting operation. It
starts with the extension of the IOPT Petri net with a directed
synchronous channel, and then an informal description of the
proposed operation is provided, followed by a formal definition
and algorithms description. At the end of the chapter, proper-
ties verification of the resulting subnets is discussed.
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Chapter 4. The Net Splitting Operation

4.1 Introduction

The purpose of the Net Splitting operation is to decompose a Petri net into
several subnets. The objective of this decomposition is to divide the system
model into several sub-models which can be associated with the physical
components of the system.

Dividing a system model using the Net Splitting operation, the obtained
model is composed by several sub-models which communicate through di-
rected synchronous communication channels. This communication called di-
rected because the master/slave paradigm is applied and a direction in the
communication is assumed. The firing of the slave transitions depends on
the firing of the master transition.

The IOPT Petri net class was used as a reference net class for this oper-
ation. However, the operation can be applied to any other type of low-level
Petri net class, as long as it is possible to introduce the synchronous fir-
ing of the transitions, the operation is based on the modification of the net
structure and directed communication channels are introduced.

Another objective of the Net Splitting operation is not to introduce spe-
cific semantics to the resulting net models, as it is done in other decomposi-
tion methods, such as in [BACP95].

Here, the rules of place marking/unmarking are maintained without any
change to all places of the models. To accomplish this objective, all the border
nodes which are used for communication between the models are transitions.

Having the IOPT net as the Petri net class reference, the objective of not
introducing any specific semantics for any node can be fully accomplished.
As in general the transition firing rule depends on the input signal and input
events or input guards associated with the transition, the interface transitions
have the same rule for firing.

4.2 10PT Net with Directed Synchronous Chan-
nels

As mentioned before, a synchronous communication channel was proposed for
Coloured Petri nets [CP00] and synchronous communication is also used in
the Renew tool [KWD10]. Our communication proposal is directed, although
the synchronous channel in our work is very similar to the synchronous chan-
nel as is defined in the Renew tool. With our communication channel, we
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4.2. IOPT Net with Directed Synchronous Channels

also consider two types of inscriptions which are associated with transitions:
master and slave (instead of downlink and uplink as in the Renew Tool).
The synchrony set concept is proposed, referring to a set of transitions
linked through a directed synchronous channel. A transition included in one
specific synchrony set can have either a master attribute or a slave attribute.
Within one channel, several transitions with a slave attribute but only one
transition with a master attribute can exist. A transition with a slave at-
tribute will only be fired when the transition with the master attribute in the
same channel is fired and the slave transition is enabled. This means that
broadcast communication between transitions or net instances is allowed.

Definition 11 (Labeled Transition). A Labeled Transition is a Petri net
transition t with a label attribute named t.label.

Definition 12 (Labeled Transition Set). A Labeled Transition Set is a set
LTS =T,, UT;, where T,,, = {t} and t.label = master; Ty is a set of labeled
transitions where Yt' € Ty t’.label = slave and |Ts| > 1.

Gwent e T,,,Vt' e T, >t £ 1.

Definition 13 (Internal Event). An internal event is an element that will
be generated by the firing of a transition with a master attribute. It has an
attribute E.master that indicates its source.

Definition 14 (Synchrony Set). A Synchrony Set is a tuple SS = (ch,LTS,ev),
where

e ch is a channel identifier, identifying the synchrony set;

e LTS is a Labeled Transition Set;

e cv is an internal event generated by t € LT S.T,,.

Definition 15 (Valid set of Synchrony Set). Given SS and SS’ : Synchrony
Set | SS # SS" and t : Transition. Ift € SS.LTS —t ¢ SS'.LTS.

Definition 16 (Enabling Condition of Synchrony Set). Let SS be a Syn-
chrony Set and t € SS.LTS.T,,. We say that the Synchrony Set is enabled
when t is enabled.

Definition 17 (Execution Semantics of Synchrony Set). Given SS: Syn-
chrony Set and t € SS.LTS.T,, and t; € SS.LTS.T,. The Synchrony Set is
enabled when t is enabled and will fire t and Vt; € SS.LT'S. T, will fire if t;
15 enabled.
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As far as our Synchrony Set includes an internal event generated by the
transition labeled with master and the transitions labeled with slave within
the same Synchrony Set fire when transition master is firing, we can say that
our Synchrony Set has a directed communication channel.

Definition 18 (IOPT Petri net with Directed Synchronous Communica-
tion). We defined IOPT Petri net with Directed Synchronous Communication
channel as a tuple (N, S), where

o N = (P, T,A,TA M,weight, weightTest,priority,isg,ie,oe,0sc) is
an IOPT Petri net,

e Sis awalid set of Synchrony Set such S = |J SS; where SS; = (ch;, LT'S;,

ev;) and Yi(t € SS;.LTS.T,, C N.T and ]\;.oe(t) = N.oe(t) N SS;.ev(t))
and Vi(Vt' € SS;.LTS. Ty C N.T and N.ie(t') = N.ie(t') A SS;.ev(t)).

Definition 19 (Execution Semantics of IOPT net with Directed Synchronous
Communication). Given a SS : Synchrony Set included within an IOPT Petri
net. The firing of SS is compliant with the zero delay time paradigm, which
means that, considering t; an enabled transition, Vt; € SS.LTS.T; fire at the
same step ast € SS.LTS.T,,. A step is composed of two microsteps, first
firimg t € SS.LTS.T,, and then firings of Vt; € SS.LTS.T.

Note: as one transition can only be involved in one SS, it is not possible
to have a cascade of firings of transitions through the event propagation
mechanism. This means that the execution step has only two microsteps.

4.3 Net Splitting Operation Rules

The operation is based on the definition of a valid cutting set, which means
to find a set of nodes in the net that can be used to divide the net into several
subnets. Nodes with arcs between them are not considered, because a net
segment can be seen as a resulting subnet. If, for any reason, the designer
considers that for the decomposition of a net it would be interesting to use
a net segment, the border nodes of that net segment should be included in
the cutting set.

Choosing the nodes for the cutting set is highly application dependent
and has to be defined by the designer. Before applying the cutting rules of
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the cutting, it is necessary to verify that the chosen cutting set is a valid
cutting set. It has to fulfill the following conditions:

e The chosen nodes cannot be directly connected, which means that there
are no arcs between the nodes of the cutting set.

e If removing the cutting set from the net, at least two disconnected
subnets are obtained.

e All structural conflict situations are non-distributable, which means
that all transitions which are in conflict are kept in the same subnet.

Once the cutting set is chosen, it is necessary to define the rule which
will create the resulting sub-models. As one of the conditions for a valid
cutting set is to obtain at least two disconnected subnets after removing the
cutting nodes of the net, at the beginning, eight different situations have been
identified - as a Petri net has two types of nodes, places and transitions, and
each of them can have several input and output arcs:

1. When the cutting node is a place:
(a) the place with input arcs coming from one connected subnet and

output arcs going to nodes belonging to one subnet;

(b) the place with input arcs coming from one connected subnet and
output arcs going to nodes belonging to different subnets;

(c) the place with input arcs coming from different subnets and output
arcs going to nodes belonging to one subnet;

(d) the place with input arcs coming from different subnets and output
arcs going to nodes belonging to different subnets.
2. When the cutting node is a transition:
(a) the transition input arcs coming from one connected subnet and
output arcs going to nodes belonging to one subnet;

(b) the transition with input arcs coming from one connected subnet
and output arcs going to nodes belonging to different subnets;

(c) the transition with input arcs coming from different subnets and
output arcs going to nodes belonging to one subnet;
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(d) the transition with input arcs coming from different subnets and
output arcs going to nodes belonging to different subnets.

Figure 4.1 illustrates the enumerated situations, considering that input and
output nodes that are connected to the cutting node by one arc represent
multiple nodes with multiple arcs coming from or going to nodes belonging
to the same subnet.

1.a) 1.b) 1.0) 1.d)
2.a) 2.b) 2.c) 2.d)

Figure 4.1: The identified eight different situations

To define the rules which create the sub-models as the result of the Net
Splitting operation, first it is necessary to analyze the number of subnets
which can be obtained by removing the cutting nodes.

When the cutting node is a place and has more than one output arc, which
means more than one output transition, all these transitions have to belong to
the same subnet; otherwise the place is not eligible to be included in a cutting
set. The reason is that such situations are structural conflicts, and conflicts
are not shareable. Analyzing the different situations with respect to the
number of input arcs, and having in mind the purpose of the operation (which
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is that the components communicate through transitions), we conclude that
these situations do not differ from each other. Therefore, only one rule was
defined for the case when the cutting node is a place.

When the cutting node is a transition, there are no differences between
cases where the transition has one or several output arcs. Nevertheless, it is
necessary to distinguish the situations when the transition has one or several
input arcs. Two different rules were defined for the case when the cutting
node is a transition even though if the case where the transition has one
input arc is a particular case of the situation where the transition has several
input arcs.

The following three subsections provide a brief description of the three
defined rules for the Net Splitting operation.

4.3.1 Rule #1 : for a place as the cutting node

Rule #1 defines the procedure for the cases where the cutting node is a place,
as illustrated in Figure 4.2. Figure 4.2 (a) represents a net segment named
Initial IOPT, where P1 is the element of the cutting set CS. Figure 4.2 (b)
shows the results of the node removal operation. For this case, three different
components were identified in three different regions. It is not mandatory to
obtain all those components, but this situation represents the general case.
The minimum requirement for this rule is a net segment with one input and
one output transition with respect to the place belonging to the cutting node,
for example T'1, P1, T2.

As represented in Figure 4.2, T3, T2 and T5 belong to Subnet 1, T1
to Subnet 2, and T4 to Subnet 3. Figure 4.2 (c) illustrates the result after
applying Rule #1 of the Net Splitting operation. The cutting place belongs
to the subnet which is now considered as a component to which all its output
transitions belong. A copy of the pre-set transitions that belong to a different
subnet are also added to this component, connecting them to the place P1
(two transitions in the case of Figure 4.2).

The components communicate through directed synchronous channels as-
sociated with the synchrony sets. In Figure 4.2, two synchrony sets are used
(depicted by dashed arrows). One synchrony set is composed by transitions
T1(master) in Component 2, and T'1_copy(slave) in Component 1 and the
other one is T4 (master) in Component 3, and T4_copy (slave) in Component
1. The “slave” transition has no input arcs; the only firing condition is
imposed by the firing of the “master” transition.
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Initial IOPT Initial IOPT - CS

T Tds
Subnet 2 Subnet 3

Subnet 1

T21

) O "

Decomposed IOPT (after applying the rule)

Component 2

T1_copy(slave)

< — — — —

T4_copy(slave)

T1(master)

Component 3

T4(master)

Figure 4.2: Rule #1

4.3.2 Rule #2: for a transition where all input places
belong to the same subnet

Rule #2 defines the procedures for the case where the cutting node is a
transition with input arcs coming from only one component. Figure 4.3
(a) represents a net segment in Initial I[OPT, where T'1 is the cutting node.
Figure 4.3 (b) illustrates the results of the node removal operation and Figure
4.3 (c) shows the result after applying Rule #2 of the Net Splitting operation.
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The minimum requirement for this rule is to have one input place and one
output place with respect to the cutting transition, for example P1, T1, P4.

In this case the “master” transition belongs to the subnet where the
pre-set places of the cutting transition are included. A copy of the cut-
ting transition with the slave attribute is added to the other components to
which the post-set places without pre-set places belong. These “master” and
“slave” transitions belong to the same synchrony set of the communication
channel (depicted by dashed arrows).

Initial IOPT Initial IOPT - CS

P1O o

P2,

Subnet 1

Subnet 2
P4,

Component 2

T1(master)

Component 1 P4

Figure 4.3: Rule #2
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4.3.3 Rule #3: for a transition where the input places
belong to different subnets

Rule # 3 defines the procedures for the case where the cutting transition
has input arcs from nodes which belong to different subnets. In this case it
is necessary to choose which subnet receives the transition with the master
attribute of the directed synchronous communication channel (the “master”
component with respect to this transition belonging to the cutting set). Fig-
ure 4.4 illustrates this rule. Figure 4.4 (a) presents a net segment in Initial
IOPT, where the cutting node is T1. Figure 4.4 (b) shows the result of the
node removal operation, obtaining three components. Figure 4.4 (c) illus-
trates the result of the splitting operation. The “master” component with
respect to T'1 was chosen to be the subnet where PI belongs to. In this
subnet (associated with the “master” component), we will have a copy of all
places belonging to the pre-set of T1 that are in a different subnet. Also,
for each of these places it is necessary to include copies of the pre-set tran-
sitions (which generate tokens to these places). These copies of transitions
are associated with the initial transitions through synchrony sets (three in
the example of Figure 4.4). The minimum requirement for this rule is the
existence of at least two pre-set places of the cutting transition, for example
P1 and P2 of Figure 4.4.

In this case, a copy of the cutting transition with the slave attribute is
added to all components except the “master” component.

The communication between the components is depicted by dashed ar-
rows in Figure 4.4 (c).

4.3.4 Discussion of valid cutting sets

As mentioned before, the Net Splitting operation depends on the definition
of a valid cutting set. To confirm that the selected nodes belong to a valid
cutting set, it is necessary to verify the following three issues:

e The nodes of the cutting set may not have any direct arc between them
(composing a net segment). In the current stage there is no interest in
splitting the net using a net segment.

e After removing the cutting set nodes from the net, at least two dis-
connected subnets are obtained. If removing the defined cutting nodes
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Initial IOPT Initial IOPT - CS

T toP1 T_to P2 T_to P3 T_to_P33

P33

Subnet 3

T to_P1;

P14

Subnet 1

T_to_P2,

@) @)

P53

b)

Decomposed IOPT (after applying the rule)

T_to_P2(master)

T_to_P2_copy(slave)

T|[to_P3(master)

P2 P3

Component 2 Component 3

T1(master) T1_copy(slave)

T1_copy(slave
Component 1 —copy( )

P4

c)

Figure 4.4: Rule #3

from the net at most one subnet is obtained, we continue to have just
one component, which means that no splitting is possible.

e The third question needs more discussion: a structural conflict situa-
tion cannot be distributed. This means that all transitions which are
involved in a conflict have to be kept in the same subnet.

Figure 4.5 illustrates a typical conflict situation.
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Initial Initial - CS

b oL
subnet 1

subnet 2

a) NewGraph

T1 (master)

P1

T2 (master) T3_copy (slave) T2_copy (slave) T3 (master)

c)

Figure 4.5: A typical conflict situation

Considering place PI for cutting the net as presented in Figure 4.5 (b)
as the result of the node removal operation, and trying to apply Rule #1
associated to cutting places, we find difficulties. The rule says the cutting
place has to be included where the output transition belongs. Here we have
two such subnets, in which one should be included in the cutting place. To be
inline with the net splitting philosophy, i.e to reproduce the initial situation,
we have to add a copy of the cutting place to both subnets as far as transitions
T2, T3 need the information of the place PI marking. Figure 4.5 (c¢) shows
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a possible solution.

Taking into account the synchronous execution of the model, which means
using the synchronous communication channel policy for the transition firing,
the initial and the resulting models can be considered as identical. However,
considering the distributed execution when the synchronous firing is no longer
possible, there is a major problem. In the initial net firing the transition 72
immediately disables the firing of the transition 73 and vice-versa. Having
no synchronous firing or no possible firing within the same execution step
of the master and slave transition, the firing of transition 72(master) does
not immediately disable the firing of transition 7'3(master). In this way, in
a specific situation it is possible to fire both transitions 72 and T3. This
means that the conflict situation is transformed into a parallel execution. As
this situation is not desired as it does not comply with the foreseen execution
semantics, we have to avoid choosing places which are involved in a conflict
situation as cutting nodes.

4.3.5 Formal definitions

Before presenting the formal definition of the Net Splitting operation, we
have to define some operators which are used within the definition of the Net
Splitting operation.

Definition 20. A = B means A is a copy of B but A has no input or output
signals/events associated belonging to B.

Definition 21. A = B means A is an ezvact copy of B.

Definition 22. The expression arcl replaced by arc2 means the arcl
(source x target) is destroyed and a new arc arc2 (newsource X newtarget)
15 created with the same arc inscriptions as the destroyed one.

Definition 23. The expression arcl replicated by arc2 and arc3 means
the arcl (source x target) is destroyed and two new arcs arc2 (newsource X
newtarget) and arc3 (newsource’ X newtarget’) are created with the same
arc inscriptions as the destroyed one.

Definition 24 (Decomposed IOPT Petri net). We defined a decomposed
IOPT Petri net DIOPT as an IOPT Petri net with Directed Synchronous
Communication channel, where the [OPT Petri net N is composed by several
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subnets such N = \JN;, i > 2, where N; = (P',T', A", TA", M’ weight',

weightTest', priority’, isq' i€’ oe',0sc") j = 1..i andVj #k

N; PP\ Ni.P' =0 and N;. T'(\N.T' = 0 and N;. A" (| Np.A' =0 and there
is at least one synchrony set ss, such that if t = ss.LT'S:tm € N;.T' than
'€ Np.T |t € ss.LTS.Ts with j # k.

Definition 25 (NET SPLITTING OPERATION). Given a Petri net [OPT
and a cutting set CS, where IOPT = (P,T, A, TA, M,weight, weightTest,
priority, isg, ie, oe,0sc) and C'S = {P',T'} and ¥p € CS.P' C IOPT.P and
Vte CST' C IOPT.T.

The Net Splitting Operation is defined as IOPT :|: CS = DIOPT,
where DIOPT has the following characteristics:

e (Vp € CS 3 DIOPT.IOPT, | p € DIOPT.IOPT,.P) and (V¢ €
ep 3 DIOPT.IOPT; | t € DIOPT.IOPT;.T). Ifi # j we have:
A teopy € DIOPT.IOPT; | t & tooyy and (t xp) € IOPT.F is replaced
by (teopy X p) € DIOPT.IOPT;.F and add a SSy |t = SS,.LTS.T,,
and Vteopy € SSE.LTS.T;.

e Vt € CS 3 DIOPT.IOPT; |t € DIOPT.IOPT;. T and 3
DIOPT.IOPT; with i # j where 3 teppy | teopy =t and add a SS; |t =
SS.LTS. T, and Yt o, € SS. LTS Ty and the following axioms:

— Vpeceotifpec DIOPT.IOPT;.P we have: 3 peopy €
DIOPT.IOPT;.P | peopy =p and (p x t) € IOPT.F is
replicated by {(peopy X t) € DIOPT.IOPT;.F U (D X teopy) €
DIOPT.IOPT;.F} and Vt' € ep we have: 3, €
DIOPT.IOPT,.T | t,,,, =t and (t'xp) € IOPT.F is replicated

by (trppy X Peopy) € IOPT.F U (t' x p) € IOPT}.F and add a SS,
| ¢ = §9,.LTS.T,, and Vt., € SS,.LTS.T,

copy
—Vp' e te|ifp € DIOPT.IOPT;.P than (t x p') € IOPT.F s
replaced by (t.opy, X p') € DIOPT.IOPT;.F

o All other places, transitions and arcs are identical to as they are in the
wnitial IOPT.

4.3.6 Algorithms

The following algorithms characterize what has to be done in order to im-
plement the operation using a tool.
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4.3. Net Splitting Operation Rules

As mentioned before, the net splitting operation depends on the definition
of a valid cutting set which includes the nodes where the net has to be
split. However, it was shown that indicating only the cutting nodes is not
sufficient. For the cases when the chosen node is a transition and has more
than one input arc (Rule #3), it is necessary to indicate which pre-set has to
be considered as the node belonging to the component where the transition
with the master attribute has to be included. This information is represented
as a tuple (T,P).

Based on the information above, a prototype of the tool which implements
the Net Splitting operation was developed [Rei08]. Using this prototype, sev-
eral situations which had not been contemplated for the first prototype were
identified. The algorithms which should be considered for the implementa-
tion of the new version of the Net Splitting Tool are presented subsequently.

Two situations with potential interest to be included in the new version
of the tool were identified:

e The results of node removal operation can contain an isolated node.
Usually that node should not be considered as a component, but should
belong to one of the other obtained subnets in terms of system compo-
nents.

e When two obtained subnets should belong to the same component, one
more pair of nodes (represented by C in the algorithm descriptions)
should be added to the cutting set, indicating which nodes should be-
long to the same components.

Main algorithm

Algorithm 1 describes the main flow of the net splitting operation.

Lines 1-2 - It starts by reading of the PNML file of the IOPT Petri net into
a structure called IOPT and reading the file of the Cutting Set into the
structure CS.

Lines 3-7 - Before removing the nodes of the cutting set from the net, it
is verified if the defined nodes of the cutting set have no arcs between
them. If there is any arc between two nodes of the Cutting Set, the
operation is aborted with the message Invalid Cutting Set (line 5).
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Line 8 - The nodes defined in the cutting set are removed from the initial
net structure and the result is stored into the structure IOPT’. For that
purpose, the Node Remouval operation is used.

Line 9 - The variables used as indexes for the resulting components (nc)
and for the created Synchrony Sets (1) are initialized.

Line 10 - The function ComponentBuilding() is called to take into account
the information given by C in the cutting set definition and to create
the sets of components where the Splitting rules will be applied.

Line 11 - Once the components containing the subnets which are considered

as one component are defined, it is necessary to verify that the cutting
set is valid by calling the function VALIDCS().

Lines 12-21 - If the cutting set is valid, Rule #1 is applied for each place of
the cutting set. Afterwards, for each transition of the cutting set, if all
its pre-set places belong to the same component, Rule #2 is applied,
and otherwise Rule #3.

Line 23 - If the function VALID CS returns FALSE the operation is aborted
sending a message Invalid Cutting Set.

Algorithm 2 describes the verification of the pair of nodes specified within
CS.C; if they do not belong to the same subnets, then the subnets which they
belong to are joined to create one component.

Line 1 - This function reorganizes the structure of the results of the Node
Remowal operation. The IOPT’ is composed of several connected sub-
nets or isolated nodes.

Line 2 - The index nec, which is the number of resulting components, is ini-
tialized with the number of the resulted subnets after the node removal
operation.

Lines 3-16 - Then if CS.C contains information, for each pair of nodes
specified in CS.C it is verified if the second node of the pair belongs
to the same subnet as the first node. If not, then the function finds
the subnet which the second node belongs to; the second node is added
to the net which the first net belongs to, and the subnet of the second
node is erased. Finally, the number of resulting components is updated.
(nc = nc - 1) means there is one component less than before.
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4.3. Net Splitting Operation Rules

Algorithm 1 Main

1: Read PNML file of the net into 10PT =
(P, T,A, TA, M,weight, weightTest, priority, isg, ie, oe, 0sc)
Read PNML file of the cutting set into C'S = (P',T", (1", P"),C)
for each p € P’ do

if Jepec CSVpecT then

Return Invalid Cutting Set

end if
end for
[OPT' = IOPT — (CS.P'\JCS.T")
nc=0, 1=0 (initialize indexes for counting components (nc) and Syn-
chrony Sets (1))
10: (N7 — Nye) = ComponentBuilding()
11: if VALIDCS() == TRUE then
12:  for each p € P’ do
13: Apply Rule #1
14: end for
15:  for each t € T’ do

16: if (Vp' € ot) € N;.P then
17: Apply Rule #2

18: else

19: Apply Rule #3

20: end if

21:  end for

22: else

23:  Return Invalid Cutting Set
24: end if
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Lines 17-25 - After the verification of each pair of nodes defined in CS.C , it
is necessary to re-organize the indices of the components , to arrange
them in increasing order from 1 to nc.

Algorithm 3 describes how the cutting set is validated.

Lines 1-2 - If the results of Component Building consist of less than 2
components, the cutting set is invalid.

Lines 3 - Otherwise, it has to be verified if the resulting subnets meet the
following criteria.

Lines 4-10 - First, it is checked if the initial conflict situation (if there was
any) still exists. For each place of the cutting set it is verified if its
post-set is in the same component.

Lines 11-18 - Afterwards it has to be verified if the place which indicates
where the transition should be connected with the master attribute
belongs to the same component as the all post-sets of the all preset
places. This means that if the cutting transition is involved in a struc-
tural conflict situation, after partitioning the model the transition with
the master attribute has to be included in the component to which all
transitions belong which are involved in the initial conflict situation.
Only like this it is possible to solve the conflict in the same way in
both situations (execution of the initial model and after partitioning,
execution the distributed model).

Lines 19-26 - Finally, it has to be verified what happened after the Node
Removal operation, when two or more cutting transitions are involved
in a structural conflict. In this case, for each cutting transition the
place which indicates where the transition should be connected with
the master attribute should be the same, ie. the place of the conflict.

Line 27 - If the verification process for the above presented situations has
been not aborted, then the function returns TRUE.

Algorithm of Rule #1

Algorithm 4 defines how to proceed when Rule #1 applies.
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Algorithm 2 Component Building

1. IOPT" = | N; | N; = (P, T;, A;, T A;, M;, weight;, weightTest;, priority;,
i=1

i8gi,ie;,0€;,05¢;), where (1P, = 0 and (7; = 0 and A; C
(P, x T;) J(T; x P;) and N; is connected or isolated.
2: nc = ns

3. if CS.C' # () then
4:  for each (z,y) € CS.C do

5 for j = 1..ns do

6 if t € N; Ay ¢ N; then
7: for o =1..ns do

8 if y € N, then
9: N; =N;UN,
10: N,=10

11: nc = nc-1

12: end if

13: end for

14: end if

15: end for

16: end for
17: b=0,a=0
18:  while b < nc do

19: b=b+1

20: a=a-+1

21: while N, = () do
22: a=a-+1

23: end while

24: N, =N,

25:  end while

26: end if
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Algorithm 3 VALID CS
1: if nc < 2 then

2:  Return FALSE

3: else

4. for each p € P’ do

5: for j =1..ncdo

6: if peNN,;.T # 0 Ape d N, T then
7 Return FALSE

8: end if

9: end for

10: end for

11: for eacht e T’ do

12: for j =1..nc do

13: for each (et)e do

14: if (et)e € N, T NJet=tinput ¢ N;.P then
15: Return FALSE

16: end if

17: end for

18: end for

19: if t, € T" | t; #t then
20: if ot; N et # () then
21: if ¢1.input # t.input then
22: Return False
23: end if
24: end if
25: end if
26: end for
27 Return TRUE
28: end if

76



4.3. Net Splitting Operation Rules

Line 1 - It begins with initializing the empty set with a set of transitions
T,.. where the copies of the transition are collected which have to be
added to the component, and where the place of the cutting set will be
included.

Lines 2-9 - The cutting place is added to the component which its post-set
belongs to, and the destroyed arcs are reconstructed (line 6).

Lines 10-23 - For each pre-set, the node of the cutting place is verified; if it
belongs to the same component to which the cutting place was added,
then the arc which was destroyed by the Node Removal operation is
reconstructed; if not, a copy is made to collect it in T,,, and to create a
Synchrony Set where the transition master is the pre-set of the cutting
place and the transition slave is the copy of the pre-set node.

Lines 24-33 - Finally, the copies of the transitions which are collected in
Tour are added to the component which the cutting place now belongs
to, and they are connected to it.

Algorithm of Rule #2
Algorithm 5 defines how to proceed when Rule #2 applies.

Lines 1-2 - It starts with creating a new Synchrony Set, initializing it with
t (the analyzed cutting node) as the master transition and with the
empty set for the slave transitions.

Lines 3-10 - Then it adds the transition to the component which its pre-sets
belong to and reconstructs the destroyed arc between the pre-sets and
the transition.

Line 11 - As it is not known how many post-sets the cutting transition had,
in order to differentiate them, the variable a is used as an index for
them; it is initialized with 0.

Line 13 - The post-set nodes of the cutting transition are analyzed.

Lines 14-16 - If the post-set node belongs to the component to which the
cutting transition was added, the arc between them is reconstructed.
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Algorithm 4 Rule #1
1 Toe = 0
2: for j = 1..nc do
if pe € N;. T" then
N;.P=N; PUp
for each pe do
Nj.A = NJA U (p X p.)
end for
end if
end for
10: for each e p do
11: for j =1..ncdo

12: if ep € N;. T then

13: if p € N,.P then

14: N;. A= N;. AU (ep X p)

15: else

16: ®Dcopy = OP

17: l=1+1

18: Create SS; | SS;.ch = 1,88, .LTST,, = ep,SS,. LTS T, =
®Dcopy

19: Touz = Touz U ®Dcopy

20: end if

21: end if

22:  end for

23: end for

24: if T,,, # 0 then
25:  for j =1..ncdo

26: if p € N,.P then

27: for each t € T, do

28: N; T =N; TUt

29: N; A= N; AU (t x p)
30: end for

31: end if

32: end for

33: end if
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Lines 17-19 - Otherwise, it has to be verified if within the analyzed compo-
nent there is already a copy of the cutting transition (i.e. it was already
added to the Synchrony set as a slave transition) and an arc is added
between the copied transition and the post-set place.

Lines 20-26 - If there is no copied transition yet, then a copy is made and
added to the component. An arc is added between the copied transition
and the post-set node and the copy of the transition is added to the
Synchrony Set to the Labeled transition set with a slave label.

Algorithm of Rule #3

Rule #3 is a more complex procedure. It is necessary to decide which compo-
nent will receive the master transition and to add to that component a copy
of all pre-set places of the cutting transition belonging to different compo-
nents, with all pre-set transitions of the places which were copied. Moreover,
is necessary to create a directed synchronous channel between each original
transition and their copies. And as for the case of Rule #2 it is necessary to
add a copy of the cutting transition to all components which its pre-set or
post-set places belong to.

As the description of all these procedures in algorithmic form is too long,
we divided it into two sub-algorithms: one for the description of what has
to be done for the pre-set places (Sub-algorithml) and another one for the
post-set places (Sub-algorithm2). Algorithm 6 presents this description.

Lines 1-3 - Before calling these algorithms, a new Synchrony Set is created
where the ¢ of the cutting set will be the master labeled transition and
the number of channels is saved in the variable SSoft to be used later
to join the slave labeled transitions.

Lines 4-5 - The variables which are used as indices for the slave transitions
and for the copies of the pre-set nodes are initialized.

Line 6 - Auxiliary variables which will serve as containers for the copies of
nodes which have to be added to the master transition are initialized.

Algorithm 7 describes the Sub-algorithm1.
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Algorithm 5 Rule #2

1:

e e e e e
@ T ey 22

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

l=1+1
Create SS; | SS;.ch =1,5S,.LTS.T,, =t,SS,.LTS.Ts = ()
for y = 1..nc do
for each e¢ do
if ot € N,;.P then
N; T =N; TUt
Nj.A = N]A U (Ot X t)
end if
end for
end for

: a = 0 (number to use as index of slave transitions)

: for j =1..nc do
for each te do
if te € N,.P then
if £t € N,.T then
N; A= N; AU (t x te)
else
if 3t' € SS.LTST, |t € N;.T then
N;.A= N;. AU(t' x te)
else
a=a+1
teopy(a) 2 1
Nj.T = Nj.T U teopy(a)
N; A= N; AU (tcopy(a) X te)
SS.LTS Ty = SS.LTSTs Uteopy(a)
end if
end if
end if
end for
end for
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Algorithm 6 Rule #3
l=14+1
. Create SS; | SS;.ch =1,58,.LTS.T,, =,5S,. LTS Ty =)
. SSoft =1

1
2
3
4: a = 0 (number to use as index of slave transitions)
)
6

: ¢ = 0 (number to use as index of pre-set copies)

: Pow = 0, Toue = DAgue = 0 (accumulators to collect the copies of p and
t and the arc between them to add to the master component)
Subalgorithm1 (Handling of each pre-set)

8: Subalgorithm2 (Handling of each post-set)

=t

Line 2 - Sub-algorithm1 starts by initializing one more auxiliary variable
to be used as the index of the copies of the pre-set transitions which
are connected to the pre-set places of the cutting transition which were
copied.

Line 3 - The auxiliary variable alreadyhavecopy is used for marking that in
the present component there already is a copy of the cutting transition,
and it is initialized as FALSE.

Lines 5-6 - All pre-set places of the cutting transition are analyzed as to
whether they belong to the current component and whether they are
indicated as the pre-set place to which the cutting transition with the
master label will be connected,.

Lines 7-8 - If it is the case, the cutting transition is added to the present com-
ponent’s transitions set and is connected to the pre-set place, adding
an arc from the pre-set place to the transition.

Line 9-11 - If it is not the case, it means that the present pre-set belongs to
the current component but it is not the component to which the cutting
transition with the master label belongs, and if there is no copy of the
cutting transition yet n the current component, the index of the copies
is increased.

Lines 12-14 - The copied transition is added to the transitions set of the
current component transition set and the current pre-set place is con-
nected to the copied transition.
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Lines 15-16 - The copied transition with the slave label is added to the syn-
chrony set which the cutting transition with the master label belongs
to, and the variable alreadyhavecopy is updated to TRUE.

Lines 17-18 - Otherwise, if alreadyhavecopy is already TRUE, it means there
are more than one pre-set place belonging to the present component,
and the pre-set place is just connected to the copied transition.

The following lines present a possible solution to prepare the net segment
which has to be connected to the cutting transition with the master label so
that the original condition of firing is replicated within that component.

Lines 20-22 - The index of the pre-set place copies is increased. A copy of
the place is made and added to the auxiliary set of places.

Lines 23-30 - Afterwards a copy of each pre-set transition of the place which
was copied is made and added to the auxiliary set of the copied tran-
sitions. Then they are connected to the copied place, and a new syn-
chrony set is created for each transition and its copy, where the original
transition is the transition with the master label and the copied tran-
sition is the transition with the slave label within the same synchrony
set .

Line 35 - Add the collected auxiliary subnets to the component where the
cutting transition belongs to.

Due to fit into the page the end of the first sub-algorithm, describing the
addition the collected subnets that has to be added to the sunbnet where
the master labeled transition belongs to is presented in separete algorithm,
in Algorithm 8.

Lines 1-4 - Find the subnet where belong the cutting transition.

Lines 5-7 - The auxiliary sets of the copied places, transitions and arcs are
added to the component which the cutting transition belongs to.

Lines 8-10 - The copied places are connected to the cutting transition.

Algorithm 9, the Sub-algorithm2 describes the procedure which has to be
executed when analyzing the post-set places of the cutting transition.
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Algorithm 7 Sub-algorithm1
1: for j = 1..nc do
2: b =0 (number to use as index of copies of pre-set of pre-set to connect
to pre-set copy c)

3:  alreadyhavecopy = FALSE

4: for each et do

5: if ot € N;.P then

6: if (t.input == et V t.input € N,.P) then

7 N; T =N; TUt

8: N]A:N]AU(.tXt)

9: else

10: if alreadyhavecopy == FALSE then

11: a=a-+1

12: Leopy(a) = T

13: Nj.T = Nj.T U teopy(a)

14: Nj.A = Nj.A U (ot X tcopy(a))

15: SSSSOft.LTS.TS = SSSSOft.LTS.TS U tcopy(a)

16: alreadyhavecopy = TRUFE

17: else

18: N]A = NJA U (Ot X tcopy(a))

19: end if

20: c=c+1

21: Deopy(c) = ot

22: Poyz = Pouz U Pcopy(c)

23: for each e (et) do

24: b=b+1

25: Laua(ch) = o(ot)

26: Tovwe = Toue U tau:p(cb)

27 Aauz = Aauac U (tau:v(cb) X pcapy(c))

28: l=1+1

29: Create SS; | SS;.ch =1,55,.LTS.T,, = e(et), SS,.LTS.Ts =
tauz(cb)

30: end for

31: end if

32: end if

33:  end for

34: end for

35: ADD_SUBNETY()
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Algorithm 8 Sub-algorithm1 - ADD_SUBNET

1:j=1

2: while t ¢ N;.T do

3 j=j+1

4: end while

50 Nj.P = N;.PU Py,

6: N;. T = N; TUT,

7 N]A = N]A U Nj'Aau:v

8: for ¢ =1..cdo

9: Nj.A = Nj.A U (pcopy(q) X t)
10: end for

Line 2 - First the variable alredyhavecopy is updated as FALSE to indicate
that the present component has no copy of the cutting transition if
there are no pre-set states included in the component.

Lines 4-6 - Afterwards it is verified for each element of the post-set places if
it belongs to the current component and if it is the component where
the cutting transition is included. If this is the case, the post-set place
is connected to the cutting transition.

Lines 8-10 - Otherwise, if the variable alreadyhavecopy is FALSE, and if there
is already a copy of the cutting transition in the current component,
because it was already created when the pre-set places were processed,
then the copied transition is connected to the post-set place.

Lines 11-18 - Otherwise, if there is no copy of the cutting transition yet, then
the index of copied transitions is increased, a copy is created, and the
variable alreadyhavecopy is updated as TRUE. The copied transition
is added to the set of the transitions of the current component, an arc
is created between the copied transition and the post-set place, and
finally the copied transition is added to the synchrony set with the
slave label, where the cutting transition is included with the master
label.

Line 20 - If within the current component there is more than one post-
set place and the variable alreadyhavecopy is TRUE, it is necessary to
create an arc between the copied transition and the post-set place.
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Algorithm 9 Sub-algorithm?2

1: for j = 1..nc do

2:  alreadyhavecopy = FALSE
3: for each te do
4: if te € N,;.P then
5: if ¢t € N;.T then
6: Nj.A:Nj.AU(txtO)
7 else
8: if alreadyhavecopy == FALSFE then
9: if 3t € SSSSOft.LTS.TS | t e Nj.T then
10: N]A = N]A U (tcopy(a) X t.)
11: else
12: a=a+1
13: Leopy(a) = T
14: alreadyhavecopy = TRUE
15: Nj.T = Nj.T U teopy(a)
16: N; A= N; AU (tcopy(a) X te)
17: SSSSOft.LTS.TS = SSSSOft.LTS.TS U (tcopy(a))
18: end if
19: else
20: N]A = N]A U (tcopy(a) X t.)
21: end if
22: end if
23: end if
24:  end for
25: end for
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4.4 Discussion on Property Preservation

The presented net operation modifies the original net structure. The question
is how we can prove that the initial model and the resulting model have the
same properties. As our models represent the control part of the system -
in other words, the behavioral flow of the system - we have to guarantee
that the execution of both models is the same (the partial order of transition
firing is maintained).

To answer these questions, we suggest the following approaches: (i) demon-
strate that is possible to obtain the initial net from the resulting subnets
taking advantage of the synchronous communication channel characteristics
and the well-known net reduction rules [Mur89], (ii) using rewriting logic
techniques [MRO7].

With the aim of demonstrating that from the resulting net it is possible
to obtain the initial net, we can simplify the model in order to consider
just the part of the net structure, which means to consider the model as
a place-transition net. Taking into account that the resulting sub-models
communicate through synchronous communication channels, it is possible to
obtain the initial net by merging the transition within the same channel.

For example, if applying Rule #1, we obtain at least two components.
Figure 4.6 illustrates a simplified example of applying Rule #1 and Rule
#2. For this minimalist example, considering the net segment presented in
Figure 4.6 (a) as the initial net, choosing place pI or transition ¢I, in both
cases, applying Rule #1 or Rule #2 respectively, we obtain as a result the
net segment presented in Figure 4.6 (b).

Considering the execution using synchronous communication channels
merging transitions tI1_slave and t1_master, we obtain the initial net seg-
ment.

In case Rule #3 applies the situation is a little more complicated. Con-
sider the situation illustrated in Figure 4.7 (a); the resulting net is presented
in Figure 4.7 (b). Notice that this is also a simplified example; for better
illustration only the relevant information is shown. By merging the com-
munication transitions, we obtain the net presented in Figure 4.7 (b). To
obtain the initial net, the reduction methods presented in [Mur89] have to
be applied.

Taking into account the above considerations, we can confirm that the
Net Splitting operation preserves the model properties.

However, our objective is to use these models to be implemented as inde-
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- t1_master

|:| t1_master

t1

t1_slave - t1_slave

p1 1
p ‘ o1

a) b) c)
Figure 4.6: Simplified Rule #1 and Rule #2.

pendent components, which means in a distributed way. The model used for
communication is message passing: a generated output event by the master
transition is read by the slave transition. Considering that these transitions
are fired within the same execution step, as defined for the directed syn-
chronous communication channel, we obtain the initial net model execution
in the same way as explained before.

However, it is not possible to consider a fully distributed execution for
the synchronous firings of the communication transition. For that case, at
the modeling level, we can represent the communication by a place between
the master and slave transition, as shown in Figure 4.6 (c¢) and Figure 4.7
(d).

For the cases of the first two rules (Figure 4.6 (c) ), we can demonstrate
that the models are equivalent from the point of view of main properties
using the reduction methods presented in [Mur89].

Unfortunately, for the case of Rule #3 (Figure 4.7 (d) ), is not possible
to obtain the initial net segment using the reduction methods. However, it
can be seen that the partial order of the transition firing is the same in both
models.

The initial net transition t5 will be enabled to fire when the places p1,
p2 are marked. What happens after transition t2 fires, is not important;
because of the partial order point of view, there is no relation between the
two components. What it is necessary to guarantee is that any transition ¢2

87



Chapter 4. The Net Splitting Operation

t3

t1_slave

t1_master
2
p p1 p2 p1_copy p1
©2 t2_master t2_slave

t1_master
t1_slave + t1_master = t1
t1_slave
1
p1_copy C5 P
. p1
t2_master

- t2_master + t2_slave = t2

t2_copy

c) d)
Figure 4.7: Simplified Rule #3.

(master or slave) will not fire before marking places p1, p2. Figure 4.7 (d)
leads us to the conclusion that this can never happen.

We conclude that the models resulting from the application of the split-
ting rules preserve the partial order of the firing of the transitions and thus
preserve the overall system behavior.

As mentioned, another way to demonstrate that the initial and the re-
sulting model and have the same behavior is using rewriting logic techniques.
This technique can be used as a framework for defining executable compu-
tation languages, generating interpreters for the chosen language and using
its semantic.

Considering the Net Splitting operation as an MDA transformation, it is
possible to use the associated model checking methods. Namely, the Maude
framework was used to describe the input models (the global system model),
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the output models (the resulting subnets) and the temporal logic for prop-
erty verification. Their formal definition can be used for property verification.
The model checking tool using formulas of pattern specification [Lab09] pro-
vides a positive answer for each question if the questioned property has been
satisfied. In the case the answer to the question is negative, the tool provides
a list of counter-examples.

4.5 Applicability to Other Petri Net Classes

The Net Splitting operation consists of modifying the graph structure of a
Petri net. The algorithmic description of the operation only refers to the
modification of the graph structure and the addition of the master and slave
attributes to the transitions that have to communicate with each other in-
volved in synchrony set.

As stated, this modification will not change the overall behavior of the
model. It is guaranteed by construction that the causal firing sequence is
kept. This is assured through the replication of the border localities of the
cutting nodes; namely the cutting transition or the pre-set transition of the
cutting place is replicated in all sub-models. Moreover, if the cutting tran-
sition is a synchronization transition, the synchronization condition will be
replicated in one of the sub-models. Furthermore, the directed synchronous
communication execution semantics ensures that the replicated transition
fires at the same execution step.

Due to these characteristics, the Net Splitting operation can be applied
to any low-level class of Petri net, without changing of the model behavior.

In particular, in case of the IOPT Petri net class, where some non-
autonomous characteristics were added, the conditions associated with the
transitions are the same in both models - in the initial and in the split mod-
els. In the case of transitions that are replicated, only the transition with the
master attribute will receive the non-autonomous characteristics (guard and
events). The transitions with a slave attribute only depend on the master
transition firings through event propagation. Even if a transition with a slave
attribute has any input place, that place and its respective pre-set transitions
have to be replicated within the sub-net where the respective transition with
the master attribute belongs to. The same rule applies for places: initial
places will keep non-autonomous characteristics (output actions), while repli-
cated places will receive no duplicates of the non-autonomous characteristics.
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In general, the basic assumption of the Net Splitting operation is the
reproduction the initial firing conditions associated to the cutting transition
or the pre-set transition of the cutting place and its association with the
transition with the master attribute.
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From Sub-models to Modules

Summary

This chapter presents how to use / reuse the components re-
sulting from the Net Splitting operation to directly compose a
new system model.

Contents
5.1 Introduction ... ... .. ... ... ... 92
5.2 Composing Modules . . . .. ... ......... 93
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5.1 Introduction

Design for reuse is a well-known topic in software and hardware design.
In software engineering, a component is considered as an independent exe-
cutable entity, that publishes its interfaces, and all interactions go through
that interface [Som05]. Usually those interfaces are characterized as provides
or requires. As the models discussed in this thesis can be implemented in
software as well in hardware, we assume that sub-models can be considered
as modules or components. The sub-models will be transformed into modules
which are reusable to compose a system model. In our case, the questions
are what to do or how to do it for the sub-models resulting from the Net
Splitting operation become reusable components.

To answer these questions, it is necessary to analyze how the resulting
subnets communicate. In line with the objective of reusing the resulting
sub-models of the Net Splitting operation, we need to clearly identify the
interfaces of the modules (which stand for the boundaries of the Petri net
sub-models). According with proposed splitting Rules the boundaries of the
sub-model are a set of transitions that are responsible for the communication
with the other sub-models.

According to the definition of the Net Splitting operation, these interface
transitions are grouped in synchrony set, which are responsible for the di-
rected synchronous communication between the models. As a consequence,
we conclude that the interface transitions are divided into two sets of tran-
sitions:

e one transition having the role of the master labeled transition, initiat-
ing the communication; making the analogy with software engineering
definition, we can consider it as requires interface;

e other transitions having the role of slave labeled transitions, waiting
for the event sent by the master labeled transition; they can be seen
as provides interfaces.

To illustrate this situation, the reader is reminded of the example of a
sender-receiver system, presented in Chapter 1. The two sub-models of Fig-
ure 1.4 are considered as two modules as in Figure 5.1 (a), and representing
as a block diagram as in Figure 5.1 (b), where the communication between
the modules is clearly identified.

Two types of composition are analyzed to build a system model, reusing
the sub-models which resulted from the previous decomposition:
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Figure 5.1: Sender - Receiver connected through directed synchronous chan-
nels.

1. Direct reuse of the resulting components using net addition [BG03].

2. Connecting the components through a communication module interface
[CGOTa].

The next section will characterize these options.

5.2 Composing Modules

Starting with a simple system composed of two modules (Modulel and
Module2), as the one represented in Figure 5.2 (a), we consider that the
interfaces of both modules are compatible and thus the two modules fit to-
gether.

Saying that the two interfaces match implies that the type of transitions
belonging to the interface of the modules are compatible (a master labeled
transition at one module interface has a counterpart slave labeled transition
on the other module interface, and vice-versa).

Hence, the way to compose modules is straightforward, as it only depends
on the compatibility of the interfaces. In this way, it is possible to reuse
modules composing them as presented in Figure 5.2 (b), where module 2 was
replicated and a new module was used to interconnect all modules, assuring
that individual interface between modules match.
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Figure 5.2: Composition of modules: (a) System divided into two modules;
(b) Replication of one module and introduction of an interconnection module

5.2.1 Composing modules by net addition

One of the technique to be considered uses net addition operation, introduced
in [BGO3]. Having identified the subnet which represents the module that
has to be added to the model, we can have the following attitudes. First
of all, it is necessary to clearly identify the interface nodes of the subnets
that are considered for addition. As in terms of addition, we need to define
a set of nodes that should be merged into a new one in order to create the
resulting net, it is necessary to include within each subnet the counterpart
of the interface transition that will be merged when the modules are added.
In this way, we are able to define the fusion set for the net addition.

Moreover, we have identified two different situations. One is where the
considered interface nodes result from the application of splitting Rule #1
or Rule #2. The other one is where the interface nodes result from the
application of splitting Rule #3.
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Addition of subnets with interface nodes resulting from the appli-
cation of Rule #1 or Rule #2

As already shown, the results in terms of interface nodes are identical in both
cases, applying Rule #1 or Rule #2. Within one subnet we have the master
labeled transition of the communication channel and within the other subnet
the slave labeled transition. As indicated before, for the resulting subnets
to be used for model composition by net addition, is necessary to include a
master and a slave transition with the respective communication channels
within each subnet.
The analysis of the following two situations is of particular interest:

e Composition of one subnet with slave transition with several subnets
with master transition.

e Composition of one subnet with master transition and several subnets
with slave transition.

Composition of one subnet with slave transition with several sub-
nets with master transition

Consider the net segments presented in the Figure 5.3 for composition Subnet
A + Subnet B+ Subnet C. (Note that Figure 5.3 (a) presents the net segments
with the prepared interface nodes for addition, and the rest of the model is
represented by only one place.)

Subnet A and Subnet B, both including the resulting master labeled tran-
sition, are to be added to a subnet (Subnet C') which includes the resulting
slave transition. This condition represents a scenario when, for example, at
a certain point the system behavior can depend on two conditions instead of
just one. To obtain the altered system behavior model we have to add those
three subnets considering the following fusion sets, as in:

SubnetA + SubnetB + SubnetC
(T2-master /T1_master — T _masterA,
T3 master /T1 master — T _masterB,

T2 slave/T1_slave — T _slaveC1,
T3 _slave/T1 _slave — T _slaveC2)

The resulting subnets are presented in Figure 5.3 (b), where the commu-
nication between the subnets is indicated by dashed arrows. As illustrated in
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Subnet A + Subnet B + Subnet C
Subnet A (T2_master/T1_master -> T_masterA,
T3_master/T1_master -> T_masterB,
T2_slave/T1_slave -> T_slaveC1,
T2_master T3_slave/T1_slave -> T_slaveC2)
l:l T2_slave Subnet A’ Subnet B'

T1_master T2 master

Subnet A + Subnet B + Subnet C
Subnet B
T T2

Subnet A’ Subnet B’
T3_master
T_masterA T_masterB T1_Slave T2_Slave
l:l T3_slave \ |
— \ |
l:lTLmaster M 4 Subnet C'
T_slaveC1 T_slaveC2
T1_slave
Subnet C'
Subnet C
a) b) c)

Figure 5.3: Composition of modules: (a) The three subnets to be composed;
(b) The result of the addition; (c¢) The equivalent decomposition net segment
using Rule #1

Figure 5.3 (c) the result of the net addition is similar to the situation where
the cutting set is a place with incoming arcs from two different subnets and
applying Rule #1 for decomposition.

It has to be stressed that changing the system model using the above
described method, the system properties can be modified; (namely, it may
happen that the net becomes unbounded).

However, if selected sub-models are used this will allow easy addition of
new components.

Composition of one subnet with master transition and several sub-
nets with slave transition

Consider the net segments presented in Figure 5.4 for composition, Subnet
A, Subnet B and Subnet C. This situation represents a scenario, for example,
when at a certain point the system has to initiate two parallel processes
instead of one process. For the composition we consider the following fusion
sets:

96



5.2. Composing Modules

SubnetA + SubnetB + SubnetC
(T2_master /T1_-master/T3-master — T _masterA,
T2 slave/T1 _slave — T _slaveC,
T2 slave/T3_slave — T _slaveB)

Subnet A + Subnet B + Subnet C
Subnet A
Subnet A + Subnet B + Subnet C
(T2_master/T1_master/T3_master -> T_masterA,
T2_master T2_slave/T1_slave -> T_slaveC
T2_slave/T3_slave -> T_slaveB)
I:l T2_slave
Subnet A’
l:l T3_master
Subnet A’ T1_master
T3_slave
- T_masterA T1_slavel T1_slave2
Subnet B s N
/ N
k Y
l:lTLmaster T slaveB T_slaveC
- Subnet B’ Subnet C'
T1_sl
—Save Subnet B Subnet C'
Subnet C
a) b) c)

Subnet A + Subnet B + Subnet C

(T2_master/T1_master -> T_masterA1,
T2_master/T3_master -> T_masterA2,
T2_slave/T1_slave -> T_slaveC Subnet A’
T2_slave/T3_slave -> T_slaveB)

Subnet A’

T2_master

T1_slave

T_slaveC T2_slave

T_slaveB

Subnet C'
Subnet B’

Subnet B' Subnet C'

d) e)
Figure 5.4: Composition of modules resulted by applying Rule #2
The resulting subnets are presented in Figure 5.4 (b), where the com-
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munication between the subnets is indicated by dashed arrows representing
generated synchrony sets. The resulting Subnet A’ is connected through di-
rected communication channel to Subnet B’ and Subnet C’. As illustrated
in Figure 5.4 (c) the result of the net addition is equivalent to the situation
where the cutting set is a transition with incoming arcs from one subnet and
applying Rule #2 for decomposition.

Considering a different fusion set for the addition, we can obtain a system
model with two parallel processes which can either be executed in parallel, or
have mutual execution, or follow any other policy which can solve a conflict
situation depending on the rest of the system requirements. This situation
is presented in Figure 5.4 (d). To obtain this solution, the fusion sets has to
be defined as follows:

SubnetA + SubnetB + SubnetC'
(T2-master/T1_master — T_masterAl,
T2 _master /T3 -master — T _master A2,
T2 slave/T1_slave — T _slaveC,

T2 _slave/T3_slave — T _slaveB)

This solution corresponds to a model where initially there is a place with
two post-set transitions which are the chosen cutting set. Applying Rule
#2, we obtain an equivalent subnet, as presented in Figure 5.4 (d) and 5.4
(e). Note that here we have a conflict situation; however as the master
labeled transitions remain within the same subnets, this conflict can be solved
coherently.

Addition of subnets with interface nodes resulting from the appli-
cation of Rule #3

Applying Rule #3, the resulting subnets, having the master labeled tran-
sition of the directed synchronous communication channel belonging to, in-
clude the dependency on the other subnet. If we want to reuse subnets which
resulted from the application of Rule #3, it is not enough to represent the
master and slave labeled transition within each subnet as in the previous
cases. Within the subnet which the slave labeled transition belongs to, it
is necessary to include the dependency that has to be added to the subnet
which the master labeled transition belongs to. Figure 5.5 illustrates the
composable net segments.
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Subnet 1 Subnet 2
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:{> T1_master
T1_sl T1_slave_c 1_master_c T1_slave
T1_master _slave I =

Subnet 1 Subnet 2

Figure 5.5: Composition of modules: (a) The initial net segment where Rule
#3 will be applied; (b) The split net segment; (c) The equivalent composable
net segments

To reuse these subnets, we consider two different scenarios, as in the pre-
vious case; (i) when the cutting transition has to synchronize, more processes;
this situation is illustrated in section 6.2 when presenting an application ex-
ample; (ii) or when we have two parallel processes, illustrated by the example
in section 6.3 when presenting other application example.

The Figure 5.6 shows the net segments for the case when is applied the
Rule #3. Note, that the fusion sets are identical to the fusion sets of the
previous case. The resulting subnets are also similar. The main difference is,
as far as the cutting transition is used to synchronize two or more processes,
the inclusion of all conditions of the synchronization.

5.2.2 Connection through an interconnection module

For the second type of the connection, a communication module needs to be
added between the connected sub-models.

As an example, consider that one wants to connect one Modulel of Figure
5.2 (a) with two instances of Module2 of Figure 5.2 (a), we need to define a
new module to glue together the three modules, as represented in Figure 5.2
(b), where the Interconnection Module is responsible for providing the glue
for setting-up the whole system.

It must be assured that the interface provided by the Interconnection
Module to connect with Modulel mimics the interface provided by Module2.
In the same way, the interfaces provided by the Interconnection Module to
connect with Module2_1 and Module2_2 mimic the interface provided by
Modulel.

For the case of our proposal, this simply means replicating the interface
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Subnet A + Subnet B + Subnet C
Subnet A + Subnet B + Subnet C
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Figure 5.6: Composition of modules resulted by applying Rule #3

transitions with master and slave attributes and reorganizing the associated
directed synchronous communication channels.

We identified three simple types of modules to be used as the Inter-
connection Module, with particular interest for being used in systems such
as client/server, sender/receiver, or master/slave. The proposed modules are

100



5.2. Composing Modules

presented in Figure 5.7; referring to a system with one server and two clients.
If the cardinality of clients is different (right hand side of the composition in
Figure 5.7 ), then a vector of two modules may be used, and the number of
places/transitions varies accordingly.

The considered three simple types of interconnection modules support
three communication types :

e Broadcast from Modulel to all Module2x;

e Communication from Modulel to only one of the Module2x at one
time, using a mutual exclusion discipline.

e Communication from Modulel to only one of the Module2x at one
time, using a balanced discipline (circular scheduling).

Several other simple types of interconnections could be modeled without
difficulties (for instance, using different arbiters for mutual exclusion), but the
presented three cases allow us to indicate the main advantages and pitfalls.

T_slave T_master_1 T_slave T_master_1 T_slave T master 1
T_master_2 T_master_2 T_master_2
T_master T slave_1 T_master T_slave_1 T_master T_slave_1
T_slave_2 T_slave_2 T_slave_2
a) b) c)

Figure 5.7: Interconnection module nets: (a) for broadcast communication;
(b) for mutual exclusion, (c) for balanced communication discipline

The broadcast situation is supported by the model shown in Figure 5.7
(a). The upper model assures the broadcast of tokens generated by the firing
of the slave transition (under the control of the master transition belonging
to the module at the left hand side, not represented), while the lower model
assures that only after receiving tokens from all modules at the right hand
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side, the master transition will fire the associated slave transition at the
module on the left.

The second approach, the mutual exclusion discipline, is supported by
the model shown in Figure 5.7 (b). The upper model assures that only one
of the master transitions will be fired, as they are in conflict, while the lower
model assures that whenever a token returns from a module on the right, the
master transition will fire the associated slave transition at the module at
the left hand side.

In the third approach, the circular sheduling is supported by the model
shown in Figure 5.7 (c¢). Here, the upper model guarantees that first one of
the modules at the right hand side is executed, and after that, obligatorily,
the second one, followed by the first one again, and so on. The lower model
is the same as in the case of mutual exclusion.

It is important to note that the properties of the original system are
preserved in all the described situations.

This will not be the case anymore if the designer wants to use an ad-
hoc combination of modules. As an example, if one selects the upper model
of Figure 5.7 (a) in conjunction with the lower model of Figure 5.7 (b),
unbounded models will most probably result. On the other hand, if one
selects the lower model of Figure 5.7 (a) in conjunction with the upper model
of Figure 5.7 (b), a deadlock will most probably result.

Figure 5.8 presents the extension of our example using one sender and
one receiver to the situation where we have one sender and two receivers,
using the broadcast discipline.

Note that building a global system model including one sender and two
receivers and afterwards decomposing the model into three sub-models can
be a difficult task. The resulting model may be complex, but the procedure is
feasible. With a global system model using the mutual exclusion discipline,
it is not possible to split the model by choosing the place p4. This place
standing for the message, being chosen as a cutting node it would cause a
conflict situation as explained in section 4.3.4. However, it would be possible
to split choosing the output transitions of the place p4, but this way we would
lose the representation of the message in the receiver modules. Moreover, the
conflict solver should be included within the sender module.

It is important to indicate that using the direct composition of the mod-
ules, only the cases with broadcast communication can be composed.

Taking advantage of the interconnection modules, we obtain a highly
flexible way to compose a system using components.
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Figure 5.8: Broadcasting from one sender to two receivers

Another application of this approach is presented in section 6.1, where a
case study of a production line is explained.
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Chapter 6

Case

Studies

Summary

This chapter presents three application examples illustrating the
applicability of the splitting rules and their effectiveness for
the distributed execution of Petri nets models as well as for
hardware-software co-design. Selected examples from the au-
tomation system controllers are presented. To detail the usage
of Rule #1 and Rule #2, an example with four conveyor con-
trollers is used, and for Rule #3, cases with three wagons and
parking lot controllers are used.

Contents
6.1 The4 Conveyors . . . . . ... oo vuuueoeon
6.2 Controlling a 3 Wagons System . . . .. ... ..
6.3 The Parking Lot . .. ... .............
6.4 Remarks on Property Verification and Imple-

mentation . . . . . . . i i i it e e e e e e e e e
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6.1 The 4 Conveyors

This example shows the decomposition of an IOPT Petri net by using the
splitting Rules #1 and #2. Afterwards, we describe how the obtained com-
ponents can be used to compose a flexible manufacturing system.

6.1.1 System description

This selected example is an automated manufacturing system consisting of
four first-in-first-out cells, with four conveyor belts to feed the cells and one
output conveyor (see Figure 6.1). Each conveyor has sensors at its initial and
final positions to detect objects arriving and exiting; the output conveyor
of the system only has one sensor at the initial position detecting objects
leaving the production line. These sensors will be modeled as the system’s
input signals. It is adopted from [GBCO05¢]

0 S S

Number of cells N=4

% _Move[l..4] .

Four-cell system’s g

OUT!l..d-E controller Cell DCUPiEd[l--4L)
L4

Figure 6.1: N-cell FIFO system model [GBCO05c¢].

Coloured Petri net model

To obtain a model of the controller of this system, the designer may choose
between several possible attitudes. One possibility are Coloured Petri nets,
the obtained model is presented in Figure 6.2 as used in [GBC05¢| (with three
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cells). For the model to represent a system with more cells, more coloured
token have to be inserted in places P1 and P6 accordingly.

ouT=0

OUT=1

Figure 6.2: Coloured Petri net Model.

Interpretations of the nodes follow:
e P1 - Conveyor i free;

e P2 - Object being processed by robot i;

P3 - Object at the end of conveyor i;

P4 - Object out of the last conveyor;

P5 -Object in movement from robot i to conveyor i+1;

e P6 - Robot i free;
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e P7 - Conveyor i stopped;

e P8 - Conveyor i moving;

e t1 - Removing object from end of conveyor i;

e t2 - Placing an object at the beginning of conveyor N;

e t3 - Placing an object at the beginning of conveyor i+1;
e t4 - Object arriving at the beginning of conveyor 1;

e t5 - Object at the end of conveyor i;

e t6 - Object arriving at the exit of the system;

e t7 - Object arriving at the beginning of conveyor i+1;

t8 - Object arriving at the end of conveyor i.

In [GBCO05¢| this example was explored from the composition point of
view using hierarchical structuring mechanisms. The authors identified the
model of one cell (one conveyor and one robot) and explained how it is
possible to compose a model with several cells.

Our objective, however, is to first decompose the system model in order
to obtain components amenable to be deployed into a controller network and
afterwards using those components to compose a system in a more flexible
way.

6.1.2 System modeling using the IOPT Petri net class

As our reference Petri net class is the IOPT class, we first decompose the
Coloured Petri net model into a flat IOPT Petri net model. In Figure 6.2,
showing the Coloured Petri net model, it is indicated where the external sig-
nals (the signals associated to the sensors at the beginning and the end of the
conveyors) are considered within the model. In the flat model those signals
are defined as Input signals and are associated to each respective transition.
Moreover, Qutput signals are defined, indicating that the conveyor is moving
or that the cell is free, and associated to the respective places. Hence, those
signals are not shown in Figure 6.3 to avoid overloading the picture.
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PE_4 t5 4

Figure 6.3: The IOPT Petri net model of the system controller [CGBT08].

Model decomposition

Considering that the goal is to have a dedicated controller for each cell, it is
necessary to split the model into four sub-models. That can be achieved by
choosing as cutting set the nodes P2_1, P22 and P2_3 (conveyor; processes
the object), and ¢7_1, t7_2, and ¢7_3 (the sensor on the initial position of the
next conveyor is active). Those nodes are identified by a circle in Figure 6.3;
removing them from the model, we obtain four disconnected subnets.
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Applying the splitting Rules #1 and #2

Applying Rule#1 for each removed P2_i place and Rule#2 for each removed
t7_4 transition, we obtain the four separated controllers, as presented in Fig-
ure 6.4. In these models, the communication between the previous and the
next conveyor controller models are presented by dashed arrows. The transi-
tions connected by the dashed arrows is the pair of master and slave labeled
transitions of directed synchronous channels.

Observing these models, we conclude that the first and the last controllers
are slightly different. It is not surprising because also in the model presented
in [GBCO05c¢|, the first and the last cells were slightly different from the cells
in the middle.

Analyzing our model, we see that the first controller contains only the
information associated to the conveyor, which means that the model does
not include any information concerning if / when the cell receives the object.
Only transitions associated with the input signals representing the sensors
at the first conveyor are included. The output signal indicating “conveyor
in movement” is associated with the places P8_i, and object processing is
associated with the places P2_i. As we can observe, place P2_1 belongs to
the model of the second conveyor controller. The controllers in the middle
(Controller 2 and Controller 3) provide information about the previous cell,
containing the nodes which represent “object is processed in the cell”, as-
sociated with the output signal “Cell;_; occupied” (where i represents the
number of controller), and the information about the input signals associated
with the conveyor ¢. The last controller model contains information about
the previous cell containing the place P2_3, the last cell represented by place
P24 as well as the information about conveyor 4.

As far as the models of the conveyors between the first and the last one
are the same, it is easy to modify the system for including a different number
of robots and conveyors. This model can be used when a production line is
composed of several conveyors which are fed by a robot (one conveyor - one
robot).

Why were the nodes P2_7 and t7_i chosen as cutting nodes for splitting? It
looks like the transitions ¢3_i (“placing an object at the beginning of conveyor
i”) and t74 (Object arriving at the beginning of conveyor i+1) would be a
better choice instead of P2_i (“object being processed at robot i”) and ¢7_i.
It is true that these nodes can be considered as the starting and ending point
of a process. However, transition ¢34 has two input arcs coming from places
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Controller 1 R
7

Controller 2

Controller 4 - _4

Figure 6.4: Result of the splitting operation [CGBT08].

111



Chapter 6. Case Studies

which after splitting will belong to two different component. This means that
Rule #3 should be applied and the resulting models would be much more
complicated because Rule #3 implies the inclusion of the dependency on the
other component. Besides, the initial objective was to find a suitable model
which can control a conveyor and can be deployed into a controller. Taking
into account this objective, our choice of the cutting nodes (the place between
the transitions associated with “removing object from end of conveyor i” and
“placing an object at the beginning of conveyor i+1”) does not change the
resulting controller, and in addition, we obtain a less complicated model.

Splitting with a different cutting set

Even though we obtained a reasonably flexible result that can be used to
compose a system model containing several identical components, we can
go further. Let us consider what happens if we choose cutting nodes being
the transitions ¢1.4 and 72 ( “removing object from end of conveyor i” and
“object arriving at the beginning of conveyor i”), respectively. These nodes
can also be considered as the start and end points of a process. Removing
these nodes of the model, we obtain eight sub-models as shown in Figure 6.5
(b), instead of four as in the previous case. Applying the splitting Rule #2,
the resulting eight sub-models are presented in Figure 6.6.

The resulting controllers with the communication is presented in Figure
6.7.

Based on this result, one question may arise: does the obtained parti-
tioning have any meaning? Is it beneficial? The answer to these questions
is definitely yes. Carefully observing the models in Figure 6.6, the models
on the left hand side can be associated with the conveyors, and the modules
on the right hand side to the robots. In this way, we obtain a model which
can be used to compose a more flexible system where the granularity of the
sub-models is smaller than in the previous example. For example, we can
consider more than one robot between two conveyor belts, or more than one
conveyor for a robot.

Before presenting how a more complex system containing several robots
and conveyors can be composed, let us see if it is possible to obtain the model
of the initial four controllers by using these eight sub-models. Observing
Figures 6.4 and 6.6, we conclude that the model associated with the first
controller (on Figure 6.4) is identical to the model Conveyorl (on Figure
6.6). This is not surprising, as in the first case we have chosen the place P2
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13_2

b}

Figure 6.5: Result of the cutting nodes removal.

as the cutting node and in the second case its pre-set transition ¢1 (applying
Rule #1 with respect to a place or applying Rule #2 with respect to a
given place’s pre-set transition, the result has to be the same). The rest of
the controllers can be obtained by composing the models Conveyori+1 with
Roboti. The last controller is different from the rest of them, and to obtain
this model, the models Conveyor4, Robot3 and Robot4 need to be added.
However, considering the eight sub-models, model Robot4 may remain as a
separate model. The resulting controller models are presented in Figure 6.7.

Model composition

To obtain the controller model for a more elaborate production line, for
instance with two robots between two conveyors, the model Cont.ib in the i**s
Controller model needs to be duplicated. We analyze two ways of connecting
these models:

e The object transported on the conveyor is composed of two parts and
each of them has to be processed by a different cell (which means that
it will be received by a different robot).

e Depending on the type of object, a suitable cell will process the object
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Figure 6.6: Result of the splitting operation considering ¢1_¢ and t7_¢ as the
cutting set.

(that is, only one of the robots receives the object at a time).

The connection between the conveyor controllers will thus depend on the
situation.

For the first case, a broadcast communication model block (from Figure
5.7 (a)) is introduced between the two controller models, and the communi-
cation channels are reconfigured.

As an example, we consider two robots between conveyor 1 and conveyor
2. The communication channel including the transitions t1_-1 and t1_1m will
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be replaced by the communication block S and the associated communication
channels have to be updated / newly created as follows. The channel includ-
ing the transition t1_1 as the master labeled transition t1_1_m has to be
replaced by T'_slave of the communication block S, respectively, in its slave
labeled transition list. Two new channels are created between T'1_master
and t1_1_m1 belonging to one of the models of robot 1 (R1), and T2_master
and t1_-1_m1 belonging to the model of robot 2 (R2).

The other communication channel between the transitions t7_1 and t7_1m
will be replaced by the respective communication block S and the associated
communication channels have to be updated / newly created as follows. The
channel including the transition ¢7_1 as the master labeled transition of the
model robot 1 (R1) has to be replaced, and its slave labeled transition list
(including transitions t7-1-m1 and t7_1.m2) are replaced by T'1_slave of the
communication block R. For the channel including the transition t7_1 as
the master labeled transition of the model robot 2 (R2), its slave labeled
transition list (including transitions ¢7_1.m1 and ¢7_1.m2) is replaced by
T2_slave of the communication block R. New channels are created between
T _master and t7-1-m1 and t7_-1.m2 belonging to communication block R
of the model of robot 1 (R1), as well as between T2_master and t1_1.ml
belonging to the model of robot 2 (R2), respectively, where the transition
T master will be the master labeled transition and the other two transitions
belong to the slave labeled transition list of the new communication channel.
Finally, the communication channel with the master labeled transition t1_2
needs to update its slave labeled transition list, adding transition t1_2-ml
of the module R2.

These connections are indicated in by dashed arrows in Figure 6.8.

The second situation we analyze is when only one of the robots takes the
object at a time, which means considering mutual exclusion communication.
The changes to be made in this situation are very similar to the previous one.
The main difference consists of changing the communication block and the
necessity of dynamically reconfiguring one of the communication channels,
namely the channel with the master labeled transition ¢1_2. This channel
cannot include both ¢1_2-m1 transitions (belonging to R1 and R2) in its
slave labeled transition list. Depending on which robot was activated, the
transition belonging to R1 or R2 have to be included accordingly.

With other different composition, like, for example, one robot takes ob-
jects from two conveyors, the communication between the transitions, for
instance, t7_1 and t7_1,,2, and ¢1_2 and ¢t1.2,,1, need to be replaced by the
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Figure 6.8: A composition with two robots between the first two conveyors

respective communication blocks.
This way, a highly re-configurable system is obtained.

6.1.3 Comments on verification and implementation
issues

The example presented here was used applying the FORDESIGN project

development flow. The flat model of the system was built considering four

cells. The PNML files generated by the Split tool were used for generating the
implementation VHDL and/or C code using the PNML2VHDL [GCBLO07]

117



Chapter 6. Case Studies

and PNML2C [Reb10] automatic code generators. Using the Configurator
tool [OCGO09], the respective components were deployed into the Spartan
FPGA platform and the PIC microcontroller platform.

Moreover, the example was also implemented using the Network-on-Chip
[Fer10b] and GALS [Ferl0a] approaches. For each case the observed behavior
was as expected.

6.2 Controlling a 3 Wagons System

This section presents an application example introduced in [Sil85], used to
illustrate how Petri nets can help avoiding the problem of the state space
explosion and allow a graphical model of moderate size when the system
is composed of a set of concurrent similar sub-systems. Here, it is used
to demonstrate how we can easily obtain a set of models amenable for dis-
tributed execution, having one controller associated with each wagon/process
starting from the initial model of the system, and how to compose a system
model containing several controllers using the previously obtained models.

6.2.1 System description

The system to be analyzed consists of three wagons which are moving between
two end-points A and B, illustrated in Figure 6.9. Each wagon has its own
trajectory, but their movements are synchronized at the start point and at
the end point. The wagons start moving forward when all of them are at
their initial home position (input signals A[i] active) and the button GO is
pressed by the operator. The wagons start moving towards their destination
position, and when reaching the end position (input signals Bli] active),
they stop. When all of them have reached their end positions and the button
BACK is activated, they start moving backward.

From the point of view of the controller’s input interface, it is necessary to
consider two input signals associated with the buttons GO and BACK under
the operator’s control, as well as two input signals per wagon to detect end
positions, namely A[i] and Bli|, where i belongs to {1,2,3}. For the output
interface, it is necessary to consider two output signals per wagon, M[i] and
Dirl[i], where i belongs to {1,2,3}, and the output signal M[i] will be active
whenever the motor of the wagon is switched on. The output signal Dir|i]
will indicate the direction of the movement (forward or backward).
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Figure 6.9: Three wagon system.

6.2.2 System modeling using the IOPT Petri net class

Considering the IOPT Petri net as system specification language, the system
model is presented in Figure 6.10, where the input signals are connected to
the transitions with the same names, and the generation of output signals
are associated with the places as follows: the activation of the output signals
MTi] and Dir[i] are associated with the markings of the places Car[i]-move
and Car[i]-move_back, where i belongs to 1,2,3. The signals are not explic-
itly shown in the picture to avoid overloading the representation; they are,
however, associated with the transitions with the same names.

GO

. Car3_at_end . Car?_at_end . Car1_at_end

BACK

. Carl_move_back

° CarZ_ready

. Car2_move_back

Figure 6.10: The global system model.
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Model decomposition

As the objective is to obtain a distributed controller to have one controller
per wagon, it is necessary to find the associated three sub-models, which
can be deployed to the devices installed in the wagons’ local controllers. To
achieve this objective, we decompose the model by using the Net Splitting
operation and the associated Split tool. The transitions GO and BACK are
identified as the cutting nodes. Removing these nodes from the model, we
obtain six subnets.

Splitting by using a cutting set composed by two transitions

As far as the transitions GO and BACK have input arcs connected to places
belonging to different subnets, the splitting Rule #3 applies. We consider the
places Carl_ready and Carl_at_end to which the master labeled transition
of the communication channel has to be connected. As the results of this
operation, we obtain six components for controlling the movements of the
wagons in each direction (see Figure 6.11). Thus we have two models for
each wagon, one for each direction (forward and backward movements); sub-
models N1A and N1B are deployed to the controller of wagon 1, while N2A
and N2B is for the controller of wagon 2, and N3A and N3B for the controller
of wagon 3, accordingly.

Composing the three controllers from the resulting six sub-models

As the objective is to obtain one controller for each wagon, we can compose
the sub-models of Figure 6.11 using the net addition operation by defining
the following fusion sets:

controllerl = (N1A+ N1B)
(GO/GO-m2+— GO, BACK m2/BACK — BACK)

controller2 = (N2A + N2B)
(GO-m1/GO-m3 — GO_slave2, BACK m3/BACK ml — BACK _slave2)

controller3 = (N3A + N3B)
(GO_mb5/GO_m4 — GO_slave3, BACK m4/BACK mb +— BACK _slave3)
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Figure 6.11: The six sub-models.

The resulting models of the controllers are represented in Figures 6.12,
6.13 and 6.14, respectively.

Splitting by using the new definition of the cutting set

To avoid obtaining several subnets which have to be composed to build the
model which represents a physical component, we modified the cutting set
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Figure 6.12: Model of the controller for the 1st wagon.
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Figure 6.13: Model of the controller for the 2nd wagon.

definition for the tool implementation purposes. As mentioned before, we
include an additional element in the cutting set, represented as C, which
includes a set of pairs of nodes which has to belong to the same component.
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Figure 6.14: Model of the controller for the 3rd wagon.
For this example, we define the following cutting set(according with section

4.3.6 Algorithms (1):

cs =P, 7,(T,P"),C)=(0,{GO, BACK},
{(GO,Carl_ready), ( BACK,Carl_at_end)}, {(B1, Al), (B2, A2), (B3, A3)})

where:
e P’ is the set of cutting places, it is an empty set.
e T’is the set of cutting transitions GO and BACK.

e (T’,P”) represents the set of pairs indicating the pre-set place of the
master transition; here

— (GO, Carl_ready) indicates that the master labeled transition
with respect the transition GO has to be included where the place
Carl_ready belongs to, and

— (BACK, Carl_at_end) indicates that the master labeled transi-
tion with respect to the transition BACK has to be included
where the place Carl_at_end belongs.

123



Chapter 6. Case Studies

e C represents the set of pairs that has to belong to the same subnet; here
(B1, Al), (B2, A2), (B3, A3) indicate the pairs of nodes which have to
belong to the same component.

Using this cutting set and the algorithms presented in section 4.3.6, we di-
rectly obtain the three subnets presented in Figures 6.12, 6.13 and 6.14,
respectively, which can be deployed to the wagons’ local controllers.

Distributed model of the system

The block diagram of the distributed model indicating the input/output
signals and the interconnection of the generated input/output events is pre-
sented in Figure 6.15.

One of the advantages of using an IOPT net with a directed synchronous
communication channel is the fact that the input/output events associated
with the communication channels, slave and master labeled transitions, re-
spectively, are generated automatically when executing the net splitting op-
eration. To simplify the identification of which output event has to connect
to which input event, or in other words, which transitions belong to the
same communication channel, the Split tool generates them with the same
identifier. Concretely, the output event identifier is outevent followed by an
identifier, and correspondingly, the input event identifier is inevent followed
by the same identifier.

However, this model still considers the synchronous execution of the three
controllers. This means that they should be implemented using the same ex-
ecution clock. Yet, when we consider that the three wagons are separated
objects, and each of them should have its own controller, the synchronous
execution of the controllers is no more possible. Thus, the generated output
event and the correspondent input event cannot be executed at the same ex-
ecution step. At the physical level, it is necessary to install a communication
layer between them. At the modeling level, this communication layer can be
represented by a place between the master and slave labeled transitions. The
resulting model is shown in Figure 6.16 representing the networked controller
system, their sub-models and communication.

6.2.3 Model composition by reusing existent sub-models

Analyzing the obtained controllers, we conclude that the models are identical
except for one which includes the dependency of all controllers that control
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Figure 6.15: The distributed model.

the synchronization between them. Therefore, if it is necessary to modify
the system by including more wagons, but maintaining the system’s behavior
(the wagons start moving when all of them are in the start position and the
button GO is activated or when all of them are at the end position and the
button BACK is activated), it easy to modify the respective model of the
controllers.

As described in section 5.2.1 when we want to reuse a model resulting
from the application of the Net Splitting operation, it is necessary to modify
the models to make them addable. This means it is necessary to include
a copy of the master or slave labeled transition that corresponds to the
counterpart to which a new instance of the obtained model will be added.

To obtain the addable model for this example, where cutting Rule #3

was used, it is necessary to include the following items in the model as a
separate sub-model:

e The copy of the counterpart transition,
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Figure 6.16: The distributed model.
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e the pre-set place with its pre-set transition that will be added to the

model where the synchronization is solved, and

e within that model, the respective slave labeled transition.

The models which can be used to obtain the system model by the addition
of more controllers, are presented in Figure 6.17.

To obtain the controllers of a system with four wagons, another instance of

the addable model is inserted, corresponding to the fourth wagon. (Building
the model with four wagons and afterwards decomposing the model using the
Net Splitting operation would be more complex.) The corresponding fusion
set is the following:

WagonControllers = WagonControllers + WagondController
(GO/GOJi] — GO, BACK/BACK]|i] — BACK)

Where i is equal to 4. The respective model is presented in Figure 6.18.
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Figure 6.17: Addable models of the wagon controllers.

Note that the synchrony set of the communication channels associated
with the transitions GO and BACK include one more slave labeled transi-
tion. The input events associated with the GO_slave4d and BACK _slaved
transitions of the fourth controller are the same as in the other two con-
troller models. New instances of communication channels associated with
the transitions A4, A4_slave and B4, B4_slave have to be defined.

6.2.4 Comments on property verification and imple-
mentation issues

This example was submitted to formal verification. This verification was car-
ried out within the cooperation project funded by Portuguese FCT through
the project ref. 4.4.1.00-CAPES, and by Brazilian CAPES through the
project ref. 236/09, namely within the project “Verificagio Semantica em
Transformagoes MDA Envolvendo Modelos de Redes de Petri” (Checking
Semantics Equivalence of MDA Transformations Involving Petri net Mod-
els). The three types of models; global system, distributed model with syn-
chronous execution and with introduce delay between the distributed models
were coded in Maude. Using model checker providing the equivalent ques-
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Figure 6.18: The distributed controller of the 4 wagon system.

tions or each model we obtained the same results ([BRAFT09, CBGT10]).
Namely two types of questions were provided.

One of them contains a firing sequence that should be happened, and
another one with firing sequence that shouldn’t happened. Explicitly, after
firing transition GO all transitions B1, B2, B3 fire in any order. The answer

for that question is TRUE, that it is correct, this firing sequence is the
expected one.

The unexpected firing sequence which was verified is the following: if at
any moment is possible to fire both transition Ai and Bj (which means that
one wagon is moving in one direction and one other wagon is moving in the
opposite direction). The answer for this question is: there was no instant in
model execution that satisfies this requirement.

Those questions, among others, were provided for all three models and
the answer was the same for all three cases. In this way we conclude that
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the distributed models preserve the initial model properties.

In addition to this formal verification, this example was used by three
master students for demonstration purposes. It was successfully implemented
and verified using the Network-on-Chip [FCG10] and GALS methodologies,
as well as application example for PNML2C automatic code generator.

6.3 The Parking Lot

The parking lot is a very good example to demonstrate our development ap-
proach, starting with the composition of the system model using the models
of the sub-systems, and afterward finding the models associated with the
components using the Net Splitting operation. Later on we will see how to
reuse these components to build a more complex system. Several configura-
tions of a parking lot can be considered, such as a parking lot with one or
more entrances, exits and parking areas. Also the parking lot example illus-
trates the advantages of the model based development, reusing the identified
models of a simple configuration to obtain a more complex configuration of
the parking lot.

6.3.1 System description

The parking lot example is inspired by the classical producer-consumer ex-
ample, where a producer provides a product and places it in storage, where
a consumer takes it from. In the parking lot example, the parking area cor-
responds to the storage area, and the producer is equivalent to the entrance
zone, where the cars arrive at the parking lot. The consumer is the exit zone,
where the cars leave the parking lot.

However, we consider the parking lot as a more complex system than a
simple producer-consumer system. At the entrance zone, a presence sensor
detects an arriving car. If the car wants to enter the parking lot, it has to
request a ticket. At the exit zone, a similar sensor detects if a car wants to
leave the parking lot, and the driver has to validate the ticket. Moreover,
the gates are controlled to let cars enter and leave. Therefore, output signals
actuate the gates. Our objective is to build a controller for the gates (see
Figure 6.19 )
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exit
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Figure 6.19: Parking lot with one entrance and one exit area

6.3.2 System modeling using the IOPT Petri net

We can assume several modeling attitudes. For example, modeling the sys-
tem as a whole, or, as suggested in our development flow, modeling the
identified sub-systems and afterward composing the whole system model. A
model may represent the entrance zone behavior, another one the exit zone
behavior and yet another one the parking area.

Considering the identified sub-systems as independent units, the models
in Figure 6.20 represent the following behaviors for each sub-system. The
initial state of the entrance zone is “waiting for a car”, represented by the
place EntranceFree. When a car arrives at the entrance, it is detected
by the presence sensor that activates the signal Pres_in and the entrance
changes its state to Waiting_in. When the signal gotT'icket is activated, the
gate is opened and the car can drive into the parking lot. When the signal
Pres_n is deactivated, the entrance goes back to its initial position, which
is waiting for a car.

The model of the exit zone is very similar, with the initial state exit F'ree.
When the presence detector at the exit zone activates the signal Pres_out, the
state changes to Waiting_out. Once the signal pay is activated, the gate is
opened and the car can drive out of the parking lot. When the signal Pres_out
is deactivated, the exit goes back to its initial sate. The signals are not shown
in Figure 6.20 (a) to avoid overloading the picture, although the names of
transitions and places were chosen in accordance with the names of signals
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which are associated with them.

The model of the parking area is very simple. One place represents the
FreePlaces in the parking lot and another place represents the Occupied
places. One transition stands for the arrival of a car (enter) and another one
for the departure of a car (exit). Using the Net addition operation we obtain
the global system model.

ParkA = (Entrance + ParkingZone + Exit)
(gotTicket/enter — Enterin, exit/pay — Exitout)

The resulting model is shown in Figure 6.20 (b).

Entrance ParkingZone Exit
. P . FreePlaces ;
Pres_in+ WWaiting_in @ Pres_out- ExitFree
° EntranceFree gotTicket . ateCOut_open
a)
Pres_in- Gateln_open Occupied pay Watting_out
ParkA
FreePlaces GateOut_open

Pres_in+ Waiting_in

Pres_out-

° EntranceFree b)

Pres_in- Gateln_open Occupied Waiting_out Pres_out+

Figure 6.20: IOPT model of a parking lot with one entrance and one exit
area: (a) sub-models; (b) global models

Model decomposition

The objective is to obtain a distributed control model of the parking lot,
which means a component to control the entrance, another to control the exit
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and another one to control the parking area. The initial sub-system models
cannot be used for the controller implementation because these models do not
include all the necessary information, such as that the gate at the entrance
should open only if there are free places in the parking zone. Otherwise, the
gate must maintain closed.

To obtain these models, the initial model is divided into sub-models
which can be seen as components representing the distributed controllers.
To achieve this objective, we use the Net Splitting operation. As the cutting
set we choose the transitions Enterln and EnterOut. As these transitions
have input arcs coming from places which belong to different subnets after

node removal, Rule #3 applies. The resulting models are represented in
Figure 6.21.

GateOut_open
~~

Pres_in+
/ ~

Pres_out-

/

o EntranceFree Enterin_m

Component

|
! E |
| | Entrance | Exf
! — Gateln_apen‘ : Waiting_out Pres_out+ \\
| T i 3\
! ? 1 ! b \
' 1 \
\ I t 1
e Pres_in+_m  Waiting_ir_ln FreePlaces | |
= 1 | |
|| ll Component |
| | ParkingArea |
I
!
/
< -
Occupied Watting_out_m Pres_out+_m
<)

Figure 6.21: Distributed controllers: (a) Entrance Zone, (b) Exit Zone, (c)

Parking Area
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Model composition

Usually, a parking lot has more than one parking area and more than one
entrance or exit zone. The model of a more elaborate parking lot can be built
based on the previously obtained models. First, we build the composable
model, which means that within the model of the Entrance Zone and the
Exit Zone, respectively, we include the dependency that was added to the
Paring Area model. The resulting composable model is shown in Figure
6.22. Having these models, we are able to compose the distributed model of
a parking lot with several entrances and/or exits. The model composition is
done using the net addition.

ParkingLot = (EntranceZone|l..i] + ParkingArea + ExitZone[l..j])
(EnterIn[l..i]/ EnterIn — EnterInl|l.i|, ExitIn[i..j|/Exit — ExitIn|[l..j])

Where i represents the number of Entrance zones and j the number of
Exit zones.

Considering ¢« = j = 2, the resulting model is represented in Figure 6.23.

Pres_in+_m[] Waiting_in_m[{] Gate0ut opent] o
FreePlaces .
L’n g_in[l Enterin[i]

Pres_in+[i
ExitFree[] ..

Waiting_out]i]

° EntranceFree]]] Enterin_mii]

Exitout[] Pres_out+[i]

Pres_in{i] Gateln_open(i] Occupied Vatting_out_m[] Pres_out+_mii]

Entrance Zone Parking Area Exit Zone

Figure 6.22: The composable models of the parking lot controllers.

6.4 Remarks on Property Verification and Im-
plementation

Before implementation of the distributed model, it is convenient to assure
that the model corresponds to the required behavior, which means that as-
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Pres_in+_m[1] Waiting_in_m{[1] bres_out 1]
FreePlaces GateOut_open[1]

Pres_in+[1] Waiting_in[1]

Exitout_m[1] ExitFrae[1] .

° EntranceFree[1]  Enterin_m[1]
Waiting_out[1] .

Pres_out+[1]

Pres_in-[1] Gateln_open[1] Waiting_out_m[1] Pres_out+_m[1]

Pres_in+_m[2] Watting_in_m[2]

Pres_out-[2]

GateOut_open[2]

Pres_in+[2] Waiting_in[2]

ExitFree[2] { )

° EntranceFree[z]  Enterin_m[2]
Waiting_out[2]
Pres_out+[2]

Occupied
Pres_ 21 gateln_open|2) Watting_out_m[2] Pres_out+_m[2]

Figure 6.23: The distributed model of the parking lot with two Entrance
Zones and two Exits

suming that the global system model is correct, we need to verify that the
model of the distributed system has the same behavior as the initial model.

As was mentioned before considering a synchronous execution of the dis-
tributed model we can easily obtain the initial system model by fusing the
master and slave labeled transitions within the same communication chan-
nel (as far as they should fire at the same execution step) and then use the
reduction rule to fuse the duplicated places (if there is any) as far as they
represent the same information.

In addition, considering the Net Splitting operation as a transformation
included within MDA approach we also can use the verification method using
rewriting and temporal logic. The models are coded in Maude language
and than using formulas of property pattern mappings for LTL to execute
properties verification [BRAF+09, CBG™10].

For implementation purposes, the automatic code generator PNML2VHDL
[GCBLO7] and PNML2C can be used. To identify the directed synchronous
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O—O0—O&

T1_(master) T2_(slave) T1_(master) T2_(slave)

a) b)

Figure 6.24: Communication channel models

communication channel, the splitting tool generates output events that are
associated with the master labeled transitions of a communication channel
and input events that are associated with the slave labeled transitions with
the same identifier. In this way, using the configuration tool [OCGO09] it is
easy to identify the components which have to communicate with each other
and define the connection between them.

Identifying the interface nodes that has to be connected it is possible to
introduce any communication layer that implement the connection. By using
the Configurator tool we obtain a wired connection. However it is possible
to implement any other type of communication support, such as Network on
Chip or introducing any GALS architecture to solve the communication (as
was used in the case of the first two examples here presented).

The communication between two sub-models, where synchronous firing is
not possible, more precisely between two transitions (with attribute master
and slave) can be simulated through the introduction of a place. The Figure
6.24 (a) and (b) shows an unbounded communication model and a limited
to one message communication model, respectively. Transitions T'1_(master)
and T2_(slave) has to be added to the transition with label master and slave,
correspondingly.

It has to be stressed that from the Net Splitting operation point of view
the sub-model where the transition with attribute master belongs to doesn’t
care if the counterpart transition with attribute slave is fired or not. It is
assumed that both transitions fire at the same execution step. The respon-
sibility to deliver the message is transferred to the communication layer.
For this reason in our models we symbolize the communication with only
one place, which represents the communication layer sub-model (which is a
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lossless channel).
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Chapter 7

Conclusions and Future Work

Summary

This chapter presents a summary of the contributions result-
ing from the work described in this dissertation, and points out
several ideas for future work.

Contents
7.1 Contributions . . . . . . . . . . i e 138
7.2 Future Work . . . . .. . @ . i i i i v v 139
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7.1 Contributions

The main objective of this thesis is to contribute to the process of filling the
productivity gap in systems development. To achieve this objective, a full
development flow to be used within embedded systems design is proposed.
This approach relies on model based development, where the main modeling
formalism are Petri nets, namely, the Input-Output Place Transition Petri
net class.

In particular, this work proposes a Petri net Splitting operation to be
used within the model-based systems development flow. The purpose of the
operation is to obtain a distributed model from the centralized Petri net
model amenable to be deployed into a heterogeneous platform.

The Net Splitting operation requires the definition of a valid cutting set
and comes with three rules depending on the situation of the cutting node.
Although the rules seem very similar to each other, one rule is for the case
when the cutting node is a place and the other two rules are for cases when
the cutting node is a transition. Although one of the rules for the transition
(Rule #2) can be considered as a sub-set of the other rule (Rule #3), it
was considered beneficial to define both of them as independent rules. The
results of Rule #1 and Rule #2 look identical, but as we could observe in
the case study presented in section 6.1, choosing a place or a transition as
cutting set can result in different sub-models. It depends on the structure of
the rest of the model.

It has to be stressed that the proposed operation is application dependent;
this means the nodes chosen as the cutting set have to be validated before
applying the rules. Nodes which are involved in a structural conflict situa-
tion may not be chosen as cutting nodes because conflicts are not sharable.
Moreover, considering only cutting by isolated nodes - that is, without any
direct arcs between them - and removing the cutting nodes from the model,
at least two disconnected subnets have to be obtained.

To guarantee the same behavior for both models, the initial system model
and the distributed system model, some nodes are duplicated within the
distributed model. Among others, the cutting transitions and the pre-set
transitions of the cutting place are duplicated. In the case of Rule #3 (when
the cutting transition represents the synchronization between processes), a
replication of the dependencies on the other processes needs to be included
in one of the sub-models. This means that one of the sub-models will mimic
the initial synchronization.
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The IOPT Petri net class was extended with a directed synchronous com-
munication channel to enable the communication between the resulting sub-
models. This communication channel has to be associated with the interface
transitions which are the duplicated transitions. We call the communication
“directed” because there is one transition with a master attribute in a chan-
nel which fires and thus enables all other transitions with a slave attribute
in the same channel.

Moreover, methods for the composition of a system model using/reusing
the components obtained by applying the Net Splitting operation are pre-
sented. Using these composition methods leads to a highly re-configurable
system model.

As system complexity is still growing, we are confident that the proposed
methods can help fill the productivity gap and obtain a suitable solution for
system design. The proposed methods can be applied in the hardware or the
software field and using co-design techniques for system development as well.

The described methods were validated using several examples. Addition-
ally, the proposed Net Splitting operation, namely the models involved in the
splitting operation, are used in Paulo Barbosa’s PhD thesis work on seman-
tics preservation within concurrent system model transformation as a partial
result of the collaboration within the project CAPES/FCT.

7.2 Future Work

Several open issues may be addressed in the future. Some of the work has
already been started. For example, the implementation of a new version of
the Net Splitting operation contemplating all the situations documented here
has begun.

Another issue which is already in progress as a further research line is
integrating the MDA approach with web services, as published in [BCGT10].
A business process modeled by oWNET (open workflow net) is transformed
into a suitable IOPT model that is equivalent to the models generated by
the Splitting tool. The main focus of that work is to propose a method to
transform a PIM model into a PSM model.

At the current stage, the definition of the IOPT Petri net class does not
consider internal events. One of the next extensions that we are considering
is the inclusion of the internal event definition, allowing event propagation.
However, we need to be aware that this extension can have a strong impact
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at the level of the semantics, and therefore, the verification of the model
becomes more important.

The definition of the Net Splitting operation is based on the class of IOPT
Petri nets; however, as mentioned before, it is possible to apply this operation
to any other low-level Petri net classes. It seems very promising to extend
the definition to allow the usage of the operation within high-level Petri net
classes as well, namely in Coloured Petri Nets.

The reusability of the generated sub-models is presented in this thesis.
Also the formalization of the composition using the generated sub-models as
vector of nodes look very promising.

Maybe one of our most ambitious objectives is to contribute to the de-
velopment of a tool package for system design using co-design techniques to
be used in industry.
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