
Proceedings

Feature Interaction in Composed System

ECOOP 2001 Workshop #08
ht t p: / / i 44w3. i nf o. uni −kar l sr uhe. de/ ~pul ver mu/ wor kshops/ ecoop2001/

In Association with the
15th European Conference on Object−Oriented Programming

Budapest, Hungary −− June 18 − 22, 2001
ht t p: / / ecoop2001. i nf . el t e. hu/

Elke Pulvermüller, Universität Karlsruhe
Andreas Speck, Intershop Research

James O. Coplien, University of Manchester
Maja D’Hondt, Vrije Universiteit Brussel

Wolfgang DeMeuter, Vrije Universiteit Brussel
(Eds.)

Universität Karlsruhe
Fakultät für Informatik / Institut für Programmstrukturen und Datenorganisation (IPD)

Adenauerring 20a
76128 Karlsruhe, Germany

Universität Karlsruhe
Fakultät für Informatik
Interner Bericht (Internal Report)

Technical Report No. 2001−14
September 2001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197593476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II

Preface

The history of computer science has shown that decomposing software applications helps managing
their complexity and facilitates reuse, but also bears challenging problems still unsolved, such as
the assembly of the decomposed features when non−trivial feature interactions are involved.
Examples of features include concerns or aspects, black−box or white−box components, and
functional and non−functional requirements. Approaches such as object−oriented and component−
based software development, as well as relatively new directions such as aspect−oriented
programming, multi−dimensional separation of concerns and generative programming, all provide
technical support for the definition and syntactical assembly of features, but fall short on the
semantic level, for example in spotting meaningless or even faulty combinations. At previous
ECOOPs, OOPSLAs and GCSEs dedicated events have been organised around the aforementioned
technologies, where we experienced a growing awareness of this feature interaction problem.
However, feature interaction is often merely dismissed as a secondary problem, percolating as an
afterthought while other issues are being addressed.

This workshop intended to be the first co−ordinated effort to address the general problem of feature
interaction in composed systems separately from other issues. Feature interaction is an issue of
research in telecommunication since several years. This FICS workshop extends the research to the
area of components and composition.

13 contributions give an overview about current research directions in the field of feature
interaction. These embrace, for instance, feature description, feature detection, feature composition,
features in product lines and logic models supporting the detection and resolution of feature
interferences.

The web page of the workshop as well as the contributions to this proceedings may be found at
URL: http://i44w3.info.uni−karlsruhe.de/~pulvermu/workshops/ecoop2001/index.html

We would like to thank the program committee for their support as well as the authors and
participants for their high−quality submissions and engaged contributions during the workshop.

The FICS Organisers
Elke Pulvermüller, Andreas Speck, James O. Coplien, Maja D’Hondt, Wolfgang DeMeuter

Program Committee

Don Batory, University of Texas at Austin, U.S.
Johan Brichau, Vrije Universiteit Brussel, Belgium

Lee Carver, IBM T. J. Watson Research Center, U.S.
Erik Ernst, Department of Computer Science, University of Aalborg, Denmark

Patrick Steyaert, MediaGeniX, Belgium
Shmuel Tyszberowicz, Tel−Aviv University, Israel

Krzysztof Czarnecki, DaimlerChrysler AG, Germany

III

Organisation

Elke Pulvermüller
Universität Karlsruhe, Germany
Email: pulvermueller@acm.org

WWW: http://i44w3.info.uni−karlsruhe.de/~pulvermu/

Andreas Speck
Intershop Research, Germany

Email: a.speck@intershop.com

James O. Coplien
University of Manchester Institute of Science and Technology

Maja D’Hondt
Vrije Universiteit Brussel

Email: mjdhondt@vub.ac.be
WWW: http://prog.vub.ac.be/

Wolfgang De Meuter
Vrije Universiteit Brussel

Email: wdmeuter@vub.ac.be
WWW: http://prog.vub.ac.be/

IV

Table of Contents

Feature Interaction in Composed Systems ... 1
Elke Pulvermueller (Universitaet Karlsruhe, Germany), Andreas Speck
(Intershop Research, Germany), James O. Coplien (University of Manchester,
UK), Maja D’Hondt (Vrije Universiteit Brussel, Belgium), Wolfgang
DeMeuter (Vrjie Universiteit Brussel, Belgium)

Features and Feature Interaction

Modeling Feature Interactions in Mobile Phones ... 7
Louise Lorentsen (University of Aarhus and Nokia Research Center, Denmark
and Finland), Antti−Pekka Tuovinen (Nokia Research Center, Finland), Jianli
Xu (Nokia Research Center, Finland)

’Feature’ Interaction Outside a Telecom Domain .. 15
Lynne Blair (University of Tromsø, Norway), Gordon Blair (University of
Tromsø, Norway), Jianxiong Pang (Lancaster University, UK), Christos
Efstratiou (Lancaster University, UK)

Classification of feature interactions for modeling purposes 21
Matthias Clauss (Intershop Research and Dresden University of Technology,
Germany)

What’s in a Name .. 27
Erik Ernst (University of Aalborg, Denmark)

Feature Composition

Predictable Assembly from Certifiable Components .. 35
Judith Stafford (Carnegie Mellon University, USA) and Kurt Wallnau
(Carnegie Mellon University, USA)

An architectural style to integrate components and aspect 43
Miguel A. Perez (Extremadura University, Spain), Amparo Navasa
(Extremadura University, Spain), Juan M. Murillo (Extremadura University,
Spain)

Feature Modeling and Composition with Coordination Contracts 49
Lius Filipe Andrade(ATX Software S.A., Portugal), Jose Luiz Fiadeiro
(University of Lisbon, Portugal)

Feature Based Composition of an Embedded Operating System Family 55
Danilo Beuche (University of Magdeburg, Germany)

V

Product Lines

Feature interaction and composition problems in software product lines 61
Silva Robak (Technical University Zielona Góra), Bogdan Franczyk
(Intershop Software Entwicklungs GmbH, Intershop Research)

Configuring Software Product Line Features ... 67
Andreas Hein (Robert Bosch GmbH, Germany), John MacGregor
(Robert Bosch GmbH, Germany), Steffen Thiel (Robert Bosch GmbH,
Germany)

Logic Models

Representing and Reasoning on Feature Architecture:
A Description Logic Approach .. 71

Yu Jia (Chinese Academy of Science, China), Yuqing Gu (Chinese
Academy of Science, China)

Features and Features Interactions in Software Engineering using Logic 79
Ragnhild Van Der Straeten (Vrije Universiteit Brussel, Belgium), Johan
Brichau (Vrije Universiteit Brussel, Belgium)

VI

PositionPaper:
FeatureInteractionin ComposedSystems

E. Pulvermüller
�

A. Speck
�

J.O. Coplien
�

M. D’Hondt
�

W. DeMeuter
�

�

Institutefor ProgramStructuresandDataOrganization
UniversiẗatKarlsruhe,Germany.
http://i44w3.info.uni-karlsruhe.de/� pulvermu

pulvermueller@acm.org
�

Intershop
Jena,Germany

http://www-pu.informatik.uni-tuebingen.de/users/speck

a.speck@intershop.com

�

Bell LaboratoriesLucent,
NapervilleIL, USA

http://www.bell-labs.com/� cope/

cope@research.bell-labs.com
�

Vrije UniversiteitBrussel,Belgium
http://prog.vub.ac.be/

mjdhondt@vub.ac.be

wdmeuter@vub.ac.be

Keywords: Featureinteraction,feature,feature
modeling,composition

Abstract

Featureinteractionis nothingnew andnot limited
to computerscience.Theproblemof undesirable
feature interaction (feature interactionproblem)
hasalreadybeeninvestigatedin thetelecommuni-
cationdomain.Ourgoalis theinvestigationof fea-
ture interactionin component-basedsystemsbe-
yondtelecommunication.Thepositionpaperout-
lines terminologydefinitions. It proposesa clas-
sificationto comparedifferenttypesof featurein-
teraction.

A list of examplesgiveanimpressionaboutthe

natureandtheimportanceof featureinteraction.

1 Intr oduction and Problem

The workshop“FeatureInteractionin Composed
Systems”dealswith a problemwhich is not new.
In fact, as opposedto that, it’s a problem even
olderthanhumanlife.

In the domainof telecommunicationthis prob-
lemwasexplicitely exploredfirst in thebeginning
1990susing the term “feature interactionprob-
lem”. In a seriesof workshops(thefirst washeld
in 1992)thedifficulty to manageimplicit andun-
foreseeninteractionsbetweennewly insertedfea-
turesandthebasesystemhavebeenexamined.

However, the problem is not limited to the
telecommunicationdomain. As opposedto that

IPD
1

feature interaction is an issue which occurs in
nearly all domains although not known under the
name “feature interaction”.

In the last two years we found a growing
awareness of this problem in the domain of sys-
tem composition far beyond telecommunication
issues. With the emerge of aspect-oriented pro-
gramming it has become obvious that with the
growing number of system units their interaction
is a problem of its own, requiring research by its
own. While AOP, CF, SOP, AP [1] and related
approaches reveal this problem it’s not limited to
those approaches either. It already exists in object-
oriented or component-oriented systems, for in-
stance.

In many discussions we found that already a lot
of work exists dealing with feature interaction in
various domains and applying various program-
ming paradigms.

The workshop aims at collecting the different
problems and to provide a platform for knowledge
transfer.

Some important questions are:

� What are suitable definitions for “feature”
and “feature interaction”?

� Are there any commonalities in the different
problems and / or their solutions?

� How can the problems be categorised in
problem classes?

� What is the influence of advanced separa-
tion of concerns or component-based ap-
proaches to feature interaction problems and
vice-versa?

While it is easy to compose a system technically
it’s hardly explored how systems can be combined
in a way that the result is a valid and also reason-
able system. The developer faces a lack of clearly
structured composition and connection concepts.

2 Terminology or “What is a
Feature?”

When discussing about feature interaction it’s im-
portant to consider existing terminology.

In a series of workshops the feature interac-
tion problem has already been investigated in the
telecommunication domain since 1992. The work-
shop statement explains that “feature interaction
occurs when one telecommunication feature mod-
ifies or subverts the operation of another one”.

A definition found in the telecommunication
community is as follows: “The feature interaction
problem can be simply defined as theunwanted
interferencebetweenfeaturesrunningtogetherin
a software system.” A simple example given in
[9] is a mailing list echoing all emails to all sub-
scribers. If one of the subscribers has enabled the
vacation program (without first suspending mes-
sages from the mailing list) an infinite cycle of
mail messages between the mailing list and the va-
cation program will occur.

In [10] a feature is defined as “an extension
to the basic functionality provided by a service”
while a service is explained as “a core set of func-
tionality, such as the ability to establish a connec-
tion between two parties”.

While these definitions concentrate on telecom-
munication, large and distributed systems or mul-
timedia systems in particular the goal of this work-
shop is the investigation of feature interaction in
the domain of software composition and systems
built from components.

We distinguish the terms “feature”, “concern”
and “requirement”, “service”, “component” and
“aspect” according to our experiences as follows:

In [4] you may find the following explanation
for “features”: “A feature is something especially
noticeable: a prominent part or detail (a character-
istic). A feature is a main or outstanding attrac-
tion, e.g. a special column or section in a newspa-
per or magazine”. Its origin is from Latin: “fac-
tura” which means the “act of making” or from

IPD
2

“facere” which means “to make, do”.
According to this definition we use the term fea-

ture in a broader sense than just as an extension to
some basic functionality. It’s an observable and
relatively closed behaviour or characteristic of a
(software) part. In software, it’s not just an arbi-
trary section in the code except this code section
“makes something of outstanding attraction”. This
definition is fuzzy revealing the fuzzy nature of
features. This viewpoint is consistent with that ex-
pressed in [2] where a feature is explained as “any
part or aspect of a specification which the user per-
ceives as having a self-contained functional role”.

A feature is something an application has to do.
It may be composed from other features. A basic
feature should be as small as possible (basic build-
ing blocks). What a feature does should be docu-
mented. This might be done either manually (the
implementer is forced to document it) or by de-
riving it from the program structure and program
flow.

We have a distinction between problem domain
features and features on the implementation level
(cf. figure 1). Different alternative implementa-
tion features may realise the higher-level problem
domain features. Moreover, a problem domain
feature may be implemented by one or more im-
plementation feature.

A component may have several features and,
vice-versa, it realises at least one feature (oth-
erwise the component is not useful). Moreover,
a component implements functionality and has
non-functional properties (e.g. real-time proper-
ties, platform). “Non-functional” is all which is
not implemented directly. Therefore, a compo-
nenthasnon-functional properties but notimple-
mentsthose. Non-functional properties are ad-
ditional properties implicitly resulting from the
code. However, a consequence is that the devel-
oper may have to implement mechanisms to check
whether the required non-functional requirements
are met, i.e. you may even find the non-functional
properties in the code.

A feature may be implemented as functionality

Problem Domain

Implementation

Figure 1: Levels of Features

or may have a non-functional nature. The term
“feature” captures both.

A feature has the property that it is a service
if it is localised in one component and if it refers
to some functionality. However, a feature may be
implemented in several components. In this case,
the feature is (implemented) cross-cutting. This is
more a question of how a feature may be imple-
mented than a question of the nature of the feature
itself. Aspects are a notation which may be used
to express cross-cutting features (primarily on the
implementation level). Therefore, the concept of
aspects is orthogonal to the nature of features.

A requirement is something a stakeholder de-
mands and it refers to the problem domain
whereas a feature is not limited to the problem do-
main. A requirement may result in one or several
feature(s) in the final system.

A concern is something we are concerned about
(at the moment). Note that this is a temporal
statement while a feature is permanent. A feature
might become a concern if somebody is concerned
about. On the other hand, a developer or stake-
holder may be concerned about something which
is not a feature. Therefore, not every concern re-
sults in a feature.

We have to distinguish between intended in-
teractions between features, interactions between
features which is not intentional but don’t result in
errors (or may even have positive side-effects) and
unintended and undesirable feature interaction not
known in advance and leading to faulty applica-
tions. Figure 2 shows a classification scheme al-

IPD
3

Effect

Intentional
interaction

Unintentional
interaction

Desirable
effect

Desirable
effect

Undesirable
effect

Positive
interaction

Positive
side effect

Negative
side effect

Specification or
implementation

error

Figure 2: Feature Interaction Classification

lowing to classify, compare and assess a detected
interaction.

3 Examples for Feature Inter-
action (Problems)

In the following some examples about undesirable
or unforeseen feature interactions are listed. These
examples are of different application domains giv-
ing an impression about the range of occurrences
in practice.

� Example with modularised Corba functional-
ity [5]

In order to keep an application independent
from the communication technique the com-
munication code may be separated in aspects
applying aspect-oriented programming.
When a client wants to access a service ex-
posed by a specific server the client has to
obtain an initial reference to the server. This
can be done either via a name server or via
a file-based solution (the reference is stored
as a string in a file which is accessible for
clients and server). Aspects realising one

of these two alternatives are exclusive. This
is already known at design and implementa-
tion time. Let us assume that this knowledge
was not captured at design time. As a con-
sequence it might happen that the developer
configures the system during the deployment
phase with both mutual exclusive features. It
might happen that even the compilation or
weaving doesn’t report this as an error. How-
ever, the running system behaves in an un-
foreseen way.
An approach to deal with this problem may
be found in [3]. Logical rules describe the
dependencies between the aspects. During
run-time pre- and post-conditions assure that
these logical rules are not violated.

� Telecommunication

Feature interaction is a typical problem in
the telecommunication domain. Due to high
competition and market demand telecommu-
nication companies are urged to realise a
rapid development and deployment of fea-
tures.

A list of features in the telecommunication
domain may be found at [8]. Examples of
features are forwarding calls, placing callers
on hold, or blocking calls. It’s obvious that
some of the features lead to effects which are
unforeseen if combined.

There are multiple approaches to deal with
the problem in the telecommunication do-
main. In the mentioned workshop series [7] a
platform is provided for exchanging solutions
in practice and theorie.

� Medicine and human body

Feature interaction is well-known in the con-
text of health. For medicaments a common
approach is to provide a standard documen-
tation (instruction leaflet) about the ingre-
dients, the application and it also lists the
known (potential) side-effects and interac-
tions with other medicaments or parts of the

IPD
4

human body. These side-effects are more
or less dangerous. The lists are developed
by means of experiments during the devel-
opment of the medicaments and by means of
experiences and observations afterwards.

An example of a positive side-effect is a
medicament called aspirin developed to be
used against headache. Experiences and re-
search proved that this medicament affects
the blood-picture in a way that it lowers the
danger of a cardiac infarction.

� Elevator configuration as described in [6]

In [6] a system called VT is described which
configures elevator systems at the Westing-
house Elevator Company. An elevator has ca-
bles which have some weight. This weight
influences the traction ratio needed to move
the car. The traction ratio influences the ca-
ble equipment (also the cable weight). There-
fore, we have a circular feature dependency.
In case we would like to improve the secu-
rity standards and therefore increase the ca-
ble quality (which results in a higher cable
weight) we have an interaction with the trac-
tion ratio which might be unforeseen if this
dependency is not specified and documented.
VT uses artificial intelligence (propose-and-
refine approach) to deal with this problem.
Individual design parameters and their infer-
ences are represented as nodes in a network.

4 Summary and Conclusion

Feature interaction is an issue in different domains
(not limited to computer science even). Due to
the complexity it’s usually impossible to foresee
all potential interactions of the different features
within one system. However, it is possible to ap-
proach the problem by identifying as many as pos-
sible unforeseen (and maybe undesirable) interac-
tions.

Software features may be modeled by means of
a suitable notation similar as designs may be mod-
eled using UML. Notation may be found in the
domain engineering discipline [1]. Even the inter-
actions or dependencies, respectively, of features
may be modeled. Incompatible combinations or
default combinations may be defined already dur-
ing the domain analysis phase.

In this paper we approached the terminology
and proposed a classification scheme to compare
different feature interaction types.

Starting with this workshop we aim at building
a catalogue of problems and potential solutions.
Although it is not expected that there will be one
best, exact and general solution (approximative)
solutions may exist for certain problem domains or
specific systems. Research results in the telecom-
munication domain are expected to be helpful also
for systems built from components.

From this catalogue we aim at an improved clas-
sification allowing to compare different interac-
tion types or problems and a comparative cata-
logue of solutions. We aim at unifying problems
and solution approaches.

References

[1] K. Czarnecki and U.W. Eisenecker.Genera-
tive Programming - Methods, Tools, and Ap-
plications. Addison-Wesley, 2000.

[2] ESPRIT Working Group 23531,
http://www.dcs.ed.ac.uk/home/stg/

fireworks/workshop.html . FIREworks,
Workshop on Language Constructs for De-
scribing Features., 2001.

[3] H. Klaeren, E. Pulvermüller, A. Rashid, and
A. Speck. Aspect Composition applying the
Design by Contract Principle. InProceed-
ings of the GCSE’00, Second International
Symposium on Generative and Component-
Based Software Engineering, LNCS, Erfurt,
Germany, September 2000. Springer.

IPD
5

[4] Merriam-Webster OnLine,http://www.m-

w.com/ . Merriam Webster’s Collegiate Dic-
tionary, 2001.

[5] E. Pulvermüller, H. Klaeren, and A. Speck.
Aspects in Distributed Environments. In
K. Czarnecki and U. W. Eisenecker, ed-
itors, Proceedings of the GCSE’99, First
International Symposium on Generative
and Component-Based Software Engineer-
ing, LNCS 1799, Erfurt, Germany, Septem-
ber 2000. Springer.

[6] M. Stefik. Introduction to Knowledge Sys-
tems. Morgan Kaufmann Publishers Inc.,
1995.

[7] University of Glasgow,
http://www.cs.stir.ac.uk/ mko/fiw00/ .
Feature Interaction Workshop, 2001.

[8] University of Glasgow,
http://www.dcs.gla.ac.uk/research/hfig/

features.html . The Feature List, 2001.

[9] University of Strathclyde,
http://www.comms.eee.strath.ac.uk/˜fi/ .
Feature Interaction Group, 2000.

[10] University of Waterloo,
http://se.uwaterloo.ca/˜s4siddiq/fi/

fip.html . Feature Interaction Problem,
2001.

IPD
6

Modelling Feature Interactions in Mobile Phones
Louise Lorentsen

University of Aarhus and Nokia Research Center (visiting),
ext-louise.lorentsen@nokia.com

Antti-Pekka Tuovinen, Jianli Xu
Nokia Research Center, P.O.Box 407, FIN-00045 NOKIA GROUP, Finland

antti-pekka.tuovinen@nokia.com, jianli.xu@nokia.com

Abstract

A modern mobile phone supports many features: voice and data calls, text
messaging, phonebook, calendar, WAP browsing, games, etc. All these
features are packaged into a handset with a small display and a special
purpose keypad. The limited user interface and the intertwining of logically
separate features cause problems in the development of the UI software for
mobile phones. In this paper, we look at the problem of feature interaction in
the UI of Nokia's handsets. We present a categorization of feature
interactions and describe our approach to modelling feature interaction
patterns that uses explicit behavioural models of features and interactive
graphical simulation. We use Coloured Petri Nets as the modelling language.

1 Introduction

The context of this work is the development of the UI software for Nokia’s mobile
phones. In this domain, the term feature means functionality of the phone that is
accessible or visible to the user via the UI and implemented by software. The features
are implemented by UI applications in the proprietary mobile phone UI software system.
Feature interaction means a dependency or interplay of features. The interactions can
be conceptually simple usage dependencies or more complex combinations of
independent behaviours.

The development of the user interface software for mobile phones is a concurrent and
highly distributed engineering process. There is also strong pressure for reusing SW
components in as many products as possible. In this kind of environment, it is important
to identify and clearly specify the right interactions between the separate features of the
mobile phone at an early stage of the development. This helps to avoid costly delays in
the integration phase of a set of independently developed features. Precise descriptions
of the interactions are also needed when planning the testing of the UI software. The
number and type of interactions that a feature has with other features are also indicators
of the cost of developing the feature.

Currently, feature interactions are not systematically documented. Often the most
complex interactions are not fully understood before the features are first implemented.
The goals of this work are to identify categories of interactions that are specific to the
domain and to create behavioural models that capture the typical feature interaction
patterns in each category.

IPD
7

The heart of our approach is an executable behavioural model of the underlying UI
architecture and the individual features. As the modelling language we use Coloured
Petri Nets, a visual, both action and state-based specification formalism that is suitable
for modelling concurrent activities and flows in complex systems [3,4,5]. They have
precise executable semantics which makes it possible to simulate the behaviour
specified by CPN models. The tool that we use makes it possible to add domain specific
graphics for visualisation and interaction purposes.

2 Classification of Feature Interactions

Each mobile phone product follows a certain UI style that captures the UI design of a
product family. It describes the physical structure of the UI and the basic mechanisms of
user interaction and it has a relatively long lifetime. The UI specification of a product
defines the features of the product by showing the UI design and by describing the
detailed user interaction for each feature.

Feature interactions come from different sources. Category I of interactions is the use
interaction between features. For instance, the task-oriented nature of the user interface
requires that when browsing the phone numbers stored in the phone, a call can be made
to a number directly from the browser. This represents an interaction between the
‘phonebook’ and ‘mobile originated call’ features that is necessary to deliver a smooth
and seamless service to the user. When compared with PC software, the applications in
the phone SW have much more these kind of hard-wired dependencies.

Category II comes from the need to share the limited UI resources (screen, keypad)
between many features that can be activated independent of each other. Because of the
prioritization of the users tasks (and the associated features), important events may
interrupt less important activities. For example:

• an incoming call screens phonebook browsing for the duration of the call but the
browser application does not know it.,

• hang-up key stops search from phonebook (the browser is killed), and
• an incoming call suspends a game but the game is saved and it can be

continued.
Category III involves interactions where one feature affects other features by making
them unavailable or by modifying their behaviour in some other way. For instance, the
‘any key answer’ feature makes it possible to answer an incoming call by pressing any
key on the keypad and the ‘key guard’ feature locks the keypad for accidental key
presses. The combined effect of these features is that if ‘any key answer’ is enabled and
‘key guard’ is on, an incoming call can be answered only by pressing the ‘send’ (off-
hook) key. However, once the call is open, ‘key guard’ is disabled for the duration of the
call and then enabled again automatically.

The use interactions are thoroughly specified in the UI specifications and they are not
problematic from the implementation point of view. However, the interactions of the
categories II and III are much more difficult to manage in software design and
implementation; they also lack systematic documentation. Therefore, we concentrate on
modelling and documenting the typical feature interaction patterns that belong to the
latter two categories.

IPD
8

3 Our Modelling Approach

Coloured Petri Nets (CP-nets or CPN) [3] is a graphical modelling language with a well-
defined semantics allowing simulation of the behaviour specified by CPN models as well
as formal analysis. In contrast to many other modelling languages, CP-nets are both
state and action oriented. CP-nets has proven powerful for modelling of concurrent
systems and a number of successful projects have demonstrated its usefulness in
modelling and analysis of complex systems, e.g., [1,4,6,8]. We use the tool Design/CPN
[7] that supports editing, simulation and validation/verification of CP-nets.

Figure 1 gives an overview of the CPN model by showing how it has been hierarchically
structured into 14 modules (also referred to as subnets or pages). Each node in Fig.1
represents a subnet of the CPN model. An arc between two nodes indicates that the
source node contains a substitution transition whose behaviour is described in the
subnet represented by the destination node.

Fig.1. The hierarchy page

The CPN model consists of four main parts corresponding to four concepts of the phone
UI software system: applications, servers, UI controller, and communication kernel.
Applications implement the features. The CPN model presented here includes four
features: ‘game’, ‘basic call’, ‘alarm’, and ‘key guard’ features. Servers implement the
basic capabilities of the phone. Applications implement the behaviour of features by
using the services of servers. The CPN model presented here includes two servers: ‘call’
and ‘power’ servers. Applications make the feature available to the user via a user
interface. Servers which provide the basic capabilities of the applications do not have
user interfaces. Servers and applications are communicating by means of asynchronous
message passing. The messages are sent through the communication kernel.

The subnet Top depicted in Fig.2 is the top-most page of the CPN model and provides
the most abstract view of the CPN model. The page consists of four substitution
transitions corresponding to the four parts mentioned above. The detailed behaviour of
UIController, Servers, CommunicationKernel, and Applications is modelled on subnets
associated with the substitution transitions.

A CP-net is created as a graphical drawing with some textual inscriptions. In contrast to
many other modelling languages CP-nets are both state and action oriented. A state of a
CP-net is represented by means of places which are drawn as ellipses with a name
positioned inside. The places contain tokens, which carry data values, in CPN

IPD
9

terminology referred to as colours. Each place has a type, in CPN terminology referred
to as a colour set which determines the kind of tokens which can reside on the place.

Actions of CP-nets are represented as transitions which are drawn as rectangles with a
name positioned inside. The transitions and places are connected by arcs. Transitions
remove tokens from places connected by incoming arcs and add tokens to the places
connected by outgoing arcs. The tokens removed and added are determined by arc
expressions which are textual inscriptions positioned next to the arcs. In the Design/CPN
tool, the inscription language is Standard ML.

Fig.2. Page Top

The use of substitution transitions allow the user to relate a transition to a more complex
CP-net. The idea is analogous to the module concepts found in many programming
languages. Furthermore, CP-nets has the concept of fusion places which allow the user
to specify that a set of places are identical even though they are drawn as individual
places (possibly belonging to different subnets). Using these two constructs together
with Design/CPN's ability to save and load subnets of a CPN model we have constructed
a CPN model of the phone UI software system where features can easily be added and
removed. Hence, large parts of the CPN model can be reused when we later model
other products with new features.

In addition to a graphical representation, CP-nets have formally defined semantics which
makes it possible to simulate the behaviour specified by the CPN model. Design/CPN
provides facilities for automatic simulations as well as interactive (step-by-step)
simulations. However, the models we create are simulated and discussed in a forum of
UI designers and software developers who are not experts in (or even familiar with) CP-
nets. An important aspect of our work is therefore to extend the created CPN models
with a layer of domain specific graphics which makes it possible to plan and control
simulations and get feedback and information from these simulations without interacting
directly with the CP-nets.

IPD
10

We have made two extensions to the CPN model that allow the visualisation of the
current state of the CPN model and the behaviour of the CPN model during simulation.
Firstly, the state of the phone as the user observes it on the handset is visualised via an
animation of the display. Figure 4a shows a snapshot of the animation taken during a
simulation of the CPN model. Secondly, the CPN model is extended with Message
Sequence Charts (MSCs) [2] to be automatically constructed as graphical feedback from
simulations. We chose to use MSCs in the visualisation because the SW designers
already use them.

Fig. 4b shows an example of such a MSC automatically generated from a simulation of
the CPN model. The MSC contains a vertical line for each of the applications and
servers in the phone UI software system. The arrows between the vertical lines
correspond to messages sent in the system. The communication sequence corresponds
to a scenario where the mobile phone receives an incoming call while the user is playing
a game (an interaction between the ‘game’ and the ‘call’ features). The sequence of
events in the scenario is:

Fig. 4a Animation of display Fig.4b Message Sequence Chart

• The user selects a game from the menu (line 1)
• The game feature is notified and it requests the display (lines 2-3)
• The user selects a new game (line 4)
• The ‘game’ feature is notified and it changes the contents of the

display accordingly (lines 5-6)
• An incoming call arrives. The ‘call’ server notifies the ‘call’ feature

(lines 7-8)
• The ‘call’ feature requests the display (line 9)
• The display is currently in use of the ‘game’ feature. The UI

controller interrupts the ‘game’ feature and after the interruption has
been acknowledged the display is granted to the ‘call’ feature (lines
10-12)

IPD
11

• The user rejects the call (line 13)
• The ‘call’ feature is notified and the display is removed (lines 14-15)
• The ‘game’ feature is resumed (lines 16-17)

Note that in the above scenario the UI controller is responsible for handling the interrupt
(lines 10-12) and resume (lines 16-17) of features. The features do not have to know
which features they potentially interrupt or are interrupted by. This makes it very easy to
add and remove features from the CPN model without changing the subnets modelling
the other features.

We have made two extensions to the CPN model to make it
possible to control the simulations without directly interacting
with the CP-nets. The first extension makes it possible to control
simulations by clicking the keys of the image of the mobile
phone in Fig.4a. The second extension makes it possible to set
up a scenario to be simulated. The scenario is specified as an
ordered series of events. Figure 5 shows how the scenario
corresponding to the MSC in Fig. 4b (where the mobile phone
receives an incoming call while the user is playing a game) is
specified. In this way it is possible to inspect interesting
scenarios without manually pressing the keys of the mobile
phone in Fig. 4a.

 Fig. 5

4 Summary and Further Work

The current model provides the basic UI infrastructure where we can plug in features.
The model provides interactive and automatic graphical simulation. We have already
identified some basic interaction patterns in the ‘classic’ UI style of the 6210 phone.

We are now adding more features to the model to build a comprehensive set of
interaction patterns. One important task will be to link the interaction patterns to existing
implementation patterns. Possible uses of the models include giving ideas to the UI
architecture development work and regression testing when changing the logic of the
features included in the model.

References

[1] S. Christensen and J.B. Jørgensen. "Analysis of Bang and Olufsens's Beolink Audio/Video
System using Coloured Petri Nets". In P. Azéma and G. Balbo, editors, Proceedings of
ICATPN'97, volume 1248 of Lecture Notes in Computer Science. Springer-Verlag, 1997.

[2] ITU (CCITT). Recommendation Z.120:MSC. Technical Report, International
Telecommunication Union, 1992.

IPD
12

[3] K. Jensen. "Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Volume 1, Basic Concepts". Monographs in Theoretical Computer Science. Springer-
Verlag, 1997. ISBN:3-540-60943-1.

[4] K. Jensen. "Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Volume 3, Practical Use". Monographs in Theoretical Computer Science. Springer-
Verlag, 1997.

[5] L.M. Kristensen, S. Kristensen, and K. Jensen, "The practitioner's guide to Coloured Petri
nets". International Journal of Software Tools for Technology Transfer 2(2): 1998, pages
98-132.

[6] L. Lorentsen and L.M. Kristensen. "Modelling and Analysis of a Danfoss Flowmeter
System using Coloured Petri Nets". In M. Nielsen and D. Simpson, editors, Proceedings
of ICATPN'00, volume 1825 of Lecture Notes in Computer Science, pages 346-366.
Springer-Verlag, 2000.

[7] Design/CPN Online. http://www.daimi.au.dk/designCPN/.

[8] J. Xu and J. Kuusela. "Analyzing the execution architecture of mobile phone software with
coloured Petri nets". International Journal of Software Tools for Technology Transfer 2(2):
1998, pages 132-143.

IPD
13

IPD
14

‘Feature’ Interactions Outside a Telecom Domain

Lynne Blair1, Gordon Blair1, Jianxiong Pang2, Christos Efstratiou2

1 Department of Computer Science, Faculty of Science, University of Tromsø, N-9037 Tromsø, Norway.
Tel: +47 77 64 52 09, Fax: +47 77 64 45 80

2 Computing Department, Lancaster University, Bailrigg, Lancaster, LA1 4YR, U.K.
Tel: +44 (0)1524 593802, Fax: +44 (0)1524 593608

email: {lb, gordon, efstrati}@comp.lancs.ac.uk, j.pang@lancaster.ac.uk

Abstract. Feature interactions in the original sense of the term (i.e. within a
telecommunications domain), have now been the subject of significant research
activity for over ten years. This paper considers several different sources of
interactions in other domains, arising during the course of our research at Lancaster.
These interactions are taken from a variety of areas within the field of Distributed
Systems, and stand to benefit greatly from the application of techniques developed in
the feature interaction community. Furthermore, we believe they represent a
potentially important generalisation for feature interaction research.

1. Introduction

The term feature interaction can simply be viewed as an “interference between services or
features” [Calder00]; more specifically, such an interaction occurs when “the behaviour of
one feature is affected by the behaviour of another feature or another instance of the same
feature” [Kimbler95]. Several taxonomies have been produced in order to try and classify
different types of interaction (including [Cameron94], [Kimbler95] and [Hall98]). A simple,
yet we believe helpful, distinction from [Kimbler95] is between:

• interactions that occur because the requirements of multiple features are not
compatible, and

• interactions that occur when a feature behaves differently in the presence of other
features.

Within the telecommunications domain, there are numerous well-documented cases of
feature interactions; for examples, we refer the reader to the series of workshops in Feature
Interactions in Telecommunications (and Software) Systems, e.g. [Dini97], [Kimbler98] and
[Calder00]. However, recently it has become increasingly obvious that research into methods
to detect and resolve such interactions in telecom systems is also of great significance outside
the telecom domain. In fact, as recognised in [Calder00], “the subject has relevance to any
domain where separate software entities control a shared resource”. Furthermore, interactions
can often be traced back to the fact that “two ‘features’ manipulate the same entities in the
base system, and in doing so violate some underlying assumptions about these entities that
the other ‘features’ rely on” [Plath98].

In an earlier position paper [Blair00], we describe some interaction problems arising from
Internet-based and multimedia/ mobile systems that led to the recently funded “FILBETT”
project: Feature Interactions – Life Beyond Traditional Telephony (EPSRC GR/N35939/01).
This current paper extends our earlier one by providing new examples of interactions that

1 Currently on leave from the Computing Department, Lancaster University.

IPD
15

have arisen in research within the Distributed Multimedia Research Group at Lancaster
University, in addition to cataloguing a few other ‘non-traditional’ feature interactions from
the literature.

In the remainder of this paper, we first provide brief details of the scope of the FILBETT
project below (section 2) and then document some of the ‘non-traditional’ interactions we
have come across (section 3). Finally, we discuss some of the major techniques that exist for
the detection and resolution of feature interactions (section 4) and then draw our conclusions
(section 5).

2. FILBETT – Life Beyond Traditional Telephony

2.1. Overview

Motivation for this project came from a number of examples of interactions that we
encountered when looking at Internet-based and multimedia/ mobile services. As expressed
by Heilmeier, “the telecom industry is quickly evolving from ‘POTS’ (plain old telephone
services) to ‘PANS’ (pretty awesome new services)” [Heilmeier98]. These new services are
able to utilise the power of Internet-based (IP-based) and multimedia/ mobile systems and, as
the number of new services grows, the potential for interactions between services will
inevitably explode.

To help to address this, the main goal of the FILBETT project is to consider various new
and emerging types of feature interaction that are likely to arise from the increasing
popularity of mobile systems and services. A secondary, but still important, goal is to
consider IP-based services and multimedia services. We plan to use formal modelling and
analysis methods in this work, building on earlier work that we have done. Although the
project is still in its early stages, some our initial interaction examples are presented below.

2.2. Some ‘non-traditional’ interaction scenarios

A number of interactions were identified in our previous position paper; these are listed
below, but for details the reader is referred to [Blair00].

• combining a traditional telecommunications service with Internet access

• potential interactions with one-to-many services

• TCP flow-control mechanisms, and protocol interactions in general

• sharing demand for network bandwidth: web browsing and viewing a video stream

• interactions occurring with multipoint conferencing units (MCUs)

• mobile resource interactions concerning bandwidth and power management

• problems with TCP over wireless networks

A number of further interactions have been identified in work at Lancaster on mobile
computing (see [Efstratiou00] and [Efstratiou01]). In summary, most of these scenarios
concern conflicting adaptation policies. In an attempt to maintain an appropriate level of
quality of service, many mobile systems employ various adaptation mechanisms. However,
problems (interactions) may arise if separate adaptation mechanisms are employed for
different attributes. Examples include mechanisms to adapt/ manage power consumption,
network bandwidth, proxy behaviour (e.g. in web browsing) and choice of location sensing
mechanism. For example, consider a mobile device that employs two independent adaptation
mechanisms: one for managing power and the other for managing network bandwidth. If
power is running low, the power management mechanism will request applications that are

IPD
16

using network bandwidth to postpone this use, so as to place the network device in sleep
mode. However, as a consequence, the network adaptation mechanism will now detect
unused bandwidth and will notify applications that they can use this spare bandwidth, in
direct conflict with the power management adaptation mechanism!

Note that a further interesting dimension to adaptation is user-configuration of devices
whereby a user can express preferences over different adaptation policies depending on his/
her context. For example, power management mechanisms may be crucial if the user is
working in the field, but less important in the office where an alternative power supply exists.

3. Additional Interaction Scenarios

Whilst FILBETT is primarily concerned with the generalization of feature interactions to a
new world of mobile, multimedia and IP-based services, it is clear that the value of research
into such interactions does not stop here. Two further areas from our work that would benefit
from the application of feature interaction research are described below. As an aside, some
additional examples of ‘non-traditional’ interactions can be found in [Hall00] and
[Fireworks97], relating to email systems and a variety of miscellaneous examples (including
a lift system, a tape-deck system, a metro ticketing system, etc.) respectively.

3.1. Component-based middleware

At Lancaster, we are interested in component-based middleware platforms such as the
CORBA Component Model of CORBA v3, .NET or Enterprise Java Beans. Associated
component-based development methodologies focus on the provision of means for specifying
individual components together with their composition (i.e. an architecture) [Szyperski98].
By allowing new components to be added, and existing software to be packaged as
components, we obtain an incremental development model for evolutionary and dynamic
architectures. However, this raises two key questions:

• When we compose an architecture, how can we be confident that components work
well together, that there are no unwanted or subtle interactions and that the result is
coherent?

• When we adapt an architecture, how can we be confident that replacements or
updates behave as expected, especially in tandem with other components?

Existing component-based methodologies provide little in the way of support for these
problems. Typically, architectures are verified in terms of type compatibility between
(required and provided) interfaces. In addition, checks may be carried out on the validity of
architectures against certain style rules [Shaw96][Medvidovic00]. However, this is not
sufficient to capture the more subtle problems associated with unwanted interactions between
components. This is an area that would benefit greatly from the application of techniques
from feature interaction research. In particular, a hybrid approach (see below) would allow
design-time checks to be carried out on initial architectures and expected variations, whereas
run-time techniques could be used to discover problems after re-configuration and also to
catch problems not foreseen from static analysis.

Adding an extra dimension to this analysis, we are also interested in reflective
middleware whereby component-based approaches apply not only to the application/ service
level, but also to the structure of the middleware itself [Blair98][Blair01]. Reflection is then
used to provide introspection and adaptation of this middleware structure via a meta-level.
This approach enables middleware to be customized for a particular application domain, e.g.
a small footprint system for an embedded device, and also to be re-configured if
environmental assumptions change, e.g. to change a transport protocol or compression

IPD
17

strategy if now operating over a wireless link. Essentially, this provides the extra capability of
being able to adapt the non-functional properties of an application (real-time performance,
security, availability, etc). Again, it is vital to know if there are any unwanted side-effects of
the changes, e.g. does the new availability policy conflict in any way with security
requirements).

3.2. Behaviour in Co-operative Virtual Environments

PING is an EU-funded project looking at the development of an object-oriented framework
for the support of distributed and co-operative virtual environments, which can then be
specialised on a per-application basis (IST-1999-11488). Lancaster University is responsible,
along with others, with the modelling of behaviour in such virtual environments. The
approach is to represent all entities in a virtual environment as passive or active objects. A
passive object essentially consists of a set of publicly exposed attributes that can be altered in
interaction with other objects; an active object on the other hand also includes behaviour
(which in Ping is expressed as a series of reactive scripts written in the Junior scripting
language [Boussinot01]). We are investigating an aspect-oriented approach to composing
such behaviours using Junior, with consideration of many aspects including the capturing of
(virtual) world physics (gravity, inertia, etc), distributed systems policies such as replication
and consistency management, reaction to collisions, and also autonomous behaviour relating
to the object. Furthermore, it is important in PING to be able to adapt behaviour as
environmental conditions change, e.g. to minimise event dissemination if operating over a
modem. We are investigating an approach whereby monitoring and adaptation will be
modelled as further behavioural aspects, resulting in self-adapting object behaviours (c.f.
reflection above).

Although this is a rather different application domain, the problems are similar to those
considered above. In particular, we are concerned about the initial configuration and the
subsequent re-configuration of a platform. In this case however, we are concerned about
interaction between behaviours at both an inter- and intra-object level. Importantly, in this
work we already have a significant advantage in that Junior has a formal operational
semantics (expressed using rewriting rules) [Boussinot00], thus aiding formal analysis.

4. A Brief Summary of Feature Interaction Detection and Resolution Techniques

Existing analysis techniques can be seen to fall into 3 broad categories: off-line (or design-
time) techniques, on-line (or run-time) techniques and hybrid techniques [Calder99].

With off-line techniques, a model of the base system and the additional services or
features are specified in a formal language whilst the properties that the system should
exhibit are (typically) specified through the use of temporal logic. A wide range of modelling
languages have been used, including Finite State Machines (FSMs), LOTOS, Petri-Nets,
Promela and SDL. However, as the number of services grow, there is clearly an issue of the
scalability of such techniques and tools. Importantly though, major improvements have been
forthcoming in model-checking techniques recently, for example through the use of on-the-
fly and symbolic techniques and also the use of abstractions or symmetries. Such techniques
can help to greatly reduce the state-space explosion problem. A further problem however is
that the level of success is dependent on the accuracy and level of abstraction of the specified
properties. An inaccurate (or rather, not precise enough) property specification will inevitably
lead to missed interactions (as occurred in [Bousquet99]). Off-line techniques must also rely
on a-priori knowledge of the behaviour of the individual services and features.

In contrast, adaptive on-line techniques address this latter issue. Such approaches have
been developed from a much more pragmatic perspective and have evolved over time to

IPD
18

become increasingly (dynamically) adaptive. Adaptation strategies have typically been
powered by a knowledge database, such as predefined tables, state transition rules, abstract
data types and user agent rules. For example, in [Griffeth94] unknown new features are
accommodated through an adaptive “agent regime” architecture where user agents engage in
negotiation to settle the discerned conflicts between features.

Finally, in recognition of the advantages (and certain drawbacks) of both off-line and on-
line techniques, a hybrid approach is proposed in [Calder99]. This approach is targeted at
resolving interactions between new services and legacy services and combines an on-line,
transactional approach with off-line formal analysis (see also [Marples00]).

5. Conclusions

It should be apparent from the discussions above that many areas of computer science can
benefit from results in the field of feature interaction. We have identified a number of areas
where we believe this to be the case including mobile and multimedia systems, component-
based and reflective middleware, and also behavioural specification in virtual environments.

An interesting first line of research is to consider the impact of components on the feature
interaction problem, including for example the potential role of explicit context dependencies
(required/ provided interfaces) [Szyperski98] in simplifying analysis of potential interactions.
More generally, further research is clearly required, including strong collaboration between
the different research communities, in order to more fully understand the relationships
between feature interactions and these other areas.

Acknowledgements

The authors would like to thank a number of researchers at Lancaster who have contributed
to discussions on the interactions documented above. In particular, we would like to thank
Adrian Friday and Keith Cheverst for their insights into mobile computing, the various
members of the Open ORB project for discussions on component-based and reflective
middleware (http://www.comp.lancs.ac.uk/computing/research/mpg/reflection/memb.html),
and Paul Okanda for his thoughts on behavioural interactions in virtual environments.

References

[Blair98] Blair G.S., Coulson G., Robin P., Papathomas M., “An Architecture for Next
Generation Middleware”, Proceedings of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware’98), Springer, 1998.

[Blair00] Blair L. & Pang J., “Feature Interactions - Life Beyond Traditional Telephony”, In
[Calder00], pp 83-93, 2000.

[Blair01] Blair G.S., Coulson G., Andersen A., Blair L., Clarke M., Costa F., Duran-Limon
H., Fitzpatrick T., Johnston L., Moreira R., Parlavantzas N., Saikoski K., “The Design and
Implementation of OpenORB v2”, To appear in IEEE DS Online, Special Issue on Reflective
Middleware, 2001.

[Bousquet99] du Bousquet L., “Feature Interaction Detection using Testing and Model-Checking:
Experience Report”, In World Congress on Formal Methods, Toulouse, France, Springer, 1999.

[Boussinot01] Boussinot F., Susini J.F., Dang Tran F., Hazard L., “A Reactive Behavior
Framework for Dynamic Virtual Worlds”, Proceedings of the Web3D 2001 Conference,
Paderborn, Germany, February 2001.

[Boussinot00] Boussinot F., Susini J.F., “Junior Rewrite Semantics” Inria Research Report,
Available from http://www-sop.inria.fr/meije/rp/junior/Semantics/rewrite-semantics.pdf,
October 2000.

IPD
19

[Calder99] Calder M., Magill E., Marples D., “Hybrid Approach to Software Interworking
Problems: Managing Interactions between Legacy and Evolving Telecommunications Software”,
IEE Proceedings - Software, Vol. 146, No. 3, pp167-175, June 1999.

[Calder00] Calder M., Magill E. (eds), “Feature Interactions in Telecommunications and
Software Systems VI”, Glasgow, Scotland, Amsterdam: IOS Press, 2000.

[Cameron94] Cameron E.J., Griffeth N.D., Lin Y.J., Nilson M.E., Schnure W.K., Velthuijsen H.,
“A Feature Interaction Benchmark for IN and Beyond”, Proceedings of the 2nd International
Workshop on Feature Interactions in Telecommunications Systems, Bouma W., Velthuijsen H.
(eds), Amsterdam: IOS Press, pp1-23, 1994.

[Dini97] Dini P., Boutaba R., Logrippo L. (eds), “Feature Interactions in
Telecommunications Networks IV”, Montreal, Canada, Amsterdam: IOS Press, 1997.

[Efstratiou00] Efstratiou C., Cheverst K., Davies N., Friday A., “Architectural Requirements for
the Effective Support of Adaptive Mobile Applications”, work in progress paper in Middleware
2000, New York, April 2000.

[Efstratiou01] Efstratiou C., Cheverst K., Davies N., Friday A., “An Architecture for the Support
of Adaptive Context-Aware Applications”, Proceedings of Mobile Data Management (MDM
2001), Hong Kong, January 2001.

[Fireworks97] “FIREworks: Feature Integration in Requirements Engineering”, Esprit Working
Group 23531, M. Ryan (Coordinator), started 1997. See
http://www.cs.bham.ac.uk/~mdr/fireworks/casestudies.html.

[Griffeth94] Griffeth N.D., Velthuijsen H., “The negotiating agents approach to runtime feature
interaction resolution”, Proceedings of the 2nd International Workshop on Feature Interactions in
Telecommunications Systems, Bouma W., Velthuijsen H. (eds), Amsterdam: IOS Press, 1994.

[Hall98] Hall R.J., “Feature Combination and Interaction Detection via Foreground/
Background Models”, In [Kimbler98], pp 232-246, 1998.

[Hall00] Hall R.J., “Feature Interactions in Electronic Mail”, In [Calder00], pp 67-82, 2000.

[Heilmeier98] Heilmeier G.H., chairman emeritus of Bellcore (Morristown, N.J.), keynote address
at the 35th Design Automation Conference, quote reported in “New telecom services keep
vendors on their toes”, Santarini M., http://eetimes.com/dac98/news_telecom.html.

[Kimbler95] Kimbler K., Velthuijsen H., “Feature Interaction Benchmark”, Discussion paper for
the panel on Benchmarking at FIW’95 (Feature Interaction Workshop), 1995.

[Kimbler98] Kimbler K., Bouma L.G. (eds), “Feature Interactions in Telecommunications and
Software Systems V”, Lund, Sweden, Amsterdam: IOS Press, 1998.

[Marples00] Marples D., “Detection and Resolution of Feature Interactions in
Telecommunications Systems During Run-time”, PhD thesis, Available from Dept. of Electrical
and Electronic Engineering, University of Strathclyde, Glasgow, August 2000.

[Medvidovic00] Medvidovic N., Taylor R.N., “A Classification and Comparison Framework for
Software Architecture Description Languages”, IEEE Transactions on Software Engineering,
Vol. 26, No. 1, pp. 70-93, January 2000.

[Plath98] Plath M., Ryan M., “Plug-and-play features”, In [Kimbler98], pp150-164, 1998.

[Shaw96] Shaw M., Clements P., “A Field Guide to Boxology: Preliminary Classification of
Architectural Styles for Software Systems, Computer Science Department and Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213, April 1996.

[Szyperski98] Szyperski C., “Component Software: Beyond Object-Oriented Programming”,
Addison-Wesley, 1998.

IPD
20

A proposal for uniform abstract modeling
of feature interactions in UML

Matthias Clauß

Intershop Research
Intershop Communications AG

Jena

Dresden University of Technology
Department of Computer Science

Software Engineering Group

Email: Matthias.Clauss@gmx.de

April 20, 2001

Abstract

The underlying approach presumes the necessity of explicit modeling of
variability, partially expressed in features and their interactions. Preceding
a UML extension for feature modeling and variability in software models
has been developed. A part of the extension deals with the modeling of
interactions between features and interactions between the implementation
of a feature.

This position paper presents an approach to differ several types of inter-
actions from the view of software modeling. Interactions are distinguished
in two abstraction levels related to features and their implementation. The
objective is to propose a uniform notation for modeling interactions based
on UML that merges feature specification and implementation in a uniform
modeling notation.

Keywords: variability, UML notation, classification, feature modeling

mailto:Matthias.Clauss@gmx.de
IPD
21

1 Background

At the moment no commonly accepted modeling notation exists for the purposes
of feature modeling. There are various approaches for feature modeling and
the graphical description in feature diagrams, as in [Kang90, Kang98, Griss98].
These approaches typically distinguish three types of features and additional con-
straints between them. These constraints describe requires- and mutual-exclusion-
interactions between features. The feature hierarchy expresses an implicit kind of
constraints, but these describe purely selection rules. As typical for the field of
feature modeling every approach uses his own modeling notation, partially based
on the Unified Modeling Language (UML, [OMG01]).

The UML is a well-known, accepted notation for modeling single software
products. It includes an extension mechanism allowing user-defined adaptations
for special purposes. But, this standardized extension mechanism is limited to
the use of stereotypes and tagged values, completed with constraints on these
stereotypes. Other possibilities for extension are notes or changes in the meta-
model. Metamodel changes reduce the interchangeability of models and are not
supported by modeling tools. Notes can be used but have no relation to the model
and therefore lacks of consistency. Both ways are either insufficient or proprietary
and should not be used for serious modeling.

For the needs of software family engineering (and software product lines) the
author has developed an extension for UML based on the standardized extension
mechanisms. It consists of an extension for feature modeling in UML and two
smaller extensions to model variability in software products, e.g. during analysis
and design of the system. Parts of this extension are the interactions inside the
feature model on the one hand and between their implementation on the other
hand. This paper focuses on the aspects of feature interaction found useful for
modeling purposes.

2 Position

A graphical representation allows a fast and intuitive recognition of arising prob-
lems from the modeled interactions. Modeling software is an essential step before
implementing a software system and the resulting models are typically used as a
common communication base for all participating developers.

One prerequisite for the development of a modeling notation is to know what
elements such an extension must contain. Having such an extension a uniform
notation could be established for modeling feature interactions.

IPD
22

2.1 Feature interaction in feature modeling

We use the term feature on a high modeling level and define a feature as a recog-
nizable characteristic of a system [Czarnecki00].

Feature modeling with feature diagrams was first introduced in Feature-Ori-
ented Domain Analysis (FODA, [Kang90]). Almost every approach such as Fea-
tuRSEB [Griss98], FORM [Kang98] or Svahnberg et al [Svahnberg] reuses the
FODA-concept without major changes. Partially UML is used but always in a
non-standardized way. There are used two types of constraints: mutual exclu-
sion and requires. In the context of feature modeling these primarily reflect rules
for selection of features but they emerge from feature interactions. Thus these
constraints are a way modeling feature interactions.

The use of UML modeling elements introduces a new aspect to these con-
straints: direction. As dependencies semantically fit best they are used to model
feature constraints and therefore constraints can be separated into uni- and bi-
directional constraints. This makes sense since a feature can require or exclude
another feature, but not vice versa.

These hard constraints are supplemented by weak constraints that should be
explicitly modeled if identified. For example if a feature conflicts with another
feature in some but not all contexts, this weak form of a ‘mutex’-constraint should
be modeled as it is, e.g. a dependency labeled with ‘«weakConstraint» mutex’.

The explicit feature modeling including selection rules and interactions be-
tween features is a very necessary step in software modeling for reuse and raises
the opportunity to recognize possible problems early.

2.2 Feature interaction in implementation

The underlying approach uses variation points (introduced in [Jacobson97]) to
model variability in analysis and design models and consists of the location (the
variation point) and recognized implementations (the variants) of variability. To
model interactions between variants and between a variant and other model ele-
ments constraints are used. These constraints generally describe interactions be-
tween the participating elements.

Constraints for variation points are distinguished into three types: mutual ex-
clusion, requires and evolutionary. ‘Requires’ and ‘mutex’ has the same seman-
tics as for feature models but applied on the implementation of features. The need
to model evolutionary interactions between model elements has been recognized
from [Bosch99]. They could be further separated into, e.g. ‘replaces’, ‘extends’
and ‘decomposes’. This can be used to describe interactions between components
for example to model their evolution and explicitly state their dependencies.

IPD
23

These constraints relate with feature interactions in several ways: First varia-
tion points can be used to model the implementation of features or feature com-
binations and thus reflect feature interactions on lower level (analysis, design,
maybe implementation). Second, interactions of additionally recognized variation
points are explicitly modeled by the constraints. And at last, variation points can
be seen as abstractions of variability on code level and even reflect the interactions
emerging there.

2.3 Layer-spanning interactions

Besides interactions on each modeling layer, there are layer-spanning relations
between modeling elements.

Traceability is needed to understand the development of a concept, e.g. a
feature, to one or more implementing elements. In opposite direction, many in-
teractions between features are caused by the implementation. Thus traceability
provides a way to trace interactions down to the source and back.

Besides traceability variants consists of a condition specifying the selection
rule for the element. This should be expressed in the Object Constraint Language
(OCL), a part of the UML. This enables a formal description of conditions and
can be used for automatization. As these conditions depend on the context of
the described element they are a way to implicitly express interactions that could
not be modeled explicitly. In addition, as OCL is a formal language, it enables a
formal description of the influence of interactions.

Since it is intended to let these condition refer to the feature modeling layer
it is possible to model layer-spanning interactions, e.g. if the use of a variant
depends on the existence of several features.

3 Summary

To provide a flexible and broadly applicable notation it is necessary to support
a broad but determined range of interactions. To establish a first classification
they are separated into several types: mutex, requires and weak-constraints for
the feature modeling layer and requires, mutex and evolutionary constraints for
implementing modeling layers.

The modeling notation of constraints in UML is completed by the specifi-
cation of conditions in OCL that enables the detailed and formal description of
interactions and context-dependencies.

A broadly accepted classification is needed to get a consistent and generally
usable extension that would support modeling of (feature) interactions. This paper
drafts a first step towards this.

IPD
24

4 Acknowledgments

The idea of the underpinning diploma thesis originated from discussions with
Bogdan Franczyk at the research group of Intershop.

I would like to acknowledge the discussions with Professor Hußmann and
Mike Fischer and of course the great support of Bogdan Franczyk who led me to
this interesting field of computer science.

References

[OMG01] Object Management Group (OMG),OMG Unified Modelling
Language Specification, versions 1.3 and 1.4 Draft, March 2000
/ February 2001

[Kang90] K. Kang et al,Feature-Oriented Domain Analysis (FODA) Feasi-
bility Study, Technical Report No. CMU/SEI-90-TR-2, November
1990, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh

[Jacobson97] I. Jacobson, M. Griss, P. Jonsson,Software Reuse — Architecture,
Process and Organization for Business Success, Addison-Wesley
Longman, 1997

[Griss98] M. Griss, J. Favaro, M. d’Alessandro,Integrating Feature
Modelling with the RSEB, International Conference on Software
Reuse, June 1998

[Czarnecki00] K. Czarnecki, U. Eisenecker,Generative Programming — Meth-
ods, Tools and Applications, Addison-Wesley, 2000

[Kang98] K. Kang, et. al.,FORM: A Feature-Oriented Reuse Method with
Domain-Specific Reference Architectures, In Annals of Software
Engineering 5, 1998

[Bosch99] J. Bosch, Evolution and Composition of Reusable Assets in
Product-Line Architectures: A Case Study, In Proceedings of the
1st Working IFIP Conference on Software Architecture, February
1999

[Svahnberg] M. Svahnberg, J. van Gurp, J. Bosch,On the notion of Variability
in Software Product Lines

IPD
25

IPD
26

What’s in a Name?

Erik Ernst
Presented at the FICS’01 workshop

Abstract

Feature interaction may arise in many different ways, but one of the core topics
is the issue of name binding: When two or more entities are composed, say A and
B, and they provide more than one declaration of the same name, say n, should
the composed entity contain one subentity under that name n, or should it contain
several? If one, how should it be selected or constructed? If several, how could a
client choose the appropriate one amongst them? This paper surveys the treatment of
various problems in this area in several programming languages, thereby establishing
a framework for the discussion.

1 Introduction

In many approaches to feature interaction management—including most other papers at
this workshop—a software system is assumed to be constructed by certain means which
are not of primary interest (the system could be written in some programming language),
and the core topic is then to investigate this system by means of formal methods, testing,
run-time checks, etc., in order to detect unwanted feature interactions, prove their absence,
or similarly.

This paper complements all those techniques in that it focuses on the construction of
software systems, on making it less likely that a software system is created with unexpected
feature interactions in the first place. This is done by focusing on programming languages,
and in particular by focusing on a mechanism which plays a crucial role in the emergence
of feature interactions. That mechanism is identification of declarations, i.e., the rules that
govern when two declarations will be considered as describing the same entity.

This implies that we do not consider many important kinds of feature interaction. E.g.,
one feature of an entity A could be some hard real-time guarantees, and one feature of
B could be flexible, customizable support for logging; presumably an entity C created by
composing A and B would not satisfy the same real-time requirements as A, because the
logging in B could take unbounded time at points where A depends on almost immediate
progress. Such kinds of interaction is beyond the scope of this paper. We concentrate on
features associated with declared names in programs, so a real-time property would not be
a feature. Moreover, feature interaction as considered in this paper will only occur when

IPD
27

two declarations are identified. However, we believe that even this restricted notion of
feature and interaction includes a large class of important cases.

The topic of declaration identification is treated in Sect. 2. Section 3 deals with the
effects of identification, i.e., the meaning of that single entity that is denoted by several
declarations which are identified with each other. The last topic, considered in Sect. 4, is
problems associated with those effects. Finally, Sect. 5 concludes.

2 Identification

The topic of declaration identification is the basis for feature interaction as it is treated
in this paper. Given two different declarations of the same name n in some entity, those
declarations are said to be identified with each other if the meaning of n i context of the
entity as a whole must be described by considering the declarations as a group. Alter-
natively, the two declarations could have unrelated meanings, and there would then have
to be some disambiguation rule in order to make both declared meanings of the name n
available for clients—in that case the declarations are said to be distinct. For example:

class A { void f(); virtual void g(); };
class B: public A { void f(); void g(); } Box

1

In box 1, expressed in C++ [9], there are two classes A and B, and they both contain a
declaration of two methods f and g. Since B inherits from A, an instance of B contains two
method implementations called f and two method implementations called g. However,
since A::g is declared to be virtual and A::f is not, the two declarations of g will be
identified, and the two declarations of f will not.

We should note that identification is traditionally applied to declarations of methods
but not to declarations of instance variables. This is probably because instance variables
are mutable whereas methods are usually pure values, so instance variables may vary by
simply assigning to them whereas methods can only vary if some other mechanism is
employed. This makes methods less flexible than instance variables, but it saves a lot of
space, it simplifies compile-time checking of the correctness of calling a given method on
an instance of a given class, and it improves program comprehension, because the method
implementation is known statically for each class.

2.1 Non-Identification

The oldest and simplest approach to declaration identification is to avoid it. In languages
such as C [7] and Pascal [5] there are no mechanisms to compose entities such as Pas-
cal records or C structs and thereby bring declarations together in the same context.
Within one declaration block (e.g., the body of a struct), declared names must be distinct.
Similarly, functions and procedures declared at the same level must have different names.

As a consequence, the question of identification never arises. Moreover, it is sufficient
to investigate one declaration in order to learn about the declared entity—whatever holds

IPD
28

according to that declaration will always hold when accessing that entity. In languages
with static bindings from name applications to name declarations, this enables excellent
run-time performance of procedure calls and attribute access, and that probably made
non-identification the default rule for member functions in C++ (like f in box 1).

2.2 Identification by Spelling

When identification by spelling is used, two declarations of a name n in one entity are
identified with each other because the declared name is n in both cases. So, declarations
of the same name in the same context are always assumed to denote the same thing.

At first, this rule might seem to be the one that is used in many dynamically typed
languages, including Smalltalk [4] and Self [1]. After all, a message ‘foo: x’ sent to a
Smalltalk object O gives rise to a lookup process (conceptually—it may be implemented
in various ways) where the most specific class of O that provides a method with the name
foo: is allowed to determine the meaning of foo: in context of that object.

In Self, a prototype based language that affords programmers an exceptional level of
flexibility, the lookup rules are similar to the ones used in Smalltalk. One difference is that
each object may have several parents (somewhat similar to having multiple superclasses in
class-based languages). The rule applied here requires that there is only one most-specific
declaration of the given name, otherwise an “Ambiguous method” error is raised.

It is still the case that the network of classes/objects is inspected, all declarations of
foo: are considered as a group (conceptually, the implementation may optimize this), and
one of them is selected for execution. However, in all these cases we might as well categorize
the approach as belonging to the next group, because the number of arguments are taken
into consideration when matching up method names, as explained in the next section.

2.3 Identification by Spelling and Argument Count

The syntax of languages like Smalltalk and Self ensure that the number of arguments is
an integrated part of the name of a method—for instance, foo is a method that takes zero
arguments, foo: takes one argument, and foo:Bar: takes two arguments, etc. A message
send like x foo: y Bar: z invokes foo:Bar: on the object x with the arguments y and z.
By using that syntactic form (supplemented with another form for ‘binary methods’) for
all message sends, it becomes possible to determine the number of arguments expected by
any method, just by looking at its name (its selector).

An interesting consequence is that while these languages lack static type checking, they
will in fact never call a method with a wrong number of arguments—it would necessarily
use a different method selector and thus designate a different method.

In these dynamically typed languages there may be several declarations of methods
having the same name. In Smalltalk, there cannot be several instance variables having the
same name in the same class, but in Self there is no distinction between instance variables
and methods, so one object network may have several instance variables and/or methods
with a given name. However, the effect of having multiple instance variables with the same

IPD
29

name is that the most specific one overrides the others; even though this can be used to
simulate such features as class variables, it is also somewhat confusing and error-prone.

Finally, a defmethod form in a CLOS [6] program introduces a method implementation
having a certain name and a certain argument list. This method will become one of
the methods ‘contained in’ some generic function of the same name having a ‘congruent’
argument list (i.e., primarily, having the same number of required arguments), and when
that generic function is called it will select some of the methods and invoke them. In this
case the language indisputably identifies methods based on name and argument count,
because CLOS does not encode the number of arguments into the method name.

Identification by spelling and argument count seems to work well for dynamically typed
languages.

2.4 Identification by Signature

In several statically typed languages, including C++ and Java, declarations of methods with
the same name may be considered distinct if they take a different number of arguments,
or if the types of arguments are (sufficiently) different.

This means that we may have several methods named foo, and they are then partitioned
into groups according to a combination of the name and the argument types. Within each
group the declarations are identified, but declarations in different groups are not.

A common implementation technique used in C++ is to encode the types of arguments
into the names of methods, resulting in so-called “mangled” names. Originally, this sim-
plified linking of C++ programs using linkers created for C. Identification by signature may
be thought of as identification by name, applied to the mangled names.

It should be noted that this technique of having many meanings of the same name in a
given context makes it impossible to use that name in contexts other than the ones where
the ambiguity can be resolved. For instance, it would not be possible to extend Java to
allow usage of a method in any other way than calling it—e.g., we could not pass a method
as an argument to another method—unless some disambiguation scheme were provided.

This approach is generally accepted in connection with statically typed languages even
though it has some problems, as pointed out in the next section.

2.5 Identification by Identity

The last approach considered here uses an explicit syntactic representation of each group of
identified declarations. It plays the role as the “identity” of that group, and the connection
between any given declaration and the identity of the group that it is a member of is resolved
at compile-time. Such an approach is taken in gbeta [2] and in Lava [8]. For example:

A: (# v: < object #);
B: A(# v: :< integer #); Box

2

IPD
30

In box 1, expressed in gbeta, there are two patterns (in this context, think of the word
‘pattern’ as a synonym for ‘class’) A and B, both containing a declaration of the name v. B
is a subpattern (subclass) of A, so an instance of B will contain two declarations of v.

A declaration in gbeta may consist of a name (here v), then a colon, then a marker that
indicates the kind of entity being declared (here ‘<’ or ‘:<’), and finally the right hand side
that specifies the properties of the declared entity.

The marker ‘<’ in A indicates that this declares a pattern, it is virtual, and it is its
own identity. The marker ‘:<’ in B indicates that this declares a virtual pattern. It is
a requirement that every virtual pattern must have a statically known identity, so the
declaration of v in B is only accepted by the static analysis because there is a statically
known superpattern (namely A) that provides an identity for this virtual pattern (namely
the ‘<’ declaration of v).

The word ‘virtual’ indicates that the declared entity is specified by means of a group
of declarations, and it may be used for extensible methods (similar to virtual member
functions in C++ and other OO languages), extensible classes (similar to type arguments
for type parameterized classes and methods), and deferred objects (not described here,
because of space constraints).

3 Effects of Identification

The most common effect of identification is selection, i.e., when the set of identified decla-
rations has been determined, one of them is taken to be the active one and all the others
are simply ignored. This is the case with methods in Smalltalk, all kinds of attributes in
Self, virtual member functions in C++, and methods in Java. It provides us with the main
stream OO semantics of “method overriding”.

For a CLOS method, all the member methods in a generic function are taken into
consideration. The applicable ones (the ones whose argument constraints are satisfied by
the actual arguments) are selected. Amongst the applicable methods, all the methods
marked ‘before’ are executed first, then the most specific ordinary method, then all the
methods marked ‘after’. Hence, this will compose an ‘effective’ method based on several
declarations in the group of identified declarations.

In gbeta the approach is also to compose a resulting meaning out of the meanings of
all identified declarations. This happens by means of C3-merging as described in [2, 3].

It should be noted that an approach capable of composing declarations seems to be
more suited to work with separation of concerns than an approach based on selection,
since the composition may bring together the separated concerns.

4 Problems Caused by Those Effects

Every one of these approaches can give rise to some problems. First, if two methods are
conceptually unrelated, they should be able to coexist in one object without disturbing

IPD
31

each other. This works perfectly for non-virtual C++ member functions, but then we
cannot redefine them. It is not supported in languages like Smalltalk, Self or CLOS, nor in
Java (multiple interfaces with “the same” method must share the implementation of that
method in every class implementing those interfaces together). It is supported in gbeta,
in that two unrelated methods will have different identities and hence never be identified
with each other. This means that a class in gbeta may have two separate methods with
the same name and still support late binding of both methods. A special problem in this
area is the confusion in C++ around identification of methods. For instance:

struct A { virtual void f() {}};
struct B: public A { virtual void f() {}};
struct X { virtual void f() {}};
struct Y: public X { virtual void f() {}};
struct BY: public B, public Y {};
struct BY2: public B, public Y { virtual void f () {}}; Box

3

There are three groups of declarations of f in this example. The groups are {A::f, B::f},
{X::f, Y::f}, and {BY2::f}. If we execute f on an instance of B or BY then we get B::f,
both with A and B as the statically known class. Similarly, if we execute f on an instance
of Y or BY then we get Y::f. This means that we do get late binding and that the first
and second group of declarations above are considered distinct in BY that contains both.
However, if we execute f on an instance of BY2 then we get BY2::f in all cases.

This means that there are two distinct groups of declarations of f in all classes except
BY2, where they are merged into one group. The problem with this is that a programmer
who knows about the A::f “family” of declarations and who redefines it in BY2 may
accidentally capture the X::f family, thus destroying X::f for all callers. A programmer
who does not know about the existence of BY2 will have no hint that A::f and X::f

may in certain cases be considered the same method. This problem does not exist when
identification by identity is used, because the identities A::f and X::f would be different.

A similar problem is that a declaration of a method may accidentally override another
method of the same name, e.g., if B::f were conceptually unrelated to A::f but the pro-
grammer overlooked the latter. With identification by identity it is syntactically marked
out exactly which method declarations are supposed to introduce an entirely new declara-
tion group and which ones are supposed to add a declaration to an existing (and statically
known) group. This problem gets even worse in a language like CLOS, where the equivalent
of class BY would already let B::f capture the X::f family, again silently.

In CLOS this can be used constructively in ‘mixin’ classes. However, gbeta demon-
strates that mixins can also be used with identification by identity—a bit less flexible, but
also safer.

Finally, it is a problem with very strict approaches like identification by identity that
methods which are conceptually related but not declared to be so cannot be considered as
the same method. However, since problems associated with missing identification generally
show up at compile time, we think that it is less dangerous than problems associated with
overly aggressive identification, which tend to be undetected until run-time.

IPD
32

5 Conclusion

In this paper, feature interaction was addressed with special attention to the topic of name
binding, especially focusing on the subtopic of declaration identification and composition.
Different approaches taken in various programming languages were presented, and a few
problems associated with each of them mentioned. Generally, we take the position that
declaration identification should be statically known, because unforeseen and conceptually
unsound identification may cause disasters at run-time, whereas lack of identification that
occurs as a compile-time problem for programmers may usually be handled by a bit of
extra programming.

References

[1] Ole Agesen, Lars Bak, Craig Chambers, , Bay-Wei Chang, Urs Hölzle, John Maloney,
Randall B. Smith, David Ungar, and Mario Wolczko. The Self 4.0 Programmer’s
Reference Manual. Sun Microsystems, Inc., Mountain View, CA, 1995.

[2] Erik Ernst. gbeta – A Language with Virtual Attributes, Block Structure, and Propa-
gating, Dynamic Inheritance. PhD thesis, Devise, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, June 1999.

[3] Erik Ernst. Propagating class and method combination. In Rachid Guerraoui, edi-
tor, Proceedings ECOOP’99, LNCS 1628, pages 67–91, Lisboa, Portugal, June 1999.
Springer-Verlag.

[4] Adele Goldberg and David Robson. Smalltalk–80: The Language. Addison-Wesley,
Reading, MA, USA, 1989.

[5] K. Jensen and N. Wirth. Pascal User Manual and Report. Springer-Verlag, 1978.

[6] Sonya E. Keene. Object-Oriented Programming in Common Lisp. Addison-Wesley,
Reading, MA, USA, 1989.

[7] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice
Hall, 1988.

[8] Günter Kniesel. Type-safe delegation for run-time component adaptation. In Proceed-
ings ECOOP’99, LNCS 1628, Lisboa, Portugal, June 1999. Springer-Verlag.

[9] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd edition,
1997.

IPD
33

IPD
34

Predicting Feature Interactions in Component-Based Systems

Judith Stafford and Kurt Wallnau
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

+1 412-268-5051 +1 412-268-3265

jas@sei.cmu.edukcw@sei.cmu.edu

ABSTRACT

Software component technologies support assembly of systems from binary component implementations that may have
been created in isolation from one and another. While these technologies provide assistance in wiring components together
they fail to provide support for predicting the quality and behavior of configurations of components prior to actual system
composition. We believe that all quality attributes manifested at runtime are emergent properties of component interactions,
and hence arise as a consequence of planned, or unplanned, interactions among component features. In this paper we discuss
the affinities among software architecture, software component technology, compositional reasoning, component property
measurement, and component certification for the purpose of mastering component feature interaction, and for developing
component technologies that support compositional reasoning, and that guarantee that design-time reasoning assumptions are
preserved in deployed component assemblies.

1. Introduction

Software component technologies provide a means for composing systems quickly from precom-
piled parts. Technologies such as CORBA and COM have been developed to support composition of
components that are created in isolation, perhaps by different people in different environments and in
different languages. However, current component-based technologies do not support reasoning about
system quality attributes, e.g., performance, reliability, and safety.

The quality of a software system is, in part, a function of the degree to which its features interact in
predictable ways. Users view systems from the perspective of system features whereas developers view
systems in terms of functional decomposition into components. The former is a view in the problem
domain; the latter is associated with the solution domain. Turner et al. study the relationship between
these two domains as they define a conceptual framework for feature engineering [23]. Quality attrib-
utes such as performance, reliability, and safety are emergent properties of patterns of interaction in an
assembly of components. Ultimately, all such patterns of interaction depend upon one or more features.
Therefore, many critical system quality attributes are expressions of component feature interaction. In-
deed, a failure to achieve system quality attributes may be attributable to unexpected feature interaction.
We suggest that predicting and ensuring system-level quality attributes and controlling component fea-
ture interactions are closely related. Moreover, we contend that the solution to both problems (to the

IPD
35

extent they are distinct) will be found in the form of compositional reasoning. Informally, composi-
tional reasoning posits that if we know something about the properties of two components,c1 andc2,
then we can define a reasoning functionf such thatf(c1, c2)yields a property of an assembly comprising
c1 andc2.

Many would argue that compositional reasoning is the holy grail of software engineering: a noble
but ultimately futile quest for an unobtainable objective. This argument usually has as its unspoken
premise that only a fully formal and rigorousf(c1, c2)will do. If we accept this premise, then progress
will indeed be slow. Instead, we suggest that it is possible to adopt a more incremental approach that in-
volves many levels of formality and rigor. To begin, we suggest that three interlocking questions must
be answered:

1. What system quality attributes are developers interested in predicting?

2. What analysis techniques exist to support reasoning about these quality attributes, and what compo-
nent properties do they require?

3. How are these component properties specified, measured, and certified?

Since compositional reasoning ultimately depends upon the types of component properties that can
be measured, these questions are interdependent. Therefore, answers to these questions are mutually

constraining. Further, answering these questions will be
an ongoing process: new prediction models will require
new and/or improved component measures, which will in
turn lead to more accurate prediction, and to demand for
better or additional prediction models.

The objective of our work in predictable assembly
from certifiable components (PACC) is to demonstrate
how component technology can be extended to support
compositional reasoning. To do this, PACC integrates
ideas from research in the areas of software architecture,
trusted components, and software component technology.

The rest of the paper is organized as follows: We be-
gin by describing two areas of related work, architecture-
based analysis and component certification. The former
deals with issues antecedent to compositional reasoning,
the latter with issues of component trust and specification.

We then describe a reference model for using component technology to link compositional reasoning
with component certification, and close with a summary of our position.

2. Background and Related Work

The ideas of architectural analysis and component certification are not new but, to the best of our
knowledge, their integration is. In this section we describe prior work in these areas and discuss their
relationship to our work on predictable assembly.

What quality
attributes do
we want to
predict?

What compositional
analysis techniques
exist?

What do these
techniques need
to know about
components?

IPD
36

2.1 Architectural Analysis

Software architecture-based analysis provides a foundation for reasoning about system completeness
and correctness early in the development process and at a high level of abstraction. To date, research in
the area has focused primarily on the use of architecture description languages (ADLs) as a substrate for
analysis algorithms. The analysis algorithms that have been developed for these languages have, in gen-
eral, focused on correctness properties, such as liveness and safety [2,10,14,16]. However, other types
of analysis are also appropriate for use at the architecture level and are currently the focus of research
projects. Examples include system understanding [13,21,27], performance analysis [3,20], and archi-
tecture-based testing [4,24]. One still unresolved challenge for architecture technology is to bridge the
gap between architectural abstractions and implementation. Specification refinement is one approach
that seeks to prove properties of the relationship between abstract and more concrete specifications, ei-
ther across heterogeneous design notations [8] or homogeneous notations [17].

2.2 Component Certification
The National Security Agency (NSA) and the National Institute of Standards and Technology

(NIST) used the trusted computer security evaluation criteria (TCSEC), a.k.a. “Orange Book.1” as the
basis for theCommon Criteria2, which defines criteria for certifying security features of components.
Their effort was not crowned with success, at least in part because it defined no means of composing
criteria (features) across classes of component. The Trusted Components Initiative (TCI)3 is a loose af-
filiation of researchers with a shared heritage in formal specification of interfaces. Representative of
TCI is the use of pre/post conditions on APIs [15]. This approach does support compositional reasoning,
but only about a restricted set of behavioral properties of assemblies. Quality attributes, such as secu-
rity, performance, availability, and so forth, are beyond the reach of these assertion languages. Voas has
defined rigorous mathematical models of component reliability based on statistical approaches to testing
[26], but has not defined models of composing reliability measures. Commercial component vendors are
not inclined to formally specify their component interfaces, and it is not certain that it would be cost ef-
fective for them to do so. Shaw observed that many features of commercial components will be discov-
ered only through use. She proposed component credentials as an open-ended, property-based interface
specification [19]. A credential is a triple <attribute, value, knowledge>, which asserts that a component
has an attribute of a particular value, and that this value is known through some means. Credentials re-
flect the need to address component complexity, incomplete knowledge, and levels of confidence (or
trust) in what is known about component properties, but do not go beyond notational concepts. There-
fore, despite many efforts, fundamental questions remain. What does it mean to trust a component? Still
more fundamental: what ends are served by certifying (or developing trust) in these properties?

3. PACC Approach

The PACC approach is based on two fundamental premises: first, that system quality attributes are
emergent properties adhere to patterns of interaction among components, and, second, that software
component technology provides a means of enforcing predefined and designed interaction patterns, thus

1 http://www.radium.ncsc.mil/tpep/library/tcsec/index.html
2 http://csrc.nist.gov/cc/
3 http://www.trusted-components.org/

IPD
37

facilitating the achievement of system quality attributes by construction.

3.1 Premises of PACC

The study of software architectural styles supports the first premise. Anarchitectural styleis a recur-
ring design pattern, usually expressed as a set of component types and constraints on their allowable in-
teractions [1,7]. Architectural styles provided the first link between structural design constraints and
system properties. For example, thepipe and filterstyle yields systems that can be easily restructured.
However, the link between system-level quality attribute and architectural style is informal and subjec-
tive. To better formalize this link, Klein et al. have developedattribute-based architectural style
(ABAS) [11]. Informally, ABAS associates one or moreattribute reasoning frameworkswith an archi-
tectural style. An attribute reasoning framework consists of a response variable, one or more stimuli
variables, and an analysis model that links stimuli to response. ABAS is a key foundation for PACC. It
provides the conceptual foundation for defining and analyzing the properties of assemblies (the response
variables). It also provides the link between system properties and component properties (stimuli vari-
ables).

Component technology provides the means to realize ABAS concepts in software and, in fact, the
concept of architectural style is quite amenable to a component-based interpretation [4]. In or view, a
component technology can play an analogous role to predictable assembly that structured programming
languages and compilers played for structured programming—it limits the freedom of designers (pro-
grammers) so that the resulting design (program) is more readily analyzed. In one of many possible ex-
amples, the Enterprise JavaBeans (EJB) specification defines component types, such assessionanden-
tity beans,4 and constraints on how they interact with one another, with client programs, and with the
runtime environment. However serendipitous it may be, it is clear that EJB specifies an architectural
style. It is our thesis that analogous component technologies can be defined that go still further to in-
clude the additional style constraints needed to support ABAS-based reasoning. The result will be com-
ponent technologies that support design-time quality attribute analysis, and guarantee, by construction,
that the assumptions underlying these analyses are preserved in an assembly of components.

At this point in our research, we are noncommittal about what a prediction-enabled component tech-
nology should look like. However, we postulate the outlines of such a technology with the following
reference model.

3.2 A Conceptual Reference Model for PACC

Component technologies comprise four levels of abstraction. We generally depict this as a layered
reference model, but omit the graphic here for brevity. We describe this model beginning with the con-
crete and work our way up to the abstract:

– Assembly. The most concrete level of our reference model comprises a set of components whose
resources (features) have been bound in such a way as to enable their interaction.

– Assembly specification. At this level we find component specifications in place of components,
and specifications of their interactions. It is at this level of abstraction that attribute analysis and

4 Components are denoted asbeansin EJB.

IPD
38

prediction occur.

– Types. At this level we specify component and connector types and their features, thereby defining
a vocabulary to support design, that is, assembly specification and attribute analysis and prediction.

– Metatypes. At this level one defines what it meansto bea component type, or a connector type, or
an assembly type, and define any constraints that must hold for all types to enable attribute predic-
tion.

3.3 Reference Model Instantiations

We have explored two complementary approaches to instantiate the PACC reference model: one that
assumes that attribute reasoning models will be integrated into a component technology, and one that
assumes the converse. We refer to the first as a component-centric instantiation, and the second as an
architecture-centric instantiation. We have validated both approaches with (admittedly simple) proofs of
feasibility. For the component-centric instantiation we used the WaterBeans [18] technology augmented
with latency prediction. For the architecture-centric instantiation we used a security ABAS for attribute
reasoning, and a Web-based enterprise system for the component technology (from the case study found
in [25]). Table 1 summarizes the mapping of these instantiations to the reference model.

Table 1: Complementary Instantiations

Model Level Component Centric Architecture Centric

Metatypes Properties shared by all WaterBeans compo-
nents, e.g., typed ports, connectors, and con-
nection rules. Defined the latency attribute
and associated it with the component
metatype.

A simple, behavior-less ADL of compo-
nents, interactions, assemblies, and their
properties. Analogous to a simplified meta-
model of UML collaboration diagrams.

Types Component type definitions for CD audio
sampling and wave manipulation. Types in-
troduced the additional Boolean property for
aperiodic or periodic behavior, and, if peri-
odic, the execution period. A quantitative
model for end-to-end latency is also defined
here.

Types that represent basic-level categories
for analysis of security properties, e.g.,
peers, trusted computing base, key, crypto-
graphic provider, threat agent, data asset.
Each category is mapped to an element in
the simple ADL.

Specification A topology of audio components annotated
with their latency attributes; assembly latency
prediction occurred here.

Patterns of interaction comprising only basic
categories, where patterns exhibit desired
security property. Informal rules of attribute
preserving pattern refinement.

Assembly A benchmarked assembly, allowing compari-
son of predicted versus actual assembly la-

Pattern refinements where each basic cate-
gory has been refined to (bound to) a more

IPD
39

tency. specific category, ultimately grounding in
specific component and interaction features.

4. Closing Thoughts
In closing, we take the position that the identification of feature interactions in complex systems is
closely tied to analysis of system-level quality attributes. Quality attributes of systems are a product of
properties associated with both the components that comprise a system and their patterns of interaction.
Designing systems as assemblies of components based on architectural styles produces systems that are
analyzable by design. We are exploring the application compositional reasoning techniques to assem-
blies of components in order to predict properties of systems. It is our belief that this line of work can
support the identification of the potential for feature interaction before actual system assembly.

5. Acknowledgements

This work was supported by the United States Department of Defense.

6. References
1. G. D. Abowd, R. Allen and D. Garlan, Formalizing Style to Understand Descriptions of Software Architec-

ture, ACM Transactions on Software Engineering and Methodology, Vol. 4, No. 4, October, 1995, pp. 319-
364.

2. R. Allen and D. Garlan, A Formal Basis for Architectural Connection,ACM Transactions on Software Engi-
neering and Methodology, Vol. 6, No. 3, July. 1997, pp. 213-249.

3. S. Balsamo, P. Inverardi and C. Mangano, An Approach to Performance Evaluation of Software Architec-
tures,Proceedings of the 1998 Workshop on Software and Performance, October. 1998, pp. 77-84.

4. F. Bachman, L. Bass, C. Buhman, S.Comella-Dorda, F. Long, J. Robert, R. Seacord and K. Wallnau, Volume
II: Technical Concepts of Component-Based Software Engineering, Technical Report CMU/SEI-2000-TR-08,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

5. A. Bertolino, P. Inverardi, H. Muccini and A. Rosetti, An Approach to Integration Testing Based on Archi-
tectural Descriptions,Proceedings of the 1997 International Conference on Engineering of Complex Com-
puter Systems, September. 1997, pp. 77-84.

6. E. Dijkstra, Structured Programming,Software Engineering, Concepts and Techniques, J. Buxton et al. (eds.),
Van Nostrand Reinhold, 1976.

7. D. Garlan and M. Shaw , An Introduction to Software Architecture,Advances in Software Engineering and
Knowledge Engineering, V. Ambriola and G. Tortora (eds.), World Scientific, 1993.

8. F. Gilham, R. Reimenschneider, V. Stavridou, Secure Interoperation of Secure Distributed Databases: An Ar-
chitecture Verification Case Study,Proceedings of World Congress on Formal Methods (FM’99), Vol. I,
LNCS 1708, pp. 701-717, 1999, Springer-Verlag, Berlin.

9. G. T. Heineman and W.T. Councill (eds.),Component-Based Software Engineering: Putting the Pieces To-
gether, Addison-Wesley, Reading, Massachusetts, 2001.

10. P. Inverardi, A.L. Wolf, and D. Yankelevich, Static Checking of System Behaviors Using Derived Compo-

IPD
40

nent Assumptions,ACM Transaction on Software Engineering and Methodology, Vol. 9, No. 3, July. 2000,
pp. 238-272.

11. M. Klein and R. Kazman,Attribute-Based Architectural Styles, Technical Report CMU/SEI-99-TR-022,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

12. M. Klein, T. Ralya, B. Pollak, R. Obenza and M. G. Harbour,A Practitioner’s Handbook for Real-Time
Analysis, Kluwer Academic Publishers, 1993.

13. J. Kramer and J. Magee, Analysing Dynamic Change in Software Architectures: A Case Study,Proceedings
of the 4th International Conference on Configurable Distributed Systems, May 1998, pp. 91-100.

14. J. Magee, J. Kramer, and D. Giannakopoulou, Analysing the Behaviour of Distributed Software Architec-
tures: A Case Study,Proceedings of the 5th IEEE Workshop on Future Trends of Distributed Computing Sys-
tems, October. 1997, pp. 240-247.

15. B. Meyer,Object-Oriented Software Construction, Second Edition,Prentice Hall, London, 1997.

16. G. Naumovich, G.S. Avrunin, L.A. Clarke, and L.J. Osterweil, Applying Static Analysis to Software Archi-
tectures,Proceedings of the 6th European Software Engineering Conference Held Jointly with the 5th ACM
SIGSOFT Symposium on Foundations of Software EngineeringLecture Notes in Computer Science, No.
1301, Springer-Verlag, 1997, pp. 77-93.

17. J. Phillips and B. Rumpe, Refinement of Information Flow Architectures,Proceedings of the 1st IEEE Inter-
national Conference on Formal Engineering Models, pp. 203-212, 1997.

18. D. Plakosh, D. Smith and K. Wallnau,Builder’s Guide for WaterBeans Components, Technical Report
CMU/SEI-99-TR-024, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

19. M. Shaw, Truth vs Knowledge: The Difference Between What a Component Does and What We Know It
Does,Proceedings of the 8th International Workshop on Software Specification and Design, March 1996.

20. B. Spitznagel, D. Garlan, Architecture-Based Performance Analysis,Proceedings of the 1998 Conference on
Software Engineering and Knowledge Engineering, San Francisco, California, 1998.

21. J.A. Stafford and A.L. Wolf, Architecture-Level Dependence Analysis in Support of Software Maintenance,
Proceedings of the Third International Workshop on Software Architecture, November. 1998, pp. 129-132.

22. C. Szyperski,Component Software Beyond Object-Oriented Programming, Addison-Wesley, Boston, Massa-
chusetts and ACM Press, 1998.

23. C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf, A Conceptual Basis for Feature Engineering,Journal
of Systems and Software, Vol. 49, No. 1, December 1999, pp. 3-15.

24. M.E.R. Vieira , S. Dias and D.J. Richardson, Analyzing Software Architectures with Argus-I,Proceedings of
the 2000 International Conference on Software Engineering, June 2000, pp. 758-761.

25. K. Wallnau, S. Hissam and R. Seacord,Building Systems from Commercial Components, Addison Wesley
Longman, To Appear July, 2001.

26. J. Voas and J. Payne, Dependability Certification of Software Components,Journal of Systems and Software,
No. 52, 2000, pg. 165-172.

27. J. Zhao, Using Dependence Analysis to Support Software Architecture Understanding,New Technologies on
Computer Software, September 1997, pp. 135-142.

IPD
41

IPD
42

An Architectural Style to Integrate Components and Aspects1

Miguel A. Pérez, Amparo Navasa, Juan M. Murillo
Area de Lenguajes y Sistemas Informáticos

Departamento de Informática. Extremadura Univ.
{toledano, amparonm,juanmamu}@unex.es

In the last few years Component Based Development (CBD) and Aspect
Oriented Programming (AOP) are gaining more and more relevance. Whilst
CBD has been shown as a good mean to reuse designs and to build complex
systems by the plug-and-play mechanisms, AOP makes code more reusable
and complex systems more comprehensible. However, little efforts have been
made to integrate both paradigms and consequently, developers are
condemned to don’t get all the advantages offered by the two paradigms
simultaneously. In this paper a proposal to integrate AOP and CBD is
presented. The work introduce the concept of Aspect Component and it is
split in two different parts: first, an architectural style to support both,
functional and aspect components is proposed and second, an approach to
document, search and find aspect components in repositories is presented.

1 Introduction

In the last few years, AOP and CBD have become more relevant, and have
showed their use in developing complex systems. Nevertheless, both paradigms have
evolved in separate ways:

1. AOP has been shown as a good mean to develop complex systems. This paradigm
allows separating the aspect code that contaminates the functional code of
applications. Some of the main benefits obtained are to have both, functional and
aspects code, more reusable and make the systems more comprehensible. As a
consequence the software quality is improved.

2. On the other hand CDB is shown as a powerful paradigm that favours the designs’
reuse, using the plug and play mechanism to build software systems. The systems
that are built in this way evolve in a simple fashion and are easily maintained.
However, in this paradigm, the aspect code is crosscutting the functional code in
components.

Although AOP and CBD are conceived to develop complex Software System,
this paradigms can not be used both together. The reason is that the actual CBD models
do not support aspect separation. This means the developers must trade off one
paradigm for the other, and means that they are unable to obtain benefits from both
paradigms simultaneously. Nevertheless, intuitively, it seems possible that both
paradigms can be joined together successfully [ScAs98]: aspects could be separated
from components to be modelled as a special kind of component. This would allow
giving the benefits of components to aspects and the benefits of separation of concerns
to components.

In this paper, a proposal to combine AOP and CBD is presented. The primary
objective is to construct systems based on components that separately treat several
(functional and non-functional) concerns. To do this, the concept of aspect component
is introduced and defined in the following way:

1 This work has been supported by CICYT, project TIC 99-1083-C2-02

IPD
43

An “aspect component” is a component that has a code associated with a
concern (and only one), functional or non-functional.

The contribution of the paper is two-fold: on one hand, it defines an architectural
style in the sense [GaSh96] for the construction of component oriented systems,
considering non-functional aspects. On the other hand, the work assumes the existence
of repositories of aspect components. Retrieving the information from them presents
different problems than those already know for the functional component repositories.
For these reason it is introduced a model for the documentation, selection and retrieval
of aspect components. The model is based on the analysis of the information of
interoperability needed for this special kind of components.

2. Proposed model

The first contribution of this paper consists of defining an architectural style for
the definition of components oriented complex System. It considers the non-functional
aspects that are applied to functional components. In this model, we consider the
following definition of a component give by Krunchen in the CBSE workshop in 1998
[Kr98]:

“A component is a non-trivial, nearly independent, and replaceable part of a
system that fulfils a clear function in the context of a well-defined architecture.
A component conforms to and provides the physical realisation of a set of
interfaces.”

The software architecture is based on the layered architectural style proposed by
Garlan and Shaw [ShGa96]. In the architectural style proposed there is one level for
each considered concern (figure1). Each level controls the actions performed in the
inferior level according to the requirements of the concern that is implementing. Also,
each level is intended to support the plug in of the adequate aspect components.

The proposed model is based on the following principles:

(1) The components that form part of the system have a generic structure. Never
they will be considered built by or for the model. Thus, one can suppose that
they can be found in public repositories.

(2) Each component has an interface to present its own services.
(3) Each component needs to be associated with information of interoperability

in order to locate them in the repositories and know if their requirements
coincide with the sought requirements.

Figure 1 represents the proposal graphically. It indicates the order in which the
aspects should be considered. Note that, whilst the second and third levels are only
applied to one component, next levels are applied to several ones. The reason is that co-
ordination and distribution concerns relate several components.

Levels in proposed architectural style are:

Level 1: The one called “functional components level” is the lowest. It contains the
functional components. Each one has one or more interfaces to define its
interaction with the others components in the system.

IPD
44

Level 2: Synchronisation level. This level will decide when, the actions performed by
the functional component can be executed. This is made according to the
constraints specified by the aspect components plugged in at this level.

Level 3: Concurrency Level. In this level, the concurrency control for components in
level 1 is made. Components in this level include constraints specifying how the
actions performed by the functional components can be executed concurrently.

Level 4: Distribution level. Using a platform (CORBA, RMI,…) it is possible to access
remote components. Platforms manage the components location and their
communication. This level is defined over components in previous levels. It
defines the distribution policy of components in the system. The model
presented here doesn’t wish acquire obligations with any platform, but considers
the possibility to use several at one time.

Level 5: The co-ordination level implements the dependencies among the actions
performed in the whole system. Components at this level specify the co-
ordination constraints to apply over the system components (distributed or not).

V ualComp3
 comp3

Figure 1. Layered architecture elements.

C
FuncionalComp

Synchr
polices

Level 1: Functional Comp

Level 2: Level of synchronisation

oncurrency
policies.

Level 3: Level of concurrency

Level 4: Level of distribution

VirtualComp1
Dcomp1

VirtualComp2
Dcomp2

Level 5: Level of coordination

Coord
policies.

Iinterface

Dintribution Management connector

Coordination Management connector

Synchron
Management
Connector

Restrictions Concurrency
Connector

IPD
45

Each level controls the action performed in the inferior level through a reflective
schema: When a service is required to a functional component the requirement is
intercepted and processed by the superior levels.

This architecture allows building systems based on functional and non-
functional components. However, it is necessary note that components will reside in
repositories and that they should have a good interoperability specification for making
correct matches when searching them. Next section study this problem.

3 Component selection

The second part of the work presented here consists of searching for and selecting
aspects components from repositories. If it is well known the difficulty to retrieve
functional components in repositories [HeVaTr00, VaHeTr99], the retrieval of the
aspect components is even more complicated. The reasons are the following:

• Aspect components can be developed for different models of separation of
concerns [Berg94, Kic96, Lie96, Cza98, Osh96]. Each one of these models is
different from the others, which complicates the recuperation. It is needed
model independent documentation of interoperability, that is: the
documentation of interoperability must be valid for all the designed components
for the same aspect (independently of the model that the designer choice to
achieve the separation).

• The architectural style proposed collects various aspects, and each aspect needs
different interoperability documentation. For example, the semantic description
of a component that specifies the co-ordination aspect is different from one
specifying the distribution aspect. This is due to the fact that the documentation
requirements change when describing each behaviour.

• While the interface of the functional components serves to show the services
that this particular component offers, in the aspect components the interface
describes the requirements required for the components to which they will be
applied.

• Besides, to select a functional component from a repository we need key words,
names of components, domains, granularity,... Nevertheless, to select aspect
components, apart from those mentioned above, we need to access components
in relation to their behaviour, and this is difficult to describe.

Whilst system’s construction using functional components [ScAs98] has already
been handled by methodologies like Catalysis [SoWi00], composition using aspect
components lack methodologies, and there are not any public aspect repositories, nor
tools to select them.

Our work considers that there exists aspect repositories from which to select the
desired components. We have found that to select aspect components, it is needed
documentation that includes the following:

1. The documentation of interoperability of the component should contain syntactic
information that describes the aspect component’s interface. This description
could be one that explains to the other components how they should use the
aspect component.

IPD
46

2. Semantic information that explains the aspect component’s behaviour. This
information is more difficult to obtain, and requires the use of specific tools,
since the needs of documentation change for every aspect. The objective is to
generate information about what the component does.

3. General information, about the model of the component, the name of the
component, the most frequently used domain, the size,… This information can
be completed with information about the transitions of the component’s state to
facilitate its comprehension. The idea is to obtain complementary information,
which permits a more complete knowledge of the desired component and
facilitates its interoperability in different application domains.

The information in point 1 is similar to the syntactic information necessary to
use any functional component. But now, this information does not exhibit the services,
but rather the requirements, which the components that are used should comply. The
information obtained in point 3 is not different from that which a functional component
could have. However, the semantic information in point 2 presents new challenges.

To describe semantic information, one needs a tool to describe the behaviour of
the different aspect components, permit the selection of components from a repository
and compare the behaviour of different components in order to choose them correctly.

Our research began with a study of the co-ordination components. Thus, to
document the components [Kr98] that collect the co-ordination aspect, we use diagrams
similar to sequence diagrams proposed in UML. However, we have amplified its syntax
to cover the needs of the aspect of co-ordination which do not collect the diagrams of
sequence [In00, HaPo98], such as representing the notification of event or
differentiating control method of the notification of events.

Once we have obtained the diagram(s) that describe the function and interaction
with other components, the tool constructs (based on it) the automaton that describes its
behaviour. Finally, this automaton is optimised. The obtained automata will be used to
search, compare, and select elements from repositories.

Our tool is presented in a graphic environment to collect, in a simple fashion, the
entire user’s needs: the sequence of evens that the component might receive, the type,
the form of notification… From these needs automata are built that are compared with
those represented in the repository.

The following steps are for the creation of new tools that permit us to work with
other different aspects. The final goal is to have an adequate environment to select any
type of aspect components.

4 Conclusions.

In this paper, a software architecture for building complex systems integrating
concepts of AOP and CBD has been presented. Also, it has been presented a proposal
for the documentation and selection of aspect components from repositories.

Future works that we have proposed are directed toward a formal modellioing of
architecture trough an Architectural Definition Language and the creation of tools for
the selection and retrieval of aspect components from repositories.

IPD
47

5 Bibliography

 [Berg94] L. Bergmans. “Composing Concurrent Object”. Tesis Doctoral. University of
Twenty . Netherland. 1994.
[Cza98] K. Czarnecki. Generative Programming: Principles and Techniques of Software
Engineering Based on Automated Configurations and Fragment-Based Component
Models. Tesis doctoral, Technische Universität Ilmenau, Alemania. 1998.
 [HaPo98] D. Harel, M. Politi. “Modeling reactive Systems with Statecharts. The
Stamate approach.”Mc Graw-Hills 1998.
[HeVaTr00] J. Hernández, A. Vallecillo, J. M. Troya, “New Issues in Object
Interoperability” Proc of the ECOOP´00. Workshop on Object Interoperabiliy. Sophia
Anthipolis- France.
[In00] Ingolf Heiko Krüger. “Distributed System Design with Message Sequence
Charts”. PhD Thesis. University of, July 2000.
[Kic96] G. Kiczales et al. Aspect-Oriented Programming. In Max Mühlhäuser editor,
Special Issues in Object-Oriented Programming, Workshop Reader of the 10th.
European Conference on Object-Oriented Programming, ECOOP’96, Dpunkt-Verlag,
1997.
[Kr98] Ph. Kruchten. “Modeling Component Systems with the Unified Modeling
Languaje”. International Workshop on CBSE 1998.
[Lie96] Karl Lieberherr . Adaptive Object-Oriented Software: The Demeter Method
with Propagation Patterns. PWS Publishing Company. 0-534- 94602-X. 1996.
[Osh96] H. Ossher, M. Kaplan, A. Katz, W. Harrison, V. Kruskal. Specifying Subject-
Oriented Composition. Theory and Practice of Object Systems, volume 2, number 3,
Wiley & Sons. 1996.
[ScAs98] R. Schmidt, U. Assmann. “Conceps for Developing Component-Based
Systems”. International Workshop on CBSE 1998.
[ShGa96] M. Shaw, D. Garlan. “Software Architecture: Perspectives on an Emerging
Discipline”. Prentice Hall 1996.
[SoWi00] Francis D´Souza, Cameron Wills, “Objects, Componentes and Frameworks
with UML. The Catalysis Approach”
[VaHeTr99] A. Vallecillo, J. Hernández, J. M. Troya, “New Issues in Object
Interoperability” Proc of the ECOOP´99. Workshop on Object Interoperabiliy. Lisbon,
Portugal.

IPD
48

Feature Modelling and Composition with
Coordination Contracts

Luís Filipe Andrade1 and José Luiz Fiadeiro1,2

1 ATX Software S.A.
Alameda António Sérgio 7 – 1 A,

2795 Linda-a-Velha, Portugal
landrade@oblog.pt

2 LabMAC & Dept. of Informatics
Faculty of Sciences, University of Lisbon

Campo Grande, 1700 Lisboa, Portugal
jose@fiadeiro.org

1 Introduction and motivation

In this paper, we present an approach to feature modelling and composition that re-
lies on the use of what we call “coordination technologies” – a set of modelling primi-
tives, design principles, design patterns, and analysis techniques that we have been
developing for supporting the construction and evolution of complex software systems
that need to operate in very volatile and dynamic environments. These technologies
are based on the separation between what in systems is concerned with the computa-
tions that are responsible for the functionality of the services that they offer and the
mechanisms that coordinate the way components interact, a paradigm that has been
developed in the context of so-called Coordination Languages and Models [15].

The rationale of the application of coordination technologies to Feature Modelling
and Composition is in the realization that the problems that arise in this field, namely
the so-called “feature interaction problem”, can be better addressed in frameworks
where this separation between computation and coordination is supported and can be
used for representing the ways in which features are composed as first-class citizens.
More precisely, our standpoint and justification for the approach to these problems
that we are going to present can be summarised as follows:

Feature interaction is a “feature” intrinsic to the nature of complex
systems and the approaches that we follow to model them. We are in
total agreement with Pamela Zave [23] in recognising that feature-oriented system
descriptions make feature interaction, in the sense of the emergence of “strange”, “un-
expected” or “undesired” behaviour from feature composition, implicit in the models
we provide. The whole idea of feature-oriented approaches, in the sense of putting
together systems from individual features as basic units of functionality, is that the
global properties that are required from the behaviour of the system can “emerge” from
the individual functionalities and the interactions that exist between them. With no
interaction there is no emergence of new behaviour and, therefore, no value to the
system as a whole that is not already provided through its components in isolation.
The problem is that, while we compose features having in mind the emergence of
certain properties that constitute requirements on the behaviour of the system, it is
difficult to predict which other forms of behaviour will also emerge, namely ones that
are not of interest and whose “negation” is normally omitted from the requirements

IPD
49

specification because one never thought of them being possible… Hence, feature
interaction is not a problem that needs to be solved but a phenomenon that needs to be
controlled.

The problem of controlling feature interaction is aggravated by evo-
lut ion. As the world of business in general becomes more and more aggressive and
competitive, for instance as a consequence of the impact of the Internet and Wireless
Technologies, companies require their information systems to be easily adaptable to
changes in the business rules with which they operate, most of the time in a way that
does not imply interruptions to the services that they provide. Quoting directly from
[13], "… the ability to change is now more important than the ability to create e-
commerce systems in the first place. Change becomes a first-class design goal and
requires business and technology architecture whose components can be added, modi-
fied, replaced and reconfigured". All this means that the "complexity" of software has
definitely shifted from construction to evolution , and that methods and technologies
are required that address this new level of complexity and adaptability. One of the
important goals of feature-oriented approaches is, precisely, to make it easier to
change system’s behaviour by adding new features, changing existing ones, or rear-
ranging the way in which they are composed. All these operations have in mind the
emergence of new system properties corresponding to the need to accommodate new
business requirements, which brings us back to the problem of making sure that we
are not surprised with the emergence of “funny” phenomena. Hence, even if a system
was carefully constructed in order to avoid undesired interactions, it is impossible to
predict how it is going to evolve and, hence, guarantee that it will be forever free of
“bad” interactions. What is even worse is that our own perception of what is “good”
and “bad” will evolve according to the changes that occur in the application domain
and that prompt the need for the system to evolve as well … Hence, again, we need
ways of controlling the evolution of systems that make it easier to reconfigure them
dynamically so that interactions can be revised on the spot to correct “harmful” inter-
ference between the features in place.

Central to the problem is the way features are composed. This is our
main standpoint and the justification for the use of coordination technologies in fea-
ture-oriented approaches. More precisely, there are two important aspects that need to
be addressed with respect to composition. On the one hand, we need to provide ways
for detecting emergent properties from the way individual properties of features and the
way they are composed. On the other hand, we need to provide the means for the
ways features are interconnected to be given explicit representations in system models
so that they can be designed, deployed and evolved without having to intrude in the
way the features to which they apply have been deployed. That is to say, our proposal
is for the composition mechanisms that apply to features in a system to be external-
ised and addressed directly as first-class citizens so that they can be used to control
interactions within the system without having to change the features.

IPD
50

2 Externalising feature composition through contracts

Our approach to feature modelling and composition is based on the belief that forms
of feature composition should be seen as connectors that one may superpose, in a non-
intrusive way, on the features of systems. The term "superposition" refers to a
mechanism, also called "superimposition" by some authors, that has been developed
and applied in Parallel Program Design for extending systems while preserving their
properties [6,8,14,17]. Our belief is that this basic mechanism is lacking in feature-
oriented development approaches and fills the gap that we have identified for support-
ing the externalisation of interactions and controlling their evolution.

Coordination contracts are the semantic primitives that are at the core of our pro-
posal. A coordination contract fulfils a role similar to that of a connector in the ter-
minology of software architectures [1]. It consists of a prescription of coordination
effects (the glue of the connector) that will be superposed on a collection of partners
(system features) when the occurrence of one of the contract triggers is detected in the
system. In the description of the contract, the partners are not identified as specific
features of a specific system but in terms of a number of coordination interfaces (the
roles of the connector) that act as types that can be instantiated with features of the
system when the contract is activated on a particular configuration. This makes con-
tracts generic feature composition operators that can be independently deployed and
reused in different contexts.

The trigger/reaction mode of coordination that we have in mind requires that each
coordination interface identifies which events produced during system execution are
required to be detected as triggers for the contract to react, and which services must be
made available for the reaction to superpose the required effects. The nature of triggers
and services can vary depending on the nature of the language, or class of languages,
in which the features to which the contract will be applied are, or are likely to be,
implemented. In an object-oriented environment, typical events that constitute trig-
gers are calls for operations/methods of instance objects, and typical services are the
operations that are made public by the object class. In such cases, coordination inter-
faces can be identified with abstractions already made available in object-oriented pro-
gramming through mechanisms such as class interfaces in Java, pure virtual classes in
C++, and abstract classes in Eiffel. Another class of events that we have found useful
as triggers is the observation of changes taking place in the system. For such changes
to be detected, components that implement features must make available methods
through which the required observations can be made (something that the mechanism
of role instantiation must check), and a detection mechanism must be made available
in the implementation platform to enable such changes to be effectively monitored
(something that is not universally provided).

When a coordination interface is instantiated with a specific feature as part of the
activation of the contract over a given configuration of the system, the interface must
be formally related with what the component that implements the feature makes avail-
able through its own interface. Again, this process of instantiation will depend on the
nature of the deployment of the component itself. For instance, programming lan-
guages such as Java already provide mechanisms for interfaces to be implemented
through object classes. Ideally, the component definition language should support the
distinction between event (to be used for triggers) and services (to be used for reac-
tions), but this is not necessary. We decided to separate concerns in coordination

IPD
51

interfaces as much as possible as a means of setting the direction in which we think
Interface Definition Languages could evolve, but this separation does not need to be
enforced for our techniques to be applicable. Hence, for instance, typical notions of
interface in which components declare which methods are public can be used: events
can be detected as calls to the public methods of the component and services can be
effected through the invocation of these methods by the contract.

This separation between the coordination interface and the components that imple-
ment the features themselves is an essential mechanism for being able to interconnect
heterogeneous features and, hence, not to compromise the ability of the system to
evolve by upgrading the way its features are deployed or integrating third-party features
in a controllable way.

. A coordination contract is defined as follows:
contract <name>
partners <coordination interfaces that instances need to exhibit>
constraints <an invariant that the partners need to satisfy>
attributes
operations
coordination
end class

Coordination is prescribed under through a number of rules of the form:
<name> when <trigger>

with <condition>

do <set of services>

The name of the rule identifies a particular form of coordination; it identifies a point
of “rendez-vous” in which the partner instances have to synchronize their behaviour.
The names themselves are used for managing the interference between different con-
tracts that may be active in the same state as discussed further below.

For each rule, the condition under “when” identifies the trigger that prompts the
contract to become active and coordinate the behaviour of the partner features. Sev-
eral trigger conditions can be placed in the “when” clause using the keyword “AND”.
If one of such conditions is not satisfied, the contract is considered as being “inactive”
and, as a result, the participants progress independently of the reaction specified in the
rule. This mechanism provides the ability for controlling which of the contracts
imposed on a feature will be responsible for coordinating it, thus allowing for dy-
namic configuration of the behaviour of the feature.

The “do” part of each rule identifies a synchronization set of services of the partners
and some of the contracts own actions. This set is required to be executed atomically
in the sense that if the execution of any of its actions fails, the execution of the rule
itself fails. In [16], we have used a special notation for reactions to be performed on
triggers that consist of calls on services, e.g. as in the case of “big-credits”. In such
cases, we allow for the synchronisation set to be structured in terms of operations that
should be performed before the operation called in the trigger and those that should be
performed after. Another useful feature considered in [16] is to provide a replace clause
through which a new implementation can be given for the operation that is being
called in the trigger, for instance in order to optimise performance or, simply, as a
means of upgrading legacy code. See also [7] for suggestions along these lines. In
order to preserve semantics, any such replacement is required to satisfy whatever speci-
fication has been given for the original operation, namely any contracts in the sense of
[21] through pre and post conditions.

IPD
52

Each synchronisation set is guarded by the conjunction of the guards of the individ-
ual services together with the conditions included in the "with" clause. Therefore, the
“with” clause puts further constraints on the execution of the actions involved in the
interaction. If any condition under the “with” clause is not satisfied, an exception is
thrown as a result and none of the actions in the synchronisation set is executed. A
more detailed description of coordination contracts and the technology that puts them
in practice can be found in [2,4,16]. Due to lack of space, it is impossible to give an
example with any meaningful content. Hence, we prefer to refer the readers to [24]
where several example from financial services can be found, to [18] for telecommuni-
cation services, and [19] for stock trading services.

Finally, it is important to mention that in [16] we have shown that, even if none
of the standards for component-based software development that have emerged in the
last few years (e.g. CORBA, EJB and COM) can provide a convenient and abstract
way of supporting the proposed coordination principles as first-class mechanisms, an
implementation can be given that is based on a design pattern that exploits some
widely available properties of object-oriented programming languages such as poly-
morphism and subtyping. This pattern supports the forms of compositional, “black
box” view of evolution that we motivated in section 1 and that allows us to perform
changes on contracts without being intrusive on the components that implement the
features under coordination.

3 Semantics and analysis

Besides the need for modelling primitives that allow us to externalise form s of fea-
ture composition as first-class citizens, following the principle of “exoskeletal soft-
ware” [20], we mentioned in section 1 that we need means for detecting emergent
properties. This is needed not only to be able to detect “bad” interactions but also to
ensure that the “good” ones, i.e. those that enforce the requirements on the global
behaviour of the system, are effectively there. For that purpose, we need a formal
semantics for our coordination technologies.

The formal semantics that we have developed is based on a categorical framework
in which we have formalised notions of coordination [12], namely in the context of
architectural languages [11] and parallel program design [10]. The presentation of this
semantics is out of the scope of this position paper. In [3], we have shown how the
categorical framework relates directly to the evolutionary aspects of coordination con-
tracts, and in [5] we have related it to the design pattern that we provide for contracts.

An analysis of emergence in this categorical framework can also be found in [9].
This analysis relies on the use of logical formalisms for modelling requirements speci-
fications and captures emergence through non-conservative interpretations between
theories. This framework will provide the basis for the definition of the techniques
that we intend to provide for assisting in the detection of “bad” interactions, but this is
a matter of further research. Another important way of assisting in this detection is
through the use of animation techniques. These are being deployed in the environ-
ments that we provide for contract development [16].

Finally, we should mention that the categorical framework also provides the basis
for the language that we are defining for assisting in the (re)configuration of systems.
Preliminary results can be found in [22].

IPD
53

References

 1. R.Allen and D.Garlan, "A Formal Basis for Architectural Connectors", ACM TOSEM,
6(3), 1997, 213-249.

 2. L.F.Andrade and J.L.Fiadeiro, "Interconnecting Objects via Contracts", in UML'99 –
Beyond the Standard, R.France and B.Rumpe (eds), LNCS 1723, Springer Verlag
1999, 566-583.

 3. L.F.Andrade and J.L.Fiadeiro, “Coordination: the Evolutionary Dimension", in Tech-
nology of Object-Oriented Languages and Systems – TOOLS 38, W.Pree (ed), IEEE
Computer Society Press 2001, 136-147.

 4. L.F.Andrade and J.L.Fiadeiro, “Coordination Technologies for Managing Information
System Evolution", in Proc. CAISE’01, A.Geppert (ed), LNCS, Springer-Verlag
2001, in print.

 5. L.F.Andrade, J.L.Fiadeiro, J.Gouveia, A.Lopes and M.Wermelinger, "Patterns for
Coordination", in COORDINATION'00, G.Catalin-Roman and A.Porto (eds), LNCS
1906, Springer-Verlag 2000, 317-322

 6. R.Back and R.Kurki-Suonio, "Distributed Cooperation with Action Systems", ACM
TOPLAS 10(4), 1988, 513-554.

 7. J.Bosch, "Superimposition: A Component Adaptation Technique", Information and
Software Technology 1999.

 8. K.Chandy and J.Misra, Parallel Program Design, Addison-Wesley 1988.
 9. J.L.Fiadeiro, “On the Emergence of Properties in Component-Based Systems", in

Algebraic Methodology and Software Technology (AMAST'96), M.Wirsing and
M.Nivat (eds), LNCS 110143, Springer-Verlag 1996, 421-4

10. J.L.Fiadeiro and T.Maibaum, "Categorical Semantics of Parallel Program Design",
Science of Computer Programming 28, 1997, 111-138.

11. J.L.Fiadeiro and A.Lopes, "Semantics of Architectural Connectors", in TAPSOFT'97,
LNCS 1214, Springer-Verlag 1997, 505-519.

12. J.L.Fiadeiro and A.Lopes, "Algebraic Semantics of Coordination, or what is in a
signature?", in AMAST'98, A.Haeberer (ed), Springer-Verlag 1999.

13. P.Finger, "Componend-Based Frameworks for E-Commerce", Communications of the
ACM 43(10), 2000, 61-66.

14. N.Francez and I.Forman, Interacting Processes, Addison-Wesley 1996.
15. D.Gelernter and N.Carriero, "Coordination Languages and their Significance", Com-

munications ACM 35, 2, pp. 97-107, 1992.
16. J.Gouveia, G.Koutsoukos, L.Andrade and J.Fiadeiro, “Tool Support for Coordination-

Based Software Evolution", in Technology of Object-Oriented Languages and Sys-
tems – TOOLS 38, W.Pree (ed), IEEE Computer Society Press 2001, 184-196.

17. S.Katz, "A Superimposition Control Construct for Distributed Systems", ACM TO-
PLAS 15(2), 1993, 337-356.

18. G.Koutsoukos, J.Gouveia, L.Andrade and J.L.Fiadeiro, “Managing evolution in Tele-
communications Systems”, submitted, accessible at www.fiadeiro.org/jose/papers.

19. G.Koutsoukos, T.Kotridis, L.Andrade, J.L.Fiadeiro, J.Gouveia and M.Wermelinger,
“Coordination Technologies for Business Strategy Support: a case study in Stock
Trading”, submitted, accessible at www.fiadeiro.org/jose/papers

20. J.Kramer, "Exoskeletal Software", in Proc. 16th ICSE, 1994, 366.
21. B.Meyer, "Applying Design by Contract", IEEE Computer, Oct.1992, 40-51.
22. M.Wermelinger and J.L.Fiadeiro, "Algebraic Software Architecture Reconfiguration",

in Software Engineering–ESEC/FSE'99, LNCS 1687, Springer-Verlag 1999, 393-409
23. P.Zave, “Feature interactions and formal specifications in telecommunications”, IEEE

Computer XXVI(8), 1993, 20-30.

IPD
54

Feature Based Composition of an Embedded Operating
System Family

Danilo Beuche
University of Magdeburg, Magdeburg

danilo@ivs.cs.uni-magdeburg.de∗

Abstract

In this paper we describe our experiences made during the application of feature-model
based configuration to an operating system family for deeply embedded targets. Although
applying feature modeling proved to be very useful, many problems remain. One major
problem, the efficiency of the resulting software system, which is cucrial for deeply embed-
ded software, is discussed.

1 Introduction

Embedded systems are one of the most demanding application domains for software producers.
The bandwidth of applications is very wide. One thing is common for almost all applications:
the available platform is relatively short on resources. Due to , e.g., cost, energy consumption
and heat dissipation issues, the software has to use the resources in an efficient way. Until today,
most software for embedded systems is created using assembly language or C. Modern software
engineering approaches failed to convince the mass of embedded software designers that there
are better ways of developing software for such systems. But due to shorter product development
cycles and the increasing competition, ways to produce (better) reusable software are in great
demand.

Component based software development promises easier software reuse. But existing com-
ponent models like CORBA or DCOM require too much resources and cannot be used for small
embedded targets. Component approaches suitable for embedded systems must provide the abil-
ity to adapt perfectly to the surrounding environment, which means to provide only the required
services and use only the smallest possible amount of resources for that.

The PURE operating system family [2] tries to close this gap. PURE is a realization of the
program family concept [6] with an object-oriented approach. The ancestor of PURE, the PEACE

operating system family [7] for massively parallel computers, dates back to the late 80s. PURE

∗This work has been partly supported by the Deutsche Forschungsgemeinschaft (DFG), grant no. SCHR 603/1-1
and the Bundesministerium für Wirtschaft (BMWi), grant no. 01 MS 801/7

IPD
55

is targeted for deeply embedded systems which may only provide small amounts of code and
data storage and have usually limited computation power compared to desktop computers. Many
deeply embedded applications run on 8 or 16 bit processors. Careful resource usage is therefor
one of the biggest problems in this domain. PURE is implemented in C++ and uses many but
not all of its features. E.g. exceptions are too expensive (especially in memory usage) in most
cases, so they are not used in PURE. Other features like virtual methods are only used when
appropriate.

The next section provides a short introduction to the development of the feature model for
the operating system family PURE. The section3 of this paper is dedicated to discuss one of the
problems that were encountered when using feature models for the configuration of component
based systems, which affects the efficiency of the resulting software system. A possible solution
is also presented. Section4 concludes the paper.

2 The PURE way of Feature Modeling

Initially PURE consisted of about 100 classes, which were configured using boolean C++ prepro-
cessor flags (around 30 at this time). This was not only inconvenient but also very error-prone
as not all possible flag settings lead to usable systems. To overcome this situation a good way to
express dependencies between flags was sought after. Feature modeling as described in [3] and
[5] seemed very promising. The idea of feature domain analysis, to represent the commonalities
and differences between the applications in a whole domain instead of concentrating on a single
application, is naturally implemented by a program family (or product line [1]).

A feature model for deeply embedded operating system configuration was developed, cur-
rently consisting of about 230 features. While the model was developed independently of the
structure of the implementation, we recognized that the dependency hierarchy of features as
expressed in the model often resembled the class hierarchy used to implement these features.

Component("UART16450") {
Description("Supports UART controller 16450, 16550A, 16750.")
Parts {

class("UART16x50") {
Sources {

file("src/sys/device/serial", "UART16x50.cc",impl)
file("include/device/serial", "UART16x50.h",def)

}
}
classalias("UARTPortal") {

Sources {
classaliasfile("include/device/serial","UARTPortal.h","UARTPortal")

}
Value("IOPortal",Prolog("has_feature(’x86’,_NT)"))
Value("MemoryPortal",Prolog("true,!"))

}
}
Restrictions {

Prolog("has_feature(’RS232-Serial’,_NT),has_feature(’x86’,_NT),!")
}

}

Figure 1: Sample component description

The second step was to develop a way to map the feature selections out of the feature model
to a member of the operating system family. Each functional extension was modeled as a compo-

IPD
56

�������

�	��
��������
��������	�	
������
�������

������� �"!$#%$�&�'�)(
(��*#�+-,-,.!/�10203�

465�7-8/9 �:�'; 5�<�7
=>+-?A@B+�#

�	C	�	D�E��	�	F�����C	�	
�
G	HIC	G	�HJ������K G	HIC	G��HL�����K G�H�C�G	�HJ�M���K

E��
����	HI�
NOC	P	�� EMHI
NO��QRC	HIS

�	������K

T	T	HI�T	
-�M�K

U&V-W 9YX =[Z W 7 ; 58 Z 5\-8/X = \�4

����NO��]�MK

C	^�_`�F��aNOC	P	�����K����^	HI
HJb

HI�	�]�M��NO�
����^	HI
HJb

G	G�����F
�����C	�
G	HIC	T�H�
NOcLKd

^	����
HLbeG	HIC	T�H�
NOcLKd

9 Z-f 5 Z 4 = X =[Z W

f�Z-g�= U = 9Y7-X =[Z W

hAikj-l$mYn i

Figure 2: Process diagram for generation of PURE family members

nent. The implementation of a component is not fixed, but generated depending on the selected
set of features. There is a set of operations which can be used to realize an implementation.
These operations include selection of component parts, implementation files for parts, setting of
variables, preprocessor flags or type definitions to calculated values. Each component decides
whether it is suitable for a given feature selection or not. A sample component description is
shown in figure1. The configuration rules are expressed and evaluated using Prolog.

The configuration and generation process for a family member is shown in figure2. First
the required set of features has to be selected. Currently this is done manually, but it is also
possible to derive certain feature information from an analysis of the target application(s). The
resulting family member is then subject to an optimization process which tries to generate the
most efficient implementation for a given application or set of applications.

Using the feature model it is now possible to generate family members quite easily and to
handle the configuration complexity of such a software system in a better way.

3 Deriving efficient component implementations from feature
sets

Although feature models are able to represent the requirements of an application domain, there
are problems when it comes to generate efficient applications out of a feature selection from a
feature model alone.

3.1 Thers232-serial domain

To illustrate the problem, the small application domainrs232-serial is used. The implementation
consists of a single componentrs232driver only. The component realizes device driver
support for 3 different serial controller chips (UART, SCI, SCC). The implementation consists

IPD
57

interruptOps changePar SCC SCI UART

RS232-Serial

Figure 3: Feature model for domainrs232-serial

of 3 sets of classes realizing the 3 different chip drivers and an optional abstract class which
allows to provide a common interface for all drivers. For efficiency reasons the abstract interface
class (which introduces virtual methods) should be used only when necessary. Each chip driver
has different implementations where the first one is only able to support fixed communication
parameter which have to be set at component implementation generation time. The second is
able to change the communication parameters at runtime. The third and fourth version extend
the first and second implementation by the ability to support interrupt based driver operations.
Each implementation has different memory footprint and also processing time requirements. In
total, there are at least 68 =43 + 4 component implementations (3 drivers with each having 4
different implementations and 4 different sets for the common base (UART+SCI, UART+SCC,
SCC+SCI, UART+SCC+SCI)) of drivers with a common interface.

The feature model (shown in figure3) is quite simple and allows to specify the required
drivers (at least one has to be selected) and if changeable parameters (changePar) and/or in-
terrupt based operation (interruptOps) are required. It is possible to generate the optimal com-
ponent implementation purely out of the given feature model only for a subset of the potential
usage scenarios. The shown feature model allows only 28 different feature selections. If only
one or all of the three chips are required to support the same feature selection out ofchangePar
andinterruptOps an optimal implementation can be generated. For most other cases this is not
possible.

If two componentsA andB use the serial driver component, where componentA uses the
UART driver in interrupt mode and componentB uses the SCC driver with changeable parame-
ters, it is not possible to derive an optimal implementation from a feature selection alone. The
model allows only to specify that the component has to provide changeable parameters, interrupt
operations and must support the UART and SCC chips. Although it is possible to derive an im-
plementation which supports all required functionality as shown on the left side of figure4, this
configuration is not as runtime and space efficient as possible. The optimal implementation is
shown on the right side of figure4.

3.2 How to get the most efficient implementation

A first idea is to extend the feature model so that it becomes possible to make an unambiguous
mapping of feature sets to available implementations. But this would lead to a huge number of
features in the model, and, more important, the model has to change if implementation changes.
This would contradict the idea of representing the application domain with the feature model.

IPD
58

SCCchangePar UARTchangePar

UARTinterruptOps SCCinterruptOps

UARTBase SCCBase

UARTchangePar

SCCinterruptOps

UARTBase SCCBase

<<abstract>> Rs232Base

Figure 4: Possible implementations for feature selectionchangePar,interruptOps,UART,SCC

A better solution is to use separate feature sets for each component which uses the component
rs232driver and provide a mapping of a set of feature sets to the implementation. The
mapping function then becomes a part of the component. This allows the generation of the
component implementation independent from the rest of the system.

In the example componentA would specify the setUART, interruptOps and componentB
SCC, changePar. The mapping function should generate for these sets the right hand compo-
nent implementation as shown in figure4.

Another solution produces similar results but uses only a single feature set. The idea is to
postpone the specialization of the components implementation until system construction time
and to use the general purpose implementation initially. A control flow analysis of the complete
system shows which component acutally uses what parts of another components interface.

In the example the analysis would reveal that componentA creates an object to access the
UART driver and enables the interrupt operations, but never changes the communication param-
eters. For componentB similar informations can be gathered from the analysis. This allows to
generate an implementation which better suits the usage pattern. This approach requires knowl-
edge about the whole system and the ablility to change the components implementation, while
preserving the functionality a using component expects.

While the second approach may fail to generate a working component, the third approach
always succeeds. The second approach allows to define more than one feature set, which may or
may not be compatible. As the third solution only allows one feature set per component, this can
not happen.

For hard real-time deeply embedded application domains the third approach is applicable
relatively easy. The systems sources are usually available anyway to allow runtime analysis and
for validation and verification purposes.

Using the PUMA C++ analyser and manipulator the restructuring tool BOB [4] based on
structure patterns has been built. The first tests show that such an automatic approach is able to
generate very efficient implementations out of general component implementations.

In general a combination of the second and third approach is the way to proceed. This allows
generation of component implementations without knowledge about the whole system. But for
parts of the system for which enough information is available the restructuring can yield even
more efficiency.

IPD
59

4 Conclusions

The problem discussed in the paper is one of the most important issues to be solved to make
component based software feasible for deeply embedded targets.

However there are many more problems to solve regarding feature based software configura-
tion and composition. One of those problems is the issue how to decide whether a combination
of features will lead to a valid system configuration. PURE uses no formal approach for proving
validity but relies on dependency rules which have to forbid all invalid cases.

Other problem concern the reuse of existing components and its feature models in other
application domains where a different feature model for the application domain is used.

References

[1] Don Batory. Product-line architectures, 1998. Invited presentation, Smalltalk und Java in
Industrie and Ausbildung, Erfurt, Germany.

[2] Danilo Beuche, Abdelaziz Guerrouat, Holger Papajewski, Wolfgang Schröder-Preikschat,
Olaf Spinczyk, and Ute Spinczyk. The PURE Family of Object-Oriented Operating Systems
for Deeply Embedded Systems. InProceedings of the 2nd IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC’99), St Malo, France, May
1999.

[3] K. Czarnecki and U. Eisenecker.Generative Programming. Addison-Wesley, Reading, MA,
2000.

[4] Mario Friedrich, Holger Papajewski, Wolfgang Schröder-Preikschat, Olaf Spinczyk, and Ute
Spinczyk. Efficient Object-Oriented Software with Design Patterns. InProceedings of the
First International Symposium on Generative and Component-Based Software Engineering
(GCSE’99), Erfurt, Germany, September 1999.

[5] K. Kang, S. Cohen, J.Hess, W. Peterson, and S. Peterson. Feature-oriented domain anal-
ysis (foda) feasibility study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, November 1990.

[6] D. L. Parnas. Designing Software for Ease of Extension and Contraction.IEEE Transactions
on Software Engineering, SE-5(2):128–138, 1979.

[7] Wolfgang Schr̈oder-Preikschat.The Logical Design of Parallel Operating Systems. Prentice
Hall International, 1994. ISBN 0-13-183369-3.

IPD
60

Feature interaction and composition problems in software
product lines

Silva Robak
Technical University Zielona Góra, Institute of Computer Science and Management

robak@pz.zgora.pl

Bogdan Franczyk
Intershop Software Entwicklungs GmbH, Intershop Research

b.franczyk@intershop.de

Abstract
Features are essential characteristic of applications within a product line. Features organized
in different kinds of diagrams containing hierarchies of feature trees are closely related to
variation points, which appear at different levels and life cycle phases for product lines.
Optional and alternative variants attached to variation points may by additional constrained by
mutual-exclusion or –inclusion and classified by binding modes, times and sites. Variability
leads further to crosscutting variability. Reducing an n:m-relation between feature and
variation point would help organizing scalable and traceable software models according to
SoC with less intertwined feature trees.

Keywords : feature composition, feature interaction, crosscutting features, product lines

Workshop Goals: identify and categorize characterizing properties of various instances of
feature interaction problems
Working Groups : feature-based methods for product lines, integrating UML with feature-
based methods, handling variability at different levels

Background

Building the sets of related systems helps to achieve the remarkable gains in productivity and
to improve time-to-market and product quality [Clements 99]. A development of a group of
systems made from common generic software assets is to obtain by building a software
product lines upon software product families [Czarnecki 00]. Features are essential
characteristic of applications within a product line. Domain Analysis methods [Arrango 94]
like feature analysis are on a high level of abstraction and provide a concise and explicit
representation of commonality and variability [Coplien 99] contained in product family.

Features may be organized in different kinds of feature diagrams (essential for reuser),
containing hierarchies of feature trees (graphs) with mandatory, optional and alternative
features [Kang 90]. A root of the tree represents a concept being described and the remaining
nodes denote features. Mandatory features have to be always included in every system
instance, an optional feature may be included or not, and an alternative feature replaces
another feature when included. Mandatory features which parent-features are neither optional
nor connected to alternatives represent the common features that each family member
possesses. The rest of the features are known as variant features, which represent the
permissible differences (deltas) between family members. A part of the implementation
process of a member is a selection of these variants. The means like configuration tables

IPD
61

containing the variable features of the member additionally describe the choices, which can be
made.

Optional and alternative features are closely related to variation points [Jacobson 97] and may
appear at different levels and phases in software development process Domain Engineering
(DE) or Application Engineering (AE) for product lines. The later the variability points (seen
as “delayed decisions”) would be introduced to a system, the more different systems could be
build [Gurp2000].

Variants attached to variation points lead to a set of combinations, but only a subset of it may
be correct and leads to complete configurations. The problems associated with feature
specification and interaction (i.e. when one feature modifies or influences another features)
have been discussed since early nineties [Zave 93]. Variability may be resolved with different
techniques, especially efficient with those according to Separation of Concerns (SoC)
principle.

Position

Our position is that:

1. There is no concise feature definition, because features of various granularities are
requirements (functional and non-functional) and properties of product lines as software
intensive systems. The features may be described in different models and views and
depend on stakeholders attached to the view (e.g. customer, system analysts and designer,
user, end user). The products in a product line are sharing a common, managed set of
features that satisfy specific needs of selected market or mission, while product families
share features of more technical nature.

2. Essential features may be organized in different kinds of diagrams containing hierarchies
of feature trees. Commonly used kinds of feature trees [Kang 90, Kang 98, Griss 98,
Czarnecki 00, Gurp 00] are alone not able to express various possible feature’s roles
dependencies and relationships. Complementary notations for enhancing semantic of the
domain models (like described in [Hein 00]) are needed.

3. Decisions about what will be common and what the variable parts in a software product
line have more strategic then technical nature and can therefore change over time.
Commonality expressed as mandatory features constraint the size of the software family.
Variability as optional or alternative features enlarges the family size, but as generic (i.e.
parameterized) places also increase systems complexity. Good design (e.g. according to
SoC) helps to avoid crosscutting variability when product line evolves.

4. Optional and alternative feature are closely related to variation points, which may appear
at different levels and life cycle phases for product lines. The variability has to be resolved
within a particular part of the DE or AE and by decision-makers responsible for it.

5. In feature diagrams optional and alternative variants attached to variation points may by
additional constrained by or mutual exclusion (strong form of conflicting [Bosch 00]) or
mutual inclusion. Dependencies and composition rule for features may be partly
described within feature trees with UML-like relationships (i.e. composed_of,

IPD
62

generalization/ specialization, implemented_by) [Kang98], [Bosch 00], and other means
like tables and matrixes, textual descriptions as constraints.

6. Features may by further classified by binding modes, times and sites. Binding time may
be classified as construction- time, installation- and use-time. Construction- time (also
referred to as a build time) includes the source time (pre-compile time), compile, link and
load time. For generative techniques a generation time may be seen as an additional kind
of binding time within a build time.

7. Variability at certain design stage leads further to crosscutting variability in later stages.
Reducing an n:m-relation between feature and variation point would help organizing
scalable and traceable software models according to SoC with less intertwined feature
trees. The usage of the generative techniques like Aspect-Oriented Programming AOP
[Kiczales 97], Subject-Oriented Programming SOP [SOP] or frame engineering [Basset
97] may play the special role there.

8. Object-oriented technology notations like UML diagrams should be used together with
feature models for modeling variants during analysis.

Approach

We can treat features as abstractions of the requirements, too. A particular requirement may
apply to several features and a particular feature can be required to fulfill more than one
requirement (a n:n-relation) [Gurp2000]. There is usually a 1:n-relation between a feature and
its implementation. A feature implementation may be usually spread through many assets
(“crosscutting features”), except using special techniques like AOP or SOP “separating
concerns”.
Domain analysis methods are used to identify and grouping sets of features. The FORM
approach [Kang 98] is an extension to FODA [Kang 90] and provides methodology for
developing domain architectures and components for reuse upon feature models. Like
FeatuRSEB [Griss 98] extended the UML-based RSEB method [Jacobson 97] with the feature
model, the integration of feature oriented methods with the object-oriented technology seems
to be the next step towards supporting product line development.

The shortcoming of the feature trees is the restriction of variability in feature specification to
some binding times and a decomposition type. There can be also other attributes needed to
choose a variant like availability sites (i.e. when, where and to whom a feature can be
available), variability mechanisms, and binding modes (e.g. static, dynamic), binding
occurrence, descriptions, etc.

There are many different approaches for solving variability at the code level. The chosen
technique should possible support the SoC-principle and provide the maintainability
(traceability) and the scalability of applications. Features should be forwards and backward
traceable with different tools helping untangling feature maps from features to products [Griss
00].

Handling variability at the code level

There are several approaches to handling product-line variability at a various levels of
abstraction, according to different binding times and associated with them a generic assets

IPD
63

representation. The common object-oriented techniques are abstractions, the different kinds of
inheritance, the overloading, and the aggregation with the delegation and also the
parameterization. Some of the techniques were derived from a particular programming
language and are not available everywhere (i.e. overloading and multiple inheritance is not
available in Smalltalk or in Java). Another new techniques like AOP or Dynamic Class
Libraries are not obtainable for older programming language (i.e. for C++). The object-
oriented techniques like aggregation with delegation are used in design patterns. Application
frameworks using design patterns may be employed in product line context since they provide
solutions for managing the variations. Mechanisms like static libraries, conditional
compilation and generative techniques like frame technology [Basset 97] are possible to use
for all programming languages.
The crosscutting variability that affects many components may be difficult to handle.

References
[Arrango 94] Arrango G., Domain Analysis Methods. In Software Reusability, Schäfer,
Prieto-Díaz R., and Matsumoto M. (Eds.), Ellis Horwood, New York, New York, 1994, pp.
17-49.

[Basset 97] Basset P., Framing Software Reuse - Lessons from Real World, Yourdon Press,
Prentice Hall, 1997.

[Bosch 00] Bosch J., Design and Use of Software Architectures. Adopting and evolving
product-line approach. Addison-Wesley, 2000.

[Clements 99] Clements P., Northrop L.M., A Framework for Software Product Line Practice
- Version 2.0 [online]. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, July 1999. <URL: http://www.sei.cmu.edu/plp/framework.html>

[Coplien 99] Coplien J., Multi-Paradigm Design for C++, Addison-Wesley, 1999.

[Czarnecki 00] Czarnecki K., Eisenecker U., Generative Programming Methods, Tools and
Applications, Addison-Wesley, 2000.

[Griss 98] Griss M. L., Favaro J., D’Alessandro M., Integrating Feature Modelling with the
RSEB. Proceedings of ICSR98, Victoria, BC, IEEE, June 1998, pp. 36-44.

[Griss 00] Griss M. L., Implementing Product-Line Features with Component Reuse. 6th
International Conference, proceedings/ICSR-6, Vienna, Austria, June 27-29, 2000; In Wiliam
B. Frakes (ed.) "Software Reuse: Advances in Software Reusability". Springer, pp. 137-152.

[Gurp 00] Gurp J., Bosch J., Svahnberg M., Managing Variability in Software Product Lines.
Landelijk Architectuur Congres 2000.

[Hein 00] Hein A., Schlick M., Vinga-Martins R., Applying Feature Models in Industrial
Settings. Preceedings of the The First Software Product Line Conference (SPLC1). Denver,
Colorado, USA, pp.47-70, 2000.

[Jacobson 97] Jacobson I., Griss M. L. and Jonsson P., Software Reuse Architecture, Process
and Organization for Business Success, Addison-Wesley, 1997.

IPD
64

[Kang 90] Kang K., Cohen S., Hess J., Nowak W., and Peterson S., Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report No. CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 1990.

[Kang 98] Kim S.J., Lee J., Kim K.J., Shin S.H., and Huh M.H., FORM: A Feature-Oriented
reuse Method with Domain specific reference architectures. Annals of Software Engineering,
Vol. 5, pp.143-168, 1998.

[Kiczales 97] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier,
J. M., Irvin, J., Aspect-Oriented Programming, Proceedings ECOOP97 – 11th European
Conference of Object-Oriented Programming, Jyväskylä, Finland, June 1997, Mehmet Aksit
and Satoshi Matsuoka (Eds), LNCS 1241, Springer-Verlag, 1997.

[SOP] Homepage of the Subject-oriented Research Project, IBM, Thomas J. Watson Research
Center, Yorktown Heights, NY, <URL: http://www.research.ibm.com/sop>

[Zave 93] Zave P., Feature interactions and formal specifications in telecommunications,
IEEE Computer XXVI (8): pp.20-30, August, 1993.

IPD
65

IPD
66

ECOOP 2001
Workshop Feature Interaction in Composed Systems
June 18, 2001 – Budapest, Hungary

Configuring Software Product Line Features

Andreas Hein1, John MacGregor2, and Steffen Thiel3

Abstract. The central goal of the Product Line
Approach [Cle99] is the systematic reuse of core assets for
building related products. At our corporate R&D department for
software technology we are concerned with developing, adapting
and validating processes, methods, and tools that support the
Product Line Approach for Bosch business units. In this paper
we present our experience and thoughts on configuring product
line features for embedded automotive systems.

1 INTRODUCTION
The essential goal of the Product Line Approach [Cle99] is the
systematic reuse of core assets for building related products.
Therefore, the Product Line Approach integrates two basic
processes: the abstraction of the commonalities and variabilities
of the products considered (development for reuse), and the
derivation of product variants from these abstractions
(development with reuse). Both processes should be supported
by tools because of their complexity in industrial settings [CE00]
[LKK+00] [SH00] [TLS+98]. Until now, the product line
community has mainly focused on the first process (see, e. g., the
FODA approach [KCH+90]). The second process has certainly
been addressed by more recent product line engineering methods
(e. g. by FORM [KKLK98], an extension of FODA), but is not,
as yet, complete to the last detail. In the context of embedded
automotive systems, hundreds or even thousands of variants may
be produced per year. So many variants make every effort in
automating the product derivation process worthwhile, especially
when software development capacity is scarce. In particular,
support for configuring consistent and practical feature
combinations is inevitable for avoiding product specifications
that should not or cannot be realized. Actually, the configuration
of variants has been a major AI (Artificial Intelligence) topic
[GK99]. To support configuration, AI proposes to formalize the
domain knowledge so that the derivation of individual products
can be partly automated. We think that integrating AI solutions
into the product line development with reuse process is a
promising approach.
For a better understanding of what is required from the
development with reuse, we will first have a short look at the
development for reuse. The following is based on a case study in
the Car Periphery Supervision (CPS) domain [PRAISE]
[TFF+01].

2 DEVELOPMENT FOR REUSE
Development for reuse is concerned with engineering reusable
core artifacts. FODA feature models support this process as they
explicitly represent those portions of a domain that are common
to all or most products and are thus predestined for reuse.
Furthermore, the variation points that should be encapsulated to
get a stable product line design are also represented explicitly.

2.1 Getting an overview of domain capabilities
A domain feature model gives an overview of the capabilities of
product line members, which variants exist and how they depend
on each other. Therefore, feature modeling organizes capabilities
into a conceptual hierarchy with taxonomies and partonomies.
Based on the is-a and is-part-of relationships, common and
variable portions of product line members can be explicitly
represented. In addition, feature modeling introduces
composition rules to constrain the range of valid feature
combinations. Composition rules allow the specification of how
variable features from different branches of the conceptual
hierarchy may be combined to build consistent and practical
product specifications.

2.2 Structuring domains for reuse
Commonality and variability modeling is a prerequisite for
identifying reusable components. Starting from the feature
overview, the product line architecture can be designed to
maximize reusability and configurability. The feature structure is
then reflected in the corresponding conceptual architecture. It is
unlikely that reusability and configurability are the only qualities
in an architecture, however. In the CPS context, performance
and reliability also play an important role. The final architecture
must consider all functional and non-functional requirements,
including qualities and design constraints.

3 DEVELOPMENT WITH REUSE
A feature model is not only valuable for getting an overview of
domain capabilities and structuring a domain for reuse. It may
also serve as a starting point for building products by assembling
their features. It thus plays an important role in the development
with reuse process.
It practically goes without saying that it is counter-productive to
allow the derivation of products from meaningless or even faulty
feature combinations. In order to avoid such combinations, the
knowledge about what “meaningless” and “faulty” means must
be made explicit. This inevitably leads to more extensive and
more complex models. Nevertheless, the question is how
consistent and practical feature configurations can be achieved

1 Robert Bosch GmbH, Corporate Research and Development –
FV/SLD, P.O. Box 94 03 50, D-60461 Frankfurt am Main –
email: andreas.hein1@de.bosch.com

2 Robert Bosch GmbH, Corporate Research and Development –
FV/SLD, P.O. Box 94 03 50, D-60461 Frankfurt am Main –
email: john.macgregor@de.bosch.com

3 Robert Bosch GmbH, Corporate Research and Development –
FV/SLD, P.O. Box 94 03 50, D-60461 Frankfurt am Main –
email: steffen.thiel@de.bosch.com

IPD
67

systematically. Therefore additional knowledge is needed about
how the existing options can be effectively combined to satisfy
specific requirements. This knowledge must also be so
formalized and integrated into the domain model as to make tool
support for product lines feasible on an industrial scale.
AI knowledge representation formalisms and concepts such as
configuration tasks, strategies, and reasoning seem promising in
this respect. Our goal is to enhance feature models with these AI
techniques to enable product derivation from product line assets.
Therefore, the processes outlined in the following sections must
be taken into account.

3.1 Capturing User Requirements
in Terms of Features

Feature modeling will most likely be used on different
abstraction levels of a product line: while customers or end users
want to get an overview in order to decide on specific product
options, a systems engineer must have a much more detailed
model to be able to compose and parameterize components so
that they finally realize the user requirements.
In view of that, customers cannot be directly confronted with the
system engineering feature model for several reasons. On the
one hand, customers would be overloaded with information
irrelevant to their context. On the other hand, customers would
probably not find features that directly map to their requirements
and notions. And finally, the system engineering knowledge will
presumably include company secrets so that it should not be
accessible for customers anyway.
Therefore, a detailed domain feature model must be abstracted
and those parts that are relevant for customers must possibly be
reformulated; in terms of the intended functionality, for example.
In principle, individual high-level feature models must be
developed for and tailored to every target group whether
development engineers reusing components or sales engineers
supporting customers. These tailored feature models would then
be used to capture the customer requirements in terms of
features, and can be compared to configuration tasks as proposed
by [Gün95].
Of course, the customer feature models must be linked to the
more detailed system engineering model, that is the different
abstraction levels must be mapped. A customer choice then
automatically selects the corresponding features in the
engineering model and restricts the solution space accordingly.

3.2 Guiding the User
through the Configuration Process

As has been indicated above, variable features are selected in an
interactive process with the customer or end user. The order in
which the decisions are made should be controlled by strategies
that take a customer’s special interests and skills into account as
well as the effectiveness of the configuration process. On the one
hand, a sophisticated customer would most likely have concrete
views about the type of sensor technology needed for a specific
CPS product, whereas an uninitiated end user would probably
prefer to make his choices based on the “user-visible” system
capabilities. On the other hand, particular sequences of
configuration steps lead directly to the configuration goal; for
example, by dealing with the fundamental decisions first many
detail decisions become irrelevant. Following a specific strategy
ensures that a customer will only be presented with choices that
are relevant and opportune to the particular configuration stage.

Note that strategies are domain knowledge and thus should be
included in the domain model. The feature model abstractions
and strategies can be combined to make tailored profiles that
guide customers or end users individually through the
configuration process.

3.3 Reasoning Based on
Conceptual Hierarchy and Constraints

Apart from using feature model abstractions and strategies,
development with reuse also requires that a feature model be
formalized so that automated structure-based reasoning can be
employed. Nevertheless, existing constraints must also be
evaluated in general to keep the configuration consistent. That is,
if a customer requires feature A that depends on feature B,
feature B should automatically be identified as an obligatory
choice. Similarly, if one feature excludes another feature,
inconsistencies between the selections of these features should
be detected automatically.
The assumption about the completeness of the feature model
strongly influences the reasoning that can be done [HMSV00].
Assuming that all product variants have been foreseen makes
enhancements of the model superfluous. In other words, the
feature model is assumed to be substantially static. This case is
also referred to as routine configuration. An inconsistency in
solving a routine configuration problem can always be resolved
by taking back one or more decisions made (backtracking) and
searching in another direction. Restricting solutions to routine
configuration enables strong reasoning support due to the tight
limitations of the corresponding search space. Nevertheless, one
can imagine that in most contexts there will be requirements that
cannot be realized with routine configuration. These cases
demand innovative configuration.
Innovative configuration is needed for deriving new products
which were not considered while building the product line. An
innovative problem involves creating new combinations of
features which are beyond the scope of the existing model.
Backtracking is not inevitable when there is a consistency
conflict in an innovative problem, as the feature model can be
extended with new features that resolve the problem. The
introduction of new features into the domain may cause existing
restrictions to be removed.
The type of configuration problem not only affects the reasoning
mechanisms, but also is an indicator for the complexity of the
software engineering task. This way it is possible to better
estimate the effort needed to build a product already in the
requirements definition stage.

4 RELATED WORK
Our work is concerned with configurable industrial product lines
and is based on FODA [KCH+90] which provides a fundamental
means to plan for reuse. FORM [KKLK98] extends FODA in
that it integrates the development with reuse, but lacks an
adequate representation and formalization to allow for large-
scale production of variants. Therefore, configuration tools that
implement AI concepts [Gün95] [GK99] seem to be more
promising. Our goal is to combine the Product Line Approach
methodology and AI configuration to fit our needs.
Nevertheless, there are other approaches to this issue. The
Helsinki University of Technology has developed its own
concept for modeling configurable (hardware) product families
[TLS+98]. Generative Programming [CE99] [CE00] covers
methods and tools for designing and implementing system

IPD
68

families as well as for automating component assembly. The
assembly is especially supported by Domain-Specific Languages
(DSLs) that allow to define system family members in a
specialized, problem-oriented language. Aspect-Oriented
Programming (AOP) [AOP] contributes to composing features
that crosscut functional components, such as error handling or
resource management.

5 CONCLUSIONS
The goal of the Product Line Approach is not only the planned
development of reusable components for related products. In the
end, the main interest is to build new systems from their
requirements by systematically assembling the reusable
components. A central issue is the question of how to formalize
the product derivation process so that meaningless or faulty
combinations of product line features are avoided. The Bosch
approach therefore combines the product line and configuration
methodologies to enable adequate tool support for the
development with reuse based on formal domain models.

6 OUTLOOK
This paper has focused on configuring consistent systems from
analysis level product line assets. In order to derive implemented
products, their requirements must finally be traced to code. This
cannot be done in a single step, as there will not be a direct
mapping from the problem specification to the implementation
structure. Rather, the feature configuration is propagated through
a number of conceptual layers that transform the requirements
step by step to their final realization.
The product derivation process involves some important issues:

�� The feature model representations and product line
architectures should be coordinated so that features can
be mapped to conceptual architectural components.

�� Architectural mechanisms are required to ensure flexible
component compositions.

�� The decisions made during configuration on the analysis
level are not isolated. Therefore, other models (for
example, the product line architecture) must be included
in the reasoning chain and formalized accordingly.

We are currently investigating the propagation of feature
configurations to compose product implementations from
abstract product line descriptions.

REFERENCES
[AOP] Homepage of the Aspect-Oriented Programming Project,

Xerox Palo Alto Research Center (Xerox PARC), Palo Alto, CA,
www.parc.xerox.commonality/aop/

[Cle99] Clements, P.: Software Product Line – A New Paradigm for
the New Century; Cross Talk, pp. 20-23, February 1999.

[CE99] Czarnecki, K., and Eisenecker, Ulrich W.: Synthesizing
objects. In: Proceedings of the 13th European Conference on
Object-Oriented Programming (ECOOP’99), Springer, 1999.

[CE00] K. Czarnecki, and Ulrich W. Eisenecker: Generative
Programming. Methods, Tools, and Applications. Addison-
Wesley, 2000.

[Gün95] A. Günter: KONWERK – ein modulares
Konfigurierungswerkzeug. Universität Hamburg, FB Informatik.
1995.

[GK99] A. Günter, and C. Kühn: Knowledge-Based Configuration –
Survey and Future Directions. XPS-99, Knowledge-Based
Systems, Würzburg, Germany.

[HMSV00] A. Hein, J. MacGregor, M. Schlick, and R. Vinga-
Martins: PRAISE: Lessons Learned. CEC Deliverable P28651-
D3.4, ESPRIT Project PRAISE, March 2000.

[KCH+90] Kang, Kyo C., Cohen, Sholom G., Hess, James A.,
Novak, William E., and Peterson, A. Spencer: Feature-Oriented
Domain Analysis (FODA). Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Carnegie Mellon University, Software
Engineering Institute, 1990.

[KKLK98] K. C. Kang, S. Kim, J. Lee, and K. Kim: FORM: A
Feature-Oriented Reuse Method with Domain-Specific Reference
Architectures. Annals of Software Engineering, Vol. 5, pp. 143-
168, 1998.

[LKK+00] K. Lee, K. C. Kang, E. Koh, W. Chae, B. Kim, and B.
W. Choi: Domain Oriented Engineering of Elevator Control
Software. A Product Line Practice. In: P. Donohoe (ed.):
Software Product Lines – Experience and Research Directions.
Proceedings of the First Software Product Line Conference
(SPLC1), August 28-31, 2000, Denver, Colorado, USA. Kluwer
Academic Publishers, pp. 3-22, 2000.

[PRAISE] ESPRIT Project 28651: PRAISE – Product-line
Realisation and Assessment in Industrial Settings. IT RTD
Project Programme, 1998, http://www.esi.es/Projects/Reuse/
Praise/

[SH00] M. Schlick, and A. Hein: Knowledge Engineering in
Software Product Lines. European Conference on Artificial
Intelligence (ECAI 2000), Workshop on Knowledge-Based
Systems for Model-Based Engineering, August 22, 2000, Berlin,
Germany.

[TFF+01] S. Thiel, S. Ferber, T. Fischer, A. Hein, and M. Schlick: A
Case Study in Applying a Product Line Approach for Car
Periphery Supervision Systems. In: Proceedings of In-Vehicle
Software 2001, pp. 43-55, SAE International Congress 2001.
March, 5-8, 2001, Detroit, Michigan, USA.

[TLS+98] J. Tiihonen, T. Lehtonen, T. Soininen, A. Pulkkinen, R.
Sulonen, and A. Riitahuhta: Modeling Configurable Product
Families. 4th WDK Workshop on Product Structuring, October
22-23, 1998, Delft University of Technology, The Netherlands.

IPD
69

IPD
70

5HSUHVHQWLQJ�DQG�5HDVRQLQJ�RQ�)HDWXUH�$UFKLWHFWXUH��$�'HVFULSWLRQ�/RJLF�$SSURDFK
<X�-LD� <XTLQJ�*X�,QVWLWXWH�RI�6RIWZDUH��&KLQHVH�$FDGHP\�RI�6FLHQFH%HLMLQJ���������&KLQD�(PDLO�� � �MLDB\X#����QHW� � � � � � � �\XTLQJBJX#LVVV�LVFDV�DF�FQ

$EVWUDFW� ,Q�&RPSRQHQW�EDVHG�'HYHORSPHQW� �&%'��� WKH� IHDWXUH�RULHQWHG�PHWKRG� LV�UHJDUGHG� DV� D� JRRG PHDQV� WR� UHSUHVHQW� 'RPDLQ�6SHFLILF� 6RIWZDUH� $UFKLWHFWXUH��'66$���+RZHYHU��WKH�JUDSKLFDO�DQG�WH[WXDO�GHVFULSWLRQ�RI�IHDWXUH�DUFKLWHFWXUH�LV�QRW�ULJRURXV�DQG�ODFNV�RI�UHDVRQLQJ�PHFKDQLVP�IRU�IHDWXUH�UHODWLRQVKLSV��,Q�WKLV�SDSHU�ZH�DGGUHVV�WKHVH�SUREOHPV�E\�DEVWUDFWLQJ�WKH�UHODWLRQVKLS�W\SHV�EHWZHHQ�IHDWXUHV�DQG�E\�IRUPDOL]LQJ�WKHVH�W\SHV�LQ�WKH�'HVFULSWLRQ�/RJLFV��'/V���$V�DQ�DSSOLFDWLRQ��ZH�SUHVHQW�D�'/V�EDVHG�UHDVRQLQJ�SURFHGXUH�IRU�WKH�IHDWXUH�LQWHUDFWLRQ�SUREOHP�
���,QWURGXFWLRQ7KH�)HDWXUH�2ULHQWHG� 5HXVH� 0HWKRG� �)250�� >.DQJ��@� LV� WKH� ZD\� RI� GHVFULELQJ�VRIWZDUH� IXQFWLRQDO�DQG�QRQ�IXQFWLRQDO�SURSHUWLHV�E\�GRPDLQ�IHDWXUHV��ZKLFK�DUH� WKH�ZHOO�GHILQHG� WUXWK� XQGHUVWRRG� E\� ERWK� XVHUV� LQ� SUREOHP� GRPDLQ� DQG� GHYHORSHUV� LQ�VROXWLRQ� GRPDLQ�� 7KH� ³EX\LQJ� DQG� LQWHJUDWLQJ´� SKLORVRSK\� RI� &RPSRQHQW�%DVHG�'HYHORSPHQW� �&%'�� >$ODQ��@� UHTXHVWV� D� GLUHFWO\� PDSSLQJ� EHWZHHQ� SUREOHPV� DQG�VROXWLRQV� ZKHQ� UHWULHYLQJ� DQG� PDWFKLQJ� FRPSRQHQWV� >3HQL[��@�� DQG� DOVR� WKH�FRPSRVLWDEOH�FRPSRQHQW� VHPDQWLFV� VXSSRUWLQJ�DGDSWDWLRQ�DQG� LQWHJUDWLRQ� >%ORP��@��7KH� LQWHUQDO� UHODWLRQVKLS� EHWZHHQ�)250� DQG� &%'� PDNHV� ³IHDWXUHV´� WR� EH�UHFRQVLGHUHG� DQG� XVHG� DV� WKH� FRQVWLWXHQW HOHPHQWV� WR� GHVFULEH� WKH� FRPSRQHQW�VHPDQWLFV�� 7KLV� QRW� RQO\� RYHUFRPHV� WKH� GLIILFXOW\� RI� FRPSRQHQW� VHPDQWLF�UHSUHVHQWDWLRQ� LQ� &%'�� EXW� DOVR� EULQJV� D� EHQHILW� WKDW� WKH� IHDWXUH�RULHQWHG� 'RPDLQ�(QJLQHHULQJ� �'(�� SURYLGHV� UHVHDUFKHUV� DQG� SUDFWLWLRQHUV� DQ� RSSRUWXQLW\� WR� GHVFULEH�WKH� 'RPDLQ�VSHFLILF� 6RIWZDUH� $UFKLWHFWXUH� �'66$�� LQ� SHUVSHFWLYH� RI� .QRZOHGJH�5HSUHVHQWDWLRQ� �.5��� 7KDW� LV�� XVLQJ� WKH� IHDWXUHV�EDVHG� NQRZOHGJH� GHVFULELQJ�ODQJXDJHV� DV� WRROV� WR� LQGLFDWH� WKH� FRPPRQDOLW\� DQG� YDULDELOLW\� DPRQJ� SURGXFW�IDPLOLHV�$OWKRXJK�)250�LV�UHJDUGHG�DV�WKH�RQO\�SUDFWLFDO�PHWKRG�LQ�'(��WR�GDWH�LWV�IHDWXUH�PRGHO�LV�GHVFULEHG�LQ�D�NLQG�RI�H[WHQGHG�$1'�25�JUDSK�RU�WKH�WH[WXDO�VSHFLILFDWLRQ�ODQJXDJH� >.DQJ��@� ZKLFK� LV� DPELJXRXV� DQG� LQDFFXUDWH�� OHW� DORQH� WKHUH� H[LVWV� WKH�DXWRPDWLF�LQIHUHQFH�RQ�IHDWXUHV�UHODWLRQVKLSV�ZKLFK�LV� UDGLFDOO\ QHHGHG�LQ�RSHUDWLRQV�DV�FKHFNLQJ�IHDWXUH�LQWHUDFWLRQ��VXEVXPSWLRQ�HWF��,Q�WKLV�SDSHU��6HFWLRQ���SUHVHQWV�D�VHW�RI�HVVHQWLDO�IHDWXUH�DUFKLWHFWXUH�FRQFHSWV�IRU�RYHUDOO� IHDWXUH�RULHQWHG� PHWKRGRORJ\�� 7KHQ� LQ� VHFWLRQ� �� VRPH� JHQHUDO� UHODWLRQVKLS�W\SHV�DUH�DEVWUDFWHG��ZKLFK�DUH�LQGHSHQGHQW�RI�SDUWLFXODU�ILHOGV��DQG�DUH�GHVFULEHG�LQ�DQ� H[SUHVVLYH� 'HVFULSWLRQ� /RJLF� ODQJXDJH� >&DOYDQHVH���'RQLQ��@� FDOOHG� LQ�VHFWLRQ� ���)LQDOO\� LQ� VHFWLRQ� ��ZH� SURSRVH� D�'/V�EDVHG� UHDVRQLQJ� DSSURDFK� IRU� WKH�

IPD
71

IHDWXUH�LQWHUDFWLRQ�SUREOHP�WKURXJK�WKH�IHDWXUH�UHODWLRQVKLSV�LQ�WKH�NQRZOHGJH�EDVH�
���7KH�&RQFHSWXDO�0RGHO�RI�)HDWXUH�$UFKLWHFWXUH7KH�FRQFHSW�RI�³IHDWXUH´�LV�QRW�QHZ�LQ�FRPSXWHU�VFLHQFH��$�YDULHW\�RI�GHILQLWLRQV�KDYH�JLYHQ� LQ� YHU\� GLIIHUHQW� ZD\V� IURP� GLIIHUHQW� ILHOGV� VXFK� DV� ³$� GLVWLQJXLVKLQJ�FKDUDFWHULVWLF� RI� D� VRIWZDUH� LWHP�� IRU� H[DPSOH�� SHUIRUPDQFH�� SRUWDELOLW\�� RU�IXQFWLRQDOLW\� ´� >,(((� ��@�� RU� ³$� IHDWXUH� LQ� WKH� FRQWH[W� RI� WHOHSKRQH� V\VWHPV� LV� DQ�DGGLWLRQ�RI�IXQFWLRQDOLW\�WR�SURYLGH�QHZ�EHKDYLRU�WR�WKH�XVHV�RU�WKH�DGPLQLVWUDWLRQ RI�WKH� WHOHSKRQH� V\VWHP´� >$UDFHV���@��+RZHYHU�� LW� LV� HYLGHQW� WKDW� WKHVH�GHILQLWLRQV� DUH�LQIRUPDO�DQG� LQFRQVLVWHQW�� DV�ZHOO� DV�KDYH�QRW� UHYHDOHG� WKH� HVVHQFH RI� IHDWXUH��:LWK�WKH�ULVLQJ�UHFRJQL]H�RI�VRIWZDUH�UHXVH�LV�LQ�IDFW�WKH�NQRZOHGJH�UHXVH��:H�EHOLHYH� WKDW�WKH�FRQFHSW�RI�IHDWXUH�FDQ�RQO\�EH�FDSWXUHG�LQ�WKH�YLHZ�RI�.QRZOHGJH�5HSUHVHQWDWLRQ��7KDW� LV�� WKH�UROH�RI� IHDWXUH� LV� WR�VWDWH� WKH�GRPDLQ�NQRZOHGJH�DQG�SURYLGH�D�FRPPRQ�DJUHHPHQW�RU�FRQWUDFW�WR�D�VSHFLILF�GRPDLQ�7KH�FRQFHSWXDO�PRGHO�IRU�WKH�IHDWXUH�RULHQWHG�PHWKRGRORJ\�PD\�EH�FRQVWLWXWHG�E\�IRXU�HOHPHQWV��D�QDPH�FRQYHQWLRQ��DQ�LQWHUSUHWDWLRQ�UXOH��D�PHWD�NQRZOHGJH EDVH�DQG�D�UHODWLRQVKLS�FRQVWUDLQ�1DPH�FRQYHQWLRQ�± +RZ�WR�QDPH�D� IHDWXUH�� LQFOXGLQJ� WKH�VHW�RI�DOORZHG�V\PEROV�DQG�FRQVWUXFWLQJ�UHJXODWLRQV�,QWHUSUHWDWLRQ� UXOH ± 'HILQLQJ� WKH� PDSSLQJ� PRGH� EHWZHHQ� IHDWXUH� QDPH� DQG�GRPDLQ�NQRZOHGJH�� VXFK� DV�ZKHWKHU�PDQ\� IHDWXUH�QDPHV� FDQ�PDWFK�RQH�PHWD�NQRZOHGJH�DVVHUWLRQ��0HWD�NQRZOHGJH�VSHFLILFDWLRQ�PHFKDQLVP ± 6WDWLQJ�WKH�WUXWK�LQ�WKH�SUREOHP�GRPDLQ�IRU�D VSHFLILF�IHDWXUH��7KH�QDWXUDO�ODQJXDJH�LV�XVHG�LQ�PRVW�RFFDVLRQV�5HODWLRQVKLS� FRQVWUDLQ ± 'HILQLQJ� WKH� UHODWLRQ� W\SHV� DPRQJ� IHDWXUHV� WR� IRUP� WKH�FRPSRVLWLRQ� UXOHV��5HODWLRQVKLSV� VKRXOG�EH�FOHDUO\� DQG�XQDPELJXRXVO\�GHILQHG�LQ�IRUPDO�PHWKRGV�%DVHG�RQ�DERYH�FRQFHSWXDO�PRGHO��ZH�SUHVHQW�WKH�IRUPDO�GHILQLWLRQ�RI�)HDWXUH�DQG�)HDWXUH�$UFKLWHFWXUH�',),1,7,21���� �)HDWXUH� $�IHDWXUH�I ���Q��N���ZKHUH�Q�LV�WKH�QDPH�RI�IHDWXUH�ZKLFK�IROORZV� WKH� QDPH� FRQYHQWLRQ� DQG� N LV� WKH� LQWHUSUHWDWLRQ� RI� Q LQ� ODQJXDJH� RI� PHWD�NQRZOHGJH�IRU�D�VSHFLILF�SUREOHP�GRPDLQ�(;$03/(���� ,Q� WKH� WHOHSKRQH�GRPDLQ�� WKHUH� H[LVWV�D� IHDWXUH�� Q �³&DOO�:DLWLQJ´�DQG�N �³SHUPLWWLQJ�WKH�VXEVFULEHU�WR�DFFHSW�D�VHQG�FDOO�ZKHQ�WKH�WHOHSKRQH�LV�DOUHDG\�LQ�XVH´��+HUH�QDWXUDO�ODQJXDJH�LV�XVHG�WR�GHVFULEH�WKH�GRPDLQ�NQRZOHGJH�',),1,7,21���� �)HDWXUH $UFKLWHFWXUH� $�)HDWXUH $UFKLWHFWXUH� ��)��5��.��,I ��,U ��:KHUH�)�LV�D�VHW�RI�IHDWXUHV��5�LV�D�VHW�RI�IHDWXUH�UHODWLRQV�LQ�IRUP�RI�)�)�.�LV�D�VHW�RI�PHWD�NQRZOHGJH�ZLWK�FRQVWLWXWHV�D�NQRZOHGJH�EDVH�,I LV�D�IXQFWLRQ�LQWHUSUHWLQJ�WKH�PHDQLQJ�RI�IHDWXUHV�� �):.�,U LV�D�IXQFWLRQ�LQWHUSUHWLQJ�WKH�PHDQLQJ�RI�IHDWXUH�UHODWLRQV�� �):5�7R� D� JLYHQ� GRPDLQ� LV� WKH� '66$�� ZKLOH� WKH� VHPDQWLFV� RI� VRIWZDUH� V\VWHP� LV�FRQVLGHUHG�DV�DQ�LQVWDQFH�RI�WKH��

IPD
72

��7KH�)HDWXUH�5HODWLRQVKLS�7\SHV$�KLJK�OHYHO�XQGHUVWDQGLQJ�RI�WKH�IHDWXUH�UHODWLRQVKLS�LV�UHTXLUHG�ZKHQ�VHOHFWLQJ�WKH�IRUPDO� PHWKRG� IRU� GHVFULELQJ� WKH� IHDWXUH� DUFKLWHFWXUH�� 7KDW� LV�� D� IRUPDO� ODQJXDJH�VKRXOG� EH� H[SUHVVLYH� HQRXJK� WR� GHVFULEH� DOO� SRVVLEOH� UHODWLRQVKLS� FDWHJRULHV�LQGHSHQGHQW� RI� VSHFLILF� DSSOLFDWLRQ� GRPDLQ��)ROORZLQJ� ZH� GHILQH� IRXU� GLVWLQFW�UHODWLRQVKLS� W\SHV� ZKLFK� DUH� FRQVLGHUHG� DV� WKH� XQGHUSLQQLQJ� RI� WKH� IHDWXUH�DUFKLWHFWXUH�$JJUHJDWLRQ� UHODWLRQVKLS ± $Q� DJJUHJDWLRQ� �DOVR� FDOOHG� FRPSRVLWLRQ�� UHSUHVHQWV� D�SDUW�ZKROH�UHODWLRQVKLS��7KDW�LV��D�IHDWXUH��FDOOHG�SDUHQW��FRPSRVHG�RI�WZR�RU�PRUH�IHDWXUHV��HDFK�FDOOHG�D�FKLOG�� 5HTXLVLWH�DJJUHJDWLRQ PHDQV�SDUHQW�H[LVWV�LQ�FRQGLWLRQ�RI�FKLOG�H[LVWV��2SWLRQDO�DJJUHJDWLRQ PHDQV�D�FKLOG�FDQ�H[LVW�RU�QRW�WR�LWV�SDUHQW��*HQHUDOL]DWLRQ� UHODWLRQVKLS ± *HQHUDOL]DWLRQ� LV� D� UHODWLRQVKLS� EHWZHHQ� D� JHQHUDO�IHDWXUH� �FDOOHG�DEVWUDFW� IHDWXUH��DQG�D�VSHFLILF� IHDWXUH� �FDOOHG� UHILQHG�IHDWXUH��WKDW�WKH�VSHFLILF�IHDWXUH�LV�FRQVLVWHQW�ZLWK�WKH�JHQHUDO�IHDWXUH�LQ�VHPDQWLFV�DQG�FRQWDLQV�PRUH�GHWDLO��*HQHUDOL]DWLRQ�LV�D�WUDQVLWLYH��DQWLV\PPHWULF�UHODWLRQVKLS��5HILQHPHQW� �DOVR� FDOOHG VSHFLDOL]DWLRQ�� LV� WKH� RSSRVLWH� UHODWLRQVKLS� WR� WKH�JHQHUDOL]DWLRQ�'HSHQGHQF\�UHODWLRQVKLS ± $�GHSHQGHQF\�LQGLFDWHV�D�VHPDQWLF�UHODWLRQVKLS�EHWZHHQ�WZR� RU� PRUH� IHDWXUHV�� 7KHUH� DUH� VHYHUDO� SDUWLFXODU� NLQGV� RI� GHSHQGHQF\��&RQGLWLRQDO�GHSHQGHQF\ VD\V�D�IHDWXUH�FDQ�FKDQJH�WKH�EHKDYLRU�RU�SURSHUWLHV�RI�DQRWKHU�IHDWXUH��&RQIOLFW�GHSHQGHQF\ PHDQV�D�IHDWXUH�VHPDQWLFDOO\�FRQIOLFWV�ZLWK� DQRWKHU� IHDWXUH� VXFK� WKDW� WZR� IHDWXUHV� FDQ� QRW� EH� ERWK� FRQWDLQHG� LQ� D�IHDWXUH� DUFKLWHFWXUH�� 1RWH� WKDW� LQ� DJJUHJDWLRQ� UHODWLRQVKLS� WKH� SDUHQW� KDV�FRQGLWLRQDO�GHSHQGHQF\�UHODWLRQ�ZLWK�LWV�FKLOG�$VVRFLDWLRQ� UHODWLRQVKLS ± $Q� DVVRFLDWLRQ� GHVFULEHV� WZR� RU�PRUH� IHDWXUHV� VKDUH� D�VDPH�VHPDQWLF SDUW��WKDW�LV��DVVRFLDWHG�IHDWXUHV�DUH�LQWHUVHFWHG��(TXLYDOHQFH LV�VSHFLDO�DVVRFLDWLRQ�UHODWLRQVKLS�LQGLFDWHV�WKDW�IHDWXUHV�KDYH�WKH�VDPH�VHPDQWLFV��,VRODWLRQ LV� WKH� RSSRVLWH� UHODWLRQVKLS� WR� WKH� DVVRFLDWLRQ� ZKLFK� PHDQV� WZR�IHDWXUHV�KDYH�QR�UHODWLRQVKLS�
���5HSUHVHQWLQJ�)HDWXUH�$UFKLWHFWXUH�LQ�$Q�([SUHVVLYH�'/'HVFULSWLRQ� /RJLFV� �'/V�� LV� D� ZHOO�GHILQHG� 7HUPLQRORJLFDO� .QRZOHGJH�5HSUHVHQWDWLRQ� /DQJXDJH� ZLWK� WKH� VHW�WKHRUHWLF� VHPDQWLFV�� ,Q� '/V� WKH� GRPDLQ� RI�LQWHUHVW� LV� PRGHOHG� E\� PHDQV� RI� LQGLYLGXDOV�� FRQFHSWV�� UROHV DQG� NQRZOHGJH� EDVHH[DFWO\� FRUUHVSRQGLQJ� WR� WKH� PHWD� NQRZOHGJH� VSHFLILFDWLRQV�� IHDWXUHV�� IHDWXUH�UHODWLRQVKLSV DQG� IHDWXUH� DUFKLWHFWXUH� UHVSHFWLYHO\�� ,Q� WKH� UHVW� RI� WKLV� SDSHU��ZH� XVH�WKHVH�FRUUHVSRQGLQJ�WHUPV�ZLWKRXW�DQ\�GLVWLQFWLRQ�,Q�WDEOH�����ZH�VKRZ�D�NLQG�RI�'/V�FDOOHG� ��HVSHFLDOO\�IRU�H[SUHVVLQJ�IHDWXUH�DUFKLWHFWXUH��,Q�'/V��VWDUWLQJ�IURP�D�VHW�RI�DWRPLF�FRQFHSWV DQG�DWRPLF�UROHV��RQH�FDQ�EXLOG�FRPSOH[�FRQFHSWV�DQG� UROHV�E\� DSSO\LQJ� FHUWDLQ� FRQVWUXFWV��:H�GHQRWH�DWRPLF�FRQFHSWV�E\�$�� DUELWUDU\� FRQFHSWV�E\�& DQG�'�� DWRPLF� UROHV�E\�3�� DOO� SRVVLEO\�ZLWK�VXEVFULSWV��:H�DOVR�XVH�WKH�IROORZLQJ�DEEUHYLDWLRQV�WR�LQFUHDVH�UHDGDELOLW\�� IRU� �&�� &� IRU � &�� &����DQG� 3��& IRU� 3� &� �PHDQV�^R _� R
� �� �R��R
�� 3 `���1RWH�

IPD
73

WKDW�DUELWUDU\�UROH�LV�QRW�DOORZHG�LQ� �,Q�'/V� WKH� IRUPDO� VHPDQWLFV� LV� VSHFLILHG� WKURXJK� WKH�QRWLRQ�RI� LQWHUSUHWDWLRQ��$Q�LQWHUSUHWDWLRQ � � �� �� FRQVLVWV� RI� D� VHW� �WKH� GRPDLQ� RI� �� DQG� D� IXQFWLRQ��WKH�LQWHUSUHWDWLRQ�IXQFWLRQ�RI� ��WKDW�PDSV�HYHU\�FRQFHSW�WR�D�VXEVHW�RI� �L�H��& WR�FRQFHSW�&��� DQG� HYHU\� UROH� WR� D� VXEVHW� RI� � �L�H��5 WR UROH�5��� UHVSHFWLQJ� WKH�VSHFLILF�FRQGLWLRQV�LPSRVHG�E\�WKH�VWUXFWXUH�RI�WKH�FRQFHSW�RU�UROH�&RQFHSWV�& 6\QWD[6HPDQWLFVDWRPLF�FRQFHSW $ $XQLYHUVDO�FRQFHSWQHJDWLRQ & ? &LQWHUVHFWLRQ &�� &� &� &�XQLYHUVDO�UROH�TXDQWLILFDWLRQ 3� & ^R _� R
����R��R
�� 3 :R
� & `TXDQWLILHG�QXPEHU�UHVWULFWLRQ � Q 3�&� ^R _��^R
�_��R��R
�� 3 R
� & ` Q `5ROHV�3 6\QWD[6HPDQWLFVDWRPLF�UROH 3 3FRQFDWHQDWLRQ 3 �� 3 � 3� 3�UHIOHFW�WUDQVLWLYH�FORVXUH 3 �3 �WUDQVLWLYH�FORVXUH 3� �3 ��LGHQWLW\ LG�&� ^��R��R��_�R & `7DEOH�����6\QWD[�DQG�VHPDQWLFV�RI� FRQFHSW�DQG�UROH�FRQVWUXFWV7KH� IHDWXUH� DUFKLWHFWXUH� FDQ� EH� ZHOO�IRUPDOL]HG� RQ� FRQGLWLRQ� WKDW� WKH� IRUPDO�ODQJXDJH�LV�SRZHUIXO�HQRXJK�WR�GHVFULEH�DOO�SRVVLEOH�IHDWXUH�UHODWLRQVKLS�W\SHV��(DFK�IHDWXUH� UHODWLRQVKLS� W\SH� LV� H[SUHVVHG� LQ� DV� VKRZQ� LQ� 7DEOH� ����� ZKHUH� ZH�GHQRWH� VXEVXPSWLRQ� E\� �&� ' LI� & ' ��� DQG� HTXLYDOHQFH� E\� �&� 'DEEUHYLDWHV� IRU� &� '� DQG� '� &� WKDW� LV� & � ' �� ,QWHQVLRQDO� NQRZOHGJH� DERXW�IHDWXUHV�DQG�UHODWLRQV�FDQ�EH�H[SUHVVHG�WKURXJK�WKH�QRWLRQ�RI�7%R[�5HODWLRQVKLS�7\SHV ([SUHVVLRQV ([SODQDWLRQV$JJUHJDWLRQ�UHODWLRQVKLS5HTXLVLWH�DJJUHJDWLRQ & &�� &� & FRQVLVWV�RI�&��DQG &���2SWLRQDO�DJJUHJDWLRQ ' 3 � &� � ��3� &�VXEVXPHV '�RYHU 3�RU�QRW��*HQHUDOL]DWLRQ�UHODWLRQVKLS & ' & LV�D�' �'HSHQGHQF\�UHODWLRQVKLS&RQGLWLRQDO�GHSHQGHQF\ &� 3�' &�LV�VXEVXPHV E\�'�RYHU 3�&RQIOLFW�GHSHQGHQF\ &� &&� & &��LV�FRQIOLFW�ZLWK�&���
$VVRFLDWLRQ�UHODWLRQVKLS(TXLYDOHQFH &� ' &�DQG�' DUH�HTXLYDOHQW�,VRODWLRQ & &�� &�&� &��DQG�&��DUH�GLVMRLQW�

7DEOH�����([SUHVVLRQV�IRU�)HDWXUH�5HODWLRQVKLS�7\SHV

IPD
74

(;$03/(� ���)LJXUH� ���� VKRZ� D� IHDWXUH� DUFKLWHFWXUH� GHSLFWHG� DV� WKH� IHDWXUH� WUHH��VWULFWO\ QRW� D� SXUH� WUHH�� ZKLFK� YLVXDOO\� SUHVHQWV� KLHUDUFK\� UHODWLRQVKLSV�� +HUH�� WKH�OLWWOH�FLUFOH�GHQRWHV�RSWLRQDO�UHODWLRQ��WKH�DUF�GHQRWHV�DOWHUQDWLYH�UHODWLRQ���

�D��'66$� � � � � � � � � � � � � � � � � �E��&RPSRQHQW)LJXUH�����$Q�([DPSOH�RI�)HDWXUH�$UFKLWHFWXUH
7KH�DERYH�IHDWXUH�DUFKLWHFWXUH�FDQ�EH�H[SUHVVHG�LQ� DV�IROORZV��D�� �^�&� 3��&� 3��&� 3��&� 3��&��� � &�� ��3���&�� 3���&���� � � � � � � �&�� 3���&���� � &�� 3���&���� � &��� 3����&����� � &��� 3����&�����&�� 3����&����`�E�� �^&��D���� � &���E���� � &���E���� � &��F���� � &��F���� � 3���D���E����3���D���E����S���E���F���� � S���E���F��`

���5HDVRQLQJ�)HDWXUH�,QWHUDFWLRQ�LQ�7KH� IRUPDO� PHWKRG� GHVFULELQJ� WKH� IHDWXUH� DUFKLWHFWXUH� LQ� SURYLGHV� XV� WKH�SRVVLELOLW\� WR� IXOILOO� WKH� WDVN� RI� UHDVRQLQJ� IHDWXUH� LQWHUDFWLRQ�� ZKLFK� LV� LQIRUPDOO\�GHILQHG�DV�WKH�EHKDYLRU�RI�RQH�IHDWXUH�LQIOXHQFLQJ�WKH�EHKDYLRU�RI�DQRWKHU��5HYHDOHG�E\� WKH� �� WKH� IHDWXUH� LQWHUDFWLRQ� DULVHV� IURP� D� FODVK� LQ� D� FRPSOHWH �VHH� EHORZ��V\VWHP�JHQHUDWHG�IURP�WZR�LQWHUDFWHG�IHDWXUHV��6XSSRUWLQJ� WKHUH� H[LVW� WZR� DUELWUDU\� FRQFHSWV� �L�H�� IHDWXUHV�� & DQG� '�� DQ� DWRP�FRQFHSW�$��DQG�DQ�DWRP�UROH�3��ZH�XVH�WKH�FDOFXOXV�LQWURGXFHG�LQ�>'RQLQ���@ WR�GHVLJQ�D�SURFHGXUH�IRU�GHWHFWLQJ�LQWHUDFWLRQ�EHWZHHQ�& DQG�'�67(3�� &UHDWLQJ�D�FRQMXQFWLRQ�FRQFHSW�(RI�& DQG�'�(& '67(3� � 7UDQVIRUPLQJ� (LQWR� QHJDWLRQ� QRUPDO� IRUP) ZKLFK� FRQWDLQV� RQO\�FRPSOHPHQWV�RI�WKH�DWRP�FRQFHSW�E\�IROORZLQJ�WHQ�UXOHV���� : �� ���� : �� ���� �)��)��:)��)������ �)��)��:)��)�����):)�� ���� � 3�)�: 3�)�� ���� � 3�)�: 3�)�� ���� � Q 3�: � Q���3����� � Q 3�: 3�� LI�Q� ���� ����� � Q 3�:� Q�� ��3�� � LI�Q� ���67(3�� *HQHUDWLQJ�DOO�FRPSOHWH�FRQVWUDLQW�V\VWHPV�GHULYLQJ�IURP�^[�)`�)LUVW�ZH�LQWURGXFH�ZKDW�DUH� WKH�IRUPV�RI�FRQVWUDLQW��$VVXPLQJ [��\��]�DUH�YDULDEOH�V\PEROV��. LV�D�IXQFWLRQ�PDSV�HYHU\�YDULDEOH�WR�DQ�HOHPHQW�RI� ��WKHQ�D�FRQVWUDLQW�LV�

IPD
75

D�V\QWDFWLF�REMHFW�RI�RQH�RI�WKH�IRUPV�[���)��LI�.�[�) �� � �[3 \��LI��.�[���.�\�� 3 �� �[\��LI�.�[�� .�\�$� FRQVWUDLQW� V\VWHP 6 LV� D� ILQLWH�� QRQHPSW\� VHW� RI� FRQVWUDLQV��)ROORZLQJ� VL[�TXDVL�FRPSOHWLRQ�UXOHV�DUH�JLYHQ�WR�JHQHUDWH�FRQVWUDLQW�V\VWHPV���� ,QWHUVHFWLRQ� 6�: ^[�)����[�)�`� 6�� LI� � [�)��)� LV�LQ�6��DQG�[�)��DQG�[�)��DUH�QRW�ERWK�LQ�6���� 8QLRQ� 6�: ^[�)�`� 6�� LI� � [�)��)� LV�LQ�6��QHLWKHU�[�)��QRU�[�)��LV�LQ�6��DQG�) �)� RU�) �)����� ([LVWHQWLDO�4XDQWLILFDWLRQ� 6�: ^[3\��\�)�`� 6�� LI� � [� 3�)�LV�LQ�6��WKHUH�LV�QR�] VXFK�WKDW�] LV�VXFFHVVRU�RI�[DQG�]�)�LV�LQ�6��DQG�\ LV�D�QHZ�YDULDEOH�����8QLYHUVDO�4XDQWLILFDWLRQ� 6� : ^� \��)� `� 6�� LI� � [� 3�)� LV� LQ� 6�� \ LV�VXFFHVVRU�RI�[LQ�6��DQG�\�)�LV�QRW�LQ�6���� $W�OHDVW�5HVWULFWLRQ� 6�: � ^[3\`� 6��LI�QR�RWKHU�FRPSOHWLRQ�UXOH�DSSOLHV�WR�6��[��� Q 3���LV�LQ�6��[GRHV�QRW�KDYH�D�3�VXFFHVVRU�LQ�6� DQG�\�LV D QHZ�YDULDEOH�����$W�PRVW� 5HVWULFWLRQ� 6�: 6 >\�]@�� LI� [�� � Q�3� LV� LQ�6�� [KDV� PRUH� WKDQ� QVXFFHVVRU� LQ�6�� DQG� \�] DUH� WZR�3�VXFFHVVRUV� RI� [WKDW� DUH� QRW� VHSDUDWHG����6>\�]@� GHQRWHV� WKH� FRQVWUDLQW� V\VWHP� REWDLQHG� IURP� 6� E\� UHSODFLQJ� HDFK�RFFXUUHQFH�RI�\ E\�]��67(3� � &KHFNLQJ� ZKHWKHU� DOO� FRQVWUDLQ� V\VWHPV� FRQWDLQ� D� FODVK�� ,I� DQ\� RI� WKHP�FRQWDLQV�D�FODVK��WKHQ�& DQG�' DUH�LQWHUDFWLRQ��RWKHUZLVH & DQG�' DUH�QRW�LQWHUDFWLRQ�$�FODVK�LV�D�FRQVWUDLQW�V\VWHP�KDYLQJ�RQH�RI�IROORZLQJ�IRUPV���� ^[� `��� �����^[��$� [� $`���� ^[��� P 3�� [��� Q�3�`�ZKHUH�P!Q �,Q� IDFW� WKH� LV� D� NLQG� RI �� $FFRUGLQJ� WR� >'RQLQ��@�� DERYH�TXDVL�FRPSOHWLRQ� UXOHV� SURYLGH� D� VRXQGQHVV� DQG� FRPSOHWHQHVV� IRU� GHFLGLQJ� WKH�VDWLVILDELOLW\�RI� �FRQFHSWV��7KH�VDWLVILDELOLW\�RI�VXFK�FRQFHSWV�FDQ�EH�GHFLGHG�LQ�QRQGHWHUPLQLVWLF� SRO\QRPLDO� WLPH�� 6R� ZH� FRQFOXGH� WKDW� FKHFNLQJ� WKH� IHDWXUH�LQWHUDFWLRQ�KDV�WKH�VDPH�FRPSXWDWLRQDO�SURSHUWLHV�
���&RQFOXVLRQ,Q� WKLV�SDSHU�ZH�KDYH�SURYLGHG�D� IRUPDO�DQDO\VLV�RI� WKH� IHDWXUH�DUFKLWHFWXUH�DQG� WKH�UHDVRQLQJ� SURFHGXUH� IRU� IHDWXUH� LQWHUDFWLRQ� GHWHFWLRQ�� 7KH� VLPLODU� PHWKRG� LV�LQWURGXFHG� LQ� >$UDFHV��@�EXW�ZH�KDYH�VWXGLHG� LQ�D�PRUH�ZLGH�DQG�DEVWUDFW�VHQVH�� ,Q�WKH�IXWXUH�ZH�ZLOO�LQWHJUDWH�RXU�PHWKRG�ZLWK�VWDQGDUG�VRIWZDUH�FRPSRQHQW�PRGHO�VXFK�DV� &25%$� &RPSRQHQW� 0RGHO �&&0�� WR H[SUHVVLQJ� DQG� UHDVRQLQJ� WKH� VHPDQWLF�UHODWLRQVKLSV�DPRQJ�WKH�FRPSRQHQWV�
5HIHUHQFHV>$ODQ��@� $ODQ� :�� %URZQ�� /DUJH�6FDOH� &RPSRQHQW�%DVHG� 'HYHORSPHQW�� 3UHQWLFH�+DOO��,QF���������

IPD
76

>$UDFHV��@�&��$UDFHV��:��%RXPD��DQG�0��GH�5LMNH��'HVFULSWLRQ�/RJLFV�DQG�)HDWXUH�,QWHUDFWLRQ�� 3URFHHGLQJV� RI� WKH� ,QWHUQDWLRQDO� :RUNVKRS� RQ� 'HVFULSWLRQ� /RJLFV� � '/���� SS� ������������>%ORP��@ 0DUWLQ�%ORP��(LYLQG� -��1RUGE\�� 6HPDQWLF� ,QWHJULW\� LQ�&RPSRQHQW�%DVHG�'HYHORSPHQW��3URMHFW�5HSRUW��0lODUGDOHQ�8QLYHUVLW\��6ZHGHQ��0DUFK������>&DOYDQHVH��@�'��&DOYDQHVH��*�'��*LDFRPR��0�� /HQ]HULQL��'��1DUGL��5HDVRQLQJ� LQ�([SUHVVLYH 'HVFULSWLRQ� /RJLFV�� ,Q�� $ODQ� 5RELQVRQ�� $QGUHL� 9RURQNRY� �HGV����+DQGERRN�RI�$XWRPDWHG�5HDVRQLQJ��(OVHYLHU�6FLHQFH�3XEOLVKHUV��1RUWK� +ROODQG���$PVWHUGDP������>'RQLQ��@�)��0�� 'RQLQ��0�� /HQ]HULQL�� '�� 1DUGL�� DQG�:�� 1XWW�� 7KH� &RPSOH[LW\� RI�&RQFHSW�/DQJXDJHV��,QIRUPDWLRQ�DQG�&RPSXWDWLRQ���SS�������9RO����������>,(((���@�6WDQGDUGV�&RRUGLQDWLQJ�&RPPLWWHH�RI� WKH� ,(((�&RPSXWHU�6RFLHW\�� ,(((�6WDQGDUG�*ORVVDU\�RI�6RIWZDUH�(QJLQHHULQJ�7HUPLQRORJ\���,(((�6WG��������������'HFHPEHU������>.DQJ��@� .�� &�� .DQJ�� 6�� .LP�� -�� /HH�� .�� .LP�� (�� 6KLQ�� 0�� +XK��)250�� $�)HDWXUH�2ULHQWHG� 5HXVH� 0HWKRG� ZLWK� 'RPDLQ�6SHFLILF� 5HIHUHQFH� $UFKLWHFWXUHV��$QQDOV�RI�6RIWZDUH�(QJLQHHULQJ������������������>3HQL[��@�-RKQ�3HQL[��3KLOOLS�%DUDRQD��3HUU\�$OH[DQGHU��&ODVVLFDWLRQ�DQG�5HWULHYDO�RI�5HXVDEOH�&RPSRQHQWV�8VLQJ 6HPDQWLF�)HDWXUHV�� ,Q� 3URF�� ��WK�.QRZOHGJH�%DVHG�6RIWZDUH� (QJLQHHULQJ� &RQI��� %RVWRQ�� 0$�� ,(((� &RPS�� 6RF� 3UHVV�� 1RYHPEHU���������������>7XUQHU��@�&� 5��7XUQHU��$��)XJJHWWD��/��/DYD]]D�DQG�$��/��:ROI��$�&RQFHSWXDO�%DVLV�IRU�)HDWXUH�(QJLQHHULQJ��-RXUQDO�RI�6\VWHPV�DQG�6RIWZDUH��9ROXPH�����,VVXH�������'HFHPEHU������

IPD
77

IPD
78

Features and Feature Interactions in Software
Engineering using Logic

Ragnhild Van Der Straeten Johan Brichau∗

rvdstrae@vub.ac.be jbrichau@vub.ac.be
System and Software Engineering Lab Programming Technology Lab

Vrije Universiteit Brussel, Belgium Vrije Universiteit Brussel, Belgium

Abstract

Feature interactions are common when composing a software unit
out of several features. We report on two experimental approaches
using logic to describe features and feature interactions. The first ap-
proach proposes description logic as a formalization of feature models
which allow reasoning about features. In the second approach, a met-
alevel representation of the software is proposed to capture conditions
on features. These conditions are written in terms of the software’s
implementation providing a uniform formalism that can be applied to
any software unit.

1 Introduction

The concepts feature and feature interaction originated in the telephony-
domain. In this context, a feature is an addition of functionality to the basic
telephone system providing new behaviour. Feature interaction occurs when
the behaviour of one feature influences the behaviour of another. When fea-
tures interact in an unwanted way, a feature interference occurs [12].

A feature in software engineering can be seen as a concern of the software
application [7]. The composition of features will always lead to interactions
between features. A feature interference occurs when existing or new features
interact such that a feature does not behave correctly. This paper discusses
two experiments about feature interactions in software engineering.

In the first section we will describe our first approach, in which Descrip-
tion Logic is introduced to formally specify features in the problem domain.

∗Research Assistant of the Fund for Scientific Research - Flanders (Belgium) (F.W.O.)

IPD
79

This logic and its reasoning mechanisms are already used to detect feature
interactions in the telecommunication domain [1, 3, 4]. In our approach, how-
ever, we want to support feature descriptions and interaction detection for
the feature modeling and configuration in domain engineering and in Genera-
tive Programming [6]. We want to start a discussion about which information
should be described and which reasoning tasks a feature modeling tool should
provide.

The next section will introduce our second approach, in which we use
Logic Meta-Programming to detect feature interactions in the solution do-
main. We model features of a system using a logic metalevel representation
of the system’s implementation. Additional conditions and constraints about
the implementation’s structure can also be expressed using this metalevel
structure. Adding new software artifacts (implementing a new feature) to
the system will change the metalevel representation. A feature interference
will lead to falsification of the conditions and constraints (imposed by the
developer).

2 Description Logics for Feature Modeling

The general idea is to use Description Logic (DL) to formally specify features.
As an experimental approach, we initiated the development of a language
capturing feature modeling as it is used in Generative Programming [6].
Feature interaction is specified by the dependencies between the different
features and the constraints applied on them.

2.1 Description Logics

The family of Description Logics originated from knowledge representation
research in Artificial Intelligence. Their main strength comes from the differ-
ent reasoning mechanisms they offer. The complexity of reasoning in these
different languages is and has been widely investigated. These languages have
been applied at an industrial level.

The basic elements of a Description Logic are concepts and roles. A con-
cept denotes a set of individuals, a role denotes a binary relation between
individuals. Arbitrary concepts and roles are formed starting from a set of
atomic concepts and atomic roles applying concept and role constructors. For
an introduction to Description Logics we refer to [2].

IPD
80

2.2 Feature Modeling using DL

We want to start a discussion about which information should be described
and which reasoning tasks a feature modeling tool should provide. The latter
is covered in the next section. Feature models appear in the Feature-Oriented
Domain Analysis method (FODA) [8] and are used as such by Generative
Programming [6]. In this context, a feature model consists of a feature di-
agram and additional information. This information consists of descriptions
of each feature, rationales for each feature, stakeholders and client programs,
examples of systems with a given feature, constraints, default dependency
rules, availability and binding sites, binding modes, open/closed attributes
and priorities. The aspect configuration in [9] can also be interpreted as the
modeling (i.e. configuration) of features (i.e. aspects). This section introduces
a basic feature language FML describing the semantics of features and some
constraints. FML is based on the DL ALCQ.

2.2.1 Syntax and Semantics of the Logic

In ACLQ concepts (denoted by C, D) are formed as follows:

C, D −→ A | ¬C | C uD | ∃R.C | (≤ 1R) | ∃≤nR.C | ∃≥nR.C

where A denotes an atomic concept, R denotes an atomic role and n denotes
a strict positive integer. The following abbreviations are used: > for At¬A,
C tD for ¬(¬C u ¬D), ∀R.C for ¬∃R.¬C, ∃=nR.C for ∃≤nR.C u ∃≥nR.C,
∃R=n|≤n|≥n for ∃R=n|≤n|≥n.>, CxorD for (C t D) u ¬(C u D). Descriptive
semantics, defined by an interpretation function, are adopted, see [10]. A
knowledge base K in ALCQ is a pair < T,A > such that:

• T is the T(erminological)-Box, a finite, possibly empty set of expres-
sions of the form C1 v C2 where C1, C2 are concepts. This inclusion
specifies that C2 only gives necessary conditions for being an instance
of C1. C1

.
= C2 is equivalent to C1 v C2 and C2 v C1. The formulas in

the T-Box are called terminological axioms.

• A is the A(ssertional)-Box, a finite, possibly empty set of expressions
of the form a : C or (a, b) : R where C is a concept, R is a role and a, b
are individuals.

No restrictions are posed on the terminological axioms. This means that each
atomic concept may appear more than once at the left side of an axiom. The
terminological axioms may contain cycles, i.e. the concept in the right part
of the axiom may refer to the concept in the left part of the axiom.

IPD
81

The feature language FML is completely based on the DL ALCQ. We fix
a signature Σ =< Con, Rol, Ind >, where Con is a countable set of atomic
concepts, Rol is a countable set of atomic roles and Ind is a countable set
of individuals. A FML feature model is a set of terminological axioms. The
ABox is empty in FML. A feature diagram can be translated to axioms of
FML. The set Con consists of all concepts corresponding to the nodes of the
diagram. The set Rel consists of all the roles corresponding to the edges of the
diagram. The edge decorations are translated using the concept constructors
of ALCQ. Consider as an example the following feature description of a car
[6]. A car consists of one transmission and one horsepower and optionally
an airconditioning. The transmission is manual or automatic but cannot be
both. This feature model expressed in FML is shown in figure 1.

TRANSMISSION v ∃=1man.MANUAL xor ∃=1aut.AUTOMATIC

CAR v ∃=1trans.TRANSMISSION u ∃=1power.HORSEPOWER

u((≤ 1airco) u ∀airco.AIRCONDITIONING

Figure 1: The Knowledge Base Corresponding to Features of a Car.

Cardinality constraints. Cardinality constraints can be expressed in the
feature model language FML. The constructors ∃≤n and ∃≥n admit these
kinds of constraints.
If-then constraints. If-then constraints can be integrated in the concept
definitions1. The constraint ”if there is airconditioning in a car then the
horsepower of the car must be greater than or equal 100”, can be written
down as follows2:

CAR v ∃=1trans.TRANSMISSION u ∃=1power.HORSEPOWER u ((≤ 1airco) u
∀airco.AIRCONDITIONING u (¬∃airco t (≥100 power))

This constraint involves the use of concrete domains and implies the inte-
gration of such a domain in the language FML. The integration of concrete
domains into DL has been described in [5]. Another constraint, naturally ex-
pressed in FML is the disjointness of features. The fact that the MANUAL and
AUTOMATIC feature are disjoint can be expressed as MANUAL v ¬AUTOMATIC.

1Note that in first order logic p → q is equivalent with ¬p ∨ q.
2≥100 stands for the unary predicate {n;n ≥ 100}of all strict positive integers greater

or equal 100.

IPD
82

2.3 Reasoning Tasks in Feature Modeling

Tool support for feature models should at least contain support for the feature
notation and the different dependencies and constraints. The use of DL to
formalize feature models enables the execution of certain tasks that are now
left to the developer. This section shows how standard reasoning tasks of DL
can be used to accomplish certain tasks.

The standard reasoning tasks considered in DL at the terminological level
are subsumption, concept consistency and knowledge base consistency. C2 sub-
sumes C1 iff in all models of the knowledge base K the interpretation of C1 is
a subset of the interpretation of C2. A concept C is consistent in K if K ad-
mits a model in which C has a non-empty interpretation. A knowledge base
K is consistent if there exists a model for K. ALCQ is EXPTIME-complete.
Feature model consistency A feature model is consistent if it is possible
to implement a system obeying this model. Checking if a model is consistent
corresponds to the verification of the feasibility to build a system.
Feature consistency A feature is consistent if it can be instantiated with
respect to the feature model. A feature is inconsistent due to, e.g. over-
constraining.
Feature subsumption A feature F2 subsumes a feature F1 if in all possible
instantiations of the feature model the interpretation of F1 is a subset of the
interpretation of F2. Subsumption gives rise to a classification of all the fea-
tures appearing in a feature model. It also allows the deduction of properties
of one feature from those of another one.
Feature and constraint addition The addition of a feature or constraint
can lead to the replacement of some specific subformula within a termino-
logical axiom. This boils down to the addition of a specification. This can be
seen as a function θ mapping specifications to specifications. This function
is analogous to the δ-function in [4]. The consistency of this addition w.r.t.
a knowledge base K reduces to knowledge base consistency of θ(K).

In this approach, DL seems to be a natural way to express feature dia-
grams and some constraints. The inclusion of additional information of a
feature model still needs further investigation. Also to which extend the
connection between the GR(K) language, the multi-modal counterpart of
ALCQ can be useful in this context and the idea of a description language
being able to define notions involving self-reference [2].

IPD
83

3 Logic Meta-Programming for Feature In-

teraction Detection

In the development of a software application, the addition of particular soft-
ware artifacts (components, aspects, objects, . . .), implementing a certain
feature, will introduce interactions with other software artifacts. In this ap-
proach we try to use a declarative (i.e. logic) metalevel representation of the
feature’s implementation to detect feature interaction and interference.

3.1 The Figure Editor Case

Consider a simple figure editor in which the user is able to draw points on the
screen and interconnect them to form lines and polygons. The basic system’s
service only allows this functionality. Using an object-oriented language we
implement this system according to figure 2. Afterwards, we want to add

Figure 2: UML Diagram of the Figure Editor.

additional features to the simple figure editor. For instance, we add a feature
implementing the archival of figures on a disk and later on, we add a color
feature allowing to color the points, lines and polygons. After the introduction
of the color feature, a feature interference can occur between the archival and
the color feature because the original archival feature does not store the color
of a point, line or polygon.

3.2 Logic Meta-Programming Approach

The Logic Meta-Programming (LMP) technique has an inate capability of
declaratively capturing the structure of a program. The metalevel representa-
tion of a software application consists of logic facts. A possible representation
of our figure editor example is:

class(Point). class(Line). class(Polygon).

method(Point,move,arguments(x,y),statements(...))

method(Point,draw,arguments([]),statements(...))

...

IPD
84

Using logic rules, we can derive a higher-level representation (i.e. towards
the design-level). Using such rules, the LMP-technique has been extensively
used to detect programming patterns, to trace the impact of changes in the
implementation and to check conformance with the corresponding design and
architectural description [11], [13].

We now augment the automatically generated metalevel representation of
the software program with logic assertions classifying every software artifact
in one or more features. For our figure editor example, this means:

feature(figures,[class(Point),class(Line),class(Polygon)])

feature(archival,[method(Point,store),method(Line,store),method(Polygon,store)])

feature(figuremovement,[method(Point,move),method(Line,move),method(Polygon,move)])

feature(UI,[class(EditorView),method(Point,draw),method(Line,draw),

method(Polygon,draw)])

...

Because the features are now explicitly defined in terms of the software
artifacts that implement them, we are able to reason about the interaction be-
tween features using the metalevel representation of the entire program. For
each feature we can now determine with which features it interacts directly
(through method calls or access of shared variables). In a system implement-
ing a lot of features, a developer could at least derive which features that
could be affected by a change in a particular feature (or the addition of a
new feature). A logic rule that detects access to the same instance variable
by two different features is written as follows3:

sharedInstanceVariable(?feature1,?feature2,?sharedInstanceVariable) if

methodInFeature(?feature1,?method1),

accesses(?method1,?sharedInstanceVariable),

methodInFeature(?feature2,?method2),

accesses(?method2,?sharedInstanceVariable).

For clarity, we also include the implementation of predicates used in the
rule above:

methodInFeature(?feature,?methodDescription) if

feature(?feature,?list), member(method(?className,?methodName),?list),

methodInClass(?className,?methodName,?methodDescription).

accesses(?method,?instVar) if

reads(?method,?instVar).

accesses(?method,?instVar) if

writes(?method,?instVar).

The rules methodInClass, reads and writes are part of the SOUL frame-
work developed in [13]. We will not show them here, but they are implemented
by several logic rules that reason about the logic metalevel representation.

3Logic variables are written using a ’?’

IPD
85

However, using these rules, we can only detect feature interactions. To
detect feature interference we include logic rules that express constraints or
invariants on the implementation. For example:

archivalInvariant() if

classInFeature(figures,?class),

instVar(?class,?instVar),

methodInFeature(archival,?method), accesses(?method,?instVar).

This rule expresses a simple invariant which states for the archival feature
that every instance variable in classes of the feature figures should be accessed
by a method of the archival feature. This expresses the condition that the
archival feature should save every part of the state of the figures.

Adding a new feature to our figure editor might introduce conflicts with
the other features, depending on the implementation. As we illustrated,
adding colors to the figures will interfere with the archival feature. Whether
we change the original feature figures or we add a complete new color feature,
the change will boil down to introducing new state variables to Point, Line
and Polygon classes. If we do not change the implementation of the store

method, the archival invariant will not be satisfied and a feature interference
will be detected by the resolution engine.

In this experimental approach, LMP promises to be a viable technique
to support feature interaction problems in software development. Future re-
search will investigate on a general methodology for feature interaction de-
tection, using LMP.

4 Summary

We described two approaches dealing with feature interactions in software en-
gineering using logic. The first approach defined a formal language for feature
modeling in the problem domain using DL. The second approach uses the
LMP approach to detect feature interaction in the solution domain. In both
approaches, open research questions are related to which kind of information
is necessary and sufficient to allow reasoning about feature interactions.

References

[1] R. Accorsi, C. Areces, and M. de Rijke. Towards Feature Interaction via
Stable Models. In Proceedings of the 2nd WFM, Florianópolis, Brasil,
October 1999.

IPD
86

[2] C. Areces. Logic Engineering. The Case of Description and Hybrid Log-
ics. PhD thesis, ILLC University of Amsterdam, 2000.

[3] C. Areces, W. Bouma, and M. de Rijke. Description Logics and Feature
Interaction. In P. Lambrix, A. Borgida, M. Lenzerini, R. Möller, and
P. Patel-Schneider, editors, Proceedings of the International Workshop
on Description Logics (DL’99), pages 28–32, 1999.

[4] C. Areces, W. Bouma, and M. de Rijke. Feature Interaction as a Satis-
fiability Problem. In Proceedings of MASCOTS’99, October 1999.

[5] F. Baader and P. Hanschke. A Scheme for Integrating Concrete Domains
into Concept Languages. In Proceedings of the 12th International Joint
Conference on Artificial Intelligence, IJCAI-91, pages 452–457, Sydney
(Australia), 1991.

[6] K. Czarnecki and U. W. Eisenecker. Generative Programming (Methods,
Tools, And Applications). Addison Wesley, 2000.

[7] Jonathan D. Hay and Joanne M. Atlee. Composing Features and Resolv-
ing Interactions. In David S. Rosenblum, editor, Proceedings of Eighth
International Symposium on the Foundations of Software Engineering,
pages 110–119. ACM Press, November 2000.

[8] K. Kang, S, Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute and Carnegie Mel-
lon University, Pittsburgh PA, November 1990.

[9] H. Klaeren, E. Pulvermueller, A. Rashid, and A. Speck. Aspect Com-
position applying the Design by Contract Principle. In Proceedings of
the Net.ObjectDays2000, Erfúrt, Germany, October 2000.

[10] Buchheit M., Donini F., and Schaerf A. Decidable Reasoning in Ter-
minological Knowledge Representation Systems. Journal of Artificial
Intelligence Research, 1:109–138, 1993.

[11] Kim Mens. Automating Architectural Conformance Checking by means
of Logic Meta Programming. PhD thesis, Vrije Universiteit Brussel,
October 2000.

[12] Keck D. O. and Kuehn P.J. The Feature and Service Interaction Prob-
lem in Telecommunications Systems: A Survey. IEEE Transactions on
Software Engineering, 24(10):779–796, October 1998.

IPD
87

[13] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis,
Vrije Universiteit Brussel, January 2001.

IPD
88

	ModelingOfFeatureInteractions-Clauss_reworked.pdf
	Background
	Position
	Feature interaction in feature modeling
	Feature interaction in implementation
	Layer-spanning interactions

	Summary
	Acknowledgments

	Untitled
	yujia_ecoop01.pdf
	A
	C
	P
	C consists of C1 and C2 .
	References

	danilo_beuche_fics-2001.pdf
	1 Introduction
	2 The Pure way of Feature Modeling
	3 Deriving efficient component implementations from feature sets
	3.1 The rs232-seria domain
	3.2 How to get the most efficient implementation

	4 Conclusions

	clauss_FICS2001.pdf
	Background
	Position
	Feature interaction in feature modeling
	Feature interaction in implementation
	Layer-spanning interactions

	Summary
	Acknowledgments

	beuche-fics-2001.pdf
	1 Introduction
	2 The Pure way of Feature Modeling
	3 Deriving efficient component implementations from feature sets
	3.1 The rs232-seria domain
	3.2 How to get the most efficient implementation

	4 Conclusions

	yujia_ecoop01.pdf
	A
	C
	P
	C consists of C1 and C2 .
	References

	beuche-fics-2001.pdf
	1 Introduction
	2 The Pure way of Feature Modeling
	3 Deriving efficient component implementations from feature sets
	3.1 The rs232-seria domain
	3.2 How to get the most efficient implementation

	4 Conclusions

