1,128 research outputs found

    Monitoring permafrost environments with Synthetic Aperture Radar (SAR) sensors

    Get PDF
    Permafrost occupies approximately 24% of the exposed land area in the Northern Hemisphere. It is an important element of the cryosphere and has strong impacts on hydrology, biological processes, land surface energy budget, and infrastructure. For several decades, surface air temperatures in the high northern latitudes have warmed at approximately twice the global rate. Permafrost temperatures have increased in most regions since the early 1980s, the averaged warming north of 60°N has been 1-2°C. In-situ measurements are essential to understanding physical processes in permafrost terrain, but they have several limitations, ranging from difficulties in drilling to the representativeness of limited single point measurements. Remote sensing is urgently needed to supplement ground-based measurements and extend the point observations to a broader spatial domain. This thesis concentrates on the sub-arctic permafrost environment monitoring with SAR datasets. The study site is selected in a typical discontinuous permafrost region in the eastern Canadian sub-Arctic. Inuit communities in Nunavik and Nunatsiavut in the Canadian eastern sub-arctic are amongst the groups most affected by the impacts of climate change and permafrost degradation. Synthetic Aperture Radar (SAR) datasets have advantages for permafrost monitoring in the Arctic and sub-arctic regions because of its high resolution and independence of cloud cover and solar illumination. To date, permafrost environment monitoring methods and strategies with SAR datasets are still under development. The variability of active layer thickness is a direct indication of permafrost thermal state changes. The Differential SAR Interferometry (D-InSAR) technique is applied in the study site to derive ground deformation, which is introduced by the thawing/freezing depth of active layer and underlying permafrost. The D-InSAR technique has been used for the mapping of ground surface deformation over large areas by interpreting the phase difference between two signals acquired at different times as ground motion information. It shows the ability to detect freeze/thaw-related ground motion over permafrost regions. However, to date, accuracy and value assessments of D-InSAR applications have focused mostly on the continuous permafrost region where the vegetation is less developed and causes fewer complicating factors for the D-InSAR application, less attention is laid on the discontinuous permafrost terrain. In this thesis, the influencing factors and application conditions for D-InSAR in the discontinuous permafrost environment are evaluated by using X- band and L-band data. Then, benefit from by the high-temporal resolution of C-band Sentinel-1 time series, the seasonal displacement is derived from small baseline subsets (SBAS)-InSAR. Landforms are indicative of permafrost presence, with their changes inferring modifications to permafrost conditions. A permafrost landscape mapping method was developed which uses multi-temporal TerraSAR-X backscatter intensity and interferometric coherence information. The land cover map is generated through the combined use of object-based image analysis (OBIA) and classification and regression tree analysis (CART). An overall accuracy of 98% is achieved when classifying rock and water bodies, and an accuracy of 79% is achieved when discriminating between different vegetation types with one year of single-polarized acquisitions. This classification strategy can be transferred to other time-series SAR datasets, e.g., Sentinel-1, and other heterogeneous environments. One predominant change in the landscape tied to the thaw of permafrost is the dynamics of thermokarst lakes. Dynamics of thermokarst lakes are developed through their lateral extent and vertical depth changes. Due to different water depth, ice cover over shallow thermokarst ponds/lakes can freeze completely to the lake bed in winter, resulting in grounded ice; while ice cover over deep thermokarst ponds/lakes cannot, which have liquid water persisting under the ice cover all winter, resulting in floating ice. Winter ice cover regimes are related to water depths and ice thickness. In the lakes having floating ice, the liquid water induces additional heat in the remaining permafrost underneath and surroundings, which contributes to further intensified permafrost thawing. SAR datasets are utilized to detect winter ice cover regimes based on the character that liquid water has a remarkably high dielectric constant, whereas pure ice has a low value. Patterns in the spatial distribution of ice-cover regimes of thermokarst ponds in a typical discontinuous permafrost region are first revealed. Then, the correlations of these ice-cover regimes with the permafrost degradation states and thermokarst pond development in two historical phases (Sheldrake catchment in the year 1957 and 2009, Tasiapik Valley 1994 and 2010) were explored. The results indicate that the ice-cover regimes of thermokarst ponds are affected by soil texture, permafrost degradation stage and permafrost depth. Permafrost degradation is difficult to directly assess from the coverage area of floating-ice ponds and the percentage of all thermokarst ponds consisting of such floating-ice ponds in a single year. Continuous monitoring of ice-cover regimes and surface areas is recommended to elucidate the hydrological trajectory of the thermokarst process. Several operational monitoring methods have been developed in this thesis work. In the meanwhile, the spatial distribution of seasonal ground thaw subsidence, permafrost landscape, thermokarst ponds and their winter ice cover regimes are first revealed in the study area. The outcomes help understand the state and dynamics of permafrost environment.Der Permafrostboden bedeckt etwa 24% der exponierten Landfläche in der nördlichen Hemisphäre. Es ist ein wichtiges Element der Kryosphäre und hat starke Auswirkungen auf die Hydrologie, die biologischen Prozesse, das Energie-Budget der Landoberfläche und die Infrastruktur. Seit mehreren Jahrzehnten erhöhen sich die Oberflächenlufttemperaturen in den nördlichen hohen Breitengraden etwa doppelt so stark wie die globale Rate. Die Temperaturen der Permafrostböden sind in den meisten Regionen seit den frühen 1980er Jahren gestiegen. Die durchschnittliche Erwärmung nördlich von 60° N beträgt 1-2°C. In-situ-Messungen sind essentiell für das Verständnis der physischen Prozesse im Permafrostgelände. Es gibt jedoch mehrere Einschränkungen, die von Schwierigkeiten beim Bohren bis hin zur Repräsentativität begrenzter Einzelpunktmessungen reichen. Fernerkundung ist dringend benötigt, um bodenbasierte Messungen zu ergänzen und punktuelle Beobachtungen auf einen breiteren räumlichen Bereich auszudehnen. Diese Dissertation konzentriert sich auf die Umweltbeobachtung der subarktischen Permafrostböden mit SAR-Datensätzen. Das Untersuchungsgebiet wurde in einer typischen diskontinuierlichen Permafrostzone in der kanadischen östlichen Sub-Arktis ausgewählt. Die Inuit-Gemeinschaften in den Regionen Nunavik und Nunatsiavut in der kanadischen östlichen Sub-Arktis gehören zu den Gruppen, die am stärksten von den Auswirkungen des Klimawandels und Permafrostdegradation betroffen sind. Synthetische Apertur Radar (SAR) Datensätze haben Vorteile für das Permafrostmonitoring in den arktischen und subarktischen Regionen aufgrund der hohen Auflösung und der Unabhängigkeit von Wolkendeckung und Sonnenstrahlung. Bis heute sind die Methoden und Strategien mit SAR-Datensätzen für Umweltbeobachtung der Permafrostböden noch in der Entwicklung. Die Variabilität der Auftautiefe der aktiven Schicht ist eine direkte Indikation der Veränderung des thermischen Zustands der Permafrostböden. Die Differential-SAR-Interferometrie(D-Insar)-Technik wird im Untersuchungsgebiet zur Ableitung der Bodendeformation, die durch Auftau- / und Gefriertiefe der aktiven Schicht und des unterliegenden Permafrostbodens eingeführt wird, eingesetzt. Die D-InSAR-Technik wurde für Kartierung der Landoberflächendeformation über große Flächen verwendet, indem der Phasenunterschied zwischen zwei zu verschiedenen Zeitpunkten als Bodenbewegungsinformation erfassten Signalen interpretiert wurde. Es zeigt die Fähigkeit, tau- und gefrierprozessbedingte Bodenbewegungen über Permafrostregionen zu detektieren. Jedoch fokussiert sich die Genauigkeit und Wertschätzung der D-InSAR-Anwendung bis heute hauptsächlich auf kontinuierliche Permafrostregion, wo die Vegetation wenig entwickelt ist und weniger komplizierte Faktoren für D-InSAR-Anwendung verursacht. Das diskontinuierliche Permafrostgelände wurde nur weniger berücksichtigt. In dieser Dissertation wurden die Einflussfaktoren und Anwendungsbedingungen für D-InSAR im diskontinuierlichen Permafrostgebiet mittels X-Band und L-Band Daten ausgewertet. Dann wurde die saisonale Verschiebung dank der hohen Auflösung der C-Band Sentinel-1 Zeitreihe von „Small Baseline Subsets (SBAS)-InSAR“ abgeleitet. Landformen weisen auf die Präsenz des Permafrosts hin, wobei deren Veränderungen auf die Modifikation der Permafrostbedingungen schließen. Eine Kartierungsmethode der Permafrostlandschaft wurde entwickelt, dabei wurde Multi-temporal TerraSAR-X Rückstreuungsintensität und interferometrische Kohärenzinformationen verwendet. Die Landbedeckungskarte wurde durch kombinierte Anwendung objektbasierter Bildanalyse (OBIA) und Klassifikations- und Regressionsbaum Analyse (CART) generiert. Eine Gesamtgenauigkeit in Höhe von 98% wurde bei Klassifikation der Gesteine und Wasserkörper erreicht. Bei Unterscheidung zwischen verschiedenen Vegetationstypen mit einem Jahr einzelpolarisierte Akquisitionen wurde eine Genauigkeit von 79% erreicht. Diese Klassifikationsstrategie kann auf andere Zeitreihen der SAR-Datensätzen, z.B. Sentinel-1, und auch anderen heterogenen Umwelten übertragen werden. Eine vorherrschende Veränderung in der Landschaft, die mit dem Auftauen des Permafrosts verbunden ist, ist die Dynamik der Thermokarstseen. Die Dynamik der Thermokarstseen ist durch Veränderungen der seitlichen Ausdehnung und der vertikalen Tiefe entwickelt. Aufgrund der unterschiedlichen Wassertiefen kann die Eisdecke über den flachen Thermokarstteichen/-seen im Winter bis auf den Wasserboden vollständig gefroren sein, was zum geerdeten Eis führt, während die Eisdecke über den tiefen Thermokarstteichen/-seen es nicht kann. In den tiefen Thermokarstteichen/-seen bleibt den ganzen Winter flüssiges Wasser unter der Eisdecke bestehen, was zum Treibeis führt. Das Wintereisdeckenregime bezieht sich auf die Wassertiefe und die Eisdicke. In den Seen mit Treibeis leitet das flüssige Wasser zusätzliche Wärme in den restlichen Permafrost darunter oder in der Umgebung, was zur weiteren Verstärkung des Permafrostauftauen beiträgt. Basiert auf den Charakter, dass das flüssige Wasser eine bemerkenswert hohe Dielektrizitätskonstante besitzt, während reines Eis einen niedrigen Wert hat, wurden die SAR Datensätzen zur Erkennung des Wintereisdeckenregimes verwendet. Zunächst wurden Schemen in der räumlichen Verteilung der Eisdeckenregimes der Thermokarstteiche in einer typischen diskontinuierlichen Permafrostregion abgeleitet. Dann wurden die Zusammenhänge dieser Eisdeckenregimes mit dem Degradationszustand des Permafrosts und der Entwicklung der Thermokarstteiche in zwei historischen Phasen (Sheldrake Einzugsgebiet in 1957 und 2009, Tasiapik Tal in 1994 und 2010) erforscht. Die Ergebnisse deuten darauf, dass die Eisdeckenregimes der Thermokarstteiche von der Bodenart, dem Degradationszustand des Permafrosts und der Permafrosttiefe beeinflusst werden. Es ist schwer, die Permafrostdegradation in einem einzelnen Jahr direkt durch den Abdeckungsbereich der Treibeis-Teiche und die Prozentzahl aller aus solchen Treibeis-Teichen bestehenden Thermokarstteiche abzuschätzen. Ein kontinuierliches Monitoring der Eisdeckenregimes und -oberflächen ist empfehlenswert, um den hydrologischen Verlauf des Thermokarstprozesses zu erläutern. In dieser Dissertation wurden mehrere operativen Monitoringsmethoden entwickelt. In der Zwischenzeit wurden die räumliche Verteilung der saisonalen Bodentauabsenkung, die Permafrostlandschaft, die Thermokarstteiche und ihre Wintereisdeckenregimes erstmals in diesem Untersuchungsgebiet aufgedeckt. Die Ergebnisse tragen dazu bei, den Zustand und die Dynamik der Permafrostumwelt zu verstehen

    Monitoring permafrost environments with Synthetic Aperture Radar (SAR) sensors

    Get PDF
    Permafrost occupies approximately 24% of the exposed land area in the Northern Hemisphere. It is an important element of the cryosphere and has strong impacts on hydrology, biological processes, land surface energy budget, and infrastructure. For several decades, surface air temperatures in the high northern latitudes have warmed at approximately twice the global rate. Permafrost temperatures have increased in most regions since the early 1980s, the averaged warming north of 60°N has been 1-2°C. In-situ measurements are essential to understanding physical processes in permafrost terrain, but they have several limitations, ranging from difficulties in drilling to the representativeness of limited single point measurements. Remote sensing is urgently needed to supplement ground-based measurements and extend the point observations to a broader spatial domain. This thesis concentrates on the sub-arctic permafrost environment monitoring with SAR datasets. The study site is selected in a typical discontinuous permafrost region in the eastern Canadian sub-Arctic. Inuit communities in Nunavik and Nunatsiavut in the Canadian eastern sub-arctic are amongst the groups most affected by the impacts of climate change and permafrost degradation. Synthetic Aperture Radar (SAR) datasets have advantages for permafrost monitoring in the Arctic and sub-arctic regions because of its high resolution and independence of cloud cover and solar illumination. To date, permafrost environment monitoring methods and strategies with SAR datasets are still under development. The variability of active layer thickness is a direct indication of permafrost thermal state changes. The Differential SAR Interferometry (D-InSAR) technique is applied in the study site to derive ground deformation, which is introduced by the thawing/freezing depth of active layer and underlying permafrost. The D-InSAR technique has been used for the mapping of ground surface deformation over large areas by interpreting the phase difference between two signals acquired at different times as ground motion information. It shows the ability to detect freeze/thaw-related ground motion over permafrost regions. However, to date, accuracy and value assessments of D-InSAR applications have focused mostly on the continuous permafrost region where the vegetation is less developed and causes fewer complicating factors for the D-InSAR application, less attention is laid on the discontinuous permafrost terrain. In this thesis, the influencing factors and application conditions for D-InSAR in the discontinuous permafrost environment are evaluated by using X- band and L-band data. Then, benefit from by the high-temporal resolution of C-band Sentinel-1 time series, the seasonal displacement is derived from small baseline subsets (SBAS)-InSAR. Landforms are indicative of permafrost presence, with their changes inferring modifications to permafrost conditions. A permafrost landscape mapping method was developed which uses multi-temporal TerraSAR-X backscatter intensity and interferometric coherence information. The land cover map is generated through the combined use of object-based image analysis (OBIA) and classification and regression tree analysis (CART). An overall accuracy of 98% is achieved when classifying rock and water bodies, and an accuracy of 79% is achieved when discriminating between different vegetation types with one year of single-polarized acquisitions. This classification strategy can be transferred to other time-series SAR datasets, e.g., Sentinel-1, and other heterogeneous environments. One predominant change in the landscape tied to the thaw of permafrost is the dynamics of thermokarst lakes. Dynamics of thermokarst lakes are developed through their lateral extent and vertical depth changes. Due to different water depth, ice cover over shallow thermokarst ponds/lakes can freeze completely to the lake bed in winter, resulting in grounded ice; while ice cover over deep thermokarst ponds/lakes cannot, which have liquid water persisting under the ice cover all winter, resulting in floating ice. Winter ice cover regimes are related to water depths and ice thickness. In the lakes having floating ice, the liquid water induces additional heat in the remaining permafrost underneath and surroundings, which contributes to further intensified permafrost thawing. SAR datasets are utilized to detect winter ice cover regimes based on the character that liquid water has a remarkably high dielectric constant, whereas pure ice has a low value. Patterns in the spatial distribution of ice-cover regimes of thermokarst ponds in a typical discontinuous permafrost region are first revealed. Then, the correlations of these ice-cover regimes with the permafrost degradation states and thermokarst pond development in two historical phases (Sheldrake catchment in the year 1957 and 2009, Tasiapik Valley 1994 and 2010) were explored. The results indicate that the ice-cover regimes of thermokarst ponds are affected by soil texture, permafrost degradation stage and permafrost depth. Permafrost degradation is difficult to directly assess from the coverage area of floating-ice ponds and the percentage of all thermokarst ponds consisting of such floating-ice ponds in a single year. Continuous monitoring of ice-cover regimes and surface areas is recommended to elucidate the hydrological trajectory of the thermokarst process. Several operational monitoring methods have been developed in this thesis work. In the meanwhile, the spatial distribution of seasonal ground thaw subsidence, permafrost landscape, thermokarst ponds and their winter ice cover regimes are first revealed in the study area. The outcomes help understand the state and dynamics of permafrost environment.Der Permafrostboden bedeckt etwa 24% der exponierten Landfläche in der nördlichen Hemisphäre. Es ist ein wichtiges Element der Kryosphäre und hat starke Auswirkungen auf die Hydrologie, die biologischen Prozesse, das Energie-Budget der Landoberfläche und die Infrastruktur. Seit mehreren Jahrzehnten erhöhen sich die Oberflächenlufttemperaturen in den nördlichen hohen Breitengraden etwa doppelt so stark wie die globale Rate. Die Temperaturen der Permafrostböden sind in den meisten Regionen seit den frühen 1980er Jahren gestiegen. Die durchschnittliche Erwärmung nördlich von 60° N beträgt 1-2°C. In-situ-Messungen sind essentiell für das Verständnis der physischen Prozesse im Permafrostgelände. Es gibt jedoch mehrere Einschränkungen, die von Schwierigkeiten beim Bohren bis hin zur Repräsentativität begrenzter Einzelpunktmessungen reichen. Fernerkundung ist dringend benötigt, um bodenbasierte Messungen zu ergänzen und punktuelle Beobachtungen auf einen breiteren räumlichen Bereich auszudehnen. Diese Dissertation konzentriert sich auf die Umweltbeobachtung der subarktischen Permafrostböden mit SAR-Datensätzen. Das Untersuchungsgebiet wurde in einer typischen diskontinuierlichen Permafrostzone in der kanadischen östlichen Sub-Arktis ausgewählt. Die Inuit-Gemeinschaften in den Regionen Nunavik und Nunatsiavut in der kanadischen östlichen Sub-Arktis gehören zu den Gruppen, die am stärksten von den Auswirkungen des Klimawandels und Permafrostdegradation betroffen sind. Synthetische Apertur Radar (SAR) Datensätze haben Vorteile für das Permafrostmonitoring in den arktischen und subarktischen Regionen aufgrund der hohen Auflösung und der Unabhängigkeit von Wolkendeckung und Sonnenstrahlung. Bis heute sind die Methoden und Strategien mit SAR-Datensätzen für Umweltbeobachtung der Permafrostböden noch in der Entwicklung. Die Variabilität der Auftautiefe der aktiven Schicht ist eine direkte Indikation der Veränderung des thermischen Zustands der Permafrostböden. Die Differential-SAR-Interferometrie(D-Insar)-Technik wird im Untersuchungsgebiet zur Ableitung der Bodendeformation, die durch Auftau- / und Gefriertiefe der aktiven Schicht und des unterliegenden Permafrostbodens eingeführt wird, eingesetzt. Die D-InSAR-Technik wurde für Kartierung der Landoberflächendeformation über große Flächen verwendet, indem der Phasenunterschied zwischen zwei zu verschiedenen Zeitpunkten als Bodenbewegungsinformation erfassten Signalen interpretiert wurde. Es zeigt die Fähigkeit, tau- und gefrierprozessbedingte Bodenbewegungen über Permafrostregionen zu detektieren. Jedoch fokussiert sich die Genauigkeit und Wertschätzung der D-InSAR-Anwendung bis heute hauptsächlich auf kontinuierliche Permafrostregion, wo die Vegetation wenig entwickelt ist und weniger komplizierte Faktoren für D-InSAR-Anwendung verursacht. Das diskontinuierliche Permafrostgelände wurde nur weniger berücksichtigt. In dieser Dissertation wurden die Einflussfaktoren und Anwendungsbedingungen für D-InSAR im diskontinuierlichen Permafrostgebiet mittels X-Band und L-Band Daten ausgewertet. Dann wurde die saisonale Verschiebung dank der hohen Auflösung der C-Band Sentinel-1 Zeitreihe von „Small Baseline Subsets (SBAS)-InSAR“ abgeleitet. Landformen weisen auf die Präsenz des Permafrosts hin, wobei deren Veränderungen auf die Modifikation der Permafrostbedingungen schließen. Eine Kartierungsmethode der Permafrostlandschaft wurde entwickelt, dabei wurde Multi-temporal TerraSAR-X Rückstreuungsintensität und interferometrische Kohärenzinformationen verwendet. Die Landbedeckungskarte wurde durch kombinierte Anwendung objektbasierter Bildanalyse (OBIA) und Klassifikations- und Regressionsbaum Analyse (CART) generiert. Eine Gesamtgenauigkeit in Höhe von 98% wurde bei Klassifikation der Gesteine und Wasserkörper erreicht. Bei Unterscheidung zwischen verschiedenen Vegetationstypen mit einem Jahr einzelpolarisierte Akquisitionen wurde eine Genauigkeit von 79% erreicht. Diese Klassifikationsstrategie kann auf andere Zeitreihen der SAR-Datensätzen, z.B. Sentinel-1, und auch anderen heterogenen Umwelten übertragen werden. Eine vorherrschende Veränderung in der Landschaft, die mit dem Auftauen des Permafrosts verbunden ist, ist die Dynamik der Thermokarstseen. Die Dynamik der Thermokarstseen ist durch Veränderungen der seitlichen Ausdehnung und der vertikalen Tiefe entwickelt. Aufgrund der unterschiedlichen Wassertiefen kann die Eisdecke über den flachen Thermokarstteichen/-seen im Winter bis auf den Wasserboden vollständig gefroren sein, was zum geerdeten Eis führt, während die Eisdecke über den tiefen Thermokarstteichen/-seen es nicht kann. In den tiefen Thermokarstteichen/-seen bleibt den ganzen Winter flüssiges Wasser unter der Eisdecke bestehen, was zum Treibeis führt. Das Wintereisdeckenregime bezieht sich auf die Wassertiefe und die Eisdicke. In den Seen mit Treibeis leitet das flüssige Wasser zusätzliche Wärme in den restlichen Permafrost darunter oder in der Umgebung, was zur weiteren Verstärkung des Permafrostauftauen beiträgt. Basiert auf den Charakter, dass das flüssige Wasser eine bemerkenswert hohe Dielektrizitätskonstante besitzt, während reines Eis einen niedrigen Wert hat, wurden die SAR Datensätzen zur Erkennung des Wintereisdeckenregimes verwendet. Zunächst wurden Schemen in der räumlichen Verteilung der Eisdeckenregimes der Thermokarstteiche in einer typischen diskontinuierlichen Permafrostregion abgeleitet. Dann wurden die Zusammenhänge dieser Eisdeckenregimes mit dem Degradationszustand des Permafrosts und der Entwicklung der Thermokarstteiche in zwei historischen Phasen (Sheldrake Einzugsgebiet in 1957 und 2009, Tasiapik Tal in 1994 und 2010) erforscht. Die Ergebnisse deuten darauf, dass die Eisdeckenregimes der Thermokarstteiche von der Bodenart, dem Degradationszustand des Permafrosts und der Permafrosttiefe beeinflusst werden. Es ist schwer, die Permafrostdegradation in einem einzelnen Jahr direkt durch den Abdeckungsbereich der Treibeis-Teiche und die Prozentzahl aller aus solchen Treibeis-Teichen bestehenden Thermokarstteiche abzuschätzen. Ein kontinuierliches Monitoring der Eisdeckenregimes und -oberflächen ist empfehlenswert, um den hydrologischen Verlauf des Thermokarstprozesses zu erläutern. In dieser Dissertation wurden mehrere operativen Monitoringsmethoden entwickelt. In der Zwischenzeit wurden die räumliche Verteilung der saisonalen Bodentauabsenkung, die Permafrostlandschaft, die Thermokarstteiche und ihre Wintereisdeckenregimes erstmals in diesem Untersuchungsgebiet aufgedeckt. Die Ergebnisse tragen dazu bei, den Zustand und die Dynamik der Permafrostumwelt zu verstehen

    Techniques, advances, problems and issues in numerical modelling of landslide hazard

    Get PDF
    Slope movements (e.g. landslides) are dynamic systems that are complex in time and space and closely linked to both inherited and current preparatory and triggering controls. It is not yet possible to assess in all cases conditions for failure, reactivation and rapid surges and successfully simulate their transient and multi-dimensional behaviour and development, although considerable progress has been made in isolating many of the key variables and elementary mechanisms and to include them in physically-based models for landslide hazard assessments. Therefore, the objective of this paper is to review the state-of-the-art in the understanding of landslide processes and to identify some pressing challenges for the development of our modelling capabilities in the forthcoming years for hazard assessment. This paper focuses on the special nature of slope movements and the difficulties related to simulating their complex time-dependent behaviour in mathematical, physically-based models. It analyses successively the research frontiers in the recognition of first-time failures (pre-failure and failure stages), reactivation and the catastrophic transition to rapid gravitational processes (post-failure stage). Subsequently, the paper discusses avenues to transfer local knowledge on landslide activity to landslide hazard forecasts on regional scales and ends with an outline how geomorphological investigations and supporting monitoring techniques could be applied to improve the theoretical concepts and the modelling performance of physically-based landslide models at different spatial and temporal scales

    Soil Moisture Estimation for landslide monitoring: A new approach using multi-temporal Synthetic Aperture RADAR data

    Get PDF
    This study explores the utility of the Spotlight2 X-band Synthetic Aperture Radar product developed by the Italian Space Agency for use in multi-temporal estimation of soil moisture in a landslide monitoring context, using a time series of monthly images of the Hollin Hill Landslide Observatory – North Yorkshire, UK. The study shows the complexity of surface soil moisture at an active landslide, using high resolution in situ soil moisture data. This in situ data is also used for ground truthing the soil moisture estimations from the SAR data. The study shows the limitations of inter-and intra-sensor calibration within the Cosmo-SkyMed array and contextualises this problem within the current research climate where SAR imagery is increasingly being created using multi-satellite constellation, while being used, increasingly, by environmental scientists rather than remote sensing specialists

    Multi-component and multi-source approach to model subsidence in deltas. Application to Po Delta Area

    Get PDF
    This thesis focused on the definition of a study approach able to deal with the complexity of the land subsidence phenomenon in deltas. In the framework of the most up- to-date multi-methodological and multi-disciplinary studies concerning land subsidence and targeting to predict and prevent flooding risk, the thesis introduces a procedure based on two main innovations: the multi-component study and the multi-source analysis. The proposed approach is a “multi-component” procedure as it investigates, in the available geodetic datasets, the permanent component apart from the periodic one, and, at the same time, it is a “multi-source” approach because it attempts to identify the relevant processes causing subsidence (sources) by a modelling based on multi-source data analysis. The latter task is accomplished first through multi-disciplinary and multi-methodological comparative analyses, then through modelling of the selected processes. With respect to past and current approaches for studying subsidence phenomena, the developed procedure allows one to: i. overcome the one-component investigation, improving the accuracy in the geodetic velocity estimate; ii. fix the “analyses to modelling” procedure, enhancing qualitative or semi-quantitative procedures that often characterize the “data to source” and the “residual to source” approaches; iii. quicken the source validation phase, accrediting the relevance of the source on the basis of the analysis results and before the modelling phase, differently from the “peering approach”, which validates the source on the basis of the model findings. The proposed procedure has been tested on the Po Delta (northern Italy), an area historically affected by land subsidence and recently interested by accurate continuous geodetic monitoring through GNSS stations. Daily-CGPS time series (three stations), weekly- CGPS time series (two stations) and seven sites of DInSAR-derived time series spanning over the time interval 2009 – 2017 constituted the used geodetic datasets. Several meteo/hydro parameters collected from fifty-seven stations and wide stratigraphic-geological information formed the base for the performed comparative analyses. From the application of the proposed procedure, it turns out that the periodic annual component highlighted in the continuous GPS stations is explained by two water mass-dependent processes: soil moisture mass change, which seems to control the ground level up-or-down lift in the southern part of the Delta, and the river water mass change, which influences the ground displacement in the central part of the Delta. As it concerns the permanent component, the lower rate found over 2012 - 2016 period in the central part of the Delta with respect to the eastern part is interpreted as due to the sediment compaction process of the Holocene prograding sequences and to the increase of rich-clay deposits

    Theoretical Developments in Electromagnetic Induction Geophysics with Selected Applications in the Near Surface

    Get PDF
    Near-surface applied electromagnetic geophysics is experiencing an explosive period of growth with many innovative techniques and applications presently emergent and others certain to be forthcoming. An attempt is made here to bring together and describe some of the most notable advances. This is a difficult task since papers describing electromagnetic induction methods are widely dispersed throughout the scientific literature. The traditional topics discussed herein include modeling, inversion, heterogeneity, anisotropy, target recognition, logging, and airborne electromagnetics (EM). Several new or emerging techniques are introduced including landmine detection, biogeophysics, interferometry, shallow-water electromagnetics, radiomagnetotellurics, and airborne unexploded ordnance (UXO) discrimination. Representative case histories that illustrate the range of exciting new geoscience that has been enabled by the developing techniques are presented from important application areas such as hydrogeology, contamination, UXO and landmines, soils and agriculture, archeology, and hazards and climat

    Summaries of the Sixth Annual JPL Airborne Earth Science Workshop

    Get PDF
    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop

    Surface Soil Moisture Retrievals from Remote Sensing:Current Status, Products & Future Trends

    Get PDF
    Advances in Earth Observation (EO) technology, particularly over the last two decades, have shown that soil moisture content (SMC) can be measured to some degree or other by all regions of the electromagnetic spectrum, and a variety of techniques have been proposed to facilitate this purpose. In this review we provide a synthesis of the efforts made during the last 20 years or so towards the estimation of surface SMC exploiting EO imagery, with a particular emphasis on retrievals from microwave sensors. Rather than replicating previous overview works, we provide a comprehensive and critical exploration of all the major approaches employed for retrieving SMC in a range of different global ecosystems. In this framework, we consider the newest techniques developed within optical and thermal infrared remote sensing, active and passive microwave domains, as well as assimilation or synergistic approaches. Future trends and prospects of EO for the accurate determination of SMC from space are subject to key challenges, some of which are identified and discussed within. It is evident from this review that there is potential for more accurate estimation of SMC exploiting EO technology, particularly so, by exploring the use of synergistic approaches between a variety of EO instruments. Given the importance of SMC in Earth’s land surface interactions and to a large range of applications, one can appreciate that its accurate estimation is critical in addressing key scientific and practical challenges in today’s world such as food security, sustainable planning and management of water resources. The launch of new, more sophisticated satellites strengthens the development of innovative research approaches and scientific inventions that will result in a range of pioneering and ground-breaking advancements in the retrievals of soil moisture from space

    Advancing railway track health monitoring:Integrating GPR, InSAR and machine learning for enhanced asset management

    Get PDF
    Railway track health monitoring and maintenance are crucial stages in railway asset management, aiming to enhance the train operation quality and service life. For this aim, various inspection means (using diverse non-destructive testing techniques) have been applied, however, these means are mostly not able to monitor whole railway track network or track underlying layers (e.g., ballast and subgrade). The use of remote sensing techniques, such as Interferometric Synthetic Aperture Radar (InSAR), can expedite the defect diagnosis process for railway tracks, elevating the scope of health monitoring to a network-wide level. The Ground Penetrating Radar (GPR) has emerged as a particularly reliable method, especially for detecting structural deficiencies in underlying layers. As a result, combining the two distinct non-destructive testing techniques – GPR and InSAR – presents a promising strategy for efficient railway asset management. Recognizing the significance of embracing newer and more advanced monitoring strategies, this paper reviews the fusion of GPR and InSAR methodologies, and explores the potential integration of machine learning models to develop a predictive health monitoring and condition-based maintenance approach for railway tracks

    Geomechanics of subsurface water withdrawal and injection

    Get PDF
    Land subsidence and uplift, ground ruptures, and induced seismicity are the principal geomechanic effects of groundwater withdrawal and injection. The major environmental consequence of groundwater pumping is anthropogenic land subsidence. The first observation concerning land settlement linked to subsurface processes was made in 1926 by the American geologists Pratt and Johnson, who wrote that \u2018\u2018the cause of subsidence is to be found in the extensive extraction of fluid from beneath the affected area.\u2019\u2019 Since then, impressive progress has been made in terms of: (a) recognizing the basic hydrologic and geomechanic principles underlying the occurrence; (b) measuring aquifer compaction and ground displacements, both vertical and horizontal; (c) modeling and predicting the past and future event; and (d) mitigating environmental impact through aquifer recharge and/or surface water injection. The first milestone in the theory of pumped aquifer consolidation was reached in 1923 by Terzaghi, who introduced the principle of \u2018\u2018effective intergranular stress.\u2019\u2019 In the early 1970s, the emerging computer technology facilitated development of the first mathematical model of the subsidence of Venice, made by Gambolati and Freeze. Since then, the comprehension, measuring, and simulation of the occurrence have improved dramatically. More challenging today are the issues of ground ruptures and induced/triggered seismicity, which call for a shift from the classical continuum approach to discontinuous mechanics. Although well known for decades, anthropogenic land subsidence is still threatening large urban centers and deltaic areas worldwide, such as Bangkok, Jakarta, and Mexico City, at rates in the order of 10 cm/yr
    • …
    corecore