15,596 research outputs found

    Hydrological controls on river network connectivity

    Get PDF
    This study proposes a probabilistic approach for the quantitative assessment of reach- and network-scale hydrological connectivity as dictated by river flow space–time variability. Spatial dynamics of daily streamflows are estimated based on climatic and morphological features of the contributing catchment, integrating a physically based approach that accounts for the stochasticity of rainfall with a water balance framework and a geomorphic recession flow analysis. Ecologically meaningful minimum stage thresholds are used to evaluate the connectivity of individual stream reaches, and other relevant network-scale connectivity metrics. The framework allows a quantitative description of the main hydrological causes and the ecological consequences of water depth dynamics experienced by river networks. The analysis shows that the spatial variability of local-scale hydrological connectivity is strongly affected by the spatial and temporal distribution of climatic variables. Depending on the underlying climatic settings and the critical stage threshold, loss of connectivity can be observed in the headwaters or along the main channel, thereby originating a fragmented river network. The proposed approach provides important clues for understanding the effect of climate on the ecological function of river corridors

    Groundwater flooding within an urbanised flood plain

    Get PDF
    In Europe in recent years, there has been recognition of the need to better understand the risk from groundwater flooding. This recognition has been due both to the occurrence of major flooding events clearly attributable to groundwater and the inclusion of groundwater flooding in European and national legislation. The case study of the city of Oxford on the River Thames flood plain in UK is used to examine the mechanisms for groundwater flooding in urbanised flood plain settings. Reference is made to an extensive data set gathered during a major flood event in 2007. Groundwater flooding of a significant number of properties is shown to occur in areas isolated from fluvial flooding because of high ground created historically to protect property and the transport network from flood inundation. The options for mitigating this form of flooding are discussed; measures to increase the rate of conveyance of flood waters through Oxford, designed to reduce fluvial flood risk, have also been recognised as a means for reducing groundwater flood risk within the city

    Hydrological behaviour of the granitic Strengbach catchment (Vosges massif, Eastern France) during a flood event

    Get PDF
    A field campaign combining monitoring devices and determination of isotopes and chemical elements has been performed during a summer thunderstorm in the small granitic Strengbach catchment (Vosges, France). The collected ground data were used in a hydrological modelling exercise including two conceptual rainfallrunoff models (GR4, TOPMODEL). The predominant role in flood generation of pre-event water coming from the superficial layers of the water saturated area has been shown and a conceptual scheme has been proposed derived from the field observations. The two tested modelling structures and assumptions are not able to take into account fully the complexity of the physical processes involved in flood generation

    Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall-Runoff) model

    Get PDF
    Acknowledgements. This work was funded by the NERC/JPI SIWA project (NE/M019896/1) and the European Research Council ERC (project GA 335910 VeWa). Numerical simulations were performed using the Maxwell High Performance Computing Cluster of the University of Aberdeen IT Service, provided by Dell Inc. and supported by Alces Software. The isotope work in Krycklan is funded by the KAW Branch-Point project together with SKB and SITES. We would like to thank Marjolein van Hui- jgevoort for her help with the STARR code, and Masaki Hayashi and two anonymous reviewers for their insightful suggestions that significantly improved the paper. The Supplement related to this article is available online at https://doi.org/10.5194/hess-21-5089-2017-supplement.Peer reviewedPublisher PD

    Simulating the influences of groundwater on regional geomorphology using a distributed, dynamic, landscape evolution modelling platform

    Get PDF
    A dynamic landscape evolution modelling platform (CLiDE) is presented that allows a variety of Earth system interactions to be explored under differing environmental forcing factors. Representation of distributed surface and subsurface hydrology within CLiDE is suited to simulation at sub-annual to centennial time-scales. In this study the hydrological components of CLiDE are evaluated against analytical solutions and recorded datasets. The impact of differing groundwater regimes on sediment discharge is examined for a simple, idealised catchment, Sediment discharge is found to be a function of the evolving catchment morphology. Application of CLiDE to the upper Eden Valley catchment, UK, suggests the addition of baseflow-return from groundwater into the fluvial system modifies the total catchment sediment discharge and the spatio-temporal distribution of sediment fluxes during storm events. The occurrence of a storm following a period of appreciable antecedent rainfall is found to increase simulated sediment fluxes

    Lithology and the evolution of bedrock rivers in post-orogenic settings: Constraints from the high elevation passive continental margin of SE Australia

    Get PDF
    Understanding the role of lithological variation in the evolution of topography remains a fundamental issue, especially in the neglected post-orogenic terrains. Such settings represent the major part of the Earth's surface and recent modelling suggests that a range of interactions can account for the presence of residual topography for hundreds of millions of years, thereby explaining the great antiquity of landscapes in such settings. Field data from the inland flank of the SE Australian high-elevation continental margin suggest that resistant lithologies act to retard or even preclude the headward transmission of base-level fall driven by the isostatic response to regional denudation. Rejuvenation, be it episodic or continuous, is ‘caught up’ on these resistant lithologies, meaning in effect that the bedrock channels and hillslopes upstream of these ‘stalled’ knickpoints have become detached from the base-level changes downstream of the knickpoints. Until these knickpoints are breached, therefore, catchment relief must increase over time, a landscape evolution scenario that has been most notably suggested by Crickmay and Twidale. The role of resistant lithologies indicates that detachment-limited conditions are a key to the longevity of some post-orogenic landscapes, whereas the general importance of transport-limited conditions in the evolution of post-orogenic landscapes remains to be evaluated in field settings. Non-steady-state landscapes may lie at the heart of widespread, slowly evolving post-orogenic settings, such as high-elevation passive continental margins, meaning that non-steady-state landscapes, with increasing relief through time, are the ‘rule’ rather than the exception
    corecore