7 research outputs found

    Modeling and Simulation of Energy Management Hybrid Sources System composed of Solar-PV and Battery

    Get PDF
    This paper describes the  modeling and control of a hybrid source consisting of PV generator (as  main  source)  along  with  a  battery (as  an  auxiliary source)  and a dc-load are connected through power converters and a dc-link. The main objective of this paper is to design a power manager to control effectively the power of the different sources. To test the effectiveness of the different control techniques involved, simulation results are plotted and commented

    A Control Strategy Scheme for Fuel Cell-Vehicle Based on Frequency Separation

    No full text
    International audienceThis paper presents a control strategy scheme based on frequency-separation for Fuel cell-Battery Hybrid Electric Vehicle (HEV), using a Fuel cell (FC) as a main energy source, and a battery as an auxiliary power source. First, an analysis of hybrid architecture using an FC and batteries for automotive applications is presented. Next, the model and the control strategy are described. In this strategy a frequency splitter is used for routing the low frequency content of power demand into the FC and its high frequencies into the battery, taking profit from the battery as a peak power unit. Simulation and experimental results validate the performance of this strategy

    Hybrid power management for fuel cell-supercapacitor powered hybrid electric vehicle

    Get PDF
    Fuel cell (FC) with a combination of supercapacitor (SC) based hybrid electric vehicles have been regarded as a potential solution in the future transportation system. This is due to their zero-emission, enhancement of transient power demand, ability to absorb the energy from the regenerative braking, high efficiency, and long mileage. Nevertheless, the nonlinear output characteristics of the FC system are a feeble point owing to internal constraints such as membrane water content and cell temperature. Hence it is essential to extricate as much power as possible from the stack to avert excessive fuel usage and low system efficiency. Conversely, despite the advantages of the SC as an auxiliary energy storage system, the series connection of SC cells causes a cell imbalance problem due to uneven cell characteristics that occur during the manufacturing process and its ambient conditions. This discrepancy of cell voltages in a supercapacitor module leads to reduce the stack’s efficiency and its lifetime. Furthermore, the above limitations of the power sources and initial state of SC’s charge affect the power management’s distribution of power among the multiple sources. Therefore, the aim of this thesis is to propose a hybrid power management for fuel cell-supercapacitor powered hybrid electric vehicles to solve the three identified problems. Firstly, this thesis focuses on a maximum power point tracking (MPPT) controller with a modified 4-leg interleaved boost converter (M-FLIBC) topology for the FC system. The effectiveness of the proposed IBC with a controller for the FC is compared with the two additional controllers couples with the conventional FLIBC topology. Next, a global modular balancer for voltage balancing of multiple supercapacitor cells is connected in series for an HEV system. The global modular balancing architecture is proposed based on forward conversion, which integrates cell balancing, module balancing, and operating for different frequencies. Thus, greatly reducing the volume and implementation complexity. Finally, the thesis evaluates hybrid power management (HPM) for effective power sources distribution, in order to reduce hydrogen consumption and enhance the vehicle's fuel economy. In this case, an equivalent circuit model of SC is developed for the energy storage system. The combination of an extended Kalman filter (EKF) and traditional coulomb counting (CC) method is used to estimate the SC state of charge in improving the effectiveness of the HPM. To evaluate the fuel economy under realistic driving conditions, the combined environmental protection agency (EPA) test cycles for a city and highway are considered. The outcome of performance comparison of the different controllers based on MPPT technique in terms of voltage, current, power, settling time, and efficiency of the FC indicates that the radial basis function network (RBFN) based MPPT controller with the M-FLIBC outperforms the PID and Fuzzy based controllers. With respect to controlling of SC in HEV environment, the proposed topology of SC presents effective voltage balancing with a lower component count, able to operate at different frequencies, i.e., 10 to 70 kHz, as well opens to unlimited stackable modular numbers of SC cells for the HEV performance analysis. Ultimately, with all the proposed control topologies and combined EKF-CC based power management for the FC-SC in Series HEV, the vehicle's fuel economy is increased to 93.38 km/kg as compared to traditional CC based power management of 86.53 km/kg, besides it improves the vehicle’s acceleration within 0-100 km/h in 9.0 seconds respectively. Finally, the research shows that the hybrid power management of FC and SC powered HEV leads to improved performance of the vehicle in terms of the key measures. Suggestions for future research are also highlighted

    Modelling and Frequency Separation Energy Management of Fuel Cell-Battery Hybrid Sources System for Hybrid Electric Vehicle

    No full text
    International audienceThis paper presents a hybrid system of fuel cellbattery power sources for electric vehicle. Because fuel cell (FC) and battery have advantages and disadvantages of their own, it should be beneficial to have hybrid sources, in which FC supplies the base energy while battery supplies peak power for fast acceleration and captures the braking energy regeneration. In this paper a state space model for the Fuel Cell-Battery Hybrid Electric Vehicle (FCEV) power system is given and an energy management based on frequencies separation is discussed and validated by Matlab simulation

    Developments of electric cars and fuel cell hydrogen electric cars

    Get PDF
    The world continues to strive in the search for clean power sources to run the millions of different vehicles on the road on daily basis as they are the main contributors to toxic emissions releases from internal combustion engines to the atmosphere. These toxic emissions contribute to climate change and air pollution and impact negatively on people's health. Fuel cell devices are gradually replacing the internal combustion engines in the transport industry. Some notable challenges of the PEMFC technology are discussed in this paper. High costs, low durability and hydrogen storage problems are some of the major obstacles being examined in this investigation. The paper explores the latest advances in electric cars technology and their design specifications. The study also compares the characteristics and the technologies of the three types of electric cars now available in the market.interna

    Powertrain Systems for Net-Zero Transport

    Get PDF
    The transport sector continues to shift towards alternative powertrains, particularly with the UK Government’s announcement to end the sale of petrol and diesel passenger cars by 2030 and increasing support for alternatives. Despite this announcement, the internal combustion continues to play a significant role both in the passenger car market through the use of hybrids and sustainable low carbon fuels, as well as a key role in other sectors such as heavy-duty vehicles and off-highway applications across the globe. Building on the industry-leading IC Engines conference, the 2021 Powertrain Systems for Net-Zero Transport conference (7-8 December 2021, London, UK) focussed on the internal combustion engine’s role in Net-Zero transport as well as covered developments in the wide range of propulsion systems available (electric, fuel cell, sustainable fuels etc) and their associated powertrains. To achieve the net-zero transport across the globe, the life-cycle analysis of future powertrain and energy was also discussed. Powertrain Systems for Net-Zero Transport provided a forum for engine, fuels, e-machine, fuel cell and powertrain experts to look closely at developments in powertrain technology required, to meet the demands of the net-zero future and global competition in all sectors of the road transportation, off-highway and stationary power industries

    Powertrain Systems for Net-Zero Transport

    Get PDF
    The transport sector continues to shift towards alternative powertrains, particularly with the UK Government’s announcement to end the sale of petrol and diesel passenger cars by 2030 and increasing support for alternatives. Despite this announcement, the internal combustion continues to play a significant role both in the passenger car market through the use of hybrids and sustainable low carbon fuels, as well as a key role in other sectors such as heavy-duty vehicles and off-highway applications across the globe. Building on the industry-leading IC Engines conference, the 2021 Powertrain Systems for Net-Zero Transport conference (7-8 December 2021, London, UK) focussed on the internal combustion engine’s role in Net-Zero transport as well as covered developments in the wide range of propulsion systems available (electric, fuel cell, sustainable fuels etc) and their associated powertrains. To achieve the net-zero transport across the globe, the life-cycle analysis of future powertrain and energy was also discussed. Powertrain Systems for Net-Zero Transport provided a forum for engine, fuels, e-machine, fuel cell and powertrain experts to look closely at developments in powertrain technology required, to meet the demands of the net-zero future and global competition in all sectors of the road transportation, off-highway and stationary power industries
    corecore