195 research outputs found

    Review on free-space optical communications for delay and disruption tolerant networks

    Get PDF
    The increase of data-rates that are provided by free-space optical (FSO) communications is essential in our data-driven society. When used in satellite and interplanetary networks, these optical links can ensure fast connections, yet they are susceptible to atmospheric disruptions and long orbital delays. The Delay and Disruption Tolerant Networking (DTN) architecture ensures a reliable connection between two end nodes, without the need for a direct connection. This can be an asset when used with FSO links, providing protocols that can handle the intermittent nature of the connection. This paper provides a review on the theoretical and state-of-the-art studies on FSO and DTN. The aim of this review is to provide motivation for the research of an optical wireless satellite network, with focus on the use of the Licklider Transmission Protocol. The assessment presented establishes the viability of these networks, providing many examples to rely on, and summarizing the most recent stage of the development of the technologies addressed.info:eu-repo/semantics/publishedVersio

    Operational Concepts for a Generic Space Exploration Communication Network Architecture

    Get PDF
    This document is one of three. It describes the Operational Concept (OpsCon) for a generic space exploration communication architecture. The purpose of this particular document is to identify communication flows and data types. Two other documents accompany this document, a security policy profile and a communication architecture document. The operational concepts should be read first followed by the security policy profile and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes: subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space

    Trustworthiness Mechanisms for Long-Distance Networks in Internet of Things

    Get PDF
    Aquesta tesi té com a objectiu aconseguir un intercanvi de dades fiable en un entorn hostil millorant-ne la confiabilitat mitjançant el disseny d'un model complet que tingui en compte les diferents capes de confiabilitat i mitjançant la implementació de les contramesures associades al model. La tesi se centra en el cas d'ús del projecte SHETLAND-NET, amb l'objectiu de desplegar una arquitectura d'Internet de les coses (IoT) híbrida amb comunicacions LoRa i d'ona ionosfèrica d'incidència gairebé vertical (NVIS) per oferir un servei de telemetria per al monitoratge del “permafrost” a l'Antàrtida. Per complir els objectius de la tesi, en primer lloc, es fa una revisió de l'estat de l'art en confiabilitat per proposar una definició i l'abast del terme de confiança. Partint d'aquí, es dissenya un model de confiabilitat de quatre capes, on cada capa es caracteritza pel seu abast, mètrica per a la quantificació de la confiabilitat, contramesures per a la millora de la confiabilitat i les interdependències amb les altres capes. Aquest model permet el mesurament i l'avaluació de la confiabilitat del cas d'ús a l'Antàrtida. Donades les condicions hostils i les limitacions de la tecnologia utilitzada en aquest cas d’ús, es valida el model i s’avalua el servei de telemetria a través de simulacions en Riverbed Modeler. Per obtenir valors anticipats de la confiabilitat esperada, l'arquitectura proposada es modela per avaluar els resultats amb diferents configuracions previ al seu desplegament en proves de camp. L'arquitectura proposada passa per tres principals iteracions de millora de la confiabilitat. A la primera iteració, s'explora l'ús de mecanismes de consens i gestió de la confiança social per aprofitar la redundància de sensors. En la segona iteració, s’avalua l’ús de protocols de transport moderns per al cas d’ús antàrtic. L’última iteració d’aquesta tesi avalua l’ús d’una arquitectura de xarxa tolerant al retard (DTN) utilitzant el Bundle Protocol (BP) per millorar la confiabilitat del sistema. Finalment, es presenta una prova de concepte (PoC) amb maquinari real que es va desplegar a la campanya antàrtica 2021-2022, descrivint les proves de camp funcionals realitzades a l'Antàrtida i Catalunya.Esta tesis tiene como objetivo lograr un intercambio de datos confiable en un entorno hostil mejorando su confiabilidad mediante el diseño de un modelo completo que tenga en cuenta las diferentes capas de confiabilidad y mediante la implementación de las contramedidas asociadas al modelo. La tesis se centra en el caso de uso del proyecto SHETLAND-NET, con el objetivo de desplegar una arquitectura de Internet de las cosas (IoT) híbrida con comunicaciones LoRa y de onda ionosférica de incidencia casi vertical (NVIS) para ofrecer un servicio de telemetría para el monitoreo del “permafrost” en la Antártida. Para cumplir con los objetivos de la tesis, en primer lugar, se realiza una revisión del estado del arte en confiabilidad para proponer una definición y alcance del término confiabilidad. Partiendo de aquí, se diseña un modelo de confiabilidad de cuatro capas, donde cada capa se caracteriza por su alcance, métrica para la cuantificación de la confiabilidad, contramedidas para la mejora de la confiabilidad y las interdependencias con las otras capas. Este modelo permite la medición y evaluación de la confiabilidad del caso de uso en la Antártida. Dadas las condiciones hostiles y las limitaciones de la tecnología utilizada en este caso de uso, se valida el modelo y se evalúa el servicio de telemetría a través de simulaciones en Riverbed Modeler. Para obtener valores anticipados de la confiabilidad esperada, la arquitectura propuesta es modelada para evaluar los resultados con diferentes configuraciones previo a su despliegue en pruebas de campo. La arquitectura propuesta pasa por tres iteraciones principales de mejora de la confiabilidad. En la primera iteración, se explora el uso de mecanismos de consenso y gestión de la confianza social para aprovechar la redundancia de sensores. En la segunda iteración, se evalúa el uso de protocolos de transporte modernos para el caso de uso antártico. La última iteración de esta tesis evalúa el uso de una arquitectura de red tolerante al retardo (DTN) utilizando el Bundle Protocol (BP) para mejorar la confiabilidad del sistema. Finalmente, se presenta una prueba de concepto (PoC) con hardware real que se desplegó en la campaña antártica 2021-2022, describiendo las pruebas de campo funcionales realizadas en la Antártida y Cataluña.This thesis aims at achieving reliable data exchange over a harsh environment by improving its trustworthiness through the design of a complete model that takes into account the different layers of trustworthiness and through the implementation of the model’s associated countermeasures. The thesis focuses on the use case of the SHETLAND-NET project, aiming to deploy a hybrid Internet of Things (IoT) architecture with LoRa and Near Vertical Incidence Skywave (NVIS) communications to offer a telemetry service for permafrost monitoring in Antarctica. To accomplish the thesis objectives, first, a review of the state of the art in trustworthiness is carried out to propose a definition and scope of the trustworthiness term. From these, a four-layer trustworthiness model is designed, with each layer characterized by its scope, metric for trustworthiness accountability, countermeasures for trustworthiness improvement, and the interdependencies with the other layers. This model enables trustworthiness accountability and assessment of the Antarctic use case. Given the harsh conditions and the limitations of the use technology in this use case, the model is validated and the telemetry service is evaluated through simulations in Riverbed Modeler. To obtain anticipated values of the expected trustworthiness, the proposal has been modeled to evaluate the performance with different configurations prior to its deployment in the field. The proposed architecture goes through three major iterations of trustworthiness improvement. In the first iteration, using social trust management and consensus mechanisms is explored to take advantage of sensor redundancy. In the second iteration, the use of modern transport protocols is evaluated for the Antarctic use case. The final iteration of this thesis assesses using a Delay Tolerant Network (DTN) architecture using the Bundle Protocol (BP) to improve the system’s trustworthiness. Finally, a Proof of Concept (PoC) with real hardware that was deployed in the 2021-2022 Antarctic campaign is presented, describing the functional tests performed in Antarctica and Catalonia

    Multimedia

    Get PDF
    The nowadays ubiquitous and effortless digital data capture and processing capabilities offered by the majority of devices, lead to an unprecedented penetration of multimedia content in our everyday life. To make the most of this phenomenon, the rapidly increasing volume and usage of digitised content requires constant re-evaluation and adaptation of multimedia methodologies, in order to meet the relentless change of requirements from both the user and system perspectives. Advances in Multimedia provides readers with an overview of the ever-growing field of multimedia by bringing together various research studies and surveys from different subfields that point out such important aspects. Some of the main topics that this book deals with include: multimedia management in peer-to-peer structures & wireless networks, security characteristics in multimedia, semantic gap bridging for multimedia content and novel multimedia applications

    End-to-End Resilience Mechanisms for Network Transport Protocols

    Get PDF
    The universal reliance on and hence the need for resilience in network communications has been well established. Current transport protocols are designed to provide fixed mechanisms for error remediation (if any), using techniques such as ARQ, and offer little or no adaptability to underlying network conditions, or to different sets of application requirements. The ubiquitous TCP transport protocol makes too many assumptions about underlying layers to provide resilient end-to-end service in all network scenarios, especially those which include significant heterogeneity. Additionally the properties of reliability, performability, availability, dependability, and survivability are not explicitly addressed in the design, so there is no support for resilience. This dissertation presents considerations which must be taken in designing new resilience mechanisms for future transport protocols to meet service requirements in the face of various attacks and challenges. The primary mechanisms addressed include diverse end-to-end paths, and multi-mode operation for changing network conditions

    The Multiscale Biomechanics and Mechanochemistry of the Extracellular Matrix Protein Fibres: Collagen & Elastin

    Get PDF
    Collagen is the most abundant protein in the animal kingdom and, together with elastin, forms extensive fibrous networks that constitute the primary structure of the mammalian extracellular matrix, respectively endowing it with the tensile and elastic properties that fulfil its principal role as the passive framework of the body. The fibrous proteins are distinctly hierarchically organised from the molecular scale upwards; for example, the nanoscale tropocollagen monomer assembles in arrays that form the micrometer scale microfibrils and fibrils, and thence into collections of millimetre scale collagen fibres, that in-turn, constitute functional tissues such as skin, tendon and bone. Much is known about the structure at each of these individual scales – collagen being the most extensively researched – and the macromechanics of the fibres are well established. However, far less is known about the micromechanics of these proteins, in particular how the monomers influence the functional mechanics of the macroscopic fibres. In this thesis, I explore the multiscale mechanics of collagen and elastin fibres over a range of hydrations – with fibres in direct contact with aqueous solution, and progressively dehydrated in humidity-controlled environments. I use quasi-static tensile testing to probe the macroscopic mechanical response (Young’s modulus and stress relaxation) of the fibres, and employ Brillouin and Raman microscopy to assess the longitudinal modulus in the GHz range and corresponding molecular properties of the proteins. Brillouin microscopy is an emerging technique in the biomedical field. It enables the all-optical, contact-free and non-destructive testing of tissue micromechanics through detection of frequency shifted light scattered off thermally excited acoustic waves or “phonons” in the GHz range. As one of the first studies of Brillouin light scattering in these fibres, it sets the basis for further investigation of tissue biomechanics. In particular, I provide the full description of the protein fibre micromechanics by performing angular measurements using a so-called platelet-like configuration with sample mounted onto a reflective substrate at 45° angle to the excitation beam. I derive the high-frequency longitudinal modulus, and discuss the results in comparison to the Young’s modulus, in terms of the different frequency and spatial scale of the measurements. I obtained a full description of elasticity using Brillouin spectroscopy applied to dried fibres; however, obtaining the same description in hydrated fibres is a challenge, as the Brillouin spectrum is dominated by water. An assessment of the mechanical differences between type-I and type-II collagens is also given here. Water is known to be a primary determinant of tissue biomechanics, and I identified for the first time, the critical hydration ranges between 100 and 85% relative humidity (RH) for collagen, and around 85% RH for elastin, at which point each macroscopic fibre switched from viscoelastic to plastic-like behaviour. Dehydration below these critical points was shown to severely diminish collagen fibrillar sliding, and completely rob elastin of its ability to reversibly deform under strain. The Young’s modulus increased markedly below these hydrations, and I observed a parallel increase in the longitudinal modulus at high frequencies in each protein, indicating a concomitant increase in stiffness at the two scales. The major difference observed between the two fibrous proteins is that, in the case of elastin, I observe a two-fold increase in the longitudinal modulus as the hydration is decreased from 100 to 21% RH, whilst the Young’s modulus increases by two orders of magnitude. This discrepancy was not observed in collagen, which confirmed that the protein maintained its long-range order in the form of the triple helix at all hydrations employed in this work, whilst the elastin ultrastructure experiences a liquid-to-solid state change at a critical hydration. I demonstrate through the analysis of the low-wavenumber region (<500 cm-1) of the Raman spectrum, that the increase in molecular stiffness of both proteins, is reflected in an increase in torsional rigidity of the peptide backbone upon dehydration. Moreover in collagen, I observe a reduction in the number of inter-protein water bridges, which I propose causes a collapse of the lateral spacing between monomers and an increase in direct backbone-backbone hydrogen bonding, that further stiffens the fibre. Small strain induced reorientations of the amide III and C–C stretching modes in dehydrated collagen fibres suggest that macroscopic stresses may be transferred to the triple helix, otherwise left unperturbed in the hydrated state. I postulate that this is a result of the degraded intra- and interfibrillar sliding mechanism below the critical hydration. Hence in its dehydrated state, the collagen whole-fibre mechanics are similar to those at the molecular scale. The role of proteoglycans and glycosaminoglycans and their potential connection to hydration, is also discussed. In agreement with previous work, I found no Raman spectral changes as a result of stretching hydrated elastin fibres, indicating that even large strains e.g. 80%, have no significant effect on the structural scale probed by Raman microscopy, nor in the air-dried state where the brittle fibres break at low strains. I suggest this may imply a limited sensitivity of Raman bands to these changes, possibly an indication of elastin’s dynamic ultrastructure, or that stress is dissipated at a higher level of the fibre structure. On the macroscopic scale, it is the poroelastic nature of elastin which controls the stress relaxation under strain, and the elastic recovery is mediated by an interplay of hydrophobic interactions and hydration forces

    A Message Transfer Framework for Enhanced Reliability in Delay-and Disruption-Tolerant Networks

    Get PDF
    Many infrastructure-less networks require quick, ad hoc deployment and the ability to deliver messages even if no instantaneous end-to-end path can be found. Such networks include large-scale disaster recovery networks, mobile sensor networks for ecological monitoring, ocean sensor networks, people networks, vehicular networks and projects for connectivity in developing regions such as TIER (Technology and Infrastructure for Emerging Regions). These types of networks can be realized with delay-and disruption-tolerant network (DTN) technology. Generally, messages in DTNs are transferred hop-by-hop toward the destination in an overlay above the transport layer called the ''bundle layer''. Unlike mobile ad hoc networks (MANETs), DTNs can tolerate disruption on end-to-end paths by taking advantage of temporal links emerging between nodes as nodes move in the network. Intermediate nodes store messages before forwarding opportunities become available. A series of encounters (i.e., coming within mutual transmission range) among different nodes will eventually deliver the message to the desired destination. The message delivery performance (such as delivery ratio and delay) in a DTN highly depends on time elapsed between encounters (inter-contact time) and the time two nodes remain in each others communication range once a contact is established (contact-duration). As messages are forwarded opportunistically among nodes, it is important to have sufficient contact opportunities in the network for faster, more reliable delivery of messages. In this thesis, we propose a simple yet efficient method for increasing DTN performance by increasing the contact duration of encountered nodes (i.e., mobile devices). Our proposed sticky transfer framework and protocol enable nodes in DTNs to collect neighbors' information, evaluate their movement patterns and amounts of data to transfer in order to make decisions of whether to ''stick'' with a neighbor to complete the necessary data transfers. Nodes intelligently negotiate sticky transfer parameters such as stick duration, mobility speed and movement directions based on user preferences and collected information. The sticky transfer framework can be combined with any DTN routing protocol to improve its performance. Our simulation results show that the proposed framework can improve the message delivery ratio by up to 38% and the end-to-end message transfer delay by up to 36%
    corecore