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Abstract

The universal reliance on and hence the need for resilience in network communications

has been well established. Current transport protocols are designed to provide fixed

mechanisms for error remediation (if any), using techniques such as ARQ, and offer little

or no adaptability to underlying network conditions, or to different sets of application

requirements. The ubiquitous TCP transport protocol makes too many assumptions

about underlying layers to provide resilient end-to-end service in all network scenarios,

especially those which include significant heterogeneity. Additionally the properties of

reliability, performability, availability, dependability, and survivability are not explic-

itly addressed in the design, so there is no support for resilience. This dissertation

presents considerations which must be taken in designing new resilience mechanisms for

future transport protocols to meet service requirements in the face of various attacks and

challenges. The primary mechanisms addressed include diverse end-to-end paths, and

multi-mode operation for changing network conditions.
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Çetinkaya for his work in categorizing and simulating challenges, as well as his involve-

ment with the ANTP work. Kamakshi Pathapati for her help in writing ns-3 code to

simulate the end-to-end ARQ mechanism. Sarvesh Kumar Varatharajan for his work on

the ns-2 code for simulating packet size adaptation. I also want to acknowledge Piyush

Upadhyay and Ramya Muthyala’s work on the cross-layer simulation framework. I would

also like to thank the members of my committee for their time in reading this disser-

tation and the useful comments they have provided. I would like to thank all the staff

at the Information and Telecommunication Technology Center for their support through

the years. Lastly, a very grateful acknowledgement is due to David Hutchison, Marcus
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Chapter 1

Introduction and Motivation

The average user now takes for granted communication capabilities that the general pop-

ulation would have considered science fiction a couple of decades ago. Wireless cellular

and LAN technologies have become widespread enough for people to rely on their proper

functionality for coordinating daily activities. People increasingly choose wireless tech-

nologies over wired ones, for example by terminating traditional telephone service and

using a cellular phone exclusively. In commercial settings most businesses rely on network

services for a number of applications. Internal communication, billing, sales, production

control systems, and records all rely on network services and cease to operate in the

case of a service outage. In the case of healthcare, the lives of patients can even be at

stake if the network does not function as expected. With the increasing consequences

of network disruptions, both to the financial and medical health of society, the network

becomes an increasingly appealing target for crackers, terrorists, and those involved in

information warfare, collectively known as “the bad guys”. The US Commission on

Critical Infrastructure Protection stated that network attacks have the potential to be

catastrophic [2].

The content of this dissertation is as follows: This chapter expands on the arguments

just mentioned, as well as mentioning the contributions of this PhD research, and listing
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the associated publications, many of which are partially incorporated into later chapters

of this work. The second chapter presents background, consisting in part of architectural

work contributed by this author and his advisor, as well as a good number of others in the

ResiliNets research group. The second chapter also contains the related work, primarily

consisting of previous transport and multipath protocols and mechanisms. The third

chapter is the core of the dissertation research, consisting of a full development and

analysis of path diversification. This consists of new metrics and algorithms for choosing

end-to-end diverse paths, as well as evaluating network topologies based on their level

of diversity. The fourth chapter presents the design of two transport protocols; ResTP,

which is based on path diversification combined with a multi-mode reliability architecture,

and AeroTP, which is a domain-specific protocol containing many of the features of

ResTP, but designed for a single-path environment. Chapter 5 presents the GpENI

testbed, which this author has played a large role in implementing and maintaining,

and which is now being put to use to testing prototype versions of AeroTP and ResTP.

Finally, there are the appendices, which contain data, maps, and numerous plots used

to fully analyze the survivability properties of the topologies used in evaluating path

diversification, but which require too much space to be included in Chapter 3.

1.1 Communication Networks

The Internet protocol suite had survivability in the face of failures as a design goal [3]. It

has also proven its robustness on a large scale, in large part due to the distributed nature

of its operational protocols [4]. In spite of this, it quickly becomes apparent that there

is a fragility to the performance of any given network application. Unseen perturbations

in the network’s operational state result in an end-user experience which is far from

optimal. Many applications attempt to disguise these lower-level failures, and some are
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quite successful, however this is only possible with significant design and programming

overhead on a per-application basis. A fundamentally resilient transport protocol could

alleviate the need for this overhead by providing selectable survivability levels in a generic

manner. The reason for doing this in the end-to-end context as opposed to a lower layer

is that the source and/or destination nodes are typically first to be aware of a disruption

in service [5], so it makes sense to push control of remediation mechanisms to those hosts.

1.1.1 Challenges to Communication Networks

Challenges to communication networks fall into five categories [6, 7].

1. Unusual but legitimate traffic: This includes events such as flash crowds, or

sequences of data packets where each packet complies to the service specification

but the sequence does not.

2. Challenges in wireless networks: These can include episodic connectivity due

to noisy wireless channels and node mobility, high bit-error-rates (BER), routing

topology changes due to node mobility and highly asymmetric links, resource lim-

itations due to limited power supply, and unpredictably long speed-of-light delay

due to changing link lengths and large queue lengths.

3. Attacks: Attacks can come in many forms, either against software, i.e. cracking,

or through physical hardware damage in the case of natural disasters and acts of

war.

4. Misconfiguration: Misconfiguration refers to mistakes made in managing the

network and other operator errors.

5. Natural faults: Natural faults are those which appear over time as network hard-

ware ages and breaks down.
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We use the term resilience to refer to a networks ability to operate normally in the face

of these challenges. As defined in [8]:

Definition 1.1.1. Resilience is the ability of the network to provide and maintain an
acceptable level of service in the face of various faults and challenges to normal operation.

By implication, resilience is then a superset of a number of other disciplines that have

been studied extensively in the past within various communities.

• Fault Tolerance: “We say that a system is fault-tolerant if its programs can be

properly executed despite the occurrence of logic faults.” [9] quoted in [10]. “The

ability of a functional entity to mask or mitigate the impact of faults on its specified

operation.” [11]

• Dependability: “Dependability is that property of a [computing] system which al-

lows reliance to be justifiably placed on the service it delivers” [12]. “Dependability

includes both reliability and availability.” [13, 14]

– Reliability: “The probability that an entity (unit) will complete its intended

mission (i.e., perform a specific function) as required over a specified period

of time in its intended environment (or stated conditions).” [11]

– Availability: “The proportion of the operating time in which an entity meets

its in-service functional and performance requirements in its intended environ-

ment.” [11]

• Survivability: “The capability of a system to fulfill its mission, in a timely manner,

in the presence of attacks, failures, or accidents.” [15, 16]

• Robustness: “The ability of a system to maintain specified features when subject

to assemblages of perturbations either internal or external.” [17]
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• Performability: “The property of a computer system such that it delivers per-

formance required by the service, as described by QoS (quality of service) mea-

sures.” [6] “Performance refers to how effectively and efficiently a system delivers

a specified service, presuming it is delivered correctly.” [18]

• Disruption Tolerance: “The ability of a system to tolerate disruptions in con-

nectivity among its components. Disruption tolerance is a superset of tolerance of

the environmental challenges: weak and episodic, channel connectivity, mobility,

delay tolerance, as well as challenges due to power and energy constraints.” [6, 19]

Each of these disciplines contributes to the overall resilience of a system.

1.1.2 Lack of Explicit Cross-Layering

Current general purpose network stacks observe strict layering, due to a desire to sep-

arate concerns and maintain simplicity in the network core (e.g. anything over IP over

anything). A common representation of these layers is a strict interpretation of the

seven-layer OSI Model [20]. The lack of information exchange that this causes leads to

invalid assumptions being made, particularly at the the transport layer (TCP assumes

congestion for congestion, corruption, and long delay).

That being said, there are some forms of cross-lyering which are widely accepted and

used. One of these is the TCP congestion control mechanism which uses packet-loss

events to trigger a reduction in flow and prevent congestion. Because this is an implicit

signaling it is not specific enough to indicate the cause of the packet loss, so TCP assumes

congestion as a safe default. These assumptions can lead to poor performance and gross

inefficiency, not because of limitations in the network, but because the transport layer

does not correctly adapt to the current network conditions.
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Cross-layering is not an end in itself, but it is an essential support capability in order

for the mechanisms discussed in the previous section to operate effectively. It uses dials

to provide information to higher layers, and knobs to influence the operation of lower

layers [21,22]. Making proper use of these allows the transport layer to adapt to the op-

erational condition of the underlying network, as well as modifying its mode of operation

based on the requirements of the applications above it. These cross-layer knobs and dials

enable the selection and tuning of specific resilience mechanisms that are appropriate for

the current network state.

1.2 Problem Statement

Current transport protocols are designed to provide fixed mechanisms for error reme-

diation (if any), using techniques such as ARQ, and offer little or no adaptability to

underlying network conditions, or to different sets of application requirements. In the

case of TCP, when a connection times out or too many packets are dropped it simply

closes the connection. UDP is not even aware of packet losses that occur. Additionally

the properties of reliability, availability, dependability, and survivability are not explicitly

addressed in the design, so there is no support for resilience.

Thesis Statement:

End-to-end communication with resilience as an inherent design property is

necessary to meet specified service requirements in the face of various attacks

and challenges. Diversity is an essential characteristic of network topologies

that enables enhanced resilience at the end-to-end layer.

6



1.3 Problem Solution

By applying ResiliNets principles [8] in the end-to-end (E2E) context, we have decided

on the following research thrusts to the solution: End-to-end diverse multipath, and

adaptable reliability paradigms. These components are distinct, but also interdependent.

Each component is then broken down into the following two phases: (i) identify the set

of alternative mechanisms necessary to support resilience, and (ii) model and compare

the mechanisms in a simulation environment to identify tradeoffs between them. Sub-

sequently, these components are integrated into one adaptable protocol, and evaluated

through simulation.

1.4 Contributions

They key contributions of this research consist of the path diversification method and

associated metrics that allow prediction of topology survivability and the ResTP resilient

transport protocol architecture, which are presented in Chapters 3 and 4 respectively.

The research efforts in these areas has resulted in a number of supporting contributions

as well. The primary and supporting contributions of this dissertation are as follows:

• Primary Contributions

– Path diversification algorithm

– Prediction of network survivability using path diversification

– ResTP multipath protocol design

• Supporting Contributions

– Path diversification implementation in MATLAB
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– Distributed path diversification implementation for parallel processing and

protocol use

– Comparative analysis of path diversification with traditional graph theory

metrics (betweenness, degree, k-connectedness)

– Understanding tradeoffs between protocol reliability mechanisms

– Comparative analysis of protocol reliability mechanisms under adverse condi-

tions

– ANTP cross-layer protocol stack architecture

– AeroTP RFC-style specification

– AeroTP simulation model

– AeroTP reference implementation

– Building and managing the GpENI testbed

1.5 Primary Publications

The research presented in this dissertation has resulted in a number of publications,

including the following.

1.5.1 Published Journal Articles

1. Justin P. Rohrer, Abdul Jabbar, Egemen K. Çetinkaya, Erik Perrins, and James P.G.

Sterbenz. Highly-dynamic cross-layered aeronautical network architecture. IEEE

Transactions on Aerospace and Electronic Systems (TAES), 47(4):2742–2765, Oc-

tober 2011.
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2. Abdul Jabbar, Justin P. Rohrer, Victor S. Frost, and James P. G. Sterbenz. Sur-

vivable millimeter-wave mesh networks. Computer Communications (COMCOM),

34(16):1942–1955, October 2011.

3. James P.G. Sterbenz, Egemen K. Çetinkaya, Mahmood A. Hameed, Abdul Jabbar,

Qian Shi, and Justin P. Rohrer. Evaluation of network resilience, survivability,

and disruption tolerance: Analysis, topology generation, simulation, and experi-

mentation (invited paper). Springer Telecommunication Systems, 2011. (accepted

March 2011).

4. James P. G. Sterbenz, David Hutchison, Egemen K. Çetinkaya, Abdul Jabbar,

Justin P. Rohrer, Marcus Schöller, and Paul Smith. Resilience and survivability

in communication networks: Strategies, principles, and survey of disciplines. Com-

puter Networks: Special Issue on Resilient and Survivable Networks (COMNET),

54(8):1245–1265, June 2010.

1.5.2 Journal Articles Under Preparation

1. Justin P. Rohrer and James P.G. Sterbenz. Path Diversification. Springer

Telecommunication Systems, 2012.

2. Justin P. Rohrer and James P.G. Sterbenz. Reliability Paradigms in Transport

Protocols: a Survey. IEEE Communications Surveys & Tutorials, 2012.

1.5.3 Conference Papers

1. Justin P. Rohrer, Egemen K. Cetinkaya, Hemmanth Narra, Dan Broyles, Kevin

Peters, and James P. G. Sterbenz. AeroRP performance in highly-dynamic airborne

networks using 3D gauss-markov mobility model. In Proceedings of the IEEE Mil-
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itary Communications Conference (MILCOM), Baltimore, MD, USA, November

7–10 2011.

2. Mohammed AL-Enazi, Santosh Ajith Gogi, Dongsheng Zhang, Egemen K. Çetinkaya,

Justin P. Rohrer, and James P. G. Sterbenz. ANTP protocol suite software im-

plementation architecture in python. In International Telemetering Conference

(ITC), Las Vegas, NV, October 2011.

3. Kamakshi Sirisha Pathapati, Anh Nguyen, Justin P. Rohrer, and James P.G.

Sterbenz. Performance analysis of the AeroTP transport protocol for highly-

dynamic airborne telemetry networks. In Proceedings of the International Teleme-

tering Conference (ITC), Las Vegas, NV, October 2011, awarded best graduate-

student paper.

4. Justin P. Rohrer and James P. G. Sterbenz. Predicting topology survivability

using path diversity. In Proceedings of the IEEE/IFIP International Workshop on

Reliable Networks Design and Modeling (RNDM), pages 95–101, Budapest, Hun-

gary, October 5–7 2011, pp. 95-101, nominated for best paper.

5. Justin P. Rohrer, Egemen K. Çetinkaya, and James P.G. Sterbenz. Resilience

experiments in the GpENI programmable future internet testbed. In Proceedings of

the 11th Würzburg Workshop on IP: Joint ITG and Euro-NF Workshop “Visions

of Future Generation Networks” (EuroView2011), August 2011.

6. Justin P. Rohrer, Egemen K. Çetinkaya, and James P. G. Sterbenz. Progress

and challenges in large-scale future internet experimentation using the GpENI pro-

grammable testbed. In The 6th ACM International Conference on Future Internet

Technologies (CFI), pages 46–49, Seoul, Korea, June 2011.
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7. Hemanth Narra, Yufei Cheng, Egemen K. Çetinkaya, Justin P. Rohrer, and

James P.G. Sterbenz. Destination-sequenced distance vector (DSDV) routing pro-

tocol implementation in ns-3. In Proceedings of the ICST SIMUTools Workshop

on ns-3 (WNS3), Barcelona, Spain, March 2011.

8. James P.G. Sterbenz, Egemen K. Çetinkaya, Mahmood A. Hameed, Abdul Jab-

bar, and Justin P. Rohrer. Modelling and analysis of network resilience (invited

paper). In Proceedings of the Third IEEE International Conference on Communica-

tion Systems and Networks (COMSNETS), pages 1–10, Bangalore, India, January

2011.

9. Justin P. Rohrer, Abdul Jabbar, Egemen K. Çetinkaya, and James P.G. Sterbenz.

Airborne telemetry networks: Challenges and solutions in the ANTP suite. In

Proceedings of the IEEE Military Communications Conference (MILCOM), pages

74–79, San Jose, CA, USA, November 2010.

10. Kamakshi Sirisha Pathapati, Justin P. Rohrer, and James P. G. Sterbenz. Edge-

to-edge ARQ: Transport-layer reliability for airborne telemetry networks. In Pro-

ceedings of the International Telemetering Conference (ITC), San Diego, CA, Oc-

tober 2010.

11. James P. G. Sterbenz, Deep Medhi, Byrav Ramamurthy, Caterina Scoglio, David

Hutchison, Bernhard Plattner, Tricha Anjali, Andrew Scott, Cort Buffington, Gre-

gory E. Monaco, Don Gruenbacher, Rick McMullen, Justin P. Rohrer, John

Sherrell, Pragatheeswaran Angu, Ramkumar Cherukuri, Haiyang Qian, and Nidhi

Tare. The Great plains Environment for Network Innovation (GpENI): A pro-

grammable testbed for future internet architecture research. In Proceedings of

the 6th International Conference on Testbeds and Research Infrastructures for the
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Development of Networks & Communities (TridentCom), pages 428–441, Berlin,

Germany, May 18–20 2010.

12. Justin P. Rohrer, Ramya Naidu, and James P. G. Sterbenz. Multipath at

the transport layer: An end-to-end resilience mechanism. In Proceedings of the

IEEE/IFIP International Workshop on Reliable Networks Design and Modeling

(RNDM), pages 1–7, St. Petersburg, Russia, October 2009.

13. Justin P. Rohrer and James P. G. Sterbenz. Performance and disruption toler-

ance of transport protocols for airborne telemetry networks. In Proceedings of the

International Telemetering Conference (ITC) 2009, Las Vegas, NV, October 2009.

14. Justin P. Rohrer, Abdul Jabbar, and James P. G. Sterbenz. Path diversification:

A multipath resilience mechanism. In Proceedings of the IEEE 7th International

Workshop on the Design of Reliable Communication Networks (DRCN), pages 343–

351, Washington, DC, USA, October 2009.

15. Abdul Jabbar, Justin P. Rohrer, Andrew Oberthaler, Egemen K. Çetinkaya,

Victor Frost, and James P. G. Sterbenz. Performance comparison of weather

disruption-tolerant cross-layer routing algorithms. In Proc. IEEE INFOCOM

2009. The 28th Conference on Computer Communications, pages 1143–1151, April

2009.

16. Justin P. Rohrer, Abdul Jabbar, Erik Perrins, and James P. G. Sterbenz. Cross-

layer architectural framework for highly-mobile multihop airborne telemetry net-

works. In Proceedings of the IEEE Military Communications Conference (MIL-

COM), pages 1–9, San Diego, CA, USA, November 2008.

17. Justin P. Rohrer, Erik Perrins, and James P. G. Sterbenz. End-to-end disruption-

tolerant transport protocol issues and design for airborne telemetry networks. In
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Proceedings of the International Telemetering Conference, San Diego, CA, October

27–30 2008, awarded best paper.

1.5.4 Technical Reports

1. James P.G. Sterbenz, Justin P. Rohrer, and Egemen K. Çetinkaya. Multilayer

network resilience analysis and experimentation on GENI. ITTC Technical Report

ITTC-FY2011-TR-61349-01, The University of Kansas, Lawrence, KS, July 2010.

1.6 Summary

In this chapter we have given an overview of the challenges that we will be addressing in

this dissertation, as well as summarizing the methods we have used to address them. In

the next chapter we will present the background which gives context to this work, and

related work consisting of a survey of transport protocols and multipath mechanisms.
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Chapter 2

Background & Related Work

In this chapter we look first at a number of existing efforts that form the background of

this work, including the benefits of cross-layering (Section 2.1), the ResiliNets architecture

(Section 2.2), and the postmodern internetwork architecture (Section 2.3). Secondly we

examine the related work, including a broad ranch of general purpose and specialized

transport protocols (Section 2.4) from which we gain insight into the range of mechanisms

which have previously been used to address specific challenges in end-to-end reliability.

Lastly in Section 2.5 we examine existing diversity research, including multipath routing

protocols.

2.1 Cross-Layering Examples

This section gives a brief overview of of several efforts we have made to formalize cross-

layering, aspects of which are applied in this work.

2.1.1 Knobs and Dials Formalization

When evaluating decisions regarding locating functionality at a given layer we are primar-

ily evaluating the tradeoffs involved. Design complexity is one of the primary concerns
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in cross-layering, so we evaluate the tradeoff of increased complexity compared to the in-

crease in resilience. We (The ResiliNets group, collaboratively) have begun to formalize

the representation of knobs and dials as follows.

The set of all knobs

K = K ∪ k (2.1)

is the union of out-of-band K and in-band k. The set of all dials

D = D ∪ d (2.2)

is the union of out-of-bandD and in-band d. Knobs and dials are defined on the boundary

between layers Li and Lj where i and j are either numbers, e.g. {1, 1.5, 2, 2.5, 3, 4,

7, 8} or layer designators, e.g {HBH, net, PoMo, E2E, app}. An individual knob or

dial between layers Li and Lj is then Ki→j(desc) where ‘desc’ is a descriptor, e.g. BER.

Therefore the set of all out-of-band knobs and dials between layers i and j

K = ∪∀K∈KKi→j (2.3)

represents a vertical relationship when i �= j and represents a horizontal relationship

when i = j.

To carry this further, we can fully represent a layer n protocol instance at time t in terms

of its knobs and dials, as well as its state s(t) and context cn(t). For Ln, we can define

state with respect to time as:

s(t+ 1) = f(Kn+1→n,Dn←n−1, s(t), cn) (2.4)

where f is a function specific to the internal algorithm of that particular protocol.

We apply this formalism to mechanisms such as explicit cross-layer support for error

control that allow the network layer to notify the end-to-end layer of the cause of data
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loss. ELN (explicit loss notification) notifies the transport layer of loss due to corruption,

ECN (explicit congestion notification) notifies it that loss was due to congestion, EON

(explicit outage notification) not only notifies it of loss but that there is an outage in

the path, and EDN (explicit delay notification) notifies the transport layer that data has

been delayed but not actually lost. In addition to ELN, we could also use cross-layer

notification to indicate that some corruption was experienced but it was recoverable using

FEC.

2.1.2 Cross-layer Architecture for Simulation

We have begun implementing the framework needed to support cross-layering as discussed

in Section 2.3.3 in the ns-2 simulator. The ns-2 simulator does not transfer a payload or

header bits in its simulated data packets, so it is impossible to send control packets for

cross-layering within the existing packet model. Instead we create global data structures

within the simulation framework in which to store the packet contents, and then do a

lookup based on the global identifier of each packet to find the contents of the packet.

For the time being we only do out-of-band cross-layer messaging, but we hope to be able

to add in-band messaging in the future.1

2.1.3 Packet Size Adaptation

To demonstrate the performance gains enabled by the architecture in Section 2.1.2 we

simulated a transport protocol that adapts the TPDU size depending on the BER ob-

served at the link layer. In wired networks there is generally a performance benefit to

sending large packets, thus requiring fewer packets to send a given amount of data and

incurring less overhead in the form of packet headers. As the number of bit-errors in-

1Work discussed in Section 2.1.2 was performed jointly with Sarvesh Kumar Varatharajan, Piyush

Upadhyay, and Ramya Muthyala; future work will be transitioned to the ns-3 simulator.
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Figure 2.1: packet size adaptation at the transport layer

creases, such as in wireless networks, the probability of packet loss due to corruption

increases and large packets are both more likely to be corrupted and incur a greater

penalty because more data is lost as a result of each bit error. The result of this situation

is that there is an optimal packet size given a particular header length and channel bit-

error rate. We were able to use the algorithm from [23] to simulate an example of this in

ns-2 in which we achieve optimal goodput by varying the packet size depending on the

BER of the underlying links. The simulation consisted of a 1 Mb/s link with constant

bit rate traffic being transferred and varying average bit-error rates.

Figure 2.1 shows the goodput achieved with packet sizes fixed at 200, 512, 1024, and 1500

bytes, as well as adaptive packet size that varies as the BER on the link changes. From

the plot we can see that the adaptive transport layer achieves the maximum goodput in
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all cases, composing the envelope of all the fixed-size curves.2

2.2 ResiliNets Architecture

The ResiliNets group [6] has established an architecture for designing resilient networks.

This consists of a set of foundational axioms, a strategy for implementing resilience, and

as set of supporting principles [8].3

2.2.1 Axioms

The ResiliNets Axioms are a small set of fundamental assumptions that need to be

taken into consideration when designing a resilient system. These include that faults and

challenges are inevitable, that normal operations must be understood before deviations

from the norm can be detected, that challenges of some type are going to occur, and that

the system needs to respond to these challenges.

2.2.2 ResiliNets Strategy

The ResiliNets strategy consists of two phasesD2R2+DR, which can be thought of as the

real-time operations, and the long-term operations. The real-time phase D2R2 consists

of defending against challenges, detecting errors (which are caused by challenges that

activate faults), remediating to do the best possible given the conditions of the challenge,

and lastly recovering to the normal operational state once the challenge has passed. In

this work on resilient end-to-end transport, we are primary addressing the defense and

remediation aspects of the strategy. Defense is addressed through mechanisms which

2Work discussed in Section 2.1.3 performed jointly with Sarvesh Kumar Varatharajan.
3The article cited here was written collaboratively by several members of the ResiliNets research

group, including the author of this dissertation. It provides much more extensive background on the

understanding and development of resilient systems. This document presents only a small subset of that

thinking, which is specifically applied to the end-to-end layer.
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use some form of redundancy to proactively guard agains data loss. Remediation is

addressed by those that retransmit or fail-over to diverse alternative options in the event

that data-loss occurs.

2.2.3 ResiliNets Principles

The ResiliNets architectural principles support the strategy as a set of best-practice

concepts to apply when designing a resilient system. In this work we identify a subset of

the principles that are particularly relevant to the end-to-end layer and apply them to

the design of a resilient transport protocol.

2.3 Postmodern Internetwork Architecture

The Postmodern Internetwork Architecture (PoMo) project [24] is funded by the National

Science Foundation (NSF) [25] under the Future Internet Design (FIND) program [26].

PoMo is a greenfield architecture for the future Internet that seeks to separate policy

implementation from packet forwarding mechanisms and support heterogeneous internet-

working, by explicitly providing a realm interconnection layer which provides translation

services at mechanism, trust, and policy boundaries.

2.3.1 PoMo Motivation

The current Internet is constructed of an increasingly heterogeneous mix of underlying

technologies, all hidden under the IP blanket and assumed by upper layers to function

as a stable and well-connected homogeneous environment. The universal dominance of

IP, as well as the TCP and UDP transport protocols has led to extreme difficulty in

network and transport layer innovation, since applications expect only to operate over

these few protocols and are not designed to operate flexibly across a variety of protocols
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and technologies. Many researchers have proposed solutions to recognized problems in

the current Internet architecture, however the community requirement for backwards

compatibility makes widespread adoption virtually impossible. For this reason PoMo is

designed as a greenfield architecture.

Heterogeneity, which is a natural form of diversity and should therefore improve resilience,

is instead an obstacle to connectivity and performance in the current Internet. One exam-

ple where the effects of this can be clearly seen is in cellular data networks. Attempting to

extend the IP Internet to this wireless realm has resulted in numerous application hacks

and limitations [27,28], massive overhead, and a protocol stack with multiple overlays so

complex (15 layers deep in some places) it is very difficult to understand [29].

2.3.2 PoMo Architecture

The intention of PoMo is to add a thin internetwork layer, substantially similar to the

original purpose of IP, to enable the interconnection of heterogeneous realms. Heteroge-

neous realms are those that employ diverse mechanisms (including protocols stacks and

addressing paradigms) internally. The primary responsibility of the PoMo layer is to

handle the resolution of policy tussles explicitly, rather than manipulating the packet-

forwarding path to accomplish this as is currently done with BGP. The primary principles

of PoMo are “(i) strict separation of concerns, and (ii) inclusion of explicit mechanisms

in support of all foreseeable policies influencing network-layer behavior” [24].

Based on these two principles, the PoMo architecture implements several unique char-

acteristics. First, the realm-level path is differentiated from hop-by-hop forwarding, and

the user is allowed to determine the real-level path via a source routing construct, thus

giving greater control to users, while maintaining the service providers ability to control

intra-realm forwarding control for traffic engineering. At the same time this realm-level
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path is captured and delivered to the destination, providing an accountability mecha-

nism for tracking down spammers and DOS initiators. Lastly, PoMo explicitly supports

cross-layer knobs and dials to enable the communication of network state information

(e.g. error rates, congestion, path availability) upwards to the user, and the downward

influence of policy decisions (i.e. service requirements) from the user to the network.

2.3.3 PoMo Cross-Layering Framework

In the context of the Postmodern Internetwork Architecture presented in Section 2.3,

we are developing a model for a transport protocol appropriate for resilient E2E com-

munication over a heterogeneous internetwork. It communicates directly with the PoMo

layer at realm boundaries. A depiction of this layering is shown in Figure 2.2. We are

showing three realms with diverse mechanisms interconnected to form a heterogeneous

internetwork. In this figure the dashed lines represent the logical communication that is

taking place at each layer, while the solid lines represent the actual data transfer both

between layers and over physical wires. The different network layers cannot communi-

cate across the realm boundaries, so the PoMo internetwork layer (L3.5) provides the

necessary translation.

2.3.4 Transport Layer and PoMo

PoMo is not an end-to-end protocol nor does it define constraints on the implementation

of one, however several aspects of the architecture, and the knobs and dials in particular

(Figure 2.2), give us an opportunity to design a resilient transport-layer protocol utilizing

a much greater level of interaction with the underlying network than is possible in the

current Internet. This interaction allows us to overcome the limitations imposed by the

lack of cross-layering discussed in Section 1.1.2.
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Figure 2.2: PoMo layering diagram
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2.4 Transport Protocols

In this section we present a comprehensive survey of transport protocols and their in-

tended use, specifically noting the reliability mechanisms employed. We also include pro-

tocols without explicit reliability mechanisms, since no reliability is a legitimate paradigm

choice for some applications and networks.

A number of surveys have been done addressing domain-specific transport protocols

such as ad-hoc networks [30], high-speed networks [31], space links [32], wireless sensor

networks [33, 34], and general wireless networks [35]. To our knowledge this is the first

work to survey reliability mechanisms across all these challenged domains, as well as

presenting the early protocols from which most of the modern ones are derived.

2.4.1 General Observations

A significant portion of transport research has focused on challenged environments. It is

not difficult to design a transport protocol for well-connected reliable networks. In the

ideal case, UDP would be sufficient, because the network would be completely reliable

and not drop any packets. After the early years of transport protocol development,

research has focused on satellite and sensor network environments, because they present

the greatest challenges to maintaining end-to-end reliability.

We have chosen to organize this section chronologically for ease in conveying to the

reader the dependence of later protocol designs on earlier work. We note that this is a

rough chronology, in that some protocols are best known through a source that is not the

earliest in which they appeared. A prime example of this are protocols defined in RFCs,

but that appeared in earlier literature.
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1970–1989

TCP: TCP is tightly coupled to IP, relying on it to provide a unified edge-to-edge

datagram service, independent of underlying network technologies. It is a reliable byte-

stream protocol, adding both end-to-end acknowledgements (in its original form) [36,37],

as well as congestion control (introduced later) [38,38,39] to prevent congestion collapse

in the Internet. TCP is connection-oriented, using a three-way handshake to establish

connections, and two two-way handshakes to terminate the connection. It uses sequence

numbers to enable the detection of lost segments, and uses a weak 16-bit (non-CRC)

checksum to detect errors. The TCP receiver advertises a window size that the sender

uses to regulate the amount of data sent out in a burst and prevent overwhelming the

receivers buffer. Due to its wide adoption, more versions of TCP have been proposed

in the literature than of any other transport protocol of which we are aware. Selected

TCP modifications will be described later in the section, in the order in which they were

introduced. Investigating the early versions of TCP is somewhat convoluted due to the

fact that they were implementations based on collated theoretical mechanisms proposed

in the literature, and refereed to simply as “TCP”, and it was not until Kevin Fall and

Sally Floyd’s paper years later [40] that the names TCP-Tahoe, TCP-Reno, (Tahoe and

Reno being the release names of the BSD version in which their implementation first

appeared) and TCP-SACK came into being. Later it became common for researchers to

provide a new name for their modified TCP protocol (e.g. TCP-Vegas [41]).

Delta-t: Delta-t was developed and used for a number of years at the Lawrence Livermore

labs. Like initial versions of TCP it offers a reliable byte-stream end-to-end service with-

out congestion control. Unlike TCP, Delta-t uses timer-based connection management.

Connection setup is explicit on the receipt of the first data segment, and the connection

is closed when a timeout occurs following the last data exchange. Unacknowledged data
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is retransmitted after a timeout and reordering is handled by the receiver [42–45].

UDP: UDP [46] falls into the “general purpose” category and is the simplest of the widely

used transport protocols. It is stateless and does not offer any service beyond application

multiplexing on top of IP. It simply sends packets with no assurance or notification of

correct delivery.

Datakit: The Datakit network assumes circuit-oriented network that delivers segments

in order and error-free. Its only function with respect to reliability is to retransmit

lost packets. Protocol operations are controlled by the transmitter, so that the receiver

operation can be simplified to reduce the processing required on the receiver side. Other

interesting features include the use of a 9-bit byte. The 9th bit is used to indicate whether

that byte is data or control information, so that the control commands to the receiver may

be interspersed with the data stream. Control bytes can indicate that the receiver should

acknowledge the data, and that a set of data bytes should be passed to the transport

layer as a “block”, thus enabling fragmentation into smaller cells by the lower layers

without requiring additional overhead for reassembly. The transmitter can also specify

that the receiver should report losses, so that they can be retransmitted [47,48].

RDP: The reliable data protocol is a reliable transport protocol based on TCP that uses

window-based flow control without congestion control. It also makes in-order delivery

optional, so that the application can enable or disable it depending on its requirements.

These changes from the TCP design are intended to reduce both the implementation

complexity, and minimum resource requirements (turning off reordering reduces buffer

space required at the receiver) [49, 50].

APPN: Advanced peer-to-peer networking, while not specifically a transport protocol,

does define transport-layer functions built on top of IBM’s SNA architecture. APPN

includes functions to setup and release end-to-end connections in a virtual-circuit envi-
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ronment, and assumes that full reliability is provided by the data-link layer. Therefore

it does not address error handling at the end-to-end layer [51–53].

VMTP: The versatile message transfer protocol was designed to support transactional

traffic, specifically remote procedure calls (RPC’s) used in a distributed operating system,

which require low latency, but transfer only small amounts of data. Additionally, VMTP

provides a streaming mode that provides both rate and reliability, and uses a selective-

repeat algorithm [54–56].

NETBLT: The network block transfer protocol [57–60] is an application specific protocol

designed for transporting large blocks of data with high throughput [31]. It was designed

to operate efficiently even over long-delay links such as those found in satellite networks,

and use the IP network layer. NETBLT connections are unidirectional, and may only

be released by the sender. It addresses flow control using both window and rate-control

mechanisms. NETBLT also performs error-control using an optimized selective repeat

mechanism which can fill multiple holes using a single retransmission request message.

DECbit: DECbit is an explicit congestion notification mechanism. It consists of a single

bit in the transport header, set by a congested hop on packets traveling in the forward

direction, and relayed to the sender via acknowledgment packets. Based on this decision

bit, the sender can then reduce its sending rate based on explicit knowledge, as opposed

to implicitly assuming congestion due to a packet loss as in done in TCP [61].

TCP-Tahoe: TCP-Tahoe is the 4.3 BSD Tahoe version of TCP implemented in 1988 and

based on Van Jacobson’s congestion-control theory [62], but did not receive its name until

Fall & Floyd’s 1996 paper [40]. Its distinctive feature is the addition of the basic conges-

tion control strategy that is used today to the basic TCP functionality. This includes the

maintenance of a congestion window that limits the number of unacknowledged pack-

ets in flight, in addition to the limit previously imposed by the receive window. It also
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includes the slow start state to rapidly ramp up the sending rate when a connection is

initialized. Thirdly, Tahoe specifies a congestion avoidance state, in which the sending

rate is gradually increased until a loss occurs. When the receiver in TCP-Tahoe receives

a mis-ordered segment, it does not acknowledge it, instead it sends a duplicate acknowl-

edgement for the last in-order packet received. After three duplicate acknowledgements

the sender performs a Fast Retransmit by sending the first unacknowledged packet and

resets its congestion window to one segment beginning the slow-start process over again.

ISO-TP0–4: The OSI transport protocol suite (ISO-TP) is functionally partitioned into

five distinct protocols TP0 through TP4 that are meant to provide increasing levels of

reliability, TP0 being comparable to UDP and TP4 comparable to TCP. The user or

application is required to select the correct TP variant to meet its requirements given

the characteristics of the underlying network [63–65]. OSI/TP4 is a connection-oriented

protocol, designed to provide reliability on top of an unreliable network service. It also

has a number of mechanisms for negotiating quality-of-service parameters including re-

quired throughput, priority, delay, and error-rate. Similarly to Delta-t, error recovery

happens based on timeouts alone, there is no negative acknowledgement mechanism in

the protocol.

CARD: Congestion avoidance using round-trip delay was proposed as an alternative to

DECbit (by the same authors), which unlike DECbit does not require participation of

the network layer. Instead CARD relies on the RTT to set the window size. There are

4 cases when using the CARD algorithm. If the window size is increased and the RTT

increases, decrease the window size by 1

8
. If the window size is increased and the RTT

does not increase, increase the windows size by 1 MSS. If the window size is decreased

and the RTT increases, increase the window size by 1 MSS. Lastly if the window size is

decreased and the RTT decreases, decrease the window size by 1

8
. The result is a window

size which continually oscillates around it optimal value, assuming congestion is the only
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cause of RTT change [66].

1990–1999

TCP-Reno: TCP-Reno is an optimized implementation of TCP-Tahoe and first appeared

in 4.3 BSD Reno in 1990, but like TCP-Tahoe, it did not receive its name until the Fall,

Floyd 1996 paper [40]. It added an additional state called Fast Recovery that occurs after

a Fast Retransmit event, and instead of resetting the congestion window to 1 segment,

it instead sets it to half of its current value. This was shown to be sufficient reduction in

sending rate to prevent congestion collapse, while reducing the burstyness of the traffic

flow and thereby increasing the overall utilization of of the network.

ALTP-OT: The application-oriented lightweight transport protocol is part of the Axon

high-speed communication architecture for distributed applications [67]. Flow-control

in this environment is rate-based, and bandwidth is reserved during connection setup,

making congestion control unnecessary. Error correction is handled with selective retrans-

mission that is either timer-based or tightly coupled to the demands of the application,

meaning that a missing packet containing data that is not referenced by the application

may never be retransmitted [68].

Tri-S: Slow start and search is an end-to-end congestion control algorithm that operates

by evaluating the marginal increase in throughput gained by each MSS added to the

window size. If the marginal increase drops below half the throughput when the window

size was 1 MSS, the window size is decreased. Tri-S uses additive increase and additive

increase, assuming fairness to have been established during session startup [69].

DUAL: Crowcroft’s dual adjustment scheme is designed to avoid congestion while induc-

ing less oscillation in aggregate network traffic than Jacobson’s AIMD algorithm found in

TCP-Tahoe. It works by comparing the RTT against the average of previously observed
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minimum and maximum RTTs. If the current RTT is above this average the congestion

window is reduced by 1

8
, otherwise it is increased by 1 MSS. [70].

XTP: The express transfer protocol is designed to provide multiple service types, in-

cluding bulk data transfer, real-time datagrams, and multicast. It was also explicitly

designed for ease of implementation using VLSI. It is a unified transport and network

layer, and uses a combination of rate-control, selective retransmission, and implicit con-

nection establishment. It is also aware of both link and end-system limitations, and uses

this information to set flow-control parameters [71].

TP++: TP++ is a transport protocol designed for multimedia applications that operates

across high-speed networks. It makes provisions for multiple traffic classes and network

scenarios, by being modular and composable, and is more flexible and complex than ISO-

TP. TP++ was designed with large bandwidth-×-delay product paths in mind, and uses

messages that are easily converted to different packet sizes to support heterogeneity. It

also assumes that congestion control is provided by the network but provides mechanisms

for end-to-end error control [72].

There are three major classes of applications that TP++ is designed for. Constrained

latency services are those that are necessary for human interaction such as voice or video,

in which the data sent becomes worthless if it does not arrive within a certain amount

of time. Transactions occur mainly in distributed systems and are bursty in nature, but

contain small to moderate amounts of data. The third class is bulk data transfer which

carries large amounts of data between hosts. This generally requires reliable transfer but

has looser latency constraints than the interactive data class.

TP++ connections are only one-way; bi-directional communication is accomplished using

two one-way connections. TP++ uses not only ARQ, but also FEC for error control.

Each 216 byte (64 KB) transport protocol data unit (TPDU) has an associated 64-bit field

30



for detecting bit errors. The value of this field is computed at the sender and receiver

using the WSC-2 [73] error detection code and the TPDU is assumed to be correct if

the two values match. This is sufficient to detect all errors that change less than four

bits. This relatively low number is based on the assumption that the underlying network

links will be fiber-optic and have very low error rates. ARQ is used to recover losses

due to congestion for the application classes that require reliable communications. The

ACK messages used for ARQ include the last connection sequence number (CSN, a 32-bit

byte counter) of all data that has been received contiguously since the beginning of the

connection, as well as any CSN ranges received since then. This allows the transmitter to

perform loss estimation and retransmit the necessary data, without retransmitting any

correctly received data (selective repeat ARQ). It also allows the transmitter to maintain

loss statistics and reduce the TPDU size in response to changing channel conditions,

thereby creating a cross-layer control loop. When providing constrained latency service,

TP++ can use FEC alone for error control. The FEC scheme used is only designed

to correct packet drops, not bit errors, based on the assumption that congestion is the

primary source of data loss. Each TPDU is segmented into forward error correction blocks

FEBC’s. Parity is then calculated by striping across the FEBC’s. Missing FEBC’s at the

receiver can then be reconstructed using this erasure code, up to the number of additional

FEBC’s sent.

Connection management in TP++ is timer-based, which avoids the connection setup

overhead of a handshake-based scheme. Connection setup is instantaneous when data

is received at the destination, and shutdown occurs implicitly when the connection has

been idle for a certain period of time.

RED: Random early detection is an implicit congestion notification mechanism. It is

intended to avoid the network underutilization that occurs when a buffer overflow occurs

resulting in a burst of packets being dropped from multiple TCP flow, causing them all to
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back off. By randomly dropping a few packets when the buffer size reaches a threshold,

several TCP flows are triggered to back off thus alleviating the congestion [74].

TCP-Vegas: TCP-Vegas is a sender-side modification of the earlier TCP-Reno imple-

mentations. It does not involve a change in the TCP specification, only in the implemen-

tation choices. TCP-Vegas uses a more accurate clock, and therefore is able to estimate

the RTT more exactly than previous versions of TCP. This means it is able to respond

to timeout events much sooner. TCP-Vegas is probably best known for its congestion

avoidance mechanism, which operates by calculating an expected throughput equal to

the congestion window size, divided by the minimum observed RTT. As long as the ac-

tual throughput is close to the expected throughput the congestion window is increased,

however if the actual throughput drops significantly below the expected throughput it

indicates that the congestion window is too large and congestion is being experienced on

the path (even if no packets have been lost yet) so the window size is reduced. Lastly,

TCP-Vegas modifies the slow-start mechanism to be less aggressive. It doubles the win-

dows size only every other RTT, and compares the actual to expected throughput in

between. When the actual starts dropping below the expected it changes to an additive

increase instead of exponential increase in window size [41].

T/TCP: TCP extensions for transactions is designed for efficient handling of request-

response oriented applications. The primary modification made to standard TCP, is

that after the first connection between a given pair of hosts, subsequent connections

may be made without completing a three-way handshake. This makes sessions consisting

of only a few packets much more efficient. To enable this, the hosts must cache the

parameters negotiated during their first connection after it is finished, allowing them to

choose a new connection count number and resume at previous window values without

renegotiating [75].
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I-TCP: Indirect TCP is designed to allow mobile hosts to communicate with peers

on fixed networks via mobility support routers, or gateways. The gateway maintains

a standard TCP connection to the fixed host, on behalf of the mobile host, and the

mobile host communicates with the gateway via I-TCP. I-TCP then applies a number of

enhancements to the wireless link, including distinguishing between channel errors and

congestion. It also handles handoffs from one gateway to another [76].

Snoop-TCP: Snoop-TCP is designed to enhance TCP performance in multihop wireless

networks. It does not modify TCP itself, but instead changes the base station behavior.

When running snoop, each base station caches unacknowledged TCP segments, and

intercepts duplicate ACKs, performing the retransmissions locally [77].

TCP-NewReno: TCP-NewReno is an enhancement to the fast recovery phase found in

TCP-Reno. Instead of waiting after resending the lost packet, it continues transmitting

a new segment for every duplicate ACK received to keep the window full. If an ACK is

received making only partial progress through the outstanding window NewReno assumes

that is indicating another lost packet and retransmits that on next. This allows it to

maintain much higher throughput after losses occur compared to TCP-Reno [40].

RTP: The real-time transport protocol is designed for delivering audio and video over

IP. It does not handle error control or congestion, being UDP-like in behavior. It simply

provides a standardized header for timestamps, sequence number, and a number of flags

that ar commonly useful to multimedia streaming applications. It is typically imple-

mented as a UDP shim and used in conjunction with a control protocol such as H.323,

SIP, or RTCP [78,79].

RMTP: The reliable multicast transport protocol provides in-order reliable deliver of

data form a single source to multiple destinations. An end-to-end selective repeat algo-

rithm is used, however the acknowledgements are aggregated on the return path through
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the multicast tree, so that the source does not get overwhelmed with ACKs from all the

destinations [80].

SCPS-TP: The space communication protocol standards transport protocol is a set of

extensions and modifications to TCP to improve operation in the space environment.

It both adds mechanisms to deal with specific environmentally-induced problems, and

modifies existing mechanisms to reduce undesirable behaviors. The use of the SCPS-TP

options is negotiated at the time of connection establishment, which allows the SCPS-TP

agent to emulate TCP when communicating with a non-SCPS peer [81].

In SCPS-TP the default loss assumption is a user-selectable parameter on a per-path

basis, so it will not assume congestion on links where congestion is unlikely. It also

allows for signaling of congestion, corruption, and link outage both from the destination

host and intermediate routers to explicitly determine the source of packet loss. SCPS-

TP implements the TCP Vegas [82] slow start algorithm and congestion control based on

RTT estimates. Additionally SCPS-TP queries the user for the path bandwidth-×-delay

product and enters congestions avoidance once the congestion window size reaches this

value, similar to the congestion avoidance algorithm described in [83]. This is beneficial

for paths with high RTT. Explicit Congestion Notification (ECN) is done using source

quench SCMP (SCPS specific version of ICMP) messages as in [84]. SCPS-TP also

uses an open-loop token bucket rate control mechanism [85] for each space link to avoid

congestion, with the available capacity shared in the global routing structure. For loss

due to corruption, SCPS-TP relies on the ground-station at the receiving end of each

space link to maintain a moving average of the ratio of corrupted frames received and

to use explicit cross-layer messages to inform the SCPS-TP destinations when that ratio

exceeds a threshold. The destinations are then responsible for continuously notifying

their respective sources of the corruption, during which the sources will not reduce the

congestion window or back-off the retransmission timer in response to packet loss. In the

34



case of a link outage, SCPS-TP assumes that the outage is bi-derectional, so the endpoints

of the space link are responsible for notifying the SCPS-TP source and destination nodes

on their side of the link. SCPS-TP then enters a persist state in which it periodically

probes for link restoration at which point it can resume transmission where it left off

without multiple timeouts or retransmissions or going through slow-start again.

To deal with the problem of highly asymmetric channels, SCPS-TP reduces the number

of ACKs required by TCP [86] from every other segment to only a few per RTT. This

requires other TCP mechanisms such as fast retransmit [87] to be disabled. To deal with

constrained bandwidth in general, SCPS-TP employs header compression and Selective

Negative Acknowledgment (SNACK) [88, 89]. The header compression is end-to-end,

as opposed to the TCP/IP header compression specified in [90] that is done hop-by-

hop. This is because hop-by-hop header compression requires a costly resynchronization

process and looses all segments in flight every time a packet is lost or arrives out of order.

The end-to-end compression achieve about 50% reduction in header size by summarizing

information that does not change during the course of the transport session. It also avoids

the problems incurred by changing connectivity because the compression takes place at

the endpoints which remain constant. The SNACK option allows a single NAK [91] to

to identify multiple holes in the the received data out-of-sequence queue. SCPS-TP also

uses TCP Timestamps [92] to keep track of RTTs even with lossy channel conditions,

and uses the TCP Windows Scaling option [92] so that the channel can be kept full even

while recovering from losses.

M-TCP: Mobile TCP is designed for mobile cellular hosts communicating with peers

on fixed networks. It makes use of a gateway that connects multiple cells to the fixed

network to split the TCP connection. On the wired side, standard TCP is used, while

M-TCP is used between the mobile host and the gateway. The gateway is responsible

for assigning a fixed bandwidth to each mobile host within the cells it controls. The
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gateway also preserves the end-to-end semantics of TCP, in that it does not acknowledge

a packet until it receives an acknowledgement from the receiver. If the mobile device gets

disconnected, the gateway advertises a receiver window of 0 to the fixed peer, putting it

into persist mode. When the mobile host reconnects, the gateway advertises the normal

size window to the sender, allowing the connection to resume with no back-off [93].

Mobile-TCP: Mobile-TCP is designed to be a low-complexity protocol suitable for mobile

devices. It is capable of connecting to standard TCP peers via a single-hop wireless

network and a mobile gateway that translates between the two protocols. A variant of

header compression is used between the gateway and the mobile device to reduce the

amount of data transmitted wirelessly. Error-correction in Mobile-TCP is asymmetric.

From the gateway to the mobile device, go-back-n is used due to it’s minimal processor

and buffering requirements on the receiver side. When the mobile device is transmitting

to the gateway, selective repeat is used to minimize the transmissions required. No

congestion control or reordering capability is provided, due to the characteristics of the

single-hop wireless evironment [94].

TCP-F: TCP Feedback is a cross-layer modification to notify the TCP sender of route

failures in MANETs. This allows it to distinguish between losses due to route-failures,

and losses due to congestion. When notified of a route disruption, the sender enters a

snooze state where all timers are frozen. When the route is restored, the sender is notified

again and resumes transmission without any back-off [95].

TCPSat: In 1999 the Internet Engineering Task Force (IETF) TCP Over Satellite Work-

ing Group (TCPSat) produced an informational RFC describing the issues affecting TCP

performance of satellite links and identifying existing mechanisms that mitigate these ef-

fects [96]. These mechanisms were restricted to those mature enough to have reached

RFC status, and which were backward compatible with TCP. In addition to the issues
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and mechanisms already discussed, TCPSat recommends the use of path MTU discov-

ery [97]. This allows TCP to determine the largest packet size that can be sent over the

path without being subjected to fragmentation. Path MTU Discovery works by probing

the path with progressively smaller packets that have the don’t fragment (DF) bit set

until it is able to reach the destination. The cost of doing this is significant delay (several

RTT) before TCP can begin transmitting data, however by caching the path MTU for

various links this cost can be amortized over multiple TCP connections. The assumption

in doing path MTU discovery is that the effective BER is low enough that it is desirable

to use the largest segment size possible to obtain maximum efficiency.

A related recommendation that is made is to use strong enough FEC that nearly all loss

is due to congestion, since that is TCP’s assumption when a packet is lost. TCPSat does

not recommend doing loss discrimination and emphasizes the ned for TCP’s congestion

control behavior to avoid congestive collapse [62, 98]. The TCPSat recommendations

only consider paths which originate and terminate on earth, passing through either a

Geostationary Orbit (GEO), Medium Earth Orbit (MEO), or Low Earth Orbit (LEO)

satellite, so the maximum RTTs being considered are only on the order of a second in

contrast to the delays being considered in the SCPS-TP work.

The TCPSat group produced a second informational RFC outlining current research

(circa 2000) that might improve TCP over Satellite links, but was not yet mature enough

to be recommended [99].

STP: The satellite transport protocol incorporates many of the proposed TCP en-

hancements for satellite links including selective negative acknowledgments (SNACK),

elimination of the retransmission timeout, periodic aggregated acknowledgements, and

rate-based congestion control. Unlike SCPS-TP, STP does not attempt to differentiate

between losses caused by congestion, and those caused by bit-error corruption [100].
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Paced TCP: Paced TCP is flow control modification to TCP that spaces the packets

allowed by the congestion window in time, instead of sending them all back-to-back during

slow-start. The intent is to reduce the burstyness of traffic, to both improve fairness and

overall bandwidth utilization [101].

2000–2002

SCTP: Stream control transmission protocol is designed to be a reliable protocol, with

more sophisticated message-passing capabilities than TCP. It is intended for applications

such as VoIP and ISDN over IP using multiple byte-streams (as opposed to TCP’s single

byte-stream). Using multiple byte-streams in parallel avoid the head-of-line blocking

problem, and is able to achieve much better good put than a single stream over lossy

links. SCTP can also make use of multi-homing by assigning multiple IP addresses to

each end of an association, thus allowing for a hot-standby interface should the primary

fail [102].

Freeze-TCP: Freeze-TCP is designed to improve TCP performance between mobile de-

vices and hosts on fixed networks, without splitting the connection at a gateway, or

requiring changes to the TCP code on the fixed node. When the mobile device is the

receiver, it uses signal-strength information from the device’s radio to predict a discon-

nection or handoff and advertises a zero winder size just before this happens. This forces

the TCP sender in the zero-window-probing mode until it receives an ACK with a non-

zero window advertisement. Since the TCP probes back off exponentially, the mobile

receiver does not wait to receive a probe when it is reconnected, instead it sends 3 ACKs

for the last packet received initiating fast-retransmit at the sender and resuming the

connection [103].

TCP-BuS: TCP buffering capability and sequence information is designed to handle
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route failures in MANETs. When the route fails, timer are extended, and packets in-

flight are buffered. Any packets lost as a result of the route failure are retransmitted

without reducing the congestion window [104].

PGM: Pragmatic general multicast is designed for applications such as multi-receiver file

delivery where in-order reliable delivery is required. It uses negative acknowledgements

sent to the source or designated repair nodes. As each negative acknowledgement is

forwarded it is confirmed on a hop-by-hop basis [105].

ARC: Adaptive rate control is a hop-by-hop congestion-control mechanism for wireless

sensor networks. Using an AIMD approach, each node continues to increase its sending

rate as long as it continues to overhear its downstream node forwarding its packets. If

it does not overhear its packets being forwarded, it backs off. It does this independently

for both source and transit traffic to improve fairness [106].

ATCP: Ad hoc TCP is a cross-layer mechanism that manipulates TCP’s state based on

network-layer feedback. If an ICMP destination unreachable message is received, ATCP

puts the sender into persist state where timers are frozen. It then probes the network

until a new route is found. If an ECN message is received, ATCP invokes TCP congestion

control immediately. If three duplicate asks are received, ATCP drops the third ACK,

puts the sender into a persist state, and then retransmits the lost packet. When the next

ACK is received, it returns TCP to the normal state [107].

TCP-RTO: Using a fixed RTO in TCP is designed to handle route failures in MANETs.

Instead of using an exponential backoff, the RTO is fixed after the second timeout and

remains fixed until the route is re-established and the packet is acknowledged [108].

TCP-Peach: TCP-Peach is designed for satellite channels with large bandwidth-×-delay

products, as well as high BERs. It uses bandwidth estimates, and modifies both the slow

start and fast recovery phases of TCP-Reno. In both cases it uses low-priority dummy
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packets to probe the end-to-end path for additional available bandwidth. If the dummy

packets are acknowledged with the same frequency as data packets, additional bandwidth

is available, however if the dummy packets are lost with a higher frequency than data

packets, congestion on the path is indicated. Dummy packets are marked with a low

priority bit, requiring the routers on the path to drop packets preferentially based on

this bit [109].

TCP-Peach+: TCP-Peach+ is an enhancement to the startup and recovery phases of

TCP-Peach. It also replaces the dummy segments with NIL segments which carry unac-

knowledged data, while still being low priority. This allows for the recovery of corrupted

packets without an explicit retransmission. In the startup phase, TCP-Peach+ sends 1

regular segment, and the receiver window – 1 NIL segments, and ramps up the congestion

window to equal the total number of segments acknowledged using only 1 RTT. For loss

recovery, TCP-Peach+ uses the SACK algorithm in addition to the methods described

for TCP-Peach [110].

TCPW: TCP Westwood is also designed for lossy wireless environments, such as satellite

links, but is a sender-side only modification to TCP-Reno. It uses the arrival-rate of

acknowledgements to estimate the available bandwidth. It also smooths the estimate

over time using a low-pass filter. Based on this estimate TCPW implicitly differentiates

between corruption and congestion losses [111].

COPAS: Contention-based path selection is a network layer mechanism designed to

increase TCP performance in MANETs. It uses two mechanisms, the first is choosing

disjoint forward and reverse paths, so the data and ACK packets are not both caus-

ing contention on the same links. The second is monitoring the level of contention on

each path, and selecting an alternate route if the contention on a given path is above a

threshold [112].
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Split-TCP: In unreliable networks such as MANETs, TCP tends to perform very poorly

due to the high number of end-to-end retransmissions incurred and the congestion avoid-

ance mechanism that is triggered by packet loss. Split-TCP divides long paths into seveal

shorter onces, inserting proxies to interface between the segments. The proxies buffer,

acknowledge, and retransmit packets and are able to improve performance by breaking

up the end-to-end semantics of TCP [113].

XCP: The explicit control protocol is designed to handle large bandwidth-×-delay prod-

uct environments. It uses an explicit router-based congestion-control feedback mecha-

nism, thereby eliminating the need for the end-to-end layer to probe for available band-

width [114].

PSFQ: Pump slowly fetch quickly is a reliable protocol designed for wireless sensor net-

works. Instead of the normal source-to-sink traffic model, it is designed for the case where

the sink is transmitting to the sensor nodes, such as when retaking them or uploading

new firmware images, and thus full reliability is needed. As the name implies, PSFQ

uses a low sending rate, so that the normal network operation will not be impeded. If

a packet loss is detected, the node uses a negative acknowledgment to rapidly request it

from the upstream neighbor. In order to guarantee full reliability, an end-to end positive

acknowledgement is used after all the message segments are received [115,116].

WTCP: The wireless transmission control protocol is designed to improve throughput

in wireless wide-area networks. It uses rate-based flow-control instead of ACK clocking

to avoid injecting bursts of data into the network. It adjusts the congestion window

based on the inter-packet arrival time at the receiver in steady state. If packets are lost,

WTCP attempts to infer the cause. If the next received packet after the loss arrives at

the expected time based on the packet arrival rate before the loss, the no congestion is

inferred. However if it arrives later, then congestion is inferred and the sending rate is
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halved. Instead of slow-start it uses the packet-pair approach to estimate the appropriate

sending rate at startup [117].

ELFN: The explicit link failure notification technique is similar to TCP-F, in that a

notification of route failure is sent to the sender, at which point it freezes all timers. In

ELFN however, instead of waiting for a notification of rout restoration, the sender probes

periodically and resumes transmitting if one of the probes is acknowledged [118].

TCP DOOR: TCP detection of out-of-order and response is designed to prevent un-

necessary retransmissions when packets are delivered out-of-order in MANETs. This

mechanism adds a few bytes to the TCP header, which are used to distinguish retrans-

mitted packets from reordered packets at the receiver. If the receiver detects that packets

were received out of order (likely triggering congestion avoidance at the sender) it notifies

the sender of the out-of-order packets. The sender then immediately recovers to the state

it was in before it entered congestion avoidance [119].

TCP-Probing: TCP-Probing is a sender-side modification to traditional TCP. When a

loss occurs it pauses the data transfer and uses pairs of probing packets to determine

if the path is congested. Based on this determination it either immediately recovers,

or enters slow-start. During the probing cycle, which lasts at least 2 RTTs, no data is

transferred [120].

2003–2004

HS-TCP: High-speed TCP is a modification to the congestion control mechanism of

standard TCP to enable better performance in networks with large bandwidth-×-delay

products. When the congestion window is small, it uses the AIMD algorithm from TCP-

Reno to ensure fairness with other TCP variants, however when the congestion window

is large it uses a lookup table to determine the increase and decrease values, meaning
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that it increases more than one MSS per RTT and reduces by less than 1

2
when a loss is

encountered [121].

Scalable-TCP: Scalable-TCP is similar in intent to HS-TCP, that is faster adjustment

with large window sizes. In the case of Scalable-TCP, it adds 1

100
to the congestion window

each RTT without congestion, and reduces by 1

8
if congestion is experienced [122].

TCP Veno: TCP Veno is a sender-side modification to TCP Reno designed to improve

performance in infrastructure wireless networks by discriminating between random losses

and congestion losses and reacting appropriately. It uses the packet-pair method from

TCP-Vegas to estimate queue sizes on the path. Because it relies on a measured RTT

value, it is not expected to work well in MANETs or other environments with frequent

route changes [123].

ILC-TCP: The interlayer collaboration protocol for TCP is designed to store the state

of the link and IP layers in wireless networks, so that the TCP sender can request this

information from ILC when a retransmission timer expires. If the lower lyres are not

stable, then the ILC version of TCP assumes congestion was not the cause of loss and

recovers immediately. This is only useful when the sender is directly connected to the

lossy wireless channel, not when a lossy wireless link exists in the middle or receiver end

of the path [124].

DelAck: The dynamic delayed ACK is a modification of the TCP delayed ACK op-

tion [86]. Instead of acknowledging only 2 packets at a time, they increase the delay

as the sequence number increases, thus sending fewer and fewer ACKs as the session

continues, and reducing congestion due to ACK traffic [125].

Link RED: Link random early detection monitors the average number of link-layer

retransmissions occurring, and begins probabilistic dropping of packets according to the

RED algorithm [74] above some threshold [126].
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Neighborhood RED: Neighborhood random early detection is designed to improve the

fairness of the RED algorithm in MANETs. Since congestion of the wireless channel is a

function of all the node queues in the area, performing RED at each node independently

may unfairly penalize some flows. In neighborhood RED, each node computes an average

queue size calculation based on its own queue as well as its upstream and downstream

neighbors, and then uses the RED algorithm to probabilistically drop packets [127].

Adaptive Pacing: Adaptive pacing is designed to improve spatial reuse in MANETs

by increasing the backoff period after transmission, to allow the next hop to forward

each packet without contention for the channel. It can be used in conjunction with link

RED, which switches from the standard 802.11 backoff to adaptive pacing when the link

retransmission threshold is reached [126].

NWCS: Non work-conserving scheduling is designed to improve fairness among TCP

flows crossing heterogeneous networks made up of wired and wireless ad hoc networks.

It does this by increasing the backoff period for queues outputting at a high rate [128].

DTN-BP: The delay tolerant networking bundling protocol is designed to improve per-

formance when large and variable delays, intermittent connectivity, and high error rates

exist in the network. It is a store-and-forward application-layer overlay that sends pack-

ages of data over a wide range of underlying network types and transport protocols, using

a sequence of gateways that serve as nodes in the overlay [129,130].

RMST: Reliable multi-segment transport is designed for wireless sensor networks. It

uses hop-by-hop caching and repair to provide reliability and runs on top of directed

diffusion. RMST also uses and end-to-end selective negative acknowledgment mechanism

to guarantee full reliability [131].

CODA: Congestion detection and avoidance is designed for wireless sensor networks. It

uses three mechanisms, congestion detection at the receiver, hop-by-hop backpressure,
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and AIMD rate adjustment at the source. When congestion is detected via periodic

channel monitoring, it begins broadcasting backpressure messages that are propagated

upstream to the source, which adjusts it sending rate using AIMD or other local conges-

tion policy [132].

ESRT: Event-to-sink reliable transport is designed to reduce congestion and power

consumption in wireless sensor networks. The authors use the term reliability in their

paper to refer to the sensor’s reliability in detecting an event, based on its reporting

frequency, which has resulted in some literature referring to ESRT as a reliable protocol,

however this is not to be confused with packet reliability, since lost packets are not

retransmitted. ESRT simply attempts to maintain a source reporting rate just high

enough to detect events, without using excess power or inducing congestion. Nodes set

a congestion bit on outgoing packets if their buffer overflows, and when the sink receives

packets with the congestion bit set it adjusts the reporting rate via a high-power radio

broadcast [133].

SRTP: The secure real-time transport protocol adds AES encryption to the original RTP,

as well as using a hashing algorithm to authenticate each packet, protect its integrity,

and prevent replay attacks. SRTP is controlled by SRTCP. [134]

P-XCP: Proportional XCP is a modification to XCP, which is designed to enable it

to perform well in a high BER environment. To do this it modifies the sender to not

back off when packet loss is experienced, adjusting the data sending rate based only on

the explicit congestion notifications. It also increases link utilization by modifying the

aggregate congestion feedback mechanism to account for rate limited connections [135].

TP-Planet: TP-Planet is designed for deep-space backbone links of the interplanetary

network, and to outperform other TCP variants using the congestion-control algorithm

used in TCP-Vegas and SCPS-TP. Instead it uses a rate-based AIMD congestion control
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algorithm. Instead of TCP slow-start, TP-Planet uses initial state, which rapidly ramps

up the sending rate to the slow-start threshold using only a fraction of an RTT, instead

of the many RTTs that would normally be required. After the initial state algorithm

is complete, the steady state commences, during which time the path is continuously

probed by the receiver sending minimum-size (40 byte) segments with alternating high

and low priority. By monitoring the receipt of these packets the receiver can determine

if there is congestion on the path (more low-priority losses than high) or if there is only

corruption-induced loss [136].

PETRA: The performance enhanced transport architecture uses the split-TCP policy to

divide the end-to-end connection and use different transport protocols in each realm. It

identifies two sublayers within the transport layer, the lower transport layer (LTL) that

is responsible for error recovery within each realm, and the upper transport layer (UTL)

that is responsible for end-to-end reliability [137].

GARUDA: GARUDA (named after a flying creature that appears in various Asian

mythologies) is designed to handle reliable data delivery in wireless sensor networks.

It constructs a two-level hierarchy consisting of core and non-core nodes. Core nodes

elect themselves based on the hop count of the packet they received, if they have not

heard from any other core node, to ensure that they are sufficiently distributed. As a

message is propagating through the network, core nodes cache a full copy of the data

being transmitted and use negative acknowledgments to fill any holes. Once the core

nodes have received all packets in a message they broadcast a notification (an A-map) to

the surrounding non-core nodes, which in turn use negative acknowledgments to retrieve

any missing packets from the core nodes [138].

CFDP: The CCSDS File Delivery Protocol is another store-and-forward application-

layer overlay, similar to DTN-BP, and uses TCP and UDP to transfer files from node to
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node. CFDP offers both reliable and unreliable service options, with the reliable mode

operating over UDP and depending primarily on several selectable negative acknowledg-

ment algorithms at the application layer to effect the retransmission of lost data. The

unreliable mode operates over TCP, leaving the reliability to be handled by the transport

layer [139].

DTC: Distributed TCP caching is a TCP enhancement for wireless sensor networks that

does not modify the sender or the receiver, only intermediate nodes. The goal is to reduce

energy consumption, by reducing the number of end-to-end retransmissions. To this end,

DTC caches 50% of the TCP segments at each intermediate node, and reads the SACK

options of the TCP header in order to retransmit lost packets from its cache [140].

Fusion: Fusion is a multilayer approach to handling congestion in wireless sensor net-

works. It includes rate-limiting at the source, hop-by-hop flow control, and includes a

prioritized MAC layer designed to allow sues at congested nodes to drain. Each node

sets a congestion bit in outgoing packets, that is overheard by surrounding nodes, thus

eliminating a need for explicit congestion notifications [141]. In a process referred to as

backpressure, each upstream node from the one that is congested is allowed to transmit

one additional packet, in which it in turn sets the congestion bit.

CCF: Congestion control and fairness is designed for wireless sensor networks, and is

intended to provide better fairness than ESRT and CODA are able to in a congested

environment. It divides the available bandwidth at each node across all upstream nodes,

resulting in an exact hop-by-hop allowable rate calculation [142].

Trickle: Trickle is designed to handle congestion in wireless sensor networks using a

hop-by-hop rate adjustment. The mechanism used id called polite gossip and suppresses

transmissions by the local host if it has overheard more than some threshold of transmis-

sions containing the same information by its neighbors [143].
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ETEN: Explicit transport error notification is an approach to adding loss-discrimination

to TCP for error-prone wireless channels. Channels with non-negligible packet corruption

rates can degrade the performance of TCP significantly due to the assumption that

congestion is the source of all packet losses. If the TCP source can distinguish between

loss due to congestion, and loss due to corruption, it can respond appropriately in each

case and significantly improve performance. Because Internet routers are required to

drop corrupted packets immediately, explicit error notification requires alterations to

intermediate hop behavior, not just the sender and receiver [144].

REFWA: Recursive, explicit, and fair window adjustment is a TCP modification de-

signed for multihop satellite networks. This proposal is unique in that the TCP protocol

remains unchanged, but the fields in the TCP headers are manipulated at intermediate

nodes in order to improve efficiency and fairness in the network. To do this, REFWA

matches the sum of the windows sizes of all TCP flows sharing a bottleneck link, and

then adjusts the receivers advertised window field in each TCP ACK, in proportion to

the estimated RTT for each flow [145–147].

mTCP: Multi-path TCP is designed to stripe a data flow across multiple redundant

network paths in order to aggregate the bandwidth of those paths. It includes a shared-

congestion detection algorithm to avoid taking a unfair share of a bottleneck link shared

by two paths. The basic design consists of a single TCP-Reno with SACK flow on

each path with the send and receive buffers being shared across the TCP flows. The

mTCP sender maintains a scoreboard to track which path is used for each packet and

detect failing paths. All acknowledgements use a single path in order to minimize ACK

reordering [148].

TCPW+: TCP Westwood+ is a modification of TCP-Westwood, designed to smooth

the bandwidth estimation component. It does this by measuring the bandwidth once
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every RTT, instead of every time an acknowledgement is received [149].

TCP-Jersey: TCP-Jersey combines the TCP-Reno protocol with the bandwidth estima-

tion of TCP-Westwood and router-based explicit congestion notification [150].

H-TCP: Hamilton TCP is designed for long fat networks. It modifies the AIMD algo-

rithm by increasing more aggressively in proportion to the time elapsed since the last

congestion event. The backoff is set proportionally to the inferred buffer size at the

network bottleneck(s) based on the minimum and maximum observed RTT [151].

JTCP: Jitter-based TCP measures jitter at the receiver, relative to the segment times-

tamps, to determine the level of congestion on the path. When the jitter ratio is above

a threshold, congestive loss is assumed and JTCP behaves like TCP-Reno, however if

non-congestive loss is detected the window size is only reduced by a small factor [152].

TCP-ADA: TCP with adaptive delayed acknowledgement is similar in intent to DelAck,

i.e. it seeks to reduce the number of asks required, in this case to reduce channel con-

tention. Instead of delaying acknowledgments for a certain number of segments, TCP-

ADA uses a timer-based method for deferring ACKs, where the timer is extended as long

as packets arrive regularly, usually for an entire congestion window of data. This has

some negative side-effects, including susceptibility to ACK loss [153].

2005–2006

RBC: Reliable bursty convergecast is designed for wireless sensor networks that experi-

ence large bursts of traffic following the detection of an event by multiple nodes. It uses

randomized timers to reduce contention, and also allows for out-of-order acknowledgment

of packets [154].
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Siphon: Siphon is a multilayer approach to handling congestion in wireless sensor net-

works, which involve deploying a set of nodes within the sensor field that are able to act

as virtual sinks and siphon traffic away from congested areas of the network and forward

it to the sink via a long(er)-range wireless network on a secondary channel [155].

STCP: Sensor transmission control protocol is a generic reliable transport protocol for

wireless sensor network. Generic in this case means that it is designed for much more

opaque layer boundaries than many sensor network protocols, so it does not perform hop-

by-hop functions, nor control application behavior. STCP is connection oriented, and

uses negative acknowledgments for continuous data flows, and positive acknowledgments

for event-driven flows. It also uses explicit congestion notification, with the network layer

setting a congestion bit in the STCP header, which is read by the sink similar to DECbit.

The sink then notifies the sender of congestion in an acknowledgment packet [156].

REFWA Plus: Recursive, explicit, and fair window adjustment plus adds a loss discrim-

ination component to the TCP sender, based on the feedback provided by the original

REFWA algorithm. When packet loss is detected, the sender checks the current indicated

receiver window (set by REFWA) agains the previous value. If the new value is smaller

the sender takes the loss as an indication of congestion and enters the fast-retransmit

phase as usual, however if the loss is not accompanied by a reduced receiver window the

sender simply retransmits the lost packet within the current window, assuming the loss

was due to a channel error [157].

XSTP: Extended STP combines the TCP-probing mechanism with STP, in order to

differentiate between losses caused by congestion, and those caused by bit-errors [158].

PORT: Price-oriented reliable transport attempts to minimize energy consumption while

achieving the necessary reliability for an application. It uses the event-to-sink concept of

reliability introduced in ESRT. PORT assigned a price to each node, based on the number
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of transmissions required to successfully transfer a packet from that node to the sink.

Low cost nodes are then preferred in routing, thereby reducing energy consumption [159].

TCP-Casablanca: TCP-Casablanca is based on TCP-NewReno and uses a statistical

means of discriminating between random losses and congestion-induced losses. 1 in k

packets is marked, and the routers are modified to drop marked packets first when con-

gestion occurs. If the number of marked packets is disproportionately high, the receiver

determines congestion to be the cause and standard NewReno behavior follows, however

if the losses are randomly distributed the receiver sets the explicit loss notification flag

on the ACK so that the sender will not back off [160].

TCP-DCR: Delayed congestion response TCP is designed to avoid backing off in case

network reordering, not congestive loss, is the case of out-of-order segments at the re-

ceiver. The delay is configurable, and set to one RTT by default [161].

ATP: The ad hoc transport protocol is a non-TCP derived design for MANETs. It

makes use of cross-layer information to respond to route failures. Congestion control is

performed based on explicit feedback from the network, while reliability uses the selective

acknowledgment algorithm, so the two are not interdependent. Each node updates the

ATP header of forwarded packets with its queuing and transmission delay values, if they

are higher than the existing value. The receiver is then able to average these values and

determine if the network is becoming congested [162].

TCP-Westwood-BBE: TCP-Westwood with buffer and bandwidth estimation is designed

to enhance TCP-Westwood’s friendliness to existing protocols such as TCP-Reno. To do

this, TCP-Westwood-BBE estimates the maximum expected RTT before the bottlneck

link’s buffer overflows. If a loss occures when the current RTT is close to the max, the

loss is assumed to be due to congestion and the window size is reduced by 1

2
. If the

current RTT is near the minimum observed RTT then the loss is assumed to be random
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and the congestion window is not reduced. At in-between RTT values, the congestion

window is reduced proportionately [163].

TCP-AReno: TCP-AReno is based on TCP-Westwood-BBE, tracking the minimum RTT

and the RTT observed right before congestion loss events. It manages the congestion

window in two parts. The base part follows TCP-Reno AIMD algorithm. The fast

probing part is set close to the estimated bandwidth of the bottleneck link as long as

the RTT stays close to its minimum value. When packet loss occurs, the multiplicative

backoff is scaled based on the current RTT, as in TCP-Westwood-BBE [164].

DST: Delay sensitive transport is designed for wireless sensor networks and uses the

concept of event-to-sink reliability introduced in ESRT. It introduces a delay bound, and

tunes the reporting rate such that the sink will receive a sufficient number of packets

to reliably indicate an event within that delay bound, and without introducing conges-

tion [165].

PCCP: Priority-based congestion control protocol is designed for wireless sensor net-

works. It compares the packet-interarrival time with the service time of each packet on

a hop-by-hop basis as an indication of congestion. If a node is congested it inserts this

information into the header of forwarded data packets so that it will be overheard by

upstream nodes, similar to the backpressure mechanism used by other protocols [166].

MRTP: The multiflow realtime transport protocol is designed to improve service quality

for realtime multimedia applications. MRTP is controlled by MRTCP, and is designed

to run on top of UDP or SCTP. Data is striped across the available paths and rese-

quenced at the receiver. MRTP is connection oriented, and requires a 3-way handshake

to establish a session. Paths are added and removed on the fly as necessary, and positive

acknowledgments are used for control messages [167].

52



DTN-LTP: The Licklider transmission protocol is a point-to-point unidirectional proto-

col that deals with individual long delay links by freezing timers that would otherwise

expire before an acknowledgement was received. It can transmit both reliable and unre-

liable data simultaneously, requiring acknowledgments for the reliable data only. It relies

on a lower layer scheduler to tell it exactly when and how much to transmit, and when

and how long delays will be. Because it is only designed for dedicated point-to-point

links LTP does not handle congestion or routing issues [168–172].

2007–2008

Flush: Flush is a receiver-initiated reliable bulk transport protocol for wireless sensor

networks, which uses end-to-end negative acknowledgements and an integrity check of

the entire transfer for reliability. During connection setup it determines the number of

hops in the path, and optimizes the sending rate to maximize spatial reuse along the

path. It assumes that only one transfer occurs at a time so that inter-flow interference

or congestion are not a factor [173].

RCRT: Rate-controlled reliable transport is designed for highly-utilized wireless sen-

sor networks that are loss intolerant. It uses end-to-end negative acknowledgments, as

well as cumulative positive acknowledgements piggybacked on other feedback packets to

ensure full reliability. RCRT also employs centralized rate-control to avoid congestion,

by assuming that the network is uncontested as long as lost packets can be retransmit-

ted quickly. If that is not the case, the sensors are instructed to reduce their sending

rate [174].

ART: Asymmetric and reliable transport is designed for wireless sensor networks, and ex-

ploits the fact that event-to-sink communications (often) do not have the same reliability

requirements as sink-to-sensor transmissions. It uses end-to-end negative acknowledg-
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ments to fill gaps in sink-to-sensor data, with a positive acknowledgment for the last

packet in each message. ART uses the concept of event reliability from ESRT when

dealing with event-to-sink transmissions, so positive acknowledgments are used, but only

on a per-event basis, not on a per-packet basis [175].

DTSN: Distributed transport for sensor networks is designed to offer two reliability

modes, depending on application requirements. It is connection oriented, but connection

setup is implicit. In the fully-reliable mode DTSN uses window-based loss detection, with

both negative and positive acknowledgments. In the case of a negative acknowledgement,

each intermediate node searches its local cache and attempts to fill the holes identified

in the NACK, updating the NACK packet accordingly before forwarding it. In the

differentiated reliability mode, the application is allowed to denote core data (e.g. key

frames in a video sequence) and only the core data is preferentially cached at the source.

The remaining data is left to hop-by-hop reliability mechanisms or best-effort service.

DTSN does not include a congestion-control mechanism [176].

PHTCCP: Prioritized heterogeneous traffic-oriented congestion control protocol is de-

signed to handle congestion in wireless sensor networks supporting multiple application

types. It uses the ratio of the packet service time, to the packet scheduling time at

the MAC interface as the indicator of congestion at each node. Each node piggybacks

its congestion information on forwarded nodes so that upstream nodes can overhear it

and reduce their sending rate if needed. Priority scheduling is handled at the MAC

layer, where high-priority packets use shorter backoff timers for contention and smaller

interframe spacing [177].

CTCP: Collaborative transport control protocol is designed to handle reliability and con-

gestion control in wireless sensor networks. It is connection oriented, using a handshake

to set up the connection and establish the flow ID. CTCP uses hop-by-hop reliability,
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but has two modes. In the first mode each node receives and acknowledgement from the

next node. In the second mode, each node receives an acknowledgement from the next

2 nodes. Congestion is controlled by broadcasting a stop signal if a node nears buffer

capacity, and a start signal when the buffer is nearly empty. Each node maintains a table

of the flows transiting it, and the state of it downstream neighbors buffers [178].

RT2: Real-time and reliable transport is designed to address the reliability needs of wire-

less sensor networks. They build on the idea of event reliability, as opposed to packet

reliability, introduced in ESRT. In this case however, they also use selective acknowledg-

ments to provide full reliability for control traffic [179].

PALER: Push aggressively with lazy error recovery is designed for code distribution or

other one-to-many applications that require reliability. It is based on PSFQ, but reserves

all error-correction until the end and handles it with a single negative acknowledgement.

This is shown to require fewer total transmissions than PSFQ [180].

TCP-AW: TCP Adaptive Westwood combines the ideas of TCP-Westwood with TCP-

AReno to achieve efficiency in high bandwidth-×-delay product networks, RTT fairness,

and fairness with existing protocols. It detects congestion using RTT monitoring from

Westwood, and reduces the congestion window to safe levels using the algorithm found

in Adaptive-Reno [181].

TCP-Illinois: TCP-Illinois is designed for high-speed networks and is based on TCP-

NewReno. It adapts the AIMD parameters based on inferred changes in queuing delay.

When the RTT is close to the minimum observed, then queuing delay is assumed to be

small and the congestion window is increased more aggressively, while the backoff due

to loss is reduced to a small fraction. Conversely when the RTT increases, the queuing

delay is assumed to be increasing and the congestion window is increased less aggressively,

while the backoff due to loss is increased to a larger fraction [182].
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MPLOT: Multi-path loss tolerant TCP is designed to make use of multiple redundant

paths in highly lossy (up to 50% packet-error rate) environments. Similar to mTCP, con-

gestion control is handled on a per-path basis using standard TCP mechanisms, however

error control is spread across the paths using erasure coding to statistically reduce the

number of retransmissions required. MPLOT continuously estimates the RTT, loss-rate,

and available capacity of each path, and uses this to do latency-aware packet map-

ping [183].

2009–2011

ERTP: The energy-efficient and reliable transport protocol is designed for streaming

data in wireless sensor networks where congestion is not a concern, but reliability is

required. ERTP uses hop-by-hop retransmission, based on implicit acknowledgements,

combined with the probability of packet lost on each link to determine the number of

retransmissions that should be allowed on each hop to achieve an acceptable level of

end-to-end reliability [184].

CRRT: Congestion aware and rate controlled reliable transport is designed for wireless

sensor networks. It uses both hop-by-hop and end-to-end retransmissions for reliability,

and includes a mechanism for centrally controlling the sending rate of each node to reduce

congestion [185].

TRCCIT: Tunable reliability with congestion control for information transport is a

wireless sensor network protocol that selects between ARQ and multipath options for

tunable reliability. It uses both implicitly and explicit acknowledgments on a hop-by-hop

basis, and timers to trigger transmissions if a packet is not acknowledged by the next

hop. It does not use end-to-end acknowledgments. Nodes will also choose alternate paths

if their next-hop neighbor is congested, resulting in partially disjoint paths [186].
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TCP-Derwood: TCP-Derwood is designed to handle significant changes in available

bandwidth and RTT which result in dramatically different bandwidth-×-delay products,

and are caused by switching between terrestrial and satellite links. To detect a change in

link type, the sender observes the sudden change in RTT, as well as other characteristics

of the ACK timing. When switching to a satellite link, TCP-Derwood increases its

congestion window to allow it to fill the new pipe, and when switching to a terrestrial

link the congestion windows is decreased [187].

2.5 Diversity

Due to established layering paradigms, diversity is difficult to introduce at the transport

layer in a meaningful way (unified designs for sensor networks as seen in the previous

section being the exception), and instead it typically appears in multipath routing archi-

tectures where it operates on traffic aggregates, and is decoupled from specific application

requirements or optimizations. That being said, there have been a number of these rout-

ing approaches which are relevant to our work on end-to-end diversity and we will look at

those in this section. We also note that diversity in this context is significantly different

than the wireless channel diversity used to enable network coding, and that although

there is ongoing research on the effects of network coding on the end-to-end layer [188],

that is a separate topic and considered outside the scope of this dissertation. We are

interested in diversity due to its potential to improve network survivability.

2.5.1 Network Survivability

The study of network survivability is an extension of the study of fault-tolerance, which

is the ability of a system to tolerate faults such that service failures do not result. Fault

tolerance generally covers random single or at most a few faults, and is thus a subset
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of survivability [6]. The current level of reliance on the Internet in modern nations led

to the understanding that fault-tolerant designs were not sufficient and that diversity in

multiple forms is needed to prevent multiple parts of the infrastructure from sharing fate

and thereby protect against correlated failures.

Survivability is the capability of a system to fulfill its mission, in a timely manner, in

the presence of threats such as attacks or large-scale disasters. This definition captures

the aspect of correlated failures due to an attack by an intelligent adversary [15, 16], as

well as failures of large parts of the network infrastructure [189,190]. Note that disasters

can be natural (e.g. hurricane, coronal-mass ejection, earthquake) or human caused (e.g.

blackout, electro-magnetic pulse weapon).

Based on this definition, survivability may encompass a broad spectrum of failure sce-

narios, however the aspect about which we are concerned in this work is the ability

of a topology to remain connected (the acceptable service) [191, 192] while undergoing

multiple simultaneous node and link failures (due to external challenges) [7, 193].

2.5.2 Graph Theoretic Diversity Approaches

The problem of finding paths through a network has been well studied in the context of

graph theory [194] as well as fiber network planning. The existing algorithms are based

on different characteristics of these paths such as shortest paths, diverse, and disjoint

paths [14], and optical restorability [195]. Several algorithms exist to find the shortest

path or k-shortest paths that include the earliest shortest path algorithms by Ford [196],

Moore [197], Dijkstra [198], and Floyd [199], along with several modifications that address

negative cycles and improve on or in some cases trade time and space complexities [200].

Following the shortest path between a pair of nodes, several algorithms were proposed to
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find the k -shortest paths, which involve simple techniques such as manipulation of edge

weights to highly optimized algorithms [201].

Furthermore, the concept of diverse paths has been investigated to find a pair of di-

verse paths, k-diverse paths, and k-shortest diverse paths. The existing literature covers

techniques based on shortest path algorithm with the incremental removal of used edges

to graph transformations [202, 203]. Bhandari presents efficient algorithms to compute

edge-disjoint and vertex-disjoint paths [200]. However, these algorithms are based on

finding completely diverse paths. Bhandari also discusses an algorithm that finds the

maximally diverse paths between a pair of nodes using a modified Dijkstra’s algorithm.

In this work, we use a method that draws heavily on Bhandari’s maximally-diverse paths.

However, we consider both edge and node disjoint diversity. We further expand the

diversity measure by applying it to a set of nodes and to a full graph. We apply our

algorithm to a network scenario in which the objective is to find k paths such that the

diversity of individual node pairs as well as the overall diversity of the network exceeds

a minimum threshold. Work has been done to characterize ISP networks in terms of

the redundancy present in their physical layer graphs [204]. Our work is consistent with

these efforts when applied in the same context.

2.5.3 Multipath Routing

Multipath at the network layer does not have the same end-to-end semantics as it does

at the transport layer, however there have been a number of proposed multipath routing

approaches that may have counterpart mechanisms at the transport layer.

Path Splicing [5] uses multiple destination-rooted routing trees to provide multiple alter-

native paths that may be switched between at any intermediate node. In this approach,

the source node is given control over selecting a path index at each intermediate hop,
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however no information about the paths is passed to the source so there is no basis on

which to chose a particular set of paths. The benefit is that if the source detects packet

losses and suspects a bad link, it can randomly choose a different set of path indices much

faster than routing can reconverge, however it has no assurance that the new path chosen

will map to a different set of physical links. A similar approach is Routing Deflections in

that the source node is given some control without detailed information [205].

Rope ladder routing (RLR) [206] combines the features of link, node, and path protection,

wherein the primary and backup paths are connected at many intermediate points, not

only at the source and destination. It uses GPS locations of the nodes to construct the

rope-ladder paths, with the goal of quick recovery in the case of an outage on the primary

path, and minimal packet loss.

An alternative, which is sometimes not even thought of as a multipath solution, is to

have pre-computed back-up routes in case of a link failure [4, 207]. While this can be

faster than a full reconvergence, it still takes time for the nodes at the location of the

failure to detect it and begin using the alternate routes.

Much of the multipath routing research, such as DETOUR [208], has been focused on

the ad-hoc wireless environment in which channel conditions and resource constraints are

the primary concern.

2.5.4 Multipath Applications

There are a number of proposed application scenarios (e.g. video streaming [209, 210])

that recognize the benefits of scheduling packets across multiple disjoint paths for per-

formance gain or to mitigate the effects of bursty channel errors. Our goal with respect

to these scenarios is to expose a well-defined set of control parameters (knobs) that allow
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the application to express its service level requirements without placing the full burden

of discovering the optimal set of paths on the application itself.

2.6 Summary

Based on the literature survey, we can conclude that there are many approaches to learn

from, in both the transport and multipath routing domains. The key difference between

our approach to diversity and existing multipath routing research is that we explicitly

look at it as an end-to-end problem, to be solved intelligently using cross layer informa-

tion available at the endpoints, in the context of application requirements. Particular

routing protocols are generally restricted to enabling multipath within an administrative

domain, not controlling the end-to-end path. Our transport protocols draw on mecha-

nisms originally presented in a number of the protocols here, but combining them into a

unified protocol that is modular and adaptable to multiple network environments.

The following chapters will first present our approach to enabling diversity, followed by

the design and analysis of our ResTP protocol, which uses diversity as well as a number

of other mechanisms to improve resilience at the end-to-end layer.
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Chapter 3

Path Diversification

In this chapter we present Path Diversification, a new mechanism that can be used to

select multiple paths between a given ingress and egress node pair using a quantified

diversity measure to achieve maximum flow reliability. Diversity is one of the critical

mechanisms identified in Chapter 1 for improving network resilience. Of the many forms

diversity can take, we are looking at path diversity, by which we imply diversity of

transit nodes and links. In order for path diversity to have a substantial impact on

network performability, it must be available between a large percentage of node pairs, so

we devote a significant portion of this chapter to the evaluation of the diversity available

in network graphs.

The path diversification mechanism is targeted at the end-to-end layer, but can be applied

at any level for which a path discovery service is available, e.g. intra-realm routing or

inter-realm routing. Path diversification also takes into account higher level requirements

for low-latency or maximal reliability in selecting appropriate paths. Using this mech-

anism will allow future internetworking architectures to exploit naturally rich physical

topologies to a far greater extent than is possible with shortest-path routing or equal-cost

load balancing. We describe the path diversity metric and its application at various aggre-

gation levels, and apply the path diversification process to 13 real-world network graphs
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as well as 4 synthetic topologies to asses the gain in flow reliability. Based on the analysis

of flow reliability across a range of networks, we then extend our path diversity metric

to create a composite compensated total graph diversity metric that is representative of

a particular topology’s survivability with respect to distributed simultaneous link and

node failures. We tune the accuracy of this metric having simulated the performance of

each topology under a range of failure severities, and present the results. The topologies

used are from national-scale backbone networks, with a variety of characteristics, which

we characterize using standard graph-theoretic metrics. The end result is a compensated

total graph diversity metric that accurately predicts the survivability of a given network

topology.

The work presented in this chapter has resulted in several publications. We proposed

the original path diversity metric and path diversification algorithm in [211] and further

evaluated it, along with the EPD and TGD metrics in [212]. More recently we proposed

and evaluated the cTGD metric in [213], and we are preparing an extended version

addressing all these elements as well as providing additional evaluation in [214]. The

remaining sections of the chapter are organized as follows: In Section 3.1 we introduce

path diversification and explain why it is an essential component for resilience in future

network architectures. Section 3.2 presents the path diversification mechanism itself.

Section 3.3 explains our evaluation methodology and presents our findings. Section 3.4

compares the survivability of our 17 topologies. Section 3.5 ranks these topologies and

presents a new composite metric for predicting network survivability, and Section 3.6

concludes.
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3.1 Motivation for Multipath

Many of today’s networked devices have access to multiple partial or complete physical

layer paths between endpoints, but are unable to benefit from them due to design de-

cisions in the current Internet protocol stack that assume unipath routing. Depending

on the application, the benefits of using multiple paths can be in the form of improved

performance, increased dependability, or both. In this work we focus on the dependabil-

ity aspects, recognizing that additional mechanisms are needed to optimize performance

gains across multiple paths in real time (e.g. [215]), several of which we examine in

Chapter 4.

The goal of path diversification is to provide a unified interface to a service that is as

reliable as the underlying physical graph, instead of being limited by the reliability of a

particular path as in the current model. This could alleviate much of the programming

overhead that currently exists at the application level, providing a level of service not

possible with the limited information currently provided to the end systems. At the

same time, doing so requires that the end-to-end service be informed of application

requirements in terms of throughput and upper delay bounds, given that there is an

inherent tradeoff between maximizing path diversity and minimizing path stretch [5].

In the upcoming sections we present a formal definition of the Path Diversity metric, and

its aggregate properties when applied to node pairs and complete network graphs. Based

on this notion of diversity we then present Path Diversification, which is a heuristic algo-

rithm designed to select the most advantageous subset of available diverse paths between

two nodes in a network under particular application constraints. It yields several derived

metrics reflecting some of the characteristics of the selected paths, as well as the network

as a whole. We then explore how path diversification improves reliability by comparing

it both to the conventional unipath approach and the real connectivity of the underlying
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topology, which forms the upper performance bound in our case. We do not evaluate

different path discovery mechanisms, but assume the availability of a path database that

corresponds to the physical topology as has been proposed in the context of the Post-

Modern Internetwork Architecture [24]. We then quantify the survivability of network

topologies so that new or modified topologies may easily be compared quantitatively.

3.1.1 Terminology

While we try to maintain consistency with all widely accepted definitions, there are a

few key terms defined here:

• Node pair: Any two nodes at the same hierarchical level of a particular network

topology, e.g. two core nodes or two subscriber nodes.

• Path: Any complete set of nodes and links that form a loop-free connection between

a node-pair.

• Path stretch: The ratio of the number of hops on a given path, divided by the

number of hops on the shortest path.

• Flow: A data association between a node-pair which may be distributed over one

or more paths.

• Application: The higher-level entity that specifies the service requirements of a

particular flow. This may refer to a traditional software application, or an alterna-

tive motivating factor, such as an SLA (service level agreement) in the context of

an ISP network.
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3.1.2 Design Goals

In order to achieve resilience, an end-to-end flow should be able to exploit diversity to the

degree that it is present in the physical network graph. Current unipath mechanisms that

rely on shortest-hop single-path routing cannot accomplish this. A resilient multipath

mechanism should have the following design goals in providing service to higher layers:

• High flow reliability: Once established, a flow should remain stable as long as

the underlying physical network is not partitioned.

• End-system control: The end systems or application should have some control

over the paths selected.

• Optimal paths: The paths chosen should be the best available given the applica-

tion’s service requirements.

• Minimal impact: There should not be a negative impact on the network as a

whole.

Section 3.2.4 formally describes the algorithm used in path diversification to meet these

goals.

3.2 Path Diversification Overview

The primary objective of path diversification is to select multiple paths that are as diverse

as possible, while limiting the path stretch if necessary. Instantiating path diversification

at any level will require the following four functions:
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1. Path database indexed by source-destination pairs and including the unique iden-

tifiers for each node and link traversed. This database can be an exhaustive com-

pilation or filtered based on administrative policy.

2. Quantified path diversity using the path diversity metric explained in the following

section.

3. Path selection based on higher-level specifications to evaluate the tradeoff between

path diversity and path stretch.

4. Packet forwarding based on the source routes distilled from the selected paths.

There are many possible implementations of the path discovery database and packet for-

warding mechanisms, and path diversification is agnostic to this implementations, as long

as the two are decoupled to allow greater flexibility in exploiting the inherent diversity

of heterogeneous internetworks [24]. The following sections discuss the measurement of

path diversity and the selection of diverse paths.

3.2.1 Path Diversity

Since the primary motivation for implementing the path diversification mechanism is to

increase resilience, paths should be chosen such that they will not experience correlated

failures. To this end, we define a measure of diversity (originally introduced in [211] and

refined in [212]) that quantifies the degree to which alternate paths share the same nodes

and links. Note that in the WAN context in which we are concerned with events and

connections on a large geographic scale, a node may be thought of as representing an

entire PoP, and a link as the physical bundle of fibers buried in a given right-of-way. This

distinction between WAN and LAN component identifiers affects only the population of

the path database, not the usage of the diversity metric.
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Path: Given a (source s, destination d) node pair, a path P between them is a vector

containing all links L and all intermediate nodes N traversed by that path

P = L ∪N (3.1)

and the length of this path |P | is the combined total number of elements in L and N .

Path diversity: Let the shortest path between a given (s, d) pair be P0. Then, for any

other path Pk between the same source and destination, we define the diversity function

D(x) with respect to P0 as:

D(Pk) = 1− |Pk ∩ P0|
|P0|

(3.2)

The path diversity has a value of 1 if Pk and P0 are completely disjoint and a value of 0

if Pk and P0 are identical. For two arbitrary paths Pa and Pb the path diversity is given

as:

D(Pb, Pa) = 1− |Pb ∩ Pa|
|Pa|

(3.3)

where |Pa| ≤ |Pb|.

0 1

43 5

2

D(P1 ) = 1

D(P2 ) = 2/3

Figure 3.1: Shortest path P0 and alternatives P1 and P2

It has been claimed [5] that measuring diversity (referred to as novelty) with respect to

either nodes or links is sufficient, however we assert that this is not the case. Figure 3.1

shows the shortest path, P0, along with the alternate paths P1 and P2 both of which

have a (link) novelty of 1. However, given a failure on node 1, both P0 and P2 will fail.

In our approach, D(P2) =
2

3
, which reflects this vulnerability. P1 on the other hand has
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both a novelty of 1 and a diversity of 1, and does not share any common point of failure

with P0. Similarly, the wavelengths or fibers from multiple nodes may in fact be spliced

into a single physical link such as was the case in the Baltimore Tunnel Fire [216, 217],

resulting in a single point of failure, thus illustrating the need for including both nodes

and links into the diversity measure.

0 1

43 5

2

D(P1 ) = 1

A d

Figure 3.2: Geographic diversity: distance d and area A

3.2.2 Geographic Path Diversity

Where geo-location tags are made available through cross layering methods, we believe it

is important to measure diversity in terms of physical distances, not only node and link

disjointness. The previous EPD and TGD measures consider the sharing of components,

but do not capture the geographic characteristics necessary for area-based challenges such

as large-scale disasters or to prevent the geographic fate sharing of distinct links in the

same conduit as in the Baltimore tunnel fire. Therefore we are augmenting the diversity

measures with a minimum distance between any pair of nodes along alternate paths, and

as the area inside a polygon or set of polygons, the borders of which are defined by a

pair of alternate paths, as shown in Figure 3.2. Thus, it should be possible to specify

diverse paths among a set of candidates with a given degree of sharing and distance

metric EPD(d) constrained by stretch, and measure the geographic area between the

paths EPD(A) as well as to measure the diversity inherent in a graph across all paths

TGD(d,A). To further that end we propose the following definition of geographic path

diversity
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Geographic path diversity Given previously defined definitions of Pa and Pb

Dg(Pb, Pa) = αd2
min

+ βA (3.4)

where dmin is the minimum distance between any member of the vector Pa and any

member of the vector Pb, and A is the area of a polygon whose borders are formed by

paths Pa and Pb as shown in Figure 3.2. α and β are weighting factors in the range

[0, 1], chosen based on the application and whether the minimum distance or area are

considered to be of greater concern.

3.2.3 Effective Path Diversity

Effective path diversity (EPD) is an aggregation of path diversities for a selected set

of paths between a given node-pair (s, d). To calculate EPD we use the exponential

function

EPD = 1− e−λksd (3.5)

where ksd is a measure of the added diversity defined as

ksd =
k�

i=1

Dmin(Pi) (3.6)

where Dmin(Pi) is the minimum diversity of path i when evaluated against all previously

selected paths for that pair of nodes. λ is an experimentally determined constant that

scales the impact of ksd based on the utility of this added diversity. A high value of

λ (> 1) indicates lower marginal utility for additional paths, while a low value of λ

indicates a higher marginal utility for additional paths. Using EPD allows us both to

bound the diversity measurement on the range [0,1) (an EPD of 1 would indicate an
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infinite diversity) and also reflect the decreasing marginal utility provided by additional

paths in real networks. This property is based on the aggregate diversity of the paths

connecting the two nodes.

3.2.4 General Path Selection Algorithm

Given that the number of possible paths existing between a common (source, destination)

pair is z:

Step 1. Let A be the set of available paths between a given (source, destination) pair, in
decreasing order by diversity value, where |A| = z

Step 2. Let n be the number of diverse paths required by the transport layer.

Step 3. Let B be the smallest subset of highly diverse paths, where |B| = k and k ≥ n.

B = {i ∈ A : D(Pi) > D(Pj), ∀j ∈ A} (3.7)

If k = n, B is the set of exactly n diverse paths required by the transport layer and the
algorithm is finished, otherwise we continue with steps 4 through 8.

Step 4. Let Dmin be the minimum diversity amongst all paths in set B.

Dmin = min[D(Pi), ∀i ∈ B] (3.8)

Step 5. Select a set C out of B which contains all the paths with a diversity greater-than
Dmin, where |C| = m

C = {i ∈ B : D(Pi) > Dmin} (3.9)

Step 6. Let D be the remaining paths in B after removing C, where |D| = k −m.

D = B − C (3.10)

Step 7. Select set E, to be the shortest length paths from D, where |E| = n−m

E = {i ∈ D : |Pi| ≤ |Pj|, ∀j ∈ D} (3.11)

This step allows us to choose shorter paths when path diversities are equivalent.

Step 8. The final set S of n diverse paths is

S = C ∪ E (3.12)
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This algorithm yields the required number of paths with the constraint that they will

include the shortest path and the maximally diverse paths with the least stretch.

3.2.5 Measuring Graph Diversity

The total graph diversity (TGD) is simply the average of the EPD values of all node

pairs within that graph. This allows us to quantify the diversity that can be achieved for

a particular topology, not just for a particular flow. For example a star or tree topology

will always have a TGD of 0, while a ring topology will have a TGD of 0.6 given a λ of

1.

Here we note that for diversity to make sense in the graph context it should be computed

considering only path components (nodes and links) at the level of network hierarchy for

which the diversity value is desired. For example, in computing the diversity of a service

provider’s backbone, only core nodes should be considered, otherwise the comparatively

vast number of subscriber nodes (typically stubs) will artificially reduce the calculated

diversity. We also note here that the diversity measure is designed such that it does

not penalize longer paths in favor of shorter paths, meaning that graph diameter and

average path lengths are independent metrics that should be considered in addition to

the diversity metric. This is discussed in further detail in Section 3.5.2.

3.2.6 Terminating Conditions

In this section we use three different modes for choosing a set of diverse paths for a given

node pair: number of paths, diversity threshold, and stretch limit. The objective in the

first mode is to find k maximally diverse paths. We first find the shortest fully disjoint

paths, and if additional paths are required we continue finding paths that add maximum

diversity as calculated using equation 3.6. The second mode selects as many maximally
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diverse paths as are required to achieve the requested EPD. Finally, the third mode

selects all maximally diverse paths with stretch less than the stretch limit. In all modes,

the set of maximally diverse paths are found using the Floyd-Warshall algorithm with

modified edge weights [200]. In this algorithm, only those paths are used that increase

the EPD for the node pair in question. Recall that only paths with one or more disjoint

elements (links,nodes) will result in non-zero Dmin and consequently increase EPD.

Figure 3.3: Sprint logical topology

Figure 3.4: Sprint physical topology
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Figure 3.5: VSNL logical topology

Figure 3.6: Level-3 logical topology
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Table 3.1: Network Characteristics

Network Nodes Links
Avg. Node TGD Cluster.

Diam. Radius Hopcount Closeness
Node Link

Degree k = 4 Coeff. Between. Between.

Full-Mesh 20 190 19.00 0.9502 1 1 1 1 1 0 1

Grid 25 40 3.20 0.8964 0 8 4 3.3333 0.3067 110 54

Ring 25 25 2.00 0.6321 0 12 12 6.5 0.1538 132 78

Star 25 24 1.92 0.000 0 2 1 1.92 0.5302 552 24

AboveNet 22 80 7.27 0.8559 0.6514 3 2 1.7229 0.5947 196 21

AT&T 108 141 2.61 0.5881 0.3274 6 3 3.3790 0.3030 4160 943

AT&T Phys. 361 466 2.58 0.9014 0.0550 37 19 13.57 0.0763 4527 1893

EBONE 28 66 4.71 0.8635 0.3124 4 3 2.2804 0.4507 132 42

Exodus 22 51 4.64 0.8843 0.3307 4 2 2.0563 0.4978 132 22

GÉANT Phys. 34 51 3.00 0.7623 0.2898 9 5 3.4652 0.3007 556 131

Level 3 53 456 17.20 0.9154 0.7333 4 2 1.7721 0.5845 664 84

Sprint 44 106 4.82 0.8120 0.3963 5 3 2.6882 0.3853 602 129

Sprint Phys. 263 311 2.37 0.8821 0.0340 37 19 14.78 0.0700 3609 1637

Telstra 58 60 2.07 0.1295 0.2411 6 3 3.3025 0.3095 2136 806

Tiscali 51 129 5.06 0.7785 0.5068 5 3 2.4298 0.4236 656 96

Verio 122 310 5.08 0.8104 0.3509 8 4 3.1026 0.3335 3736 480

VSNL 7 7 2.00 0.2001 0.4167 4 2 2.0952 0.4982 18 12

3.3 Evaluation

In this section we evaluate path diversification based on its ability to reflect the connectiv-

ity of the underlying graph, and the cost incurred in doing so in terms of path stretch. To

evaluate path diversification based on realistic topologies we selected 13 service provider

backbone network topologies (3 physical ant the rest logical), and 4 synthetic topologies.

We selected a range of connectivity as shown in Figures 3.3, 3.4, 3.5, and 3.6 in order

to evaluate path diversification on topologies with a broad set of property values. Maps

of the remaining service-provider topologies may be found in Appendix C. Comparing

Figures 3.3 and 3.4 we can see visually how different the diversity can be between the

physical and routing layers of the same network, as is shown numerically in the following

tables. Table 3.1 shows these properties for each network, as well as a number of stan-

dard graph metrics. For interactive visualizations of these topologies please refer to our

web-based network mapping tool KU-TopView [218].

KU-TopView is a web-based tool we developed for several reasons. It allows for visual

inspection of our hand-input topology data sets, in order to more-easily detect errors. It

also facilitates easy viewing of all the topologies in our library both for us and for those
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interested in our research. Thirdly it facilitates comparison of networks by overlaying

one on another, and allowing selection of colors and other visual characteristics. Lastly

it is able to combine networks and export both the original adjacency matrices and the

combined matrices for use in other tools.

As will be seen in more detail in the results following, the characteristics of the topology

significantly affect the diversity that can be attained. As mentioned earlier we assume the

presence of a path server or equivalent service to provide the set of paths from which the

selection is made. To perform this function we implemented a variation of the maximally

diverse edge-disjoint path algorithm from [200]. We implemented a MATLAB simulation

to evaluate the diversity measure and necessary supporting functions. Before examining

the performance of path diversification with respect to flow reliability and stretch, we

will look at its ability to improve the useable diversity of the graph as a whole.
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Figure 3.7: Total graph diversity vs. number of paths selected
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Figure 3.8: Total graph diversity vs. effective path diversity threshold
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Figure 3.9: Total graph diversity vs. path-stretch limit
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3.3.1 Diversity

By applying the diversity measure to the selected path set of an entire graph, we observe

the effectiveness of the path diversification process. To do this we select a set of paths

based on a given k or EPD threshold, and then calculate the TGD based on that set of

paths.

In Figures 3.7, 3.8, and 3.9 we observe that most of the 17 topologies share similar

characteristics in terms of the diversity available, although the absolute value of diversity

that can be attained varies. Selecting k most diverse paths between nodes in the AT&T

and GÉANT2 graphs results in a strong increase in diversity for k < 4 with limited

improvement for additional paths, as we observe in Figure 3.7, however the full-mesh and

Level-3 graphs continues to show substantial improvement for k < 6. This emphasizes

the fact that basing a diversity metric on a particular number of diverse paths is highly

topology dependent. Figure 3.8 gives the TGD with respect to EPD, which shows similar

relative diversity values for the most of the topologies, but compresses many of the curves

into a smaller vertical region, due to the fact that the measure itself is adaptive to the

topology. From Figure 3.9 we observe that in all cases, virtually no additional diversity

is gained beyond a stretch threshold of 3.

3.3.2 Dependability

A flow is established between each node pair using a set of paths determined using the

path diversification algorithm and the specified diversity threshold value. To simulate

link failures we remove each link from the graph based on a fixed probability of failure. In

these simulations we use a uniform probability across all the links in the graph, however

if we were to gain access to more detailed information on the network properties we could

instead use an annotated graph to differentiate between the failure probabilities of the
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individual links. To simulate node failures we remove all links connected to a particular

node based on a fixed probability of failure for that node. A flow is considered reliable if

at least one of its paths remains unbroken by the link or node failures. We compute flow

robustness to be the number of reliable flows, divided by the total number of flows in the

network. For each probability of failure, we also determine the the best flow robustness

possible for any path-selection mechanism given the partitioning of the underlying graph,

and show this value in each plot with the label ‘Best’. Finally, we, calculate the flow

robustness using only the conventional shortest path for each node pair to serve as a

lower performance bound.
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Figure 3.10: Flow robustness vs. link failure probability for the Sprint logical topology

To accomplish all this, we start with the set of paths between all node pairs in the network

selected by path diversification to meet a particular path-diversity threshold. We then

remove each each edge of the graph independently with probability p. After calculating

the resulting flow robustness we reset the graph and repeat the process 100 times for each
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Figure 3.11: Flow robustness vs. node failure probability for the Sprint logical topology

probability p before continuing to the next path-diversity threshold. Each point plotted

is the average of these 100 trials, and the error bars represent 95% confidence intervals.

Taking the Sprint logical topology as an example, we show the flow robustness in the

face of random link failures (Figure 3.10), node failures (Figure 3.11), and combined

link and node failures (Figure 3.12). In the link-failure case we can clearly see that the

improvement from k = 1 to k = 2 is the most significant (>30% improvement with a

25% probability of failure), and that with k = 6 we are getting pretty close to the upper

bound of the graph connectivity (represented by the ‘Best’ curve on the plots). In the

node-failure case we note 3 points of interest. First the confidence intervals are much

larger, due to the fact that on average a singe node affects more flows than a single link

resulting a coarser granularity of simulation results and more variance from one run to

the next with the same probability of failure. Secondly, the network connectivity drops

much more rapidly than it did with only link failures, with only 40% connectivity with a
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25% failure rate, as opposed to the 80% connectivity with only link failures. Thirdly we

see that there is much less room for improvement between k = 1 and the upper bound,

and that k = 2 closely approaches the upper bound. When we combine node and link

failures, the network connectivity is only slightly worse than with node failures alone,

however the single-path case drops nearly 50%, to less than 20% of flows surviving at a

25% failure rate.
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Figure 3.12: Flow robustness vs. node & link failure probability for the Sprint logical
topology

To look at the dependability of a few networks with significantly different properties than

the Sprint logical topology, we have selected the Sprint physical network, the Level-3 log-

ical topology, and the VSNL logical topology, the maps of which were shown previously.

We see that the network connectivity of the Sprint physical network drops fairly quickly,

and in this case even selecting 10 paths is not sufficient to utilize all of the diversity

available in the network. This may be due in part to the Floyd-Warshall heuristic algo-

rithm being used to populate our path database and we expect that the results would be
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Figure 3.13: Flow robustness vs. node failure probability for the Sprint physical topology
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Figure 3.14: Flow robustness vs. link failure probability for the Level-3 logical topology
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Figure 3.15: Flow robustness vs. node & link failure probability for the VSNL logical
topology

improved when using a distributed exhaustive path discovery algorithm. In looking at

the Level-3 network with link failures, we see that its high degree of connectivity keeps

nearly 100% connected throughout the range of failure probabilities simulated, however

using a single-path algorithm still results in 40% of the flows being disrupted. Choosing

six paths approaches the upper bound of the network’s capabilities. At the other end of

the spectrum, the VSNL is very poorly connected, resulting in a rapid drop in connec-

tivity as links and nodes fail, and a situation where there are almost no alternate paths

so path diversification provides almost no improvement over single-path routing. Plots

showing the flow robustness results for all 17 topologies may be found in Appendix E.

Resilience Improvement

By using the ResiliNets resilience framework [191, 192, 219–221], we can show that path

diversification does improve the resilience (R) of the network. The resilience framework
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Figure 3.16: Resilience of path diversity for the AT&T physical topology
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Figure 3.17: Resilience of path diversity for the AT&T physical topology
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Figure 3.18: Resilience of path diversity for the AT&T physical topology

allows us to take multiple properties of the network operational conditions (shown on the

x-axis), and show the corresponding states of the service being provided at a particular

layer boundary. In this case we are interested in the condition of the network topology,

capture using the largest component size (LC size) and clustering coefficient. The service

being provided is end-to-end connectivity, the state of which is captured using path

reliability and average stretch.

Table 3.2: Aggregate resilience of path diversity

Number of paths Aggregate Resilience R
k = 1 k = 2 k = 3 k = 10

AT&T 0.38858 0.43021 0.45076 0.47638

GÉANT2 0.48909 0.62584 0.64619 0.65773
Sprint 0.40013 0.42458 0.43445 0.45063

Plots resulting from this framework show the normal state (normal network conditions

and acceptable service performance) near the origin, with network conditions degrading
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to the right on the x-axis and service performance degrading upwards on the y-axis. A

resilient network is one that stays in the normal operating condition while undergoing

challenges, and a resilient service is one that stays in the acceptable service state as the

network degrades. We quantify the degree to which a service degrades as the network

operating coditions degrade using the area under each curve, and quantify R as the total

area minus the area under the curve in question, normalized on a scale from zero to one.

We use the AT&T, GÉANT2, and Sprint physical-layer networks as examples, as shown in

Figures 3.16, 3.17, and 3.18. For each network we plot services using 1, 2, 3, and 10 paths,

and note that in each case using a greater number of diverse paths results in a service

that stays closer to the x-axis as network conditions degrade. We see the most dramatic

improvement in the case of the GÉANT network, while in the cases of AT&T and Sprint

rapidly increasing stretch limits the performance improvement available through path

diversity. Table 3.2 quantifies the improvement in R aggregated across the full range of

network conditions analyzed.
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Figure 3.19: Total graph stretch vs. effective path diversity threshold λ = .5
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3.3.3 Path Stretch

By definition, if we are using paths other than the shortest-path as determined by con-

ventional routing mechanisms, those paths will be longer, and this is measured in terms

of path stretch as defined previously. Depending on the particular topology in use, and

the source-destination pair being measured, some paths will be several times as long

as the original, while others will be only slightly longer, and a particular flow will be

composed of paths with varying stretch. To evaluate the effect of path diversification at

the graph level we define average path stretch (APS) to be the average stretch over all

selected paths between a give source-destination pair. The total graph stretch TGS is

then the average of the APS values for all node pairs in the graph. We can then plot TGS

with respect to EPD to determine the cost of increased diversity in terms of path stretch.

As seen in Figure 3.19, the response of TGS to increasing EPD threshold is significantly

topology dependent. The TGS of the ring is virtually unchanged by increasing EPD, due

to the existence of only 1 alternate path, which on average is significantly longer than

the primary path. The TGS of several topologies increases at a relatively linear rate,

indicative of the relatively high degree of connectivity in those networks. In contrast the

Sprint physical and full mesh have distinct thresholds near EPD values of 0.4 and 0.6,

due their particular characteristics. In most of the networks we observe that the stretch

remains less than double even for very high EPD thresholds.

While it is observed that stretch is likely to increase when selecting diverse paths, we

want to observe the relationship between diversity and stretch. To this end we calculate a

gain, which is the ratio of TGD divided by TGS for a particular requested EPD threshold.

This normalizes the diversity improvement seen to the increased cost in terms of stretch.

Figures 3.20, 3.21, and 3.22 quantify small increases in path diversity result in a large

improvement in overall graph diversity, while incurring minimal stretch, however this
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Figure 3.20: Gain vs. effective path diversity threshold where λ = 0.5
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Figure 3.21: Gain vs. effective path diversity threshold where λ = 1
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Figure 3.22: Gain vs. number of paths requested

effect is limited by the underlying topologies such that when no new diverse paths are

available the ratio becomes constant. Networks with little diversity, or a large amount

of stretch appear at the bottom of this plot, namely Star, Telstra, VSNL, and Ring.

Comparing Figure 3.20 and Figure 3.21 we observe the effect of modifying λ. When λ is

increased, the improvement in diversity does not come until higher EPD thresholds (due

to the increased impact of k on EPD), however the overall gain is higher. Figure 3.22

shows the same gain measure when plotted against k, and again emphasizes the role

played by the underlying topology. In this case the Sprint topology is still showing

improved gain well after the other two have flatlined.

Here we note that a multipath-aware application would likely not use all reliable paths

equally, so averaging the stretch of all paths overestimates the effective stretch in that

case.
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3.4 Topology Survivability Comparison

In comparing the survivability of various topologies, we are concerned not with the per-

formance of a particular protocol or mechanism in recovering from failures, rather we are

considering the survivability inherent in the structure of the topology itself. To do that,

we calculate the flow robustness as the probability of link and node failures is increased.

In this case we are considering a flow to be in tact as long as a path exists that connects

the source and destination, i.e. the source and destination nodes are not partitioned

from one another. Questions of reconvergence time and path protection accuracy are

all protocol specific and outside the scope of this work. We compare 17 topologies, 4

of which are synthetic topologies included for completeness. Ten topologies are logical

router-level topologies inferred by the Rocketfuel project [222]. The remaining three are

physical-layer fiber topologies based on [223]. Figures 3.4 and 3.3 show the physical and

logical-layer topologies respectively for the Sprint network, as an example of the substan-

tial differences between these two categories of maps. The synthetic topologies can be

easily recreated based on the data in the tables below, and the data (including adjacency

matrices and node geo-locations) for the real topologies is available via KU-TopView, our

Web-based topology map viewer [218].

3.4.1 Simulation Results

To perform the failure simulations we use MATLAB since we are not looking at dynamic

or transient behavior and therefore do not need to simulate packet flows but can perform

the calculations using graph-theoretic methods. For each of the 17 topologies we use the

following process:

1. load topology adjacency matrix
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2. calculate 300 failure sets based on current probability

(a) 100 sets with link-failures only

(b) 100 sets with node-failures only

(c) 100 sets with link and node failures

3. calculate fraction of node-pairs connected in each set

4. average across each 100 sets

5. plot 3 data points

6. increment failure-probability until all values range are complete
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Figure 3.23: Link failure robustness (synthetic)

For this evaluation we use 51 failure probabilities evenly distributed over the range 0–0.5

inclusive, resulting in 15,300 simulation runs for each topology, or 260,100 runs total,
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Figure 3.24: Node failure robustness (synthetic)
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Figure 3.25: Node & link failure robustness (synthetic)
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Figure 3.26: Link failure robustness (logical)
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Figure 3.27: Node failure robustness (logical)
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Figure 3.28: Node & link failure robustness (logical)
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Figure 3.29: Link failure robustness (physical)
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Figure 3.30: Node failure robustness (physical)
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Figure 3.31: Node & link failure robustness (physical)
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which took several days to complete using a computing cluster consisting of approx-

imately 1000 Intel Xeon CPU cores. The results of this process are summarized in

Figures 3.23–3.31. These plots are a collection of the best-possible or reference curves

that would appear on a plot comparing routing or path protection schemes. The curve

for each plot is distinct due to its topology, and thus from these plots we can quickly

see which ones are more survivable than others. We have separated the plots into three

categories: logical, physical, and synthetic, for plotting purposes simply for readability

because they became difficult to distinguish with too many curves in each plot. At this

point we can also take note of specific topology’s performance, for example the full-mesh

does best overall, while the ring is the worst of the synthetic topologies, and the Sprint

and AT&T physical topologies do the worst overall. What we see from these plots is

that the relative ordering of the curves remains largely unchanged (the few exceptions

are of minimal size) and so it is reasonable to expect that a measure of survivability may

be computed based on the topology alone, without being dependent on the expected

probability of failure of individual links and nodes. For comparison purposes we plot the

effects of node and link failure on a number of graph properties besides the connectivity

(flow robustness) plots shown here. The additional plots are in Appendix D.

3.4.2 Topology Characteristics Survey

Table 3.1 lists all of the topologies analyzed, along with a set of standard graph-metrics

defined as follows:

• Node degree: “The number of connections or edges the node has to other nodes.” [224]

• Bi-connected: A graph in which the minimum node degree is two or greater.

• Clustering coefficient: “A measure of how many nodes form triangular subgraphs

with their adjacent nodes.” [225] or “The fraction of paths of length two in the
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network that are closed” [226] which may be interpreted as “A measure of degree

to which nodes in a graph tend to cluster together.” [227]

• Diameter: The maximum shortest-path between any node-pair.

• Radius: The minimum of the maximum shortest-path for all nodes.

• Hop-count: The average shortest-path between all node-paris.

• Closeness: “The mean distance from a vertex to other vertices.” [228] Closeness is

a measure of centrality and is related to node degree.

• Betweenness: “Betweenness is the number of shortest paths passing through a node

or link and provides a centrality or importantness measure.” [229,230]

For each metric, the best (w.r.t. survivability) three values are highlighted in bold font.

A number of these features are linked to network resilience in one way or another, for

example topologies with a high average node-degree generally have more protection paths

available, while topologies with a high maximum node or link betweenness may have

a central point-of-failure which would be targeted by an attacker. Diameter, radius,

and hop-count are closely related distance metrics. In our preliminary work on path

diversification [212] (with a much smaller sample-set of topologies available to work

with) it became apparent that the TGD metric was able to differentiate similar topologies

according to their survivability performance, but looking at the plots and Table 3.1 it is

clear that this no longer holds true when the network size varies widely. None of the listed

graph theory metrics (or any we are aware of) correlate closely to network survivability

as simulated in Section 3.4.1. A major contribution of this dissertation is a new metric

that closely correlates with survivability, which we present in Section 3.5.
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3.5 Analysis

In this section we further explore the relationships between the metrics listed in Sec-

tion 3.4.2 and topology survivability.

Table 3.3: Network Rank

Network
Survivab. Node Deg. TGD Clustering Diam. Hopcount Closeness Node Bet. Link Bet.

Rank Rank Rank Rank Rank Rank Rank Rank Rank

Full-Mesh 1 1 1 1 1 1 1 1 1
Level 3 2 2 2 2 4 2 3 10 9

AboveNet 3 3 8 3 3 3 2 5 3
Exodus 4 5 5 8 4 5 6 4 4

EBONE 5 5 7 10 4 7 7 4 6

Tiscali 6 4 11 4 5 8 8 9 10

Sprint 7 5 9 6 5 9 9 8 11

Verio 8 4 10 7 7 10 10 13 13

Grid 9 6 4 15 7 12 12 3 7

VSNL 10 7 15 5 4 6 5 2 2

GÉANT Phys. 11 6 12 11 8 14 14 7 12

Star 12 8 17 15 2 4 4 6 5

AT&T 13 7 14 9 6 13 13 14 15

Telstra 14 7 16 12 6 11 11 11 14

Ring 15 7 13 15 9 15 15 4 8

AT&T Phys. 16 7 3 13 10 16 16 15 17

Sprint Phys. 17 7 6 14 10 17 17 12 16

3.5.1 Topology Ranking

Based on the flow robustness results (Section 3.4.1) we can rank the topologies based on

their survivability in the presence of multiple failures1 as shown in Table 3.3. This ranking

can easily be done qualitatively by visual inspection of the plots above, with higher curve

outranking lower curves. To perform the ranking a bit more rigorously we chose a fixed

point on the x-axis (0.2 in this case) and ranked each topology according to its value at

that point on the link and node failure plot. Since the curves have minimal crossover,

this produces the same ranking as the visual inspection approach. The metric values

1This is not to serve as a recommendation of one network over another for business purposes. Due to

common business practices the Internet service providers listed (with the exception of GÉANT2) do not

make their network topology data publicly available. The data sets used are inferred by third parties

and are over 10 years old in some cases.
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from Table 3.1 are also shown here as rankings in order to emphasize the correlation (or

lack thereof) between each particular metric and the survivability rank. Some metrics

are not included in this table, for example the number of nodes and links that are a direct

measure of the graph size, and are not a unique property of the topology design, and the

radius, which is so closely related to the diameter and the hop-count as to be redundant.

In contrast, the average node degree relates the number of nodes to the number of links.

From Table 3.3 we see that most of the metrics correctly rank the top 2 or 3 networks

according to their survivability, but beyond that the rank no longer corresponds. Based

on previous experience with the path diversity metrics, and the intuition that diversity

should be closely correlated with survivability, we investigated further and developed the

Compensated Total Graph Diversity metric.

3.5.2 Compensated Total Graph Diversity

In Section 3.2.5 we noted that the diversity metric is independent of path length, meaning

that there is no natural penalty assigned to longer paths as opposed to short ones. On the

other hand, there is a significant statistical penalty to long paths when simulating proba-

bilistic failures. Intuitively this penalty results from greater exposure in real networks to

component failure due to natural faults or intentional attack. Returning to Table 3.1 we

see that specific topologies receive a much higher TGD-rank than survivability-rank (e.g.

AT&T Physical, Sprint Physical) also have much higher diameters than other networks

with similar TGDs. Conversely, the star topology, which is given the lowest TGD rank

but performs better than 5 other networks, has a much smaller diameter than the net-

works it outperforms. Further investigation shows that the average hop-count is a more

precise indicator of this penalty than the diameter or radius. Based on this we propose

a new composite metric that takes into account both TGD and average hop-count.
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We call the new metric Compensated Total Graph Diversity (cTGD) and define it as

follows:

cTGD = eTGD−1 × h−α (3.13)

where h is the average hop-count and α is a parameter tuned experimentally. Increasing

α reduces the negative impact of increasing hopcount on cTGD. By trying several values

between one and two we find that α = 1.25 gives the best correlation to our simulation

results. Other values resulted in changes at the fourth decimal place of the cTGD, which

is enough to cause some reordering in the topology rankings. The benefit of taking the

exponential of the original TGD is that the range is still bounded between 0 and 1, but

is no longer inclusive of 0, which allows for the cTGD of a topology with 0 diversity

to be positive, as in the case of the Star network. From the hop-count component we

desire an inverse relationship (higher hop-counts result in lower cTGDs), and we use the

α parameter to tune the aggressiveness of this relationship. To put equation 3.13 in the

context of providing an end-to-end service, it requires greater diversity to provide a given

level of flow reliability over a long path than is required to achieve the same level of flow

reliability over a short path. In the graph context, a large-diameter graph must provide

a higher TGD to achieve the same level of flow-robustness as a smaller-diameter graph

with a lower TGD.

Table 3.4 again shows the topologies ranked according to their simulated survivability

results, alongside their cTGD metric value and cTGD rank. We see that both measures

provide an identical ranking for all the topologies suggesting that the cTGD metric is

an excellent predictor of topology survivability. We note here that we are not claiming

that this exact correlation would hold true for every possible set of topologies, only

that we expect a close correlation. The reason for this is that the TGD is a heuristic
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Table 3.4: Compensated TGD

Network
Survivability

cTGD
cTGD

Rank Rank

Full-Mesh 1 0.9514 1
Level 3 2 0.4494 2

AboveNet 3 0.4386 3
Exodus 4 0.3617 4

EBONE 5 0.3113 5

Tiscali 6 0.2641 6

Sprint 7 0.2407 7

Verio 8 0.2009 8

Manhattan Grid 9 0.2002 9

VSNL 10 0.1783 10

GÉANT2 Phys. 11 0.1668 11

Star 12 0.1628 12

AT&T 13 0.1446 13

Telstra 14 0.0941 14

Ring 15 0.0667 15

AT&T Phys. 16 0.0348 16

Sprint Phys. 17 0.0307 17

measure, and the survivability rank is based on a Monte Carlo simulation set, both of

with introduce a margin of error. We have sought to reduce this error as much as possible

through our methodology. That being said, what we are seeing is a strong correlation so

that any reordering should only occur when two topologies have very similar cTGD and

survivability metric values to begin with. This implies that cTGD alone may be used as a

quantitative indicator of a topology’s survivability, without performing extensive failure

analysis as we have done in Section 3.4.

3.6 Summary

This chapter introduced path diversification, presenting its design, evaluation and use as

a topology analysis tool. We also discussed several metrics for evaluating path, node-

pair, and graph diversity, and applied the path diversification mechanism to 17 real and

synthetic networks and evaluated its ability to improve flow robustness in the presence

of link and node failures. In the next chapter we will begin by looking at the ResTP
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transport protocol, in which path diversification is the core component that enables end-

to-end multipath support.
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Chapter 4

Transport Protocol Design

Mechanisms are the building blocks that make up each layer of the network stack, in-

cluding transport protocols. The selection of mechanisms determines the resilience of

the protocol, so we use the ResiliNets Principles to guide this selection process. Some

mechanisms are basic to data transfer, and some address particular network charac-

teristics or challenges. There are also cross-layer mechanisms that provide the vertical

interconnection between layers of the network stack.

Closely tied to the selection of mechanisms is the principle of tradeoffs. For each mecha-

nism added to a protocol there is an increase in complexity. Depending on the particular

mechanism there may also be a cost in terms of latency, jitter, or bandwidth. Some mech-

anisms provide overlapping functionality but differing performance, making it necessary

to select between them. Because of these tradeoffs it is important to use mechanisms

only where they yield the greatest benefit and are appropriate to the network state. Since

this state may change dynamically, it may be necessary to tune mechanisms or even turn

them on and off completely during a single transport session. Negotiating their use at

session setup is not sufficient.

As stated in Section 1.2 our goal is to show that E2E Communication with resilience

as an inherent design property is necessary to meet specified service requirements in the
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face of various attacks and challenges and that diversity is an essential characteristic of

network topologies that enables enhanced resilience at the end-to-end layer. A key aspect

of this work is not only to explore, measure, and analyze alternatives at the transport

level, but to understand the multilevel interactions and tradeoffs with the network layer.

The goal is to provide adaptability by having some ability for the application layer to

tune the resilience level of the lower layers.

In this chapter we present the design of two transport protocols which are closely re-

lated. First is the ResTP protocol, which is a multipath protocol based on the Path

Diversification process presented in the previous chapter. It also uses multiple reliability

paradigms in order to meet the service requirements of a variety of application in multiple

environments. The second protocol is AeroTP, which uses a subset of the mechanisms

present in ResTP to meet the requirements of the highly-dynamic airborne telemetry

environment. AeroTP shares the multiple reliability-mode structure with ResTP, and

adds the concept of custody-transfer using gateways, which also allows for translation to

TCP and UDP. AerpTP does not make use of multiple paths, and so does not include

the path diversification framework in its design. Due to the more focused nature of the

AeroTP design requirements, we present it here as an in-depth case study to evaluate a

subset of the ResTP functionality.

The work presented in this chapter has resulted in a number of publications. We originally

proposed and evaluated the ResTP protocol in [211]. We proposed AeroTP in [231] and

the ANTP suite as a whole in [232]. Since then we have regularly revised the protocols and

expanded our analysis of them in [233–238]. The remainder of this chapter is organized as

follows: Section 4.1 presents the intended function, protocol design, mechanism tradeoffs,

and multipath simulations of the ResTP protocol. AeroTP follows, with Section 4.2

giving an overview of the ANTP suite, including an overview of the challenges posed to

traditional routing and transport protocols by the airborne environment in Section 4.2.3.
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We then present the performability improvements gained using the suite in Section 4.4.

4.1 Resilient Multipath Transport Protocol

In order to be adaptable, we have designed multiple mechanisms, including path diversi-

fication, into a transport protocol with configurable service requirements. This allows it

to be tuned for a variety of applications and network environments.

!"#$%&'()#*+,-)./01-$+21-+$3(+41/$!15(-.+6.$(-.($
7"/$%.+48+'13-(-9+:8+7);;)-9+'8+<)%5"9+=8+>)-)$3)-)?).9+7)*(/+48@8+=$(-;(.A+! !""#$%%&'(')'""*)(+),-+%#./.

%.+B1##);1-)$%1.+C%$3+DEF+GE(.+H)#I(-$9+7%*+@-%22%1(.J+).5+D!5+GK1;;F+K3)$$)B3)-?((9+<(%#+=0-%.LJ

" 41!1+4-%.B%0#(/

! 3($(-1L(.(1"/
0,12/3 M
*(B3).%/*9
01#%BF9+$-"/$

! /$-%B$+/(0)-)$%1.+12+B1.B(-./

" <1I(#+B3)-)B$(-%/$%B/

! 5($(-*%.(+0)$3+;)/(5+1.+4.0&10-'567-'0,*"'8,

! /."'81"'.5 $1+/"001-$+01#%BF+5(B%/%1./

! 1**.+5"19'2'": -(B1-5/+0)$3+$-)I(-/(5+;F+()B3+0)BN($

! (O0#%B%$+/"001-$+21-+B-1//&#)F(-+(5.93 ).5+-'123

;./#.3192,7<#,01"'.5127=.-,3

>.3"=.-,057?5",05,"7@0*!'",*"+0, A5.937B7C'123

D>CE7F2,G'92,7;./#.3,-7H,1-,0

" =(-I%B(+$F0(/M

! 5(#)F+;1".5(5M++"$%#%$F+5(B-()/(/+C%$3+$%*(

! ;).5C%5$3M++0()N+).5+)I(-)L(+-)$(

! 5(#)F+I)-%).B(M++?%$$(-+-(P"%-(*(.$+I/8+;"-/$+$1#(-).B(

! ;(/$+(221-$M++5(#)F+).5+;).5C%5$3+%./(./%$%I(

" '(#%);%#%$F+*15(/M

! -(#%);#(M+:'Q+C%$3+RSR+:HE/

! .()-&-(#%);#(M+B"/$15F+$-)./2(-+2-1*+-()#*&$1&-()#*

! P")/%&-(#%);#(M+10(.&#110+TRH+1-+(-)/"-(+B15%.L

! ".-(#%);#(M+-(#%(/+1.+#1C(-+#)F(-+;(/$+(221-$+/(-I%B(

" !"#$%0)$3+C%$3+/0)$%)#+5%I(-/%$F+21-+-(#%);%#%$F

" E.1;/M !.&

! %.2#"(.B(+;(3)I%1"-+12+$-)./01-$+1-+.($C1-N+2-1*+);1I(

" U%)#/M &!1"

! %./$-"*(.$)$%1.+$1+$-)./01-$+1-+)00#%B)$%1.+2-1*+;(#1C

!"#$%&'()*

T".5%.L+21-+$3%/+-(/()-B3+0-1I%5(5+%.+0)-$+;F+$3(+<)$%1.)#+=B%(.B(+T1".5)$%1. SV+7".(+SWWX

!"#$%!""#$%&!'()(&*&#'()*'(#"
+#,-*,.("/

.(,01'()0
.(*2%

!"#$# !"% !"& "&! !"'(

3*42#*.

3*42#*.5676

.0%'("*'(#"53#,'%#8,1053#,'

3*42#*.

9:65676

%0,)(10

:; .(*2%3*'<51<*, '(&0%'*&3

!"#$%,02(*$(2('45+#,- &82'(3*'<

=7>5%0?5@ A:6 0,,#,51#"',#2

&82'(320B("/

" R--1-+B1.$-1#

! #$%&'()*+,'-*./'012&'-3)456748'/97:39/'+*./&';

" E.1;/

! :/9<5+/'4=6/&'9/)57(5)54='-*./&'-3)456748&';

" U%)#/

! RYHZ[ZU\<M++(O0#%B%$+YB1.L(/$%1.Z#1//Z5(#)F\+.1$%2%B)$%1.
! 6748'+879&'45-/:47-6&';>

A5.937! C'1237"I1:,0

)00#%B)$%1.

RSR+$-)./01-$

41!1+%.$(-.($C1-N

.($C1-N+-()#*

]K]+#%.N

/(-I%B(+B3)-)B$(-%/$%B/

RSR+0)$3+B3)-)B$(-%/$%B/

-()#*+B3)-)B$(-%/$%B/

#%.N+B3)-)B$(-%/$%B/

/(-I%B(+B#)//
-(#%);%#%$F+*15(

41!1+N.1;/9 TU9 *1$%I8

-()#*+10(-8+0)-)*($(-/

#%.N+$F0(+).5+B15%.L
(--1-+B1.$-1#+$F0(^/$-(.L$3

Figure 4.1: ResTP header showing knob and dial fields

4.1.1 Protocol Design

The ResTP header (Figure 4.1) is designed to support cross-layer parameters and shows

the fields used to indicate the service parameters required to the lower network layers.

This is supported at the PoMo gateways that exist at realm boundaries, such that we do

not require every router on a path to interact with the ResTP cross-layer fields, however

the PoMo gateways may interact with ResTP extensively in order to modify the ResTP

behavior on a realm-by-realm basis. Based on the application requirements, there may

be a number of data classes being transferred over the network. For this reason we

define multiple reliability modes that are mapped from different service types and for

the generic counterpart of the AeroTP reliability modes [231]. The first two modes are

connection-oriented, and the last two are connectionless:
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• Reliable mode uses end-to-end acknowledgements from the destination to the

source as the only way to guarantee delivery. This carries the penalty of requiring

the end nodes to maintain state regarding each packet in flight over the entire E2E

path, which can be substantial in high bandwidth-×-delay product environments.

Reliable mode has the option of using FEC to reduce the probability of packet

retransmission due to bit corruption.

• Near-reliable mode is highly reliable, but does not guarantee delivery, instead

using the custody transfer [130] approach, which splits the ACK loop at inter-

mediate realms at the cost of buffering ResTP segments in each PoMo gateway

until acknowledged by the next realm along the path. Since the gateway uses split

ARQ and immediately returns TCP ACKs to the source, the assumption is that

ResTPs reliable ARQ-based delivery will succeed using SNACKs (selective nega-

tive acknowledgements) [81] supplemented by a limited number of (positive) ACKs.

This can be more bandwidth-efficient than full source–destination reliability. How-

ever, the possibility exists of confirming delivery of data that the gateway cannot

actually deliver to its final destination.

• Quasi-reliable mode uses only open-loop error recovery mechanisms such as FEC

and erasure coding across multiple paths if available [239], thus eliminating ACKs

and ARQ entirely. In this mode the strength of the coding can be tuned using cross-

layer optimizations based on the quality of the channel being traversed, available

bandwidth, and the application’s sensitivity to data loss. This mode provides an

arbitrary level of statistical reliability but without absolute delivery guarantees.

• Unreliable mode relies exclusively on the FEC of the link layer to preserve data

integrity and does not use any error correction mechanism at the transport layer.

Cross-layering is used to vary the link FEC strength.
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The multipath mechanism may be useful in implementing any of the reliability modes,

depending on the service type selected, and the graph of the underlying topology.

4.1.2 Mechanism Tradeoffs

In designing a transport protocol with multiple reliability modes we are seeking to under-

stand the mechanism tradeoffs, and balance the contribution of each mechanism with the

associated costs. These costs may be in the form of basic resources such as processing,

memory, and bandwidth. They may also be more subtle, such as increased protocol com-

plexity, security vulnerabilities, or reduced confidence of accurate delivery. Separating

the available mechanisms into distinct modes is useful for implementing and comparing

them. Future work will automate the mechanism selection process so that instead of

pre-selecting a mode, the transport protocol can select and tune mechanisms on-the-fly

in order to adapt to changing path conditions.

4.1.3 ResTP Multipath Simulations

There are many mechanisms that may be used to increase resilience. In these simulations

we are specifically interested in the use of multiple end-to-end (E2E) paths through path

diversification. We have simulated ResTP assuming the presence of the PostModern

Internetwork Architecture (PoMo) [24], which provides cross-layer information from lower

layers with which to make path selection decisions.

Simulation Setup

Using the ns-2 simulator1 [240] we have implemented the multipath mechanism of ResTP

and compared its performance to traditional single-path data transmission. Each source

1This early work was performed before the ns-3 simulator was available
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sends n redundant (identical) data packets over the n paths it has requested. Because the

backup paths are already in use there is no loss of data in the event of a failure unless all

n paths are compromised. In order to limit the computational resources required to run

the simulations, the data rates and bandwidths were scaled down from their actual values

by two orders of magnitude. Each data point was averaged over 100 runs to eliminate

aberrations caused by randomness in the simulation. The plots presented in this section

represent a combined total of 17,600 simulation runs.

Fault-Tolerant Topologies

It is intuitively obvious that using a multipath transport protocol will not yield any

benefit in terms of resilience unless multiple logical and physical paths are present. For

this reason we have confined ourselves to simulating on topologies which are bi-connected

or better.

0

1 2

3

45

6

Figure 4.2: Synthetic seven-realm interconnection topology

Synthetic Topology The first topology we are considering is synthetic and created

in order to characterize the behavior of the multipath mechanism on a small scale. It

consists of seven distinct realms, interconnected as shown in Figure 4.2. Each of the links

has a bandwidth of 1 Mbps and a propagation delay of 10 ms. Each of the realms has a

randomly generated (using BRITE [241]) well-connected internal network of 15–20 nodes
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Realm 6

To Realm 0

To Realm 3

Figure 4.3: Internal topology of realm six

interconnected by 1 Mbps links. Figure 4.3 shows the internal network of realm 6 as an

example.

ISP Backbone Topology To further characterize the multipath behavior in a more

connected environment we used a map of AT&T’s backbone network, Figure 4.4. This was

obtained from the Rocketfuel project [222], which uses a probing technique to determine

physical topology. We removed links which were deemed improbable to exist on routes

geographically distinct from other existing fiber paths, for example a direct connection

between San Francisco, CA and Dallas, TX is unlikely to exist at the physical layer,

and was removed. We also removed any stub-nodes since they could not be part of any

end-to-end disjoint paths. The 25 nodes in the topology are interconnected with 1 Mbps

links for the purpose of creating a tractable simulation.

Traffic Patterns

On the synthetic topology, two nodes from each realm are randomly selected as traffic

sources, each with a randomly selected destination in a different realm (no destination
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San 

Fransisco

Houston

Denver
Philadelphia

Chicago

Washington

Figure 4.4: simplified AT&T backbone topology

node occupied the same realm as its respective source). In each of the failure scenarios,

the application sending data-rate is set to 50 Kb/s so that congestion is not a source

of loss. For each of the the load scenarios, the application sending data-rate is varied

between 50 and 500 Kb/s to observe the effect of multipath on congestion. Each path

is selected at the realm level, with traffic traversing the realm via one randomly-selected

node and the shortest available path.

For the ISP topology (Figure 4.4), we are concerned with performance in the presence

of a greater number of available diverse paths. For this topology we defined (source,

destination) pairs as follows: (Chicago, Houston), (Washington, San Francisco), and

(Philadelphia, Denver). These are selected because each pair has a minimum of 3 link-

disjoint paths between them. All the ISP scenarios are run with an application sending

data-rate of 50 Kb/s. The paths for this scenario specify each transit node.

For each scenario, we compare the performance to a baseline flow routed using a tradi-

tional single-path algorithm. This is the curve labeled “sp” on the graphs. The other
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three curves show the performance of ResTP using the path selection algorithm described

in Section 3.2.4 while requesting n diverse paths. It should be noted that the n = 1 case

does not carry any implication of improved reliability over the sp case, it is only included

here for completeness and to show that our algorithm does not cause any degradation in

performance. The simulation was run with a 20 second warm-up time after traffic began,

at which time the link failure scenario was applied. Traffic was sent for an additional

480 seconds, and all queued traffic was allowed to propagate to the destination before

the simulation terminated.
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Figure 4.5: Comparison of flow reliability for synthetic topology

Flow Reliability with Link Failures

The link failure scenario is defined as follows. After the simulation warm-up period, each

link failed with a uniform independent probability. This probability is varied between 0

and .25 to evaluate performance under varying severities of failure.
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Figure 4.6: Comparison of flow reliability for AT&T topology

Our primary metric for evaluating the performance of multipath is flow reliability. This

is shown as the fraction of flows which continue delivering data during a link failure

scenario. On the synthetic topology we observe a maximum reliability improvement of

20% over single-path routing, shown in Figure 4.5. We also note that the performance of

multipath with n = 2 and n = 3 is nearly identical. We attribute this to the low degree

of connectivity in the network, which results in fewer high-diversity paths being available

to ResTP. On the ISP topology we observe a maximum improvement of nearly 30% over

single-path routing, shown in Figure 4.6. In this case the performance of multipath with

n = 3 is consistently 5–10% better than the performance with n = 2.

Performance with respect to Load Clearly there is a cost to increasing reliability

with this mechanism, and the tradeoff we are making in increased traffic in the network,

and eventually increased congestion. We use the 7-realm topology to evaluate the effects

of increased load. Figure 4.7 shows the decrease in performance due to congestion losses
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Figure 4.7: Reduction in performance due to congestion as traffic load increases
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Figure 4.8: Increase in delay as traffic load increases
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as the load increases in the network. Figure 4.8 shows the corresponding increase in

end-to-end delay caused by queuing in the network as congestion increases. Again these

results are topology dependent, in that a more highly connected graph will have the

additional load of multipath spread across a greater number of alternate links.

4.1.4 Summary

In this section we introduced the ResTP protocol architecture, assuming the presence of

an internetwork layer such as PoMo to provide cross-layer information with which to make

intelligent path selection decisions. We have shown a 20–30% performance improvement

in the presence of link failures when diversity is available in the underlying network

graph. In the next section we will describe AeroTP, a domain-specific implementation of

the ResTP architecture.
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4.2 Airborne Telemetry Transport

One challenged environment which we have spent a significant level of effort analyzing

are highly-dynamic airborne telemetry networks. Due to the end-to-end challenges in-

troduced by the very high mobility of the scenario it provides an excellent environment

for a case study on the benefits of the ResTP protocol. The TmNS (telemetry network

system) environment consists of three realms, the first being a wired IP network inter-

nal to each airborne node, the second being the highly dynamic MANET connecting

the airborne nodes to the ground station, and the third being the wired IP network on

the ground. Due to the fact that the two IP networks are not PoMo-enabled, we have

developed a domain-specific version of ResTP called AeroTP that operates edge-to-edge

within the wireless MANET, and is translated at the borders of this realm to TCP or

UDP using gateways [235]. This section gives an overview of the environment, as well as

the protocol suit we have developed to achieve higher performance in the face of these

challenges than was previously possible.

4.2.1 Overview of the ANTP Suite

Highly dynamic airborne tactical networks pose unique challenges to end-to-end data

transmission. The current TCP/IP-based Internet architecture is not designed to func-

tion in this environment, however this architecture is almost exclusively used within the

embedded components that make up modern tactical communications systems, as well

as across the Global Information Grid (GIG) [242]. This necessitates that any domain-

specific solution designed to optimize performance in a tactical environment must at the

same time maintain some compatibility with the TCP/IP stack. This section presents

the design and evaluation of a protocol suite that is optimized for the tactical environ-

ment, while maintaining edge-to-edge compatibility with the legacy Internet architecture.
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These protocols include: AeroTP – a TCP-friendly transport protocol introduced in [231]

and further evaluated in [234, 236], with multiple reliability and QoS modes that is an

implementation subset of ResTP (described in Section 4.1), AeroNP – an IP-compatible

network protocol (addressing and forwarding) introduced in [243], and AeroRP – a rout-

ing protocol introduced in [243] and further evaluated in [232, 237], which exploits loca-

tion information to mitigate the short contact times of high-velocity airborne nodes. This

protocol suite is designed to perform well in an environment in which rapidly-changing

topology prevents global routing convergence, as well as those in which long-lasting stable

end-to-end paths do not exist.

While these protocols are designed to perform well in a broad range of highly-dynamic

scenarios, the airborne test and evaluation community in particular has recognized the

need to replace an aging telemetry communication architecture with a full multihop

network protocol suite such as the one described here. Traditionally, telemetry commu-

nication has consisted primarily of point-to-point links from multiple sources to a single

sink. More recently, with the increasing number of sources in the typical telemetry test

scenario, there is a need to move to networked systems in order to meet the demands of

bandwidth and connectivity. This need has been recognized by various groups, including

the Integrated Network Enhanced Telemetry (iNET) program for Major Range and Test

Facility Bases (MRTFB) across United States [244]. The current TCP/IP-based Inter-

net architecture is not designed to address the needs of telemetry applications [245] and

there remain a number of issues to be solved at the network and transport layers [246].

In particular, given the constraints and requirements of the aeronautical environment,

the current Internet protocols are not suitable in a number of respects. These constraints

include the physical network characteristics such as topology and mobility that present

severe challenges to reliable end-to-end communication. In order to build a resilient [8]

network infrastructure, we need cross-layer enabled protocols at the transport, network,
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and MAC layers that are particularly suited for airborne networks. At the same time,

there is a need to be compatible with both TCP/IP-based devices located on the airborne

nodes as well as with ground-based control applications. Therefore, the new protocol suite

must be fully interoperable with TCP/UDP/IP via gateways at the telemetry network

edges. Due to the limited bandwidth in telemetry networks and a priori knowledge of

communication needs of a given test, the iNET community is developing a TDMA (time

division multiple access)-based MAC for this particular environment [247]. We will re-

visit the telemetry-range case study later in the chapter to illustrate several features of

our protocol suite.

It is important to note that while tactical networks constrain some aspects of network

operations, there are also aspects that can be exploited by domain specific protocols, such

as the knowledge of the airborne node location and trajectory. Previous research has de-

veloped several intelligent network protocols in the context of mobile ad hoc networks

(MANETs) and wireless sensor networks (WSNs) that attempt to exploit additional in-

formation available [248, 249]. However, in order to achieve this, we need to facilitate

cross-layering across the multiple layers. For example, location and trajectory infor-

mation can be used to find better paths if there exists a mechanism, either implicit or

explicit, for information exchange between the physical and network layers. As generally

recognized, strict layering in the network stack is not particularly suitable for wireless

networks due to mobility, limited bandwidth, low energy, and QoS requirements. There-

fore, it is commonly agreed upon that a tighter, more explicit, yet careful integration

amongst the layers will improve the overall wireless network performance in general; and

in the case of highly-dynamic, bandwidth-constrained networks may provide the only

feasible solution that meets the requirements of tactical applications.

AeroTP is a transport protocol designed with several reliability modes to address the

requirements of different traffic classes based on ResTP. This relies on the new network
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protocol AeroNP, which is fundamental to the architecture because it enables explicit

cross-layer interactions between layers by passing congestion, QoS, and packet corrup-

tion information up and down the protocol stack. Furthermore, its header carries node

and device identifiers, along with location and trajectory information that is critical for

the routing protocol. Lastly, we define a location-aware, highly-adaptive routing algo-

rithm AeroRP that utilizes the node location and trajectory to route packets through

the telemetry network. Simulation results show that AeroRP significantly outperforms

traditional MANET routing protocols that require an end-to-end path determined either

proactively or on-demand. We introduce several new mechanisms to improve routing and

forwarding efficiency in highly-dynamic networks. These include node discovery based

on snooping, efficient directional-packet forwarding, and implicit congestion control.© James P.G. Sterbenz!""#
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Figure 4.9: Dynamic airborne tactical environment
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4.2.2 Networking Challenges in Airborne Tactical Networks

A typical airborne tactical network as depicted in Figure 4.9 consists of three types of

nodes: airborne nodes (AN)2, ground stations (GS) and relay nodes (RN). The airborne

nodes (e.g. reconnaissance and combat aircraft, piloted or unpiloted) contain a variety of

data collection devices that are primarily IP devices such as cameras, hereafter referred

to as peripherals. ANs house omnidirectional antennas with relatively short transmission

range. The GSs are located on the ground (stationary or portable) and typically have a

much higher transmission range than that of an AN through the use of large steerable

antennas. In point-to-point communication mode, the GS tracks a given AN across some

geographical space. However, due to the narrow beam width of the antenna, a GS can

only track one AN at a time. The GS also houses a gateway (GW) that connects the

airborne network to the Internet and several terminals that may run control applications

for the various devices on the AN. Furthermore, the GSs can be interconnected to do

soft-handoffs from one to another while tracking an AN. The RNs are dedicated airborne

nodes to improve the connectivity of the network. These nodes have enhanced communi-

cation resources needed to forward data from multiple ANs and can be arbitrarily placed

in the network. There are a number of challenges to communication protocols in this

environment:

• Mobility : The airborne nodes can travel at speeds as high as Mach 3.5 (1191 m/s),

possibly faster in the future; the extreme is then two ANs closing with a relative

velocity of Mach 7 (2382 m/s). Because of high speeds, the network is highly

dynamic with constantly changing topology.

2These are also referred to as test articles (TA) in our publications targeted specifically to the teleme-

try environment
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• Constrained bandwidth: Due to the limited spectrum allocated to tactical networks,

and the high volume of data to be transferred, particularly for situational awareness,

the network is severely bandwidth-constrained.

• Limited transmission range: The energy available for data transmission on some

ANs is limited due to power and weight constraints, particularly with smaller ve-

hicles, requiring multihop transmission from AN to GS.

• Intermittent connectivity : Given the transmission range of the AN and high mobil-

ity, the contact duration between any two nodes may be extremely short leading to

network partitioning. Furthermore, the wireless channels are subject to interference

and jamming.

In Table 4.1, we use the numerical baseline values from the network characteristics of

the iNET telemetry network [245] case to estimate the expected stability of the links in

such a network. Even with optimistic transmission range, the contact duration between

two neighboring nodes can be as low as 15 s. Note that in a multihop scenario with

lower transmission power, the contact duration between an airborne node and ground

station can be even shorter. At the same time there is no maximum contact duration, so

a protocol used in this environment will need to be able to make efficient use of available

spectrum and manage multiple traffic priorities for long-lived flows as well as short-lived

ones.

4.2.3 Existing Protocols & Architectures

Given that the tactical communications community relies in large part on existing TCP/IP-

based embedded devices and communicating the data to existing IP-based applications,

it is important to understand the implications of using the traditional Internet protocols
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Table 4.1: Link stability analysis

Scenario
Tx range Relative Contact

[km] velocity duration [s]
Single hop best case

AN – GS 260 206 m/s 2520

AN – AN 28 412 m/s 135

Single hop worst case

AN – GS 185
1191 m/s

300
Mach 3.5

AN – AN 18
2382 m/s

15
Mach 7.0

(UDP, RTP, TCP, and IP) in a highly dynamic environment. There has also been sub-

stantial research in transport protocols specific to satellite networks and routing protocols

for MANETs, both of which share some characteristics with airborne tactical networks.

This section briefly mentions some drawback of traditional protocols for the airborne

environment, in addition to those mentioned in Chapter 2.

Transmission Control and User Datagram Protocols

In the tactical airborne environment we expect to have multiple classes of traffic with

different characteristics, different tolerance of loss, and different priorities. Neither TCP

or UDP have the capability to express differentiated levels of precedence or QoS to per-

mit the network to meet these requirements. A number of these shortcomings have been

researched, and a few alternative protocols exist, such as SCPS-TP (Space Communica-

tions Protocol Standards – transport protocol) [81] described in Section 2.4, from which

we can draw some mechanisms but are only a partial solution.
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SCPS-TP

While SCPS-TP solves a number of the problems associated with airborne tactical net-

works, and our solution uses some of the same mechanisms, SCPS-TP is not ideal for our

application because it relies too heavily on channel condition information which is either

pre-configured or learned gradually over multiple end-to-end connections. This process

cannot adapt adequately to the rapidly changing airborne environment, or opportunisti-

cally make use of available bandwidth on a hop-by-hop basis.

Internet Protocol (IP)

The traditional wired Internet uses IP at the network layer, with various routing protocols

such as OSPF [250], RIP [251], and BGP [252]. TCP over IP adds a header of 40 bytes

per packet. This overhead becomes significant if there are many small packets (e.g.

control traffic), which is the case with the per-segment acknowledgements of TCP. The

current Internet architecture is based on the fundamental assumption of long-lasting,

stable links that does not hold true for a Mach-speed airborne network, which not only

challenges TCP as described above, but also network routing. Internet protocols require

convergence of the routes and do not natively support dynamic topologies inherent in

the airborne telemetry environment. IP also does not efficiently support the inherent 2-

level hierarchy caused by each AN containing a limited number of individually-addressed

peripherals. Furthermore, the current architecture was not systematically designed to

be a distributed solution to a global optimization problem [253] and does not support

explicit cross-layer information exchange to leverage unique information available in the

network such as position and trajectory.
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Ad Hoc Routing Protocols

In order to support MANETs (mobile ad hoc wireless networks), several routing protocols

have been developed that adapt to changes in topology. Reactive routing protocols

such as AODV [254] and DSR [255] attempt to construct source-to-destination paths on

demand and are not suitable because of the delay involved in finding paths and because

such paths may not be valid for long enough in a highly-dynamic network. On the other

hand, proactive routing protocols such as DSDV [256] and OLSR [257] forward packets on

a hop-by-hop basis and depend on route convergence. This generates excessive overhead

due to frequent route updates (assuming convergence is even possible) and is not suitable

for a bandwidth-constrained airborne network.

There are several other protocols that adapt to mobility by forwarding packets one hop

at a time without attempting to construct the entire path. These include simplistic

approaches such as flooding and other greedy algorithms that send multiple copies in

the network [258]. More complex routing schemes leverage specific information from the

network. Most notable are the location-based routing protocols such as LAR, DREAM,

SIFT, and GRID, APRAM, and anticipatory routing [259–265] that use GPS coordinates

of the nodes to determine the next hop. Aeronautical telemetry networks require self-

organizing protocols like the one proposed in [266], but designed for high relative node

mobility.

Furthermore, airborne tactical networks require the routing protocol to be highly adaptive

based on the particular mission requirements. Most existing routing mechanisms are

unimodal, wherein the algorithm is optimized for a specific mode of operation. A varying

set of operating conditions and service requirements justify the need for a domain-specific

multimodal protocol that inherently supports multiple modes of operation.
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Figure 4.10: Airborne network protocol architecture
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4.2.4 System Architecture

This section describes a new set of protocols designed for the aeronautical environment:

AeroTP, a TCP-friendly3 transport protocol; AeroNP, an IP-compatible network proto-

col; and the AeroRP routing protocol for highly-dynamic airborne nodes. The major

functions of each of these protocols, as well as the control-plane relationships between

them are shown in Figure 4.11. The communications we are concerned with can include

any type of packetized information and may be directed from GS to AN, from AN to

GS, or from AN to AN, and may use an intermediate RN if available. As mentioned in

Section 4.2.3, both the source and destination for data transmitted may be native Aero-

protocol devices or TCP/IP-based systems, however the IP protocol stack is not suitable

for use within the airborne network itself. To overcome this challenge without requiring

a total redesign of all sensors, peripherals, applications, and workstations, we introduce

the Aero Gateway (AeroGW) [268]. The gateway concept, often referred to as protocol

boosters [269] or performance enhancing proxies [270], is well established as a mecha-

nism for bridging between disparate network environments. In this case its operation is

similar to TCP-Splice [271], however instead of splicing TCP with TCP, it will translate

TCP (and UDP/RTP) to AeroTP and IP to AeroNP. This functionality resides in the

AeroGW, which is incorporated into each ground station and airborne node. An expected

use case is shown in Figure 4.10 with a ground station and airborne node communicating

using standard TCP/IP protocol stacks, which are translated to AeroTP/NP for greater

dependability [272] and performance in the wireless network. Due to the requirement

for backward compatibility we expect this use case to be the most common, however

there is no limitation in our design preventing nodes from running the AeroTP/NP stack

natively and bypassing the gateway. Nodes running the AeroTP/NP stack natively, with

3Note that we use the term “TCP-friendly” in a more general sense than the established term “TCP-

friendly rate control” (TFRC) [267]
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gateways performing custody transfer at the edges of the wireless network is directly

analogous to running ResTP end-to-end with PoMo gateways at realm boundaries.

Table 4.2: Feature Comparison of AeroTP, TP++, UDP, and TCP Variants

Feature AeroTP TP++ UDP TCP (CU)BIC T/TCP SCPS-TP
(ResTP) NewReno -TCP

TCP Compatible friendly no no yes yes yes interop

UDP Compatible friendly no yes no no no no

3-way handshake no no no per-flow per-flow per-endpoint per-endpoint

partial-path support yes no yes no no no no

header integrity check CRC-16 chksum no no no no no

data integrity check CRC-32 chksum
16-bit 16-bit 16-bit 16-bit 16-bit

chksum chksum chksum chksum chksum

error correction variable FEC FEC no no no no no

aggregated ACKs yes yes no optional optional no yes

selective repeat yes yes no optional optional no yes

negative ACKs optional no no no no no optional

multipath friendly yes yes no no no no no

flow control x-layer
out-of-band

no windowed windowed windowed windowed
signals

congestion ctrl

x-layer slow-start, slow-start, estimate, estimate,

AeroNP none none AIMD, (CU)BIC, AIMD Vegas,

backpressure fast rexmit fast rexmit fast rexmit

error control

hybrid, hybrid,

modular, modular none ARQ ARQ ARQ ARQ

adaptive,

reliability modes

reliable reliable reliable reliable reliable reliable

nearly-reliable

quasi-reliable quasi-reliable

best-effort best-effort

4.2.5 AeroTP: TCP-Friendly Transport Protocol

AeroTP is a new domain-specific transport protocol designed to meet the needs of the

highly-dynamic network environment while being TCP-friendly to allow efficient splicing

with conventional TCP at the AeroGWs in the GS and on the AN. Thus it transports

TCP and UDP through the tactical network, but in an efficient manner that meets the

needs of this environment: disruption tolerance, dynamic resource sharing, QoS support

for fairness and precedence, real-time data service, and bidirectional communication.

Table 4.2 identifies a number of key features of AeroTP and compares it to other modern

and traditional transport protocols. AeroTP has several operational modes that support
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different service classes: reliable, nearly-reliable, quasi-reliable, best-effort connections,

and best-effort datagrams. The first of these is fully TCP compatible, the last fully UDP

compatible, and the others TCP-friendly with reliability semantics matching the needs of

the mission and capabilities of the airborne network. The AeroTP header is designed to

permit efficient translation between TCP/UDP and AeroTP at the gateway as described

in Section 4.2.5.

AeroTP performs end-to-end data transfer between the edges of the airborne network and

either terminates at native Aero devices or splices to TCP/UDP flows at the AeroGWs.

Transport-layer functions that must be performed by AeroTP include connection setup

and management, transmission control, and error control, shown in Figure 4.11.
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Figure 4.12: AeroTP connection setup

Connection Management and Transmission Control

AeroTP uses connection management paradigms suited to the wireless network environ-

ment. An alternative to the overhead of the three-way handshake is an opportunistic

connection establishment in which data can begin to flow with the ASYN (AeroSYN)

setup message (shown in Figure 4.12). The flow of data is originated by a peripheral sen-

sor (per) as a standard TCP session, translated into an AeroTP session by the gateway

to traverse the airborne network, and then translated back into a standard TCP session
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by the gateway on the ground. The TPDU (transport protocol data unit) size may be

discovered using the standard path MTU discovery mechanism [97], however given the

specialized nature of these networks it is expected that the best performance will be

achieved by setting the peripherals to use an appropriate MTU as determined by the slot

size of the underlying TDMA MAC [247]. Closed-loop window-based flow and congestion

control with slow start is not appropriate to the highly-dynamic nature of this network,

therefore we use an open-loop rate-based transmission control with instrumentation from

the network layer and determine an initial rate, with backpressure to control conges-

tion, as described in Section 4.2.7 for AeroNP. Error control is fully decoupled from rate

control [57, 68], and is service specific as described below.

Segment Structure and Gateway Functionality

AeroTP is TCP-friendly, meaning it is designed to efficiently interoperate with TCP and

UDP at the gateways. To support this, AeroGW functionality [273, 274] provides IP–

AeroNP translation [243] and TCP/UDP–AeroTP splicing. A packet may pass through

two gateways on its path from source to destination. The ingress gateway converts the

TCP segments to AeroTPDUs, while the egress gateway converts AeroTPDUs to TCP

segments. It should be noted that ingress and egress gateways are not additional network

elements in the tactical environment, but rather the gateway functionality will be built

into ANs and GSs.
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The AeroTPDU is shown in Figure 4.13. Since bandwidth efficiency is critical, AeroTP

does not encapsulate the entire TCP/UDP and IP headers, but rather the gateway

converts between TCP/UDP and AeroTP headers. Some fields that are not needed for

AeroTP operation but are needed for proper end-to-end semantics are passed through,

such as the source and destination port number, TCP flags, and the timestamp. The

sequence number allows reordering of packets due to erasure coding (as with TP++ [275])

over multiple paths or AN mobility, and is either the TCP byte-sequence number or a

segment number, depending on the AeroTP transfer mode described below. The HEC

(header error check) field is a strong CRC (cyclic redundancy check) on the integrity

of the header to detect bit errors in the wireless channel. This allows the packet to

be correctly delivered to AeroTP at the destination where a corrupted payload can be

corrected on an end-to-end basis using FEC (forward error correction). A payload CRC

protects the integrity of the data edge-to-edge across the airborne network in the absence

of a separate AeroNP or link layer frame CRC, and enables measurement of the bit-

error-rate for error-correction code adaptation depending on the transfer mode. This

method of error detection and correction implies that AeroNP does not necessarily drop

corrupted packets at intermediate hops, which is a key difference from IP forwarding

semantics [86, 144].

Error Control and QoS-Based Transfer Modes

Based on the application requirements, there will be a number a classes of data being

transmitted over the tactical network. For this reason, AeroTP supports multiple trans-

fer modes that are mapped to different traffic classes: reliable connection, near-reliable

connection, quasi-reliable connection, unreliable connection, and unreliable datagram.

These modes are slightly modified from the set found in ResTP to support the specific

needs of the telemetry applications and environment.
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It is possible to achieve nearly-reliable operation (Figure 10) with significant 
performance improvement by using a custody transfer mechanism similar to that used in 
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All modes except unreliable datagram are connection-oriented for TCP-friendliness and

use sequence numbers so that packets may follow varying or multiple paths and be

reordered at the AeroTP receiver.

• Reliable connection mode (Figure 4.14) must preserve end-to-end acknowledge-

ment semantics from source to destination as the only way to guarantee delivery.

We do this using TCP ACK passthrough, which has the disadvantage of imposing

TCP window and ACK timing onto the AeroTP realm, but will never falsely inform

the source of successful delivery.

• Near-reliable connection mode (Figure 4.15) uses a custody transfer mechanism

similar to that used in DTNs [129,130,276] to provide high reliability, but can not

guarantee delivery since the gateway immediately returns TCP ACKs to the source

on the assumption that AeroTPs reliable ARQ (automatic repeat request)-based

delivery will succeed using SNACKs (selective negative acknowledgements) [81]

supplemented by a limited number of (positive) ACKs as well as ELN (explicit loss

notification) [144]. This still requires that the gateway buffer segments until ac-

knowledged across the airborne network by AeroTP, but is more bandwidth-efficient

than full source–destination reliability because TCP’s ACK-clocked behavior only

operates over the well-connected AN and ground-network (gNET) links, while al-

lowing AeroTP to keep the assigned TDMA slots filled in the airborne network.

However, the possibility exists of confirming delivery of data that the gateway can-

not actually deliver to its final destination.

• Quasi-reliable connection mode (Figure 4.16) eliminates ACKs and ARQ en-

tirely, using only open-loop error recovery mechanisms such as erasure coding,

across multiple paths if available [239]. In this mode the strength of the coding

can be tuned using cross-layer optimizations based on the quality of the wireless
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channel being traversed, available bandwidth, and the sensitivity of the data to

loss. This mode provides an arbitrary level of statistical reliability but without

absolute delivery guarantees.

• Unreliable connection mode (Figure 4.17) relies exclusively on the link layer

(FEC or ARQ) to preserve data integrity and does not use any error correction

mechanism at the transport layer. Cross-layering may be used to vary the strength

of the link-layer FEC.

• Unreliable datagram mode (Figure 4.18) is intended to transparently pass UDP

traffic, and no AeroTP connection state is established at all.

4.2.6 Cross-Layer Mechanisms

Despite the fact that link-load aware routing was developed as a part of the first ARPANET

routing protocol [277], cross-layered routing utilizing link and physical layer information

in route selection is not widely used. The reason for this is twofold: firstly, intelligent

cross-layer aware network protocols tend to be inherently complex, and secondly in wired

networks, physical links are highly reliable and are frequently over-provisioned. This has

led to shortest-path being the most widely deployed routing algorithm. It has been noted

that this is clearly not sufficient for effective routing in wireless networks [278], which

motivates the need to exploit available information through cross-layering to make better

forwarding decisions at each node.

Table 4.3 shows knobs at each layer that enable higher layers to influence certain mech-

anisms at lower layers, based on the information made available through dials. For ex-

ample, the transport layer influences path selection through the forwarding mode knob,

thus requesting a certain level of reliability for given data flow.
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Table 4.3: Knobs and dials for a telemetry network stack

Layer Knobs Dials Influencing Layer

mission policy & requirements situational awareness command & control

application data class status indicators mission

transport reliability mode diversity, goodput, outage application

network ARQ, priority paths, loss/errors transport

link & MAC ARQ & FEC settings neighbors, BER network

physical coding scheme location, SNR link

The airborne protocols employ cross-layer optimizations not only among the transport

(AeroTP) and network (AeroNP) protocols, but also with the MAC and PHY layer. This

involves optimizing the tradeoffs in type and strength of FEC at the PHY layer with

respect to channel conditions and BER (bit error rate), as well as optimizing TDMA

parameters and slot assignment based on the transfer mode of AeroTP and QoS param-

eters (precedence and service type) of AeroNP. Additionally, the support for multicast

and broadcast requires coordination of AeroNP routing with the broadcast capabilities

of the MAC.

4.2.7 AeroNP: IP-Compatible Network Protocol

AeroNP is a network protocol designed specifically for the highly-dynamic airborne en-

vironment, however, given the IP-based end devices on the ground for command and

control, as well as TCP/IP peripherals on the AN, it is critical for the airborne net-

work protocol to be compatible with IP. The AeroGW converts IP packets to AeroNP

packets and vice-versa. The key features of AeroNP are to provide explicit support for

cross-layering messages discussed in Section 4.2.6, reduce overhead by providing an effi-

cient addressing mapping from IP, and provide a strong header check to decode errored

payloads that could be recovered by AeroTP error-correction mechanisms.

The AeroNP packet header format, shown in Figure 4.19, is 32-bits wide. The version
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Figure 4.19: AeroNP packet structure

is the AeroNP protocol version, the congestion indicator (CI ) is set by each node to

notify the neighboring nodes of its congestion level as discussed later. The type and

priority fields specify the QoS level of a given packet. The number of QoS classes can

be customized for a given scenario. Protocol is the demux protocol identifier to which

AeroNP hands off the packets. In order to provide IP transparency, the ECN/DSCP

(explicit congestion notification/diffserv code point) nibble is carried over from the IP

header. An AeroNP packet is inserted directly into a TDMA slot, and thus contains the

MAC addresses : source, destination, and next hop. Significant efficiency can be gained if

the AeroNP header does not carry the 32-bit source and destination IP addresses (or the

even worse 128 bit addresses for IPv6). By performing an ARP-like address resolution

process, the IP address can be mapped to MAC addresses in the AeroGW. However,

each AN can have multiple peripherals, each of which has an IP address. Therefore, we

include a device-id field in the header, and the �MAC-address, device-id� tuple is mapped

to the peripheral IP address at the AeroGW. While dynamic mapping procedures are

possible, it is more efficient to preload the translation table at the beginning of each

mission. Optionally, source and destination location are included, which can be the GPS

coordinates that are used in location-aware routing. The length indicates the actual

length of the header in bytes. A strong check on the integrity of the header, HEC, is

included to protect against bit errors. Unlike Internet protocols [86], the default behavior

of AeroNP is to repair the corrupted bit and forward the errored packets to the transport
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layer instead of dropping them at the network layer. The corruption indicator (C ) bit is

set by AeroNP to notify AeroTP that corruption has been experienced. This permits FEC

at the transport layer to correct errors in the AeroTP quasi-reliable mode, as described

in Section 4.2.5.

4.2.8 AeroRP: Location-Aware Adaptive Routing

The small contact duration among ANs results in frequent routing changes and is indica-

tive of the need for an intelligent multihop routing protocol, supporting reliable com-

munication over the highly dynamic physical topology. As discussed previously, existing

routing mechanisms generate significant overhead and do not converge quickly (if ever) in

the presence of frequent topology changes and hence are not suitable for highly-dynamic

networks. The AeroRP routing protocol is specifically designed to address the issues

related to highly mobile aeronautical environments. This protocol was designed and sim-

ulated in close collaboration with Abdul Jabbar. We utilize a number of mechanisms that

have been researched independently for use in environments with characteristics similar

to those of aeronautical telemetry:

• Proactive behavior: AeroRP is a fundamentally proactive routing protocol, but

with limited updates thereby lowering protocol overheard.

• Exploits cross-layer controls: AeroRP is designed to exploit the explicit cross-

layering support provided by AeroNP and the geographic node location and tra-

jectory information available at nodes.

• Per-hop behavior: Unlike existing protocols, AeroRP forwards data per-hop

based on partial local information and routes thereby avoiding the necessity for

global convergence, making it especially suitable for highly-dynamic environments.
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• Multi-modal: Military applications present a high level of variation in their op-

erational parameters. For example, based on the security requirements of the test

application, the geolocation of the nodes may or may not be available. In order to

support these dynamics in operation, policies, and constraints, AeroRP provides

multiple modes of operation.

Table 4.4: Feature comparison of AeroRP and other routing protocol categories

Feature AeroRP

MANET

(AODV, OLSR, Opportunistic Geographic Beaconless

DSDV, DSR) (OR, EOR) (LAR, DREAM) (IGF, BOSS)

partial-paths yes no yes yes yes

store & haul yes no no no no

cross-layering yes no no yes yes

snooping yes no no no yes

location aware yes no no yes yes

beaconless optional no no yes yes

update aperiodic periodic or
no updates periodic no updates

frequency topology dependent on-demand

route
hop-by-hop

source initiated or
hop-by-hop based on updates hop-by-hop

reconfiguration based on updates

multi-mode yes no no no no

Protocol Operation

The basic operation of AeroRP consists of two phases. In the first phase, each AN learns

and makes a list of available neighbors at any given point in time. It utilizes a number

of different mechanisms to facilitate neighbor discovery, discussed later in this section.

The second phase of the algorithm is to find the appropriate next hop to forward the

data packets. In order to forward the packets toward a specific destination, additional

information such as location data or route updates is required. For each of these two

phases the protocol defines a number of different mechanisms. The particular choice of

mechanism to be used is dependent upon the mode of operation. The protocol does not

specify a predefined set of discrete operational modes; the total number of supported
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modes is merely the combination of all the different mechanisms available. We now

consider each of the two phases in more detail:

Neighbor Discovery: The first objective of an airborne node is to determine its neigh-

boring nodes. In order to achieve this, we use several different mechanisms with the

objective to minimize overhead and increase adaptability. One or more of the following

mechanisms may be used to populate the forwarding table depending upon the opera-

tional constraints.

• Active snooping is the primary mechanism used by the node to locate and iden-

tify its neighbors. In the wireless TDMA network, a node that is not transmitting

listens to all transmissions on the wireless channel. AeroRP adds the transmitting

MAC address of each overheard packet to its neighbor table. The protocol assumes

cooperative nodes and symmetric transmission ranges among ANs. This implies

that if a node can hear transmissions from a node, it can also communicate with

that node. Stale entries are removed from the neighbor table if no transmissions

from a node are heard for a predetermined time interval related to the anticipated

contact duration.

• Hello beacons are used by idle nodes to advertise their presence. When neighbor-

ing nodes hear a hello beacon, they update their neighbor table appropriately. The

frequency of the hello beacon is inversely proportional to the minimum calculated

contact duration. For example, if the minimum contact duration is 10 s, the hello

beacon is transmitted every second however if the minimum contact duration is 100

s, the hello beacon need only be sent every 10 s.

• Ground station updates may used to augment or replace active snooping in

some of the mission scenarios, in which the ground station has a partial or even
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complete mission plan. The ground station sends periodic updates containing the

location and trajectory vectors predicted by the mission plan to all nodes.

Security requirements may impose certain restrictions on aeronautical networks. In cer-

tain cases in which node location or trajectory is considered sensitive, individual nodes

may not include this information in the header of data packets or hello updates. In this

case, the ground station may send location updates of all nodes on an encrypted channel.

Finally, in the most secure mode, no geographic node information is available and the

routes have to be discovered using traditional MANET methods, such as explicit routing

updates and the exchange of node contacts between neighbors.

Given the dynamic nature of the aeronautical network, neighbor discovery not only con-

sists of finding nodes within transmission range, but also determining the duration for

which a discovered node will remain within range. Depending upon operational con-

straints, this information is obtained via different mechanisms: location and trajectory

information is included in the AeroNP header [243], or in updates sent by the ground

station.

Data Forwarding: After neighbor discovery, the second phase of AeroRP is for indi-

vidual nodes to determine the next hop for a particular transmission. Recall that, unlike

conventional protocols, AeroRP performs hop-by-hop forwarding based on partial paths

without the full knowledge of the end-to-end paths [279]. Each node forwards packets

such that they end up geographically closer to the destination, which will frequently be

a GS in many mission scenarios.

When any given node needs to transmit data, and assuming that one or more neighbors

are discovered, the data packets are forwarded to the node that is nearest to the destina-

tion as calculated from its current coordinates and trajectory. The destination location

is obtained in a manner similar to that of discovering neighbors. Furthermore, in many
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cases the destination is the stationary ground station whose coordinates are known to all

ANs. The algorithm for finding the best node to forward (or handover) the data packet

is given in Section 3.2.4

In order to avoid congestion at any given node, AeroRP utilizes the congestion indicator

(CI) [280, 281] field of the AeroNP header. Each node uses the CI field to indicate its

own congestion level. All packet transmissions from a node carry the CI field along with

the type and priority of the data. All the neighboring nodes are thus made aware of the

congestion at a given node for a given priority of the traffic and refrain from forwarding

equal or lower priority traffic to the congested node.

Ground stations are special nodes in this network. They listen to all the transmissions

and forward packets that are destined to other GSs. In other words, GSs are universal

sinks and may share the same MAC address. For uplink data, a GS forwards data to the

node that is closest to the destination node. The GS is aware of the location of all nodes

either from mission planning or by learning it during the test from header information

in received packets.

RNs (relay nodes), if present, are always the default next-hop. They accept packets from

all the ANs and forward them directly to the ground station or another AN. Since the

GS has narrow beam width and can only track one AN at a time, it is more efficient

for the GS to track RNs and have individual ANs forward their data via RNs. Given

the varied service requirements of tactical missions, AeroRP supports multiple modes for

both open and secure scenarios.

Mission Based Quality of Service

The wireless links in the telemetry network are bandwidth-constrained and may be under-

provisioned for the traffic generated at any give time. Hence, it is essential to implement
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a quality of service mechanism in this network to ensure that high priority data, such as

command and control, can be reliably delivered. The AeroNP protocol uses two fields

in the header to specify the quality of service of packets in the network: data type (e.g.

command and control, telemetry) and priority within a given type. The mission and

application requirements determine the type and priority for a given data flow, which are

passed to AeroNP through AeroTP via out-of-band signaling. The scheduling algorithm

at nodes is weighted fair queuing based on type and priority.

Broadcast and Multicast

The AeroNP protocol supports both broadcast and multicast natively. The typical all-

ones MAC address is used as the broadcast address. Similarly, a range of MAC addresses

are assigned to sub-groups in the network. These multicast address groups are generally

pre-programmed in the nodes and GS. Note however, that given the highly dynamic

nature of the network multicast may not achieve any significant benefit over a simple

broadcast in terms of efficiency for sparse networks.

Congestion Control

In a heavily loaded network multihop routing can induce severe congestion at nodes

involved in multihop forwarding as well as transmitting their own telemetry data. To

overcome this, AeroNP uses a simple congestion control mechanism at the network layer

using congestion indicators and back pressure. We choose these algorithms for their

simplicity in their operation based on little feedback. The objective is to avoid local

congestion and it does not guarantee global optimization or fairness. A more rigorous

rate control mechanism such as one proposed in [282] is not suitable here due to the

highly dynamic nature of the network, in which an optimal solution would become stale

by the time it is achieved.
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In the first mechanism, the node uses the CI (congestion indicator) [280, 281] field to

indicate its own congestion level. Even though 2 bits are assigned to CI field, only two

of the four possible values are currently used. Hence CI is toggled between 0x0 and 0x3.

All packet transmissions from a node carry the CI field along with the type and priority

of the data. When the transmit queue of a node exceeds a predetermined threshold, the

node sets its CI field to 0x3. Neighboring nodes eavesdrop on the transmission and are

made aware of the congestion at a given node. If a node is congested, the neighbors back

off if the data that they have is of equal or lesser priority, however higher priority data is

still forwarded to a congested node because the priority queue at that node will service

this traffic first.

The second mechanism through which congestion control is achieved in the telemetry

network is back pressure [132, 283]. As a source sends packets to an intermediate node,

it simultaneously eavesdrops on that node to see if the packets are being forwarded at

the same rate they are being sent. If not, and other packets are being forwarded instead,

then the source can infer that the next hop it has chosen is queuing its packets due to

congestion. The source node then backs off and if possible chooses an alternate next-hop.

Similarly, in a multihop scenario, if a bottleneck is encountered, each intermediate hop

either stops or slows down its transmissions on the congested path successively until the

source of the traffic is reached.

4.3 AeroTP Simulation Model

In this section we describe the ns-3 simulation model of AeroTP. The purpose of this

model is to allow us to compare its performance with other transport protocols, as well

as refine its performance.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Port Number | Destination Port Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|resv | Mode |ECN| Flags | Payload Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/ Optional fields for FEC, Erasure Coding, ... / TP HEC CRC-16 /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
\ \
/ Payload /
\ \
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/ Payload FEC Parity Trailer (Optional) /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload CRC-32 (Optional) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 4.20: AeroTP data segment structure

4.3.1 AeroTP Segment Structure

An AeroTP segment (shown in Figure 4.20) is structured for a bandwidth-constrained

network so it does not encapsulate the entire TCP/UDP and IP headers, but is capa-

ble of converting to the TCP/UDP format at the gateways. To satisfy the end-to-end

semantics it keeps certain fields in common with the TCP/UDP headers such as the

source-destination port numbers, TCP flags, and the timestamp. The sequence number

uniquely identifies AeroTP segments for reordering them at the receiving edge and for

error-control purposes. The HEC (header error check) field performs a strong CRC on

the header to detect bit errors caused by wireless channel, thus making sure the packet

is correctly transmitted to the destination. In case the payload gets corrupted, AeroTP

performs FEC on the payload. The payload CRC is used in the absence of a link-layer

frame CRC and enables the measurement of bit-error-rate for error correction depending

on the transfer mode used.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Port Number | Destination Port Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence (ACK) Number 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|resv | Mode |ECN| Flags | Payload Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/ Optional fields for FEC, Erasure Coding, ... / TP HEC CRC-16 /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ACK Number 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ACK Number ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ACK Number N |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/ Payload FEC Parity Trailer (Optional) /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload CRC-32 (Optional) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 4.21: AeroTP MACK segment structure

4.3.2 AeroTP Operation

As a connection-oriented protocol, it is essential to define and maintain consistent states

at the sender and the receiver to establish a connection for data transfer. The states

either remain the same or evolve to another depending on the events and actions that

happen within the protocol during a communication session. Figure 4.22 shows the

AeroTP reliable mode packet flow-diagram, in which S is the source, D is the destination,

and TmNS represents the telemetry network and Figure 4.23 shows the state transition

diagram.

Similar to TCP, the AeroTP source-destination pair uses control messages (ASYN, ASY-

NACK, AFIN, and AFINACK) for opening and closing a connection. The difference is an

opportunistic connection establishment, in which data and control overlap, is chosen over

the TCP’s three-way handshake, thus saving a round-trip-time that is otherwise wasted.

Initially the sender and the receiver are in the CLOSED state. A connection is initiated

by the sender through an APP CONNECT message from the application. The sender then
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5.3 Unreliable Connection-Oriented Mode 
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Figure 7.  AeroTP unreliable mode 

 the iNET environment, AeroTP will be expected to optimize performance in the 
TmNS environment, while facilitating translation to a standard TCP/IP or UDP/IP stack 
via gateways.  This section shows a number of examples of how this would work for 
different categories of traffic. 
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Figure 4.22: AeroTP connection management
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Figure 4.23: AeroTP state transition diagram
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Table 4.5: State & Transition Definitions

State Description

CLOSED No connection & no data is transferred

LISTEN Receiver is ready to listen to any incoming data

ASYN SENT ASYN message sent by the host initiating connection

ESTABLISHED A steady state in which data transfer takes places

AFIN SENT AFIN message sent to indicate no new data being sent

AFIN RECEIVED AFIN message received

APP CONN Connection request issued by application

APP LISTEN Listen request issued by application

APP CLOSE Close request issued by application

ASYN RX ASYN received

ASYNACK RX ASYNACK received, connection est.

MACK RX Single or multiple packet ACK received

AFIN RX AFIN received, indicating end of any new data

CLOSE TO A timeout before going to the CLOSED state

LISTEN TO A timeout before going to the LISTEN state

sets the ASYN bit in the AeroTP header and transmits it with or without data depending

on the data being available in the send buffer and moves to the AFIN SENT state. The

receiver receives an APP LISTEN request from the application and moves to the LISTEN

state, and upon receiving the ASYN message it moves to the ESTABLISHED state, and

acknowledges the ASYN by setting the ASYN bit and the MACK bit simultaneously. The

sender moves to the ESTABLISHED state as long as the ASYNACK or a simple MACK is

received, so that the connection does not have to terminated in case the ASYNACK gets

lost. While in the ESTABLISHED state, the sender and the receiver exchange AeroTPDU

and ACKs. After the sender is finished with sending all the data, an AFIN message (with

AFIN bit set in the header) is sent to the receiver and the sender moves to the AFIN SENT

state. Upon receiving the AFIN message the receiver moves to the AFIN RCVD state and

transmits an AFINACK. To make sure that the receiver has acknowledged all the data

including retransmissions, the receiver begins a timer in AFIN RCVD state which goes to

a LISTEN state after a time long enough so that all the retransmissions have likely been

received from the sender. The sender also maintains a close timer, which expires after a

certain time interval that is long enough to likely receive acknowledgements for all data

packets. This way the sender is guarantees delivery of all the data packets with high

probability.
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In the reliable mode, error-control is achieved by implementing a selective-repeat ARQ

mechanism. To reduce the overhead incurred, AeroTP aggregates multiple ACKs at the

receiver into a single packet before transmitting them to the sender, as TCP does using

the SACK option [89]. The number of ACKs to be aggregated is a tunable parameter,

and the optimal value depends on the probability of error or loss in the channel, as well

as the rate at which packets are sent. AeroTP also uses a timer to guarantee that ACKs

will not be delayed long enough to trigger unnecessary retransmissions.

4.4 Simulation Results

This section presents results from simulations of the AeroTP and AeroRP protocols

performed using ns-3 and ns-2 respectively. The performance of AeroTP is compared to

TCP, and the performance of AeroRP is compared to that of DSDV and AODV.

We have implemented ns-3 models of the fully-reliable (ARQ) and quasi-reliable (FEC)

modes described in Section 4.3. This section presents the simulation results from running

these models. We compare the performance of AeroTP in the reliable connection and

quasi-reliable modes with TCP and UDP protocols using the ns-3 open-source simula-

tor [284]. The selective-repeat ARQ algorithm is used to provide reliable edge-to-edge

connection between nodes for the reliable mode, and FEC (as discussed above) is used for

the quasi-reliable mode of the AeroTP protocol. The network in this simulation setup

consists of two nodes communicating via a link that is prone to losses. One node is

configured as a traffic generator, and the other as a traffic sink. The traffic generator

sends data at a constant data rate of 4.416 Mb/s (3000 packets/s with an MTU of 1500

B). The path consists of a 10 Gb/s link representing the LAN on the TA, a 5 Mb/s link

with a latency of 10 s representing the mobile airborne network, and a second 10 Gb/s

link representing the LAN at the ground station. Bit errors are introduced in the middle
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link with a fixed probability for each run, and the performance for each probability of

bit-errors is shown in the plots described in the next section. A total of 1 MB of data is

transmitted during one single simulation between the two nodes. The link is made unre-

liable by introducing losses using an error model varying bit-error probabilities ranging

from 0 to 0.0001 for each of the protocols. Each simulation case is run 20 times and the

results averaged to obtain the data needed for comparison.

4.4.1 AeroTP Connection Establishment

As mentioned previously, one of the drawbacks of TCP for highly-dynamic airborne

environments is the three-way-handshake used for connection establishment. For this

reason AeroTP is designed to establish a connection when the first data TPDU (with

ASYN bit set) in a flow is received. If the first packet is lost, the connection can still

be established using header information from the second or subsequent data packet, and

the first packet can be retransmitted later if required by the specified reliability mode.

To illustrate the difference between these two approaches, we have done simulations

comparing the time required to establish a standard TCP connection, compared to a

AeroTP connection.

The simulations are implemented in the ns-3 open-source simulator [284]. Each simula-

tion consists of two nodes connected by a 10 Mb/s link with 5 ms latency and a fixed

probability of packet loss, which is varied between 0 and 20% as seen on the x-axis.

Node 0 is configured as a traffic generator (TCP or AeroTP as appropriate) and node 1

is configured as a traffic sink. For each packet-loss probability point plotted, the simula-

tions were run 100 times and the results averaged. Each simulation consists of a single

connection attempt by either TCP or AeroTP. We record the delay starting when the

connection setup command is issued to the transport protocol, and stopping when the

first data packet is received by the data sink.
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Figure 4.24: TCP and AeroTP connection establishment delay

Figure 4.24 shows the results of these simulations. Both the TCP and AeroTP results

are presented in a single plot, however, note that they are plotted against two different

y-axes: TCP on the left, and AeroTP on the right. The TCP delay starts at about

20 ms when no losses occur, and increases linearly until it approaches 3 s when the

packet-loss rate is 20%. AeroTP on the other hand, has a delay of 9.2 ms when no losses

occur, and increases linearly to 10.1 ms when the packet-loss rate is 20%. This shows an

improvement of two orders-of-magnitude, which will play a large role in enabling AeroTP

to successfully send data over paths which only exist for a few seconds, while TCP would

still be trying to establish the connection.

4.4.2 Fully-reliable mode performance

In fully-reliable mode, AeroTP uses ARQ as its reliability mechanism. This trades off

additional latency (in the case of lost or corrupted packets) and overhead of the reverse
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channel, for reliability. The advantage to this mechanism is that given enough time,

every lost packet can be retransmitted. In our model we are able to adjust the amount

of bandwidth required by adjusting the number of ACKs aggregated into a single packet

before it is transmitted. We found this to have a negligible effect on performance, and so

have omitted the set of plots showing adjustments to this parameter to save space. The

overall performance of the fully-reliable mode can be seen in our last set of plots.
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4.4.3 Quasi-Reliable Mode Characterization

In quasi-reliable mode, AeroTP uses FEC as its reliability mechanism. This trades

overhead on each packet for reliability. The advantage to this mechanism is low delay,

because no retransmissions are required to correct errors. Our first set of plots compares

varying FEC strengths, from zero FEC 32 bit words per packet, to 256 FEC words. In

all cases 1500-byte packets are used, thus as the number of FEC words in each packet

is increased, the number of bytes of data in each packet decreases, meaning that more

152



de
la

y 
[m

s]

bit-error rate (BER)

FEC-255

FEC-128

FEC-064

FEC-032

FEC-016

FEC-008

FEC-004

FEC-002

FEC-000

9800

10000

10200

10400

10600

10800

11000

11200

11400

11600

11800

0E+00 2E-05 4E-05 6E-05 8E-05 1E-04

Figure 4.26: Average delay

da
ta

 c
or

re
ct

ly
 d

el
iv

er
ed

 [k
b]

bit-error rate (BER)

FEC-255

FEC-128

FEC-064

FEC-032

FEC-016

FEC-008

FEC-004

FEC-002

FEC-000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0E+00 2E-05 4E-05 6E-05 8E-05 1E-04

Figure 4.27: Cumulative goodput

153



cu
m

ul
at

iv
e 

ov
er

he
ad

 [k
b]

bit-error rate (BER)

FEC-255

FEC-128

FEC-064

FEC-032

FEC-016

FEC-008

FEC-004

FEC-002

FEC-000

1E+01

1E+02

1E+03

1E+04

1E+05

0E+00 2E-05 4E-05 6E-05 8E-05 1E-04

Figure 4.28: Cumulative overhead

packets are required to transfer the same amount of data. Figure 4.25 shows that the

throughput decreases due to uncorrectable packets as the error-rate increases, however

this effect can be mitigated by increasing the FEC strength. For very high FEC strengths

(128 and 256), there was virtually no decrease in performance across the range of error-

rates tested, however the performance is decreased at low error-rates due to the high

level of overhead. Due to the fact that retransmissions are not involved, the latency of

data transmission is not affected by packet errors as shown in Figure 4.26. However, as

very high levels of FEC result in link saturation this translates into added latency due

to queuing delay. Similar to the throughput plot, Figure 4.27 shows the total amount

of data transmitted. Depending on the FEC strength, this quantity decreases as the

error-rate increases, except for very high FEC strengths (128 and 256) all errors are able

to be corrected, at the rates tested. Lastly in this set of plots, we show the overhead

imposed on the network by using the FEC mechanism at various strengths (Figure 4.28).

This quantity is significant (note the log y-axis scale), however it is not affected by the

154



error rate.

av
er

ag
e 

th
ro

ug
hp

ut
 [k

b/
s]

FEC strength [words/pkt]

BER-0.000000

BER-0.000012

BER-0.000025

BER-0.000050
350

400

450

500

550

600

650

700

750

0 50 100 150 200 250 300

Figure 4.29: Average goodput

The next set of plots continue to characterize the quasi-reliable mode. Figure 4.29 shows

that for error rates greater that zero, higher FEC strengths result in higher throughput

up to a point. For the 128-word and 256-word FEC strengths, the amount of FEC

bytes being sent begins to saturate the link, resulting in reduced throughput of data.

Figure 4.30 shows that for all error rates, higher FEC strengths increase delay slightly as

the link becomes saturated. Figure 4.31 shows that an FEC strength of 96 words/packet

or greater is able to correct all errors at the error rates tested. Figure 4.32 shows the

increase in overhead resulting from increased FEC strength. The increase is linear with

respect to the amount of data being sent, but since we have chose to quantify FEC

strength with respect to the number of packets transmitted it appears exponential, due

to the fact that an increase in FEC strength results in an increase in the number of

packets sent to transmit a give amount of data using maximum-size packets. Future
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models may change this quantification in favor of one relative to the amount of data

being transmitted.

4.4.4 Performance Comparison over Lossy Links

Figure 4.33 shows that AeroTP reliable-mode is able to achieve significantly better per-

formance than TCP, which backs off substantially as the BER (bit-error rate) increases.

TCP also becomes highly unpredictable in its performance, as shown by the error bars.

At the same time TCP’s end-to-end delay increases by 3 orders-of-magnitude doubles

with a BER of 1×10−4, while AeroTP increases less than 1 order-of-magnitude as shown

in Figure 4.34. Over the course of the simulation, both TCP and AeroTP are able to

deliver the full 1 MB of data transmitted for low error rates <0.000035, but above that

TCP performance drops rapidly while AeroTP is still able to deliver nearly all the data at

the highest error rates as shown in Figure 4.35. In the same plot we see that UDP looses

157



av
er

ag
e 

th
ro

ug
hp

ut
 [K

b/
s]

bit-error rate (BER)

AeroTP-ARQ
AeroTP-FEC

UDP
TCP-Reno

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

0E+00 2E-05 4E-05 6E-05 8E-05 1E-04

Figure 4.33: Average goodput

de
la

y 
[m

s]

packet-error rate (PER)

AeroTP-ARQ
AeroTP-FEC

UDP
TCP-Reno

1E+03

1E+04

1E+05

1E+06

1E+07

0E+00 2E-05 4E-05 6E-05 8E-05 1E-04

Figure 4.34: Average delay

158



da
ta

 c
or

re
ct

ly
 d

el
iv

er
ed

 [K
b]

bit-error rate (BER)

AeroTP-ARQ
AeroTP-FEC

UDP
TCP-Reno

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0E+00 2E-05 4E-05 6E-05 8E-05 1E-04

Figure 4.35: Cumulative goodput

cu
m

ul
at

iv
e 

ov
er

he
ad

 [K
b]

bit-error rate (BER)

AeroTP-ARQ
AeroTP-FEC

UDP
TCP-Reno

0

200

400

600

800

1000

1200

1400

1600

1800

0E+00 2E-05 4E-05 6E-05 8E-05 1E-04

Figure 4.36: Cumulative overhead

159



a percentage of the data due to corruption as the BER increases, and that the AeroTP

quasi-reliable mode losses a much smaller percentage. Lastly in Figure 4.36 we see that

the performance improvement of the AeroTP reliable-mode is achieved with much lower

overhead than TCP, while quasi-reliable mode does incur significant overhead, but does

not cause any increased delay as the BER increases.

4.5 Summary

In this chapter we presented the design of two transport protocols, ResTP and AeroTP,

and evaluated the improvement in performability enabled by using path diversification,

opportunistic connection setup, decoupling loss from flow-control, and the tradeoff be-

tween closed and open-loop error control. AeroTP is domain specific, and designed to

work in conjunction with the rest of the ANTP suite that we designed for highly-dynamic

airborne environments. For context we have provided an overview of the routing and

network layer components of this suite, and shown how AeroTP also provides increased

performability in this environment through increased packet delivery ratio.

In the next chapter we will present the design of the GpENI (Great Plains Environment

of Network Innovation) network testbed that we have built in collaboration with many

institutions worldwide, in order to support at-scale protocol implementations at any

network layer. GpENI is the platform being used to implement and validate the ResTP

protocol as well as the entire ANTP suite (AeroTP, AeroNP, and AeroRP).
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Chapter 5

GpENI Testbed

In order to test multilayer resilience protocols at scale, we have developed the GpENI

testbed, which is now being utilized to evaluate prototype versions of AeroTP and the

ANTP protocols, with ResTP soon to follow. This chapter describes the planned exper-

iments, the testbed, and the challenges faced in its development. The work described

in this chapter has resulted in several publications. The ANTP prototype architecture

being implemented on GpENI is described in [285], and the design of the GpENI testbed

is layed out in [286]. A current status of the development of GpENI and the challenges

encountered is discussed in [287] and future experiments on path diversity are described

in [288].

5.1 Current ANTP Prototyping

We are using Python as the prototyping language for the ANTP protocols, both to make

efficient use of available programmer cycles, as well as for its cross-platform support.

While the initial testing is being performed on the GpENI testbed, we will also be test-

ing on radio-controlled vehicles with embedded linux platforms. The current work, which

is being performed by several members of the ResiliNets group, includes several utility
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programs including a GPS emulator for GpENI nodes, so that it can provide position

data to AeroRP, and coupled with that is a wireless broadcast emulator that determines

which nodes overhear a transmission based on position and a random function. We have

also implemented a central data collection system to monitor the progress of each ex-

periment, with a web-based map overlay showing the emulated position of each node

and giving access to AeroRP interface counters and forwarding tables. Along with data

collection we also have a server that will provide experiment control instruction to each

of the nodes, although the full specification of these controls is not yet completed. At the

transport layer, we have been successful in implementing both the ARQ (fully-reliable)

and FEC (quasi-reliable) modes. FEC uses existing Reed-Solomon error-correction li-

braries available in Python, and likewise both modes use existing CRC error checking

Python functions.

Each component of the ANTP suite uses separate threads for communicating with the

server, so that the experiment control and monitoring will have minimal impact on the

protocol performance. Due to GpENI security restrictions (in the PlanetLab component

described later) all ANTP packets are encapsulated inside UDP packets, which while not

affecting the function does add some overhead.

5.2 Planned ResTP Experiments

Once the KU challenge emulation infrastructure is in place on GpENI, numerous ResTP

flows will be established, based on the Path Diversification metrics based using the geo-

graphic coordinates of intermediate nodes. In addition to using multiple diverse paths,

we will be evaluating the performance of several end-to-end and hop-by-hop reliability

mechanisms, such as FEC, erasure coding, and ARQ. With the traffic model active, we

will then perturb the experiment to cross-validate our simulation findings by evaluating
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the level of resilience of each topology, as well as the resilience of each reliability mecha-

nism, in the face of challenges. The challenges will parallel those introduced by the ns-3

challenge model, including random failures, targeted attacks, and large-scale disaster af-

fecting a particular geographic region. The data collected from these experiments will

allow us to relate theoretical graph properties to real-world performance benefits, as well

as to quantify the improvements afforded by particular end-to-end reliability mechanisms

and combinations of mechanisms.

5.3 GpENI Overview

The Great Plains Environment for Network Innovation – GpENI is an international

programmable network testbed centered on a regional optical network between The Uni-

versity of Kansas (KU) in Lawrence, Kansas State University (KSU) in Manhattan, Uni-

versity of Nebraska – Lincoln (UNL), and University of Missouri – Kansas City (UMKC)

within the Great Plains Network, supported with optical switches from Ciena intercon-

nected by Qwest fiber infrastructure, in collaboration with the Kansas Research and Ed-

ucation Network (KanREN) and Missouri Research and Education Network (MOREnet).

GpENI is undergoing significant expansion to Europe and Asia. The goals of GpENI are

to:

• Build a collaborative research infrastructure in the Great Plains region among GPN

and other institutions

• Construct an international programmable network infrastructure enabling GpENI

member institutions to conduct experiments in Future Internet architecture, sup-

porting projects such as PoMo: PostModern Internetwork Architecture [24] and

ResumeNet [289], including evaluation of ResTP and path diversity mechanisms
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Figure 5.1: GpENI Programmability Layers

• Provide programmable optical infrastructure to the GpENI Midwest optical back-

bone, and expand optical connectivity to selected international sites

• Provide flexible infrastructure to support the GENI program as part of the Plan-

etLab control framework cluster B

• Deploy tools developed by GpENI and the GENI community such as Gush for

experiment control and Raven for code deployment

• Provide an open environment for networking research community experiments

5.3.1 GpENI Programmability and Flexibility

The defining characteristic of GpENI is programmability of all layers, as shown in Fig-

ure 5.1, implemented on a node cluster of general- and special-purpose processors, de-

scribed in detail in Section 5.5. At the top layer Gush provides experiment control

and Raven distributes code; both are software developed as part of the GENI program.

Layer 7 and 4 programmability are provided by the GENIwrapper version of Planet-

Lab. At layer 3, programmable routers are implemented in Quagga, XORP, and Click,

supplemented by any other technology for which GpENI institutions should choose to
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deploy.1 Flexible network-layer topologies are provided by VINI. At layer 2, dynamic

VLAN configurations are provided by DCN-enabled managed Gigabit-Ethernet switches

at the center of each GpENI node cluster. GpENI institutions directly connected to

the optical backbone use DCN-enabled Ciena switches to provide dynamic lightpath and

wavelength configuration. At layer 1, the architecture even permits programmability at

the photonic layer for switches that provide such support. Furthermore, each GpENI

institution can connect site specific networking testbeds; plans include wireless, sensor,

and cognitive radio testbeds (e.g. KUAR [291]). External users in the broader research

community may request GpENI accounts with which to run network experiments.

5.3.2 GpENI Suitability for ResTP

Due to the role that geography and topology play in this work, making the transition from

simulation to testbed poses unique infrastructure challenges, especially since it is desirable

to run prototypes under many different traffic and large-scale topology scenarios. It is also

desirable to have a heterogeneous testbed, with a geographically distributed backbone

topology to emulate tier-1 service providers, as well as more localized clusters to emulate

regional access networks and subscriber nodes along with user traffic load. Since we are

concerned with full end-to-end dependability it will be necessary to include all of these

components within the testbed scenario.

To meet these requirements we have identified a number of components within GENI

that are suitable for different aspects of our experimentation. The OpenFlow infrastruc-

ture installed on Internet 2 (and planned for selected GpENI node clusters) provides a

configurable large scale backbone in North America. The GpENI [1] infrastructure us-

ing the Dragon Dynamic Circuit Network (DCN) [292] flexible VLAN topology extends

geographic coverage to Europe and Asia, as well as connecting the G-LAB [293] infras-

1We are investigating including OpenFlow [290] as a core GpENI technology.
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tructure in Germany. These three infrastructures will allow a sufficiently large number

of geographically-distributed topology overlays to be formed, based on output from the

KU-LocGen topology generator. The second tier of experimental infrastructure will be

used to model access networks and end-users. Most GpENI clusters (which implement

the PlanetLab control framework [294]) have only a few nodes, so federating with EM-

ULAB [295] (using the ProtoGENI control framework [296], via the GpENI–ProtoGENI

physical connection in the Kansas City I2 PoP) and G-LAB clusters will be necessary to

enable full end-to-end flow prototyping over a realistic hierarchical infrastructure.

5.4 Topology and Network Infrastructure

The core of GpENI is the regional optical backbone centered around Kansas City. This is

extended by KanREN (Kansas Research and Education Network) to various GPN (Great

Plains Network) institutions in the Midwest US. Connectivity in Kansas City to Internet2

provides tunneling access to the Canadian, European, and Asian GpENI infrastructure.

Optical connectivity is currently in place in the UK between Lancaster and Cambridge,

and will replace other GpENI L2TPv3 and IP tunnels as available. GpENI is growing,

currently with about 200 nodes at 40 institutions in 20 nations. Institutions may connect

to GpENI if they are interested in becoming part of the GpENI community, and have

the resources to install, connect, and manage a node cluster.

5.4.1 Midwest US GpENI Core and Optical Backbone

GpENI is built around the core GpENI optical backbone centered in the Midwest, shown

in Figure 5.2, among the principal institutions of KU, KSU, UMKC, and UNL, currently

under extension to additional institutions, including the GMOC (GENI Meta-Operations

Center). The optical backbone consist of a fiber optic run from KSU to KU to the
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Figure 5.2: GpENI Midwest Topology

Internet2 PoP in Kansas City, interconnected with dedicated wavelengths to UMKC and

UNL.

Each of the four core institutions will have a node cluster that includes optical switching

capabilities provided by a Ciena CoreDirector or CN4200, permitting flexible spectrum,

wavelength, and lightpath configurations.2

5.4.2 GpENI International Topology

GpENI is extended to Europe across Internet2 to GÉANT2 and NORDUnet and then to

regional or national networks, as shown in Figure 5.3. Currently, connectivity is achieved

using L2TPv3 and IP tunnels. A direct fiber link over JANET is deployed between

Lancaster and Cambridge Universities.3 The principal European GpENI institutions are

Lancaster University in the UK and ETH Zürich in Switzerland. Similarly, GpENI is

2GpENI optical infrastructure is currently undergoing phased deployment; the UNL switch is installed

and the KU switch is under procurement.
3GpENI is currently working with research network providers to increase direct optical connectivity.
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extended to Asia across Internet2 to APAN, then to national research network infras-

tructure including ERNET. as shown in Figure 5.3.

•  GpENI  

 The Great Plains Environment for Network Innovation – 
GpENI (pronounced [dʒɛ’pi ni] with accent on the middle 
syllable and rhyming with GENI) is an international 
programmable network testbed centered on a regional 
optical network between The University of Kansas (KU), 
Kansas State University (KSU), University of Nebraska – 
Lincoln (UNL), and University of Missouri – Kansas City 
within the Great Plains Network (GPN), supported with 
optical switches from Ciena interconnected by Qwest fiber 
infrastructure, in collaboration with the Kansas Research 
and Education Network (KanREN) and Missouri Research 
and Education Network (MOREnet). GpENI is funded in 
part by National Science Foundation GENI (Global 
Environment for Network Innovations) program as part of 
Cluster B.  International expansion has begun anchored on  
Lancaster University in the UK and ETH Zürich in 
Switzerland.  

•  GpENI Topology and Network Infrastructure 

 GpENI is built upon a multi-wavelength fiber 
interconnection between four principal GpENI universities 
within the GPN, with direct connection to the Internet 2 
backbone. Administration of Midwest GpENI infrastructure 
is assisted by GPN, KanREN and MOREnet. 

 Each university has a GpENI node cluster interconnected to 
one-another and the rest of GENI by Ethernet VLAN. 
Additionally, each university is obtaining its own Ciena 
optical switch for layer-1 and -2 programmable 
interconnection among GpENI institutions. 

 GpENI is undergoing significant regional and international 
expansion, with institutions providing node clusters 
tunneled (L2TPv3 or IP) into the Midwest optical backbone.  
We are beginning to explore optical interconnection to 
some of the international nodes. 

I. OVERVIEW 

 GpENI institutions participate in several research projects 
that we expect will benefit from GpENI and GENI 
experimental capabilities: 

•  PoMo:  Postmodern Internet Architecture (NSF FIND) 
KU, University of Kentucky, University of Maryland 

•  MiMANSaS:  Matrix, Models and Analysis of Network 
Security and Survivability  (NSF CyberTrust) 
UMKC, Duke University, University of Pittsburgh 

•  High Bandwidth Multimedia Applications  (NSF CCF) 
UMKC 

•  ResumeNet:  (EU FP7 FIRE) 
Resilience and Survivability for Future Networking  
KU, Lancaster U., ETH Zürich, Techniche Universität 
München (TUM), Techniche Universiteit Delft, Université de 
Liège (ULg), Universität Passau, Uppsala Universitet (UU), 
NEC Labs Heidelberg, France Telecom – Orange Labs. 

V. RELATED PROJECTS 

•  GpENI Node Clusters 

 38 node clusters are coming up in 17 
nations, shown in Figure 1.  Each 
GpENI node cluster consists of 
several components, physically 
interconnected by a Gigabit Ethernet 
switch to allow arbitrary and flexible 
experiments. GpENI uses KanREN /21 
IP address space within the gpeni.net 
domain. The node cluster is designed 
to be as flexible as possible at every 
layer of the protocol stack, and 
consists of the following components, 
as shown in Figure 2: 

IV. GpENI PRINCIPAL PARTICIPANTS 

•  Build a collaborative research infrastructure in the Great 
Plains region 

•  Provide programmable network infrastructure enabling 
GpENI member institutions to conduct experiments in future 
Internet architecture 

•  Provide flexible infrastructure to support the GENI program 
as part of control framework B 

•  Provide open environment on which the networking 
research community can run experiments 

II. PROJECT GOALS 

  

•  GENI Cluster B  

 GpENI is part of GENI control framework Cluster B.  GpENI is one of two 
network infrastructure projects (along with Mid-Atlantic Crossroads) that will 
run the PlanetLab control framework and interface with other Cluster B 
participants, running GUSH experiment control and Raven code deployment.  
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•  GpENI Physical Topology and Infrastructure 

 The Midwest optical backbone physical topology consists of fiber 
interconnection between the four GpENI universities, and is currently being 
deployed, as shown in Figure 3 as white blocks. GpENI-specific infrastructure 
is depicted by grey blocks; deployment and operational status is described in 
a subsection below. 

 Each of the four university node clusters will interface into the GpENI 
backbone via a Ciena CN4200 or CoreDirector switch. The rest of the GpENI 
node infrastructure for each site is labeled "GpENI node cluster" The main 
fiber run between KSU, KU, and Kansas City is Qwest Fiber IRUed (leased) to 
KU, proceeding to the Internet2 POP, which will provide access to GpENI from 
Internet2. A chunk of C-band spectrum is planned providing multiple 
wavelengths at KU and KSU. UMKC is connected over MOREnet (Missouri 
Research and Education Network) fiber to the Internet2 POP, with four 
wavelengths anticipated. UNL is also connected to the Intenet2 POP over 
fiber IRUed from Level3 with two wavelengths committed. Local fiber in 
Manhattan and Lawrence is leased from Wamego Telephone (WTC) and 
Sunflower Broadband (SFBB), respectively. There is abundant dark fiber 
already in place on the KU, KSU, UMKC, and UNL campuses to connect the 
GpENI nodes to the switches (existing or under deployment) on the GPN fiber 
backbone. For reference, the UNL link is terminated by Ekinops switches, the 
UMKC link is terminated by ADVA switches, and the KU/KSU link is 
terminated by Ciena switches.  The current  layer 2 connectivity is shown in 
Figure 3; note that this is constantly evolving as optical infrastructure is 
deployed. 

!  GpENI management and control processor:  general-purpose Linux machine 

!  PlanetLab control framework consisting of aggregate managers: 
MyPLC with GENIwrapper SFA, myVINI, DCN 

!  PlanetLab programmable nodes 

!  VINI-based programmable routers, with Quagga and other extensions such as XORP and Click 

!  Site-specific experimental nodes, including software defined radios (such as the KUAR), 
optical communication laboratories, and sensor testbeds 

! Managed Gigabit Ethernet switch, providing L2 VLAN programmability and connectivity 
to the rest of GENI 

!  Ciena optical switch running DCN providing L1 interconnection among GpENI optical node clusters 

  The arrow overlaid on the Figure 2 shows a conceptual flow of an experiment in which 
the GENI experiment controls the configuration of the PlanetLab, which in turn configures 
a custom routing protocol, which in turn configures the optical switch configuration.    
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5.4.3 GpENI Deployment

The GpENI infrastructure [286] is in the process of expanding to 40 clusters with 200

nodes worldwide, federated with the larger GENI PlanetLab control framework and in-

terconnected to several ProtoGENI facilities, as shown in Figure 5.3. This enables users

to perform resilience and survivability experiments at at scale, both in terms of node

count and with the geographic scope needed to emulate area-based challenges such as

large-scale disasters. In our own research efforts, we are using these facilities to enable

experiments that cross-verify the analytical and simulation-based resilience research cur-

rently underway at The University of Kansas [191], leveraging topology and challenge

generation tools (KU-LoCGen and KU-CSM [193]) developed for this purpose, with em-

phasis on resilience metrics [219] and multi-path multi-realm diverse transport [211,212]

developed as part of our NSF FIND research in the PostModern Internet Architecture

project [24].

168



5.5 Node Cluster Architecture

Each GpENI node cluster consists of several components, physically interconnected by

a managed Netgear Gigabit-Ethernet switch to allow arbitrary and flexible experiments.

GpENI uses a KanREN 198.248.240.0/21 IP address block within the gpeni.net domain;

management access to the facility is via dual-homing of the Node Management and

Experiment Control Processor. The node cluster is designed to be as flexible as possible

at every layer of the protocol stack, and consists of the following components, as shown

in Figure 5.4:

• GpENI management and control processor: general-purpose Linux machine

• PlanetLab control framework consisting of aggregate managers: MyPLC with GENI-

wrapper SFA (at KSU), myVINI (at UMKC), and DCN (at UNL)

• PlanetLab programmable nodes (enabling layer 4 and 7 experimentation)

• VINI-based programmable routers (providing flexible network topologies), with

Quagga and other extensions such as XORP and Click (enabling layer 3 experimen-

tation), as well as the ability for GpENI partners to install their own programmable

routers

• Site-specific experimental nodes and testbeds, including software defined radios

(e.g. KUAR), optical communication laboratories, and sensor testbeds

• Managed Gigabit Ethernet switch, providing L2 VLAN programmability and con-

nectivity to the rest of GENI

• Ciena optical switch running DCN providing L1 interconnection among GpENI

node clusters on the Midwest US optical backbone
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Figure 5.4: GpENI Node Cluster

5.5.1 GpENI Management and Control

The GpENI management and control services are distributed across the Linux machines

dedicated for the purpose at each of the node clusters. Open-source tools are used

wherever possible to minimise the amount of GpENI-specific software development and

maintenance required. Some of these services are installed at every node cluster, for

example the Cacti monitoring tool [297] is used to monitor the per-port network usage

on each of the Netgear Gigabit-Ethernet switches. Nagios [298] is used to monitor the

status of individual nodes and services across all the clusters. Zenoss Core [299] is also

being evaluated as an alternative to Nagios. On the other hand, some functions are

specific to one site, such as the GpENI-Planetlab demo [300], running on Apache and

hosted only on the management node at the KSU node cluster.

The control node for each cluster also provides firewall and NAT services using Firestarter [301]

for that cluster’s private subnet, thereby protecting insecure devices, such as the Netgear
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switch telnet and SNMP management interfaces, from direct exposure to the Internet.

5.5.2 Experiment Control

To ease experimenters role in resource discovery and preparation of experiments, the

GENI User Shell (Gush) [302], provides a robust experiment control and management

framework. Gush extends the PlanetLab control framework to implement an API that

interacts with the GENI Clearinghouse. With Gush deployment on the GpENI aggregate,

a user can reserve both PlanetLab and GpENI resources by downloading agents on the

selected nodes and deploy their experiments subsequently with the help of the controller

that communicates with the agent about node status. The Raven [303] provisioning

service provides services such as the proper execution environment, software packages,

configuration information and computational resources.

5.5.3 Methodology and Cross-Verification

Resilient topologies generated by KU-LoCGen and analyzed by KU-CSM are used to

generate layer-2 topologies that configure the topology of GpENI experiments. We eval-

uate performance when slice topologies are challenged by correlated failures of nodes and

links, measuring connectivity, packet delivery ratio, goodput, and delay, when subject

to CBR, bulk data transfer, and transactional (HTTP) traffic. We also characterize the

packet-loss probability of wireless links at the Utah Emulab, and the capabilities for

emulating jamming and misbehaving nodes within the Emulab-federated CMU wireless

emulator [295]. Workflow infrastructure is provided by Raven [303] to deploy experiments

on these aggregates in an automated and repeatable manner.
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5.5.4 Large-Scale Deployment

In order to provide the ability to experiment with non-IP network layers, the GENI feder-

ation has converged on ethernet VLANs as the common denominator across all testbeds.

There are several resulting implications and technical challenges, for example, no matter

the scale of the testbed (global in GpENI’s case), it is one giant broadcast domain given

the capabilities of commodity ethernet switches, and the usable L2 topology is restricted

to a tree. The cost of native layer-2 interconnection on a global scale is also high. To

address these challenges GpENI is deploying a number of emerging technologies both to

manage the testbed itself as well as addressing the needs of experimenters. DCN (pre-

viously mentioned) is one such tool which establishes VLAN circuits across the testbed

to manage broadcast traffic and provided a layer-2 point-to-point abstraction for exper-

imenters. We have used L2TPv3 tunnels over IP research networks to mitigate the cost

of long-distance layer-2 connectivity, however this still is limited to a tree topology. The

tinc [304] project goes a step further, allowing the creation of a full mesh of VPN L2

tunnels while preventing broadcast storms and is a promising solution to these challenges.

Large scale resilience experiments are run over interconnected aggregates using DCN [292]

(within GpENI) and OpenFlow and configured paths, with VINI/Planetlab layer-3 topolo-

gies, to emulate both existing ISP and synthetic topologies. Over these topologies we

run our multipath-aware transport protocol ResTP to evaluate its performance under

varying application and traffic loads. Based on the output of our challenge generation

simulations, we selectively disable node slivers and links to emulate correlated network

failures and attacks. In the future we will also use the wireless emulator under the Proto-

GENI framework to emulate jamming attacks to wireless access networks. Each challenge

set is classified as a single scenario, and each scenario is run multiple times to establish

reasonable confidence in the results.
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5.6 Summary

GpENI is an excellent testbed for the purpose of prototyping diversity protocols as well

as cross-verifying simulation results, both because of its multi-layer programability which

enables the crosslayering needed to expose divers paths to the end-to-end layer, as well

as its worldwide scale. Due to the use of a standard Linux environment for experiments,

are protocol prototypes are also able to run on other Linux-based platforms without

rewriting code. The prototypes will continue to be developed by a number of students

within the ResiliNets group who will be performing experiments based on them for their

own thesis research.
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Chapter 6

Conclusions and Future Work

This dissertation presents the new resilience mechanism path diversification for enabling

the use of end-to-end diversity to meet application service requirements in the face of

various attacks and challenges. We find that no single mechanism can address all appli-

cation requirements in all network conditions, and so propose the ResTP protocol, with

a constrained set of operating modes that allow for appropriate tradeoffs to be chosen.

This chapter presents conclusions drawn from the major contributions of the dissertation,

and directions for future work.

6.1 Conclusions

Chapter 3 introduced path diversification, presenting its design and evaluation. We also

discussed several metrics for evaluating path, node-pair, and graph diversity. We applied

the path diversification mechanism to 17 real and synthetic networks and evaluated

its ability to improve flow robustness in the presence of link and node failures. Path

diversification provides a substantial performance improvement over conventional single-

path mechanisms by using cross-layer information to make intelligent path selections

based on the diversity. We then extended the applicability of the total graph diversity

metric by compensating for topologies that have higher average hopcounts, thus creating
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the cTGD metric. Our analysis of the properties of the topologies shows that cTGD is an

excellent predictor of the survivability of these topologies when simultaneous distributed

node and link failures occur.

Chapter 4 presents the ResTP and AeroTP protocols, ResTP being a multipath trans-

port protocol designed for future Internet environments such as PoMo, and AeroTP

being a domain specific transport protocol for aeronautical telemetry environments, that

includes a subset of the ResTP functionality. In both cases a cross-layer architecture

is used to provide information from the network layer with which to make intelligent

flow-control and path selection decisions. Using ResTP we have shown a 20–30% per-

formance improvement in the presence of link failures when diversity is available in the

underlying network graph. Using AeroTP in a lossy environment we showed its signifi-

cant benefits to performability by using opportunistic connection setup and decoupling

loss from the flow-control mechanism. We also show the tradeoffs enabled by having both

a fully-reliable and a quasi-reliable mode.

Chapter 5 discusses the development of the GpENI programmable testbed, and its ap-

plicability for developing prototype versions of ResTP and the ANTP suite, as well as

cross-verifying these protocols with the simulation models. Due to its multi-layer pro-

grammability and worldwide scale it is particularly suited to these purposes. Experiments

using ResTP and AeroTP are currently in preliminary phases and will continue in future

work

6.2 Future Work

One improvement we would like to make to the path diversity evaluation is to base

the failure scenarios on more detailed properties of the links in the network, using an

annotated graph. For example a link depending on many optical amplifiers would be
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assigned a greater probability of failure than a link with few or none. The next major

evolution of this work centers around the move from random failure scenarios to realistic

correlated failure models. These may be attack intelligently targeted at critical elements

of the network architecture (high-degree nodes, or high-betweenness links for example).

Then there are challenges of various types that affect geographic regions of the net-

work [192,193]. The ability to rigorously introduce and analyze such failures is essential

in order to evaluate our geographic path diversity metric. Once a working classification

of failure types and their effect on the network is established, the challenge simulation

model [7] being developed by Egemen Çetinkaya can be used to evaluate the effective-

ness of path diversification and ResTP against these types of challenges. Subsequently a

challenge emulation framework will be incorporated into the GpENI testbed, to enable

equivalent at-scale resilience tests of the ResTP implementation. With respect to the

topology evaluation aspect of the work, we are looking at methods of generating a large

set of topologies with specific properties (node degree, rank, betweenness, etc.) to use

in further evaluating the accuracy of cTGD. We also want to develop algorithms for au-

tomatically generating topologies with high cTGD, subject to realistic cost constraints.

It would also be valuable to develop an analytical proof of the properties of the cTGD

metric.

We would like to make the multipath behavior of ResTP more dynamic, such that as

paths fail additional paths could be requested from the path server (assuming a resilient

path to the path server) or from a local cache of path candidates. This sort of on-demand

path selection could limit the initial computational complexity while providing greater

resilience to failed paths, and is something that merits further investigation. Additionally

we plan to examine the effects of using closed and open-loop error correction methods

simultaneously (i.e. hybrid ARQ) where ARQ is used to retransmit data that cannot

be recovered through FEC. This presents an interesting optimization problem, because
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while both error-correction mechanisms incur a cost in terms of overhead, ARQ also adds

delay that will result in the hybrid scheme only being appropriate for applications that

are tolerant of retransmission-induced delays. This frames the question then in terms of

optimizing the overhead tradeoff between ARQ and FEC.
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[288] Justin P. Rohrer, Egemen K. Çetinkaya, and James P.G. Sterbenz. Resilience

experiments in the GpENI programmable future internet testbed. In Proceedings

of the 11th Würzburg Workshop on IP: Joint ITG and Euro-NF Workshop “Visions

of Future Generation Networks” (EuroView2011), August 2011.

[289] ResumeNet. http://www.resumenet.eu/project/index, December 2009.

[290] The OpenFlow switch consortium. http://www.openflowswitch.org/, December

2009.

[291] G.J. Minden, J.B. Evans, L. Searl, D. DePardo, V.R. Petty, R. Rajbanshi, T. New-

man, Q. Chen, F. Weidling, J. Guffey, D. Datla, B. Barker, M. Peck, B. Cordill,

A.M. Wyglinski, and A. Agah. KUAR: A flexible software-defined radio devel-

opment platform. In 2nd IEEE International Symposium on New Frontiers in

Dynamic Spectrum Access Networks (DySPAN), pages 428–439, April 2007.

[292] Dynamic resource allocation via GMPLS optical network. http://dragon.

maxgigapop.net/, November 2009.

[293] German lab. http://www.german-lab.de/, April 2010.

[294] PlanetLab. http://www.planet-lab.org/, November 2009.

[295] Emulab: Network emulation testbed. http://www.emulab.net/, December 2009.

216

http://www.resumenet.eu/project/index
http://www.openflowswitch.org/
http://dragon.maxgigapop.net/
http://dragon.maxgigapop.net/
http://www.german-lab.de/
http://www.planet-lab.org/
http://www.emulab.net/


[296] ProtoGENI wiki. http://www.protogeni.net/trac/protogeni, 2010.

[297] Cacti: the complete rrdtool-based graphing solution. http://www.cacti.net/,

December 2009.

[298] Nagios. http://www.nagios.org/, December 2009.

[299] Zenoss: Unlegacy enterprise it management. http://www.zenoss.com/, December

2009.

[300] GpENI demonstration website. http://control-1.ksu.gpeni.net/demo/,

November 2009.

[301] Firestarter: A modern linux firewall. http://www.fs-security.com/, December

2009.

[302] Gush: GENI user shell. http://gush.cs.williams.edu/trac/gush, December

2009.

[303] Raven provisioning service. http://raven.cs.arizona.edu/, December 2009.

[304] tinc wiki. http://www.tinc-vpn.org/, 2010.

217

http://www.protogeni.net/trac/protogeni
http://www.cacti.net/
http://www.nagios.org/
http://www.zenoss.com/
http://control-1.ksu.gpeni.net/demo/
http://www.fs-security.com/
http://gush.cs.williams.edu/trac/gush
http://raven.cs.arizona.edu/
http://www.tinc-vpn.org/


Page left intentionally blank.

218



Appendix A

AeroTP Protocol Specification

This ANTP draft specification covers AeroTP: TCP-friendly disruption-tolerant aeronau-

tical transport protocol for highly-mobile airborne networking in the iNET environment.

A.1 Architectural Overview

The iNET (Integrated Networked Enhanced Telemetry) program has identified a set of

needs [NDR] for the T&E (test and evaluation) community that require a substantially

enhanced networking capability for Major Range and Test Facility Bases. There is cur-

rently a significant effort underway in the iNET community to design the physical layer

communications and MAC (medium access control), however a number of issues remain

to be solved at the network and transport layers [TSR].

The current Internet protocols are unsuitable for the specific constraints and requirements

of the aeronautical telemetry network environments in a number of respects [TSR]. At

the same time, there is a need to be compatible with TCP/IP-based devices located on

test articles (TAs) and relay nodes (RNs), as well as with the controlling applications at

the ground station (GS).
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The ANTP (Aeronautical Network and Transport Protocols for iNET) project is design-

ing a new protocol suite for the upper layers of the emerging telemetry environment,

shown in Figure A.1. These protocols are designed for the telemetry network environ-

ment, while fully interoperable with TCP/UDP/IP via gateways. The ANTP protocol

suite consists of a domain-specific set of protocols appropriate for the highly-dynamic

mobile-airborne telemetry environment. AeroTP is a disruption-tolerant TCP-friendly

transport protocol with multiple reliability and QoS modes. AeroNP is an IP-compatible

network protocol designed for efficient translation with IP. AeroRP is a highly-adaptive

geolocation-assisted routing protocol. Translation between the ANTP and TCP/IP pro-

tocol stacks is performed at the AeroGW gateway.
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Figure A.1: Airborne network protocol architecture

A.2 Role of AeroTP

AeroTP is a new domain-specific transport protocol designed to meet the needs of the

highly-dynamic network environment while being TCP-friendly to allow efficient splicing

with conventional TCP at the AeroGWs in the GS and on the TA. Thus it transports TCP

and UDP segments through the tactical network, but in an efficient manner that meets

the needs of this environment: dynamic resource sharing, QoS support for fairness and
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precedence, real-time data service, and bidirectional communication. AeroTP has several

operational modes that support different reliability classes: reliable, quasi-reliable, best-

effort connections, and best-effort datagrams. The first of these is fully TCP compatible,

the last fully UDP compatible, and the others TCP-friendly with reliability semantics

matching the needs of the mission and capabilities of the airborne network. The AeroTP

header is designed to permit efficient translation between TCP/UDP and AeroTP by

the AeroGW. AeroTP performs edge-to-edge data transfer between the edges of the

TmNS and either terminates at native Aero devices or splices to TCP/UDP flows at

the AeroGWs. Transport-layer functions that must be performed by AeroTP include

connection setup and management, transmission control, and error control.

A.3 Conventions

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,

SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be

interpreted as described in RFC 2119 [RFC2119].

A.4 AeroTPDU Format

This section describes the format of the AeroTPDU (transport protocol data unit).

If a user data message does not fit into one AeroTPDU it can be fragmented into multiple

chunks.

All integer fields in an AeroTPDU MUST be transmitted in network byte order, unless

otherwise stated.

Source Port Number: 16 bits (unsigned integer)
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Port Number | Destination Port Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|resv | Mode |ECN| Flags | Payload Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/ Optional fields for FEC, Erasure Coding, ... / TP HEC CRC-16 /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
\ \
/ Payload /
\ \
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/ Payload FEC Parity Trailer (Optional) /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload CRC-32 (Optional) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure A.2: AeroTP data segment structure

This is the AeroTP senders port number. It can be used by the receiver in combina-

tion with the source AeroNP address, the AeroTP destination port, and possibly the

destination AeroNP address to identify the association (flow) to which this AeroTPDU

belongs.

Destination Port Number: 16 bits (unsigned integer)

This is the AeroTP port number to which this AeroTPDU is destined. The receiving

host will use this port number to de-multiplex the AeroTPDU to the correct receiving

endpoint/application.

Sequence Number: 32 bits (unsigned integer)

This is the AeroTP sequence number assigned to this AeroTPDU. Connection-setup

(ASYN) AeroTPDUs will always carry the sequence number 0. Subsequent AeroTPDUs

are numbered using even numbers only. Odd sequence numbers are used only in the case

that a previously transmitted AeroTPDU should be retransmitted using a smaller pay-

load size. In this case the payload is split in half and retransmitted as two AeroTPDUs,
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the first with the original sequence number, and the second using the original sequence

number plus one. ACK piggybacking is for further study.

Timestamp: 32 bits (unsigned integer)

This is the time at which the AeroTPDU was last transmitted. The timestamp format

is based on RFC-3339, neglecting punctuation characters. In decimal form from left to

right, the first two digits represent the hour in the range 0023. The third and fourth

digits represent the minute in the range 0059. The fifth and sixth digits represent the

second in the range 0059. The remaining 4 digits represent the 4 highest-order decimal

positions of the second, which have a range of 00009999. This results in a timestamp

resolution of 0.1 ms, and a disambiguation period of 12 hrs.

Reserved: 3 bits reserved for future use.

Mode: 5 bits

This is the AeroTP operational mode currently in use, as defined as a particular set of

mode bits, each of which represents an individual protocol option. The currently enu-

merated modes are Reliable (0x13), Quasi-Reliable (0x05), Unreliable Connection (0x01),

and Unreliable Datagram (0x00). Any combination of the 5 mode bits is valid, however

only the combinations enumerated in this document are recommended for use. The op-

tions represented by each bit are as follows: ARQ enable acknowledgement functions

ERA enable erasure-coding functions FEC enable forward error correction CRC enable

the payload cyclic redundancy check CON maintain connection state Several of these

bits also indicate the use of associated optional fields.

ECN: 2 bits

This field contains unaltered TCP ECN flags used by AeroGWs for edge-to-edge trans-

parency of TCP segments.
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1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|resv | Mode |ECN| Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|don’t|A|E|F|C|C|C|E|U|A|P|R|S|F|
|care |R|R|E|R|O|W|C|R|C|S|S|Y|I|
| |Q|A|C|C|N|R|E|G|K|H|T|N|N|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

Figure A.3: AeroTP header options and flags

Flags: 6 bits

This contains AeroTP flags, some of which are used to pass unaltered TCP flags for

translation to TCP segments. The individual AeroTP flags are as follows: URG used

to pass the TCP urgent flag transparently ACK indicates this is an AACK, MACK,

MNACK, ASYNACK, or AFINACK message PSH used to pass the TCP push flag

transparently RST reset, use in AeroTP is a matter for further study SYN indicates an

ASYN connection establishment request FIN indicates an AFIN connection termination

request

Optional Fields: Variable length

Several of the mode bits indicate features that require additional header fields. If such

bit is set in the mode field, the associated optional field must appear in the header. The

size and use of such fields is a matter for further study, but preliminary values are below.

Error Correction (Optional): 4 bits

Indicates the strength of the Reed-Solomon forward error correction code if the FEC

option is enabled.

Erasure Code (Optional): 4 bits

Indicates the block-erasure code algorithm used if the ERA option is enabled.

TP HEC CRC-16: 16 bits (unsigned integer)
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This field contains the integrity check of this AeroTP header.

Payload:

Variable length data passed from application.

Payload CRC-32: 32 bits (unsigned integer)

This optional field at the end of the AeroTPDU contains the integrity check of the payload

if the CRC mode bit is set.

A.5 Multiple ACK (MACK) packet format

This section describes the format of the MACK (Multiple Acknowledgement) used for

acknowledging receipt of multiple packets.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Port Number | Destination Port Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence (ACK) Number 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|resv | Mode |ECN| Flags | Payload Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/ Optional fields for FEC, Erasure Coding, ... / TP HEC CRC-16 /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ACK Number 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ACK Number ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ACK Number N |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/ Payload FEC Parity Trailer (Optional) /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload CRC-32 (Optional) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure A.4: AeroTP MACK segment structure

Field definitions are identical to those used in the previous section.

ACK Number X: 32 bits (unsigned integer)
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These are the 32-bit sequence numbers of each packet being acknowledged.

A.6 AeroTP Flow Management

Connection and flow management vary depending on the operational mode in use. This

section gives an overview of the state transitions used in a generalized case.
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Figure A.5: AeroTP connection management

A.6.1 Connection Establishment

For connection-oriented modes (reliable, quasi-reliable, and unreliable connection-oriented),

the AeroTP connection is initiated by calling the CONNECT method. This sets the SYN

flag in the header of the first AeroTPDU in the flow for the ASYN connection setup mes-

sage (sequence number = 0) and transmits it. If there is data in the send buffer, it will

be inserted in the payload of the first AeroTPDU, otherwise the payload will be empty.

When the ASYN is received, the receiver enters the SYN-RECEIVED state. When the
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first data AeroTPDU is received (which may or may not be in the ASYN message) is re-

ceived, the receiver enters the ESTABLISHED state. In reliable mode, connection setup

is acknowledged by an ASYNACK message indicated by setting the SYN and ACK flags

in the header of the return AeroTPDU (sequence number = 0). When the ASYNACK

is received, the sender enters the ESTABLISHED state.

A.6.2 Connection Termination

The AeroTP connection is terminated with an AFIN message, by setting the FIN flag

in the header of the last data AeroTPDU in the flow, or by sending an AeroTPDU with

no payload and the FIN flag set. When the AFIN has been transmitted, the sender

enters the AFIN-SENT state. When the AFIN is received, the receiver enters the AFIN-

RECEIVED state and when it finishes processing the AFIN AeroTPDU it enters the

LISTEN state. In fully-reliable mode and nearly-reliable mode, connection termination

is acknowledged by setting the FIN and ACK flags on either the last data TPDU or by

generating a separate AFINACK message with an empty payload. When the AFINACK

is received, the sender enters the CLOSED state.

Connectionless Operation

AeroTP may operate in a stateless mode (unreliable connectionless) in which case no

ASYN, ASYNACK, MACK, AFIN, or FINACK messages are used.

A.7 AeroTP Data Transfer

AeroTP uses one of several reliability modes to transfer data, depending on the class of

service required. Each mode uses several mechanisms to optimize its performance. This

section details the behavior of each mode and the mechanisms it uses.
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A.7.1 Reliable Mode

Reliable mode is connection-oriented, and uses positive acknowledgements in combination

with the payload CRC to confirm correct data delivery.
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Figure A.6: AeroTP compact reliable mode

In order to reduce latency, the application may begin data transmission in the same

AeroTPDU as the SYN flag is sent.

Alternatively, the application may wait until the connection reaches the established state

to begin transmitting data segments. The AeroTP reliable mode is designed to preserve

end-to-end reliability. To accomplish this, data segments are not acknowledged until the

receiving application (or gateway) approves them. It is up to the application whether to

verify data before acknowledging it.
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Figure A.7: AeroTP reliable mode

A.7.2 Quasi-Reliable Mode

Quasi-reliable mode is connection oriented, and uses forward-error-correction (FEC) to

achieve statistical reliability.

A.7.3 Unreliable Connection-Oriented Mode

Unreliable connection-oriented mode may optionally use the payload CRC to check for

errors, but provides no other assurance of reliable delivery.

A.7.4 Unreliable Connectionless Mode

Unreliable connectionless mode provides no assurance of reliable delivery or data correct-

ness.
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Figure A.8: AeroTP quasi-reliable mode

A.7.5 Security Considerations

Impact of iNET security architecture on AeroTP is expected to be minimal. The contents

of the AeroTP payload may be encrypted, and the AeroTPDU itself may be encrypted

for encapsulation in a lower-layer frame without any adverse effects on the operation

of AeroTP. To the extent that lower-layer statistics on bit and/or packet error rates

(BER and PER) are encrypted, AeroTPs ability to adapt to channel conditions may

be impaired, however by recording statistics on errors and packet loss at the transport

layer it will be partially self-sufficient in this respect. This is discussed in the ANTP

cross-layering specification [AeroXL]. Initial sequence number negotiation is for further

study.
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5.3 Unreliable Connection-Oriented Mode 
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Figure A.9: AeroTP unreliable connection-oriented mode
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Figure A.10: AeroTP unreliable mode
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Table B.3: Compensated TGD

Network
Survivability

cTGD
cTGD

Rank Rank

Full-Mesh 1 0.9514 1
Level 3 2 0.4494 2

AboveNet 3 0.4386 3
Exodus 4 0.3617 4

EBONE 5 0.3113 5

Tiscali 6 0.2641 6

Sprint 7 0.2407 7

Verio 8 0.2009 8

Manhattan Grid 9 0.2002 9

VSNL 10 0.1783 10

GÉANT2 Phys. 11 0.1668 11

Star 12 0.1628 12

AT&T 13 0.1446 13

Telstra 14 0.0941 14

Ring 15 0.0667 15

AT&T Phys. 16 0.0348 16

Sprint Phys. 17 0.0307 17
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Appendix C

Maps

This appendix contains a set of maps for the topologies used in the analysis of the

path diversification metrics. The maps are produced by taking screenshots of the KU-

TopView web-based tool located at http://www.ittc.ku.edu/resilinets/maps/. To

recreate the maps, use #990000 for the link color, #999999 for the primary marker color,

and #000000 for the marker corner color.
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C.1 Physical Topologies

Figure C.1: AT&T physical topology

Figure C.2: Sprint physical topology
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C.2 Logical Topologies

Figure C.3: AboveNet logical topology

Figure C.4: AT&T logical topology

239



Figure C.5: EBONE logical topology

Figure C.6: Exodus logical topology
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Figure C.7: Level-3 logical topology

Figure C.8: Sprint logical topology
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Figure C.9: Telstra logical topology

Figure C.10: Tiscali logical topology
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Figure C.11: Verio logical topology
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Figure C.12: VSNL logical topology
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Appendix D

Dynamic Graph Properties

This appendix contains a full set of of plots characterizing various graph properties

recalculated after node and link failures occur with varying probabilities.
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Figure D.1: Connectivity vs. link failure probability for all topologies
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Figure D.2: Connectivity vs. node failure probability for all topologies
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Figure D.3: Connectivity vs. node & link failure probability for all topologies
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Figure D.4: Average node degree vs. link failure probability for all topologies
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Figure D.5: Average node degree vs. node failure probability for all topologies
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Figure D.6: Average node degree vs. node & link failure probability for all topologies
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Figure D.7: Clustering coefficient vs. link failure probability for all topologies
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Figure D.8: Clustering coefficient vs. node failure probability for all topologies
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Figure D.9: Clustering coefficient vs. node & link failure probability for all topologies
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Figure D.10: Largest component size vs. link failure probability for all topologies
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Figure D.11: Largest component size vs. node failure probability for all topologies
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Figure D.12: Largest component size vs. node & link failure probability for all topologies
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Figure D.13: Link betweenness vs. link failure probability for all topologies
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Figure D.14: Link betweenness vs. node failure probability for all topologies
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Figure D.15: Link betweenness vs. node & link failure probability for all topologies
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Figure D.16: Node betweenness vs. link failure probability for all topologies
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Figure D.17: Node betweenness vs. node failure probability for all topologies
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Figure D.18: Node betweenness vs. node & link failure probability for all topologies
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Figure D.19: Number of failed links vs. link failure probability for all topologies
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Figure D.20: Number of failed links vs. node failure probability for all topologies
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Figure D.21: Number of failed links vs. node & link failure probability for all topologies
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Figure D.22: Number of failed nodes vs. link failure probability for all topologies
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Figure D.23: Number of failed nodes vs. node failure probability for all topologies
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Figure D.24: Number of failed nodes vs. node & link failure probability for all topologies
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Figure D.25: Number of partitions vs. link failure probability for all topologies
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Figure D.26: Number of partitions vs. node failure probability for all topologies
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Figure D.27: Number of partitions vs. node & link failure probability for all topologies
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Appendix E

Flow-Robustness Plots

This appendix contains a full set of flow-robustness plots for the topologies used in the

analysis of the path diversification metrics.
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E.1 Physical Topologies

E.1.1 AT&T physical
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Figure E.1: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 1 on the AT&T physical topology
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Figure E.2: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 0.5 on the AT&T physical topology
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Figure E.3: Flow robustness vs. node failure probability for various EPD thresholds with
λ = 1 on the AT&T physical topology
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Figure E.4: Flow robustness vs. node failure probability for various EPD thresholds with
λ = 0.5 on the AT&T physical topology
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Figure E.5: Flow robustness vs. node & link failure probability for various EPD thresh-
olds with λ = 1 on the AT&T physical topology
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Figure E.6: Flow robustness vs. node & link failure probability for various EPD thresh-
olds with λ = 0.5 on the AT&T physical topology
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Figure E.7: Flow robustness vs. link failure probability for the AT&T physical topology
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Figure E.8: Flow robustness vs. node failure probability for the AT&T physical topology
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Figure E.9: Flow robustness vs. node & link failure probability for the AT&T physical
topology
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Figure E.10: Flow robustness vs. link failure probability for various stretch limits on the
AT&T physical topology
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Figure E.11: Flow robustness vs. node failure probability for various stretch limits on
the AT&T physical topology
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Figure E.12: Flow robustness vs. node & link failure probability for various stretch limits
on the AT&T physical topology
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E.1.2 GÉANT2 physical

flo
w

 ro
bu

st
ne

ss

probability of failure

Best

EPD=.95

EPD=.75

EPD=.55

EPD=.35

EPD=.15
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25

Figure E.13: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 1 on the GÉANT2 physical topology
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Figure E.14: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 0.5 on the GÉANT2 physical topology
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Figure E.15: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 1 on the GÉANT2 physical topology
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Figure E.16: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 0.5 on the GÉANT2 physical topology
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Figure E.17: Flow robustness vs. node & link failure probability for various EPD thresh-
olds with λ = 1 on the GÉANT2 physical topology

271



flo
w

 ro
bu

st
ne

ss

probability of failure

Best

EPD=.95

EPD=.75

EPD=.55

EPD=.35

EPD=.15
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25

Figure E.18: Flow robustness vs. node & link failure probability for various EPD thresh-
olds with λ = 0.5 on the GÉANT2 physical topology
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Figure E.19: Flow robustness vs. link failure probability for the GÉANT2 physical
topology
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Figure E.20: Flow robustness vs. node failure probability for the GÉANT2 physical
topology
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Figure E.21: Flow robustness vs. node & link failure probability for the GÉANT2
physical topology
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Figure E.22: Flow robustness vs. link failure probability for various stretch limits on the
GÉANT2 physical topology
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Figure E.23: Flow robustness vs. node failure probability for various stretch limits on
the GÉANT2 physical topology
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Figure E.24: Flow robustness vs. node & link failure probability for various stretch limits
on the GÉANT2 physical topology
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E.1.3 Sprint physical
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Figure E.25: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 1 on the Sprint physical topology
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Figure E.26: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 0.5 on the Sprint physical topology
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Figure E.27: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 1 on the Sprint physical topology
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Figure E.28: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 0.5 on the Sprint physical topology
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Figure E.29: Flow robustness vs. node & link failure probability for various EPD thresh-
olds with λ = 1 on the Sprint physical topology
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Figure E.30: Flow robustness vs. node & link failure probability for various EPD thresh-
olds with λ = 0.5 on the Sprint physical topology
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Figure E.31: Flow robustness vs. link failure probability for the Sprint physical topology
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Figure E.32: Flow robustness vs. node failure probability for the Sprint physical topology
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Figure E.33: Flow robustness vs. node & link failure probability for the Sprint physical
topology
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Figure E.34: Flow robustness vs. link failure probability for various stretch limits on the
Sprint physical topology
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Figure E.35: Flow robustness vs. node failure probability for various stretch limits on
the Sprint physical topology
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Figure E.36: Flow robustness vs. node & link failure probability for various stretch limits
on the Sprint physical topology
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E.2 Logical Topologies

E.2.1 AboveNet logical
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Figure E.37: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 1 on the AboveNet logical topology
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Figure E.38: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 0.5 on the AboveNet logical topology
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Figure E.39: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 1 on the AboveNet logical topology
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Figure E.40: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 0.5 on the AboveNet logical topology
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Figure E.41: Flow robustness vs. node & link failure probability for various EPD thresh-
olds with λ = 1 on the AboveNet logical topology

285



flo
w

 ro
bu

st
ne

ss

probability of failure

Best

EPD=.95

EPD=.75

EPD=.55

EPD=.35

EPD=.15
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25

Figure E.42: Flow robustness vs. node & link failure probability for various EPD thresh-
olds with λ = 0.5 on the AboveNet logical topology
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Figure E.43: Flow robustness vs. link failure probability for the AboveNet logical topol-
ogy
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Figure E.44: Flow robustness vs. node failure probability for the AboveNet logical
topology
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Figure E.45: Flow robustness vs. node & link failure probability for the AboveNet logical
topology
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Figure E.46: Flow robustness vs. link failure probability for various stretch limits on the
AboveNet logical topology
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Figure E.47: Flow robustness vs. node failure probability for various stretch limits on
the AboveNet logical topology
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Figure E.48: Flow robustness vs. node & link failure probability for various stretch limits
on the AboveNet logical topology
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E.2.2 AT&T logical
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Figure E.49: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 1 on the AT&T logical topology
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Figure E.50: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 0.5 on the AT&T logical topology
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Figure E.51: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 1 on the AT&T logical topology
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Figure E.52: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 0.5 on the AT&T logical topology
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Figure E.53: Flow robustness vs. node & link failure probability for various EPD thresh-
olds with λ = 1 on the AT&T logical topology
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Figure E.54: Flow robustness vs. node & link failure probability for various EPD thresh-
olds with λ = 0.5 on the AT&T logical topology
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Figure E.55: Flow robustness vs. link failure probability for the AT&T logical topology
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Figure E.56: Flow robustness vs. node failure probability for the AT&T logical topology
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Figure E.57: Flow robustness vs. node & link failure probability for the AT&T logical
topology
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Figure E.58: Flow robustness vs. link failure probability for various stretch limits on the
AT&T logical topology
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Figure E.59: Flow robustness vs. node failure probability for various stretch limits on
the AT&T logical topology
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Figure E.60: Flow robustness vs. node & link failure probability for various stretch limits
on the AT&T logical topology
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E.2.3 EBONE logical
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Figure E.61: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 1 on the EBONE logical topology
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Figure E.62: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 0.5 on the EBONE logical topology
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Figure E.63: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 1 on the EBONE logical topology
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Figure E.64: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 0.5 on the EBONE logical topology
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Figure E.65: Flow robustness vs. node & link failure probability for various EPD thresh-
olds with λ = 1 on the EBONE logical topology
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Figure E.66: Flow robustness vs. node & link failure probability for various EPD thresh-
olds with λ = 0.5 on the EBONE logical topology
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Figure E.67: Flow robustness vs. link failure probability for the EBONE logical topology
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Figure E.68: Flow robustness vs. node failure probability for the EBONE logical topology
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Figure E.69: Flow robustness vs. node & link failure probability for the EBONE logical
topology
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Figure E.70: Flow robustness vs. link failure probability for various stretch limits on the
EBONE logical topology
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Figure E.71: Flow robustness vs. node failure probability for various stretch limits on
the EBONE logical topology
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Figure E.72: Flow robustness vs. node & link failure probability for various stretch limits
on the EBONE logical topology
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E.2.4 Exodus logical
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Figure E.73: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 1 on the Exodus logical topology
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Figure E.74: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 0.5 on the Exodus logical topology
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Figure E.75: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 1 on the Exodus logical topology
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Figure E.76: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 0.5 on the Exodus logical topology
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Figure E.77: Flow robustness vs. node & link failure probability for various EPD thresh-
olds with λ = 1 on the Exodus logical topology
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Figure E.78: Flow robustness vs. node & link failure probability for various EPD thresh-
olds with λ = 0.5 on the Exodus logical topology
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Figure E.79: Flow robustness vs. link failure probability for the Exodus logical topology
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Figure E.80: Flow robustness vs. node failure probability for the Exodus logical topology
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Figure E.81: Flow robustness vs. node & link failure probability for the Exodus logical
topology
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Figure E.82: Flow robustness vs. link failure probability for various stretch limits on the
Exodus logical topology

flo
w

 ro
bu

st
ne

ss

probability of failure

Best

stretch=5

stretch=4

stretch=3

stretch=2

stretch=1
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25

Figure E.83: Flow robustness vs. node failure probability for various stretch limits on
the Exodus logical topology
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Figure E.84: Flow robustness vs. node & link failure probability for various stretch limits
on the Exodus logical topology
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E.2.5 Level-3 logical
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Figure E.85: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 1 on the Level-3 logical topology

311



flo
w

 ro
bu

st
ne

ss

probability of failure

Best

EPD=.95

EPD=.75

EPD=.55

EPD=.35

EPD=.15
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25

Figure E.86: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 0.5 on the Level-3 logical topology
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Figure E.87: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 1 on the Level-3 logical topology
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Figure E.88: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 0.5 on the Level-3 logical topology
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Figure E.89: Flow robustness vs. node & link failure probability for various EPD thresh-
olds with λ = 1 on the Level-3 logical topology
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Figure E.90: Flow robustness vs. node & link failure probability for various EPD thresh-
olds with λ = 0.5 on the Level-3 logical topology
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Figure E.91: Flow robustness vs. link failure probability for the Level-3 logical topology
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Figure E.92: Flow robustness vs. node failure probability for the Level-3 logical topology

flo
w

 ro
bu

st
ne

ss

probability of failure

Best

k=10

k=6

k=3

k=2

k=1
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25

Figure E.93: Flow robustness vs. node & link failure probability for the Level-3 logical
topology

315



flo
w

 ro
bu

st
ne

ss

probability of failure

Best

stretch=5

stretch=4

stretch=3

stretch=2

stretch=1
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25

Figure E.94: Flow robustness vs. link failure probability for various stretch limits on the
Level-3 logical topology
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Figure E.95: Flow robustness vs. node failure probability for various stretch limits on
the Level-3 logical topology

316



flo
w

 ro
bu

st
ne

ss

probability of failure

Best

stretch=5

stretch=4

stretch=3

stretch=2

stretch=1
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25

Figure E.96: Flow robustness vs. node & link failure probability for various stretch limits
on the Level-3 logical topology
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E.2.6 Sprint logical
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Figure E.97: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 1 on the Sprint logical topology
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Figure E.98: Flow robustness vs. link failure probability for various EPD thresholds with
λ = 0.5 on the Sprint logical topology
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Figure E.99: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 1 on the Sprint logical topology
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Figure E.100: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 0.5 on the Sprint logical topology
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Figure E.101: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 1 on the Sprint logical topology
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Figure E.102: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 0.5 on the Sprint logical topology
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Figure E.103: Flow robustness vs. link failure probability for the Sprint logical topology
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Figure E.104: Flow robustness vs. node failure probability for the Sprint logical topology
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Figure E.105: Flow robustness vs. node & link failure probability for the Sprint logical
topology

322



flo
w

 ro
bu

st
ne

ss

probability of failure

Best

stretch=5

stretch=4

stretch=3

stretch=2

stretch=1
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25

Figure E.106: Flow robustness vs. link failure probability for various stretch limits on
the Sprint logical topology
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Figure E.107: Flow robustness vs. node failure probability for various stretch limits on
the Sprint logical topology
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Figure E.108: Flow robustness vs. node & link failure probability for various stretch
limits on the Sprint logical topology
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E.2.7 Telstra logical
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Figure E.109: Flow robustness vs. link failure probability for various EPD thresholds
with λ = 1 on the Telstra logical topology
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Figure E.110: Flow robustness vs. link failure probability for various EPD thresholds
with λ = 0.5 on the Telstra logical topology
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Figure E.111: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 1 on the Telstra logical topology
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Figure E.112: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 0.5 on the Telstra logical topology
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Figure E.113: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 1 on the Telstra logical topology
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Figure E.114: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 0.5 on the Telstra logical topology
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Figure E.115: Flow robustness vs. link failure probability for the Telstra logical topology
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Figure E.116: Flow robustness vs. node failure probability for the Telstra logical topology
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Figure E.117: Flow robustness vs. node & link failure probability for the Telstra logical
topology
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Figure E.118: Flow robustness vs. link failure probability for various stretch limits on
the Telstra logical topology
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Figure E.119: Flow robustness vs. node failure probability for various stretch limits on
the Telstra logical topology
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Figure E.120: Flow robustness vs. node & link failure probability for various stretch
limits on the Telstra logical topology
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E.2.8 Tiscali logical
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Figure E.121: Flow robustness vs. link failure probability for various EPD thresholds
with λ = 1 on the Tiscali logical topology
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Figure E.122: Flow robustness vs. link failure probability for various EPD thresholds
with λ = 0.5 on the Tiscali logical topology
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Figure E.123: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 1 on the Tiscali logical topology
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Figure E.124: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 0.5 on the Tiscali logical topology
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Figure E.125: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 1 on the Tiscali logical topology
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Figure E.126: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 0.5 on the Tiscali logical topology
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Figure E.127: Flow robustness vs. link failure probability for the Tiscali logical topology
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Figure E.128: Flow robustness vs. node failure probability for the Tiscali logical topology
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Figure E.129: Flow robustness vs. node & link failure probability for the Tiscali logical
topology
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Figure E.130: Flow robustness vs. link failure probability for various stretch limits on
the Tiscali logical topology
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Figure E.131: Flow robustness vs. node failure probability for various stretch limits on
the Tiscali logical topology
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Figure E.132: Flow robustness vs. node & link failure probability for various stretch
limits on the Tiscali logical topology
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E.2.9 Verio logical
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Figure E.133: Flow robustness vs. link failure probability for various EPD thresholds
with λ = 1 on the Verio logical topology

339



flo
w

 ro
bu

st
ne

ss

probability of failure

Best

EPD=.95

EPD=.75

EPD=.55

EPD=.35

EPD=.15
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25

Figure E.134: Flow robustness vs. link failure probability for various EPD thresholds
with λ = 0.5 on the Verio logical topology
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Figure E.135: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 1 on the Verio logical topology
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Figure E.136: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 0.5 on the Verio logical topology
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Figure E.137: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 1 on the Verio logical topology
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Figure E.138: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 0.5 on the Verio logical topology
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Figure E.139: Flow robustness vs. link failure probability for the Verio logical topology
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Figure E.140: Flow robustness vs. node failure probability for the Verio logical topology
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Figure E.141: Flow robustness vs. node & link failure probability for the Verio logical
topology
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Figure E.142: Flow robustness vs. link failure probability for various stretch limits on
the Verio logical topology
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Figure E.143: Flow robustness vs. node failure probability for various stretch limits on
the Verio logical topology
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Figure E.144: Flow robustness vs. node & link failure probability for various stretch
limits on the Verio logical topology
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E.2.10 VSNL logical
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Figure E.145: Flow robustness vs. link failure probability for various EPD thresholds
with λ = 1 on the VSNL logical topology
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Figure E.146: Flow robustness vs. link failure probability for various EPD thresholds
with λ = 0.5 on the VSNL logical topology
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Figure E.147: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 1 on the VSNL logical topology
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Figure E.148: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 0.5 on the VSNL logical topology
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Figure E.149: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 1 on the VSNL logical topology
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Figure E.150: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 0.5 on the VSNL logical topology
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Figure E.151: Flow robustness vs. link failure probability for the VSNL logical topology
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Figure E.152: Flow robustness vs. node failure probability for the VSNL logical topology
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Figure E.153: Flow robustness vs. node & link failure probability for the VSNL logical
topology

350



flo
w

 ro
bu

st
ne

ss

probability of failure

Best

stretch=5

stretch=4

stretch=3

stretch=2

stretch=1
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25

Figure E.154: Flow robustness vs. link failure probability for various stretch limits on
the VSNL logical topology
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Figure E.155: Flow robustness vs. node failure probability for various stretch limits on
the VSNL logical topology
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Figure E.156: Flow robustness vs. node & link failure probability for various stretch
limits on the VSNL logical topology
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E.3 Synthetic Topologies

E.3.1 Full-mesh
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Figure E.157: Flow robustness vs. link failure probability for various EPD thresholds
with λ = 1 on the Full-mesh topology
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Figure E.158: Flow robustness vs. link failure probability for various EPD thresholds
with λ = 0.5 on the Full-mesh topology
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Figure E.159: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 1 on the Full-mesh topology
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Figure E.160: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 0.5 on the Full-mesh topology
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Figure E.161: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 1 on the Full-mesh topology
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Figure E.162: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 0.5 on the Full-mesh topology
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Figure E.163: Flow robustness vs. link failure probability for the Full-mesh topology
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Figure E.164: Flow robustness vs. node failure probability for the Full-mesh topology
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Figure E.165: Flow robustness vs. node & link failure probability for the Full-mesh
topology
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Figure E.166: Flow robustness vs. link failure probability for various stretch limits on
the Full-mesh topology
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Figure E.167: Flow robustness vs. node failure probability for various stretch limits on
the Full-mesh topology
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Figure E.168: Flow robustness vs. node & link failure probability for various stretch
limits on the Full-mesh topology
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E.3.2 Manhattan grid
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Figure E.169: Flow robustness vs. link failure probability for various EPD thresholds
with λ = 1 on the Manhattan grid topology
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Figure E.170: Flow robustness vs. link failure probability for various EPD thresholds
with λ = 0.5 on the Manhattan grid topology
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Figure E.171: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 1 on the Manhattan grid topology
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Figure E.172: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 0.5 on the Manhattan grid topology
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Figure E.173: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 1 on the Manhattan grid topology
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Figure E.174: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 0.5 on the Manhattan grid topology
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Figure E.175: Flow robustness vs. link failure probability for the Manhattan grid topol-
ogy
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Figure E.176: Flow robustness vs. node failure probability for the Manhattan grid
topology
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Figure E.177: Flow robustness vs. node & link failure probability for the Manhattan
grid topology
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Figure E.178: Flow robustness vs. link failure probability for various stretch limits on
the Manhattan grid topology
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Figure E.179: Flow robustness vs. node failure probability for various stretch limits on
the Manhattan grid topology
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Figure E.180: Flow robustness vs. node & link failure probability for various stretch
limits on the Manhattan grid topology
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E.3.3 Ring
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Figure E.181: Flow robustness vs. link failure probability for various EPD thresholds
with λ = 1 on the Ring topology
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Figure E.182: Flow robustness vs. link failure probability for various EPD thresholds
with λ = 0.5 on the Ring topology
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Figure E.183: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 1 on the Ring topology
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Figure E.184: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 0.5 on the Ring topology
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Figure E.185: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 1 on the Ring topology
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Figure E.186: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 0.5 on the Ring topology
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Figure E.187: Flow robustness vs. link failure probability for the Ring topology
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Figure E.188: Flow robustness vs. node failure probability for the Ring topology
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Figure E.189: Flow robustness vs. node & link failure probability for the Ring topology
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Figure E.190: Flow robustness vs. link failure probability for various stretch limits on
the Ring topology
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Figure E.191: Flow robustness vs. node failure probability for various stretch limits on
the Ring topology
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Figure E.192: Flow robustness vs. node & link failure probability for various stretch
limits on the Ring topology
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E.3.4 Star
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Figure E.193: Flow robustness vs. link failure probability for various EPD thresholds
with λ = 1 on the Star topology
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Figure E.194: Flow robustness vs. link failure probability for various EPD thresholds
with λ = 0.5 on the Star topology
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Figure E.195: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 1 on the Star topology
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Figure E.196: Flow robustness vs. node failure probability for various EPD thresholds
with λ = 0.5 on the Star topology
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Figure E.197: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 1 on the Star topology
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Figure E.198: Flow robustness vs. node & link failure probability for various EPD
thresholds with λ = 0.5 on the Star topology
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Figure E.199: Flow robustness vs. link failure probability for the Star topology
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Figure E.200: Flow robustness vs. node failure probability for the Star topology
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Figure E.201: Flow robustness vs. node & link failure probability for the Star topology
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Figure E.202: Flow robustness vs. link failure probability for various stretch limits on
the Star topology
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Figure E.203: Flow robustness vs. node failure probability for various stretch limits on
the Star topology
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Figure E.204: Flow robustness vs. node & link failure probability for various stretch
limits on the Star topology
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