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Abstract

Many infrastructure-less networks require quick, ad hoc deployment and the ability to

deliver messages even if no instantaneous end-to-end path can be found. Such networks

include large-scale disaster recovery networks, mobile sensor networks for ecological mon-

itoring, ocean sensor networks, people networks, vehicular networks and projects for con-

nectivity in developing regions such as TIER (Technology and Infrastructure for Emerging

Regions) [38]. These types of networks can be realized with delay-and disruption-tolerant

network (DTN) technology [28]. Generally, messages in DTNs are transferred hop-by-hop

toward the destination in an overlay above the transport layer called the “bundle layer”.

Unlike mobile ad hoc networks (MANETs), DTNs can tolerate disruption on end-to-end

paths by taking advantage of temporal links emerging between nodes as nodes move in

the network. Intermediate nodes store messages before forwarding opportunities become

available. A series of encounters (i.e., coming within mutual transmission range) among

different nodes will eventually deliver the message to the desired destination.

The message delivery performance (such as delivery ratio and delay) in a DTN

highly depends on time elapsed between encounters (inter-contact time) and the time two
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nodes remain in each others communication range once a contact is established (contact-

duration). As messages are forwarded opportunistically among nodes, it is important to

have sufficient contact opportunities in the network for faster, more reliable delivery of

messages.

In this thesis, we propose a simple yet efficient method for increasing DTN perfor-

mance by increasing the contact duration of encountered nodes (i.e., mobile devices).

Our proposed sticky transfer framework and protocol enable nodes in DTNs to collect

neighbors’ information, evaluate their movement patterns and amounts of data to trans-

fer in order to make decisions of whether to “stick” with a neighbor to complete the

necessary data transfers. Nodes intelligently negotiate sticky transfer parameters such as

stick duration, mobility speed and movement directions based on user preferences and

collected information. The sticky transfer framework can be combined with any DTN

routing protocol to improve its performance. Our simulation results show that the pro-

posed framework can improve the message delivery ratio by up to 38% and the end-to-end

message transfer delay by up to 36%.
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Chapter 1

Introduction

The continuously increasing popularity of devices equipped with wireless network inter-

faces has introduced new demands in wireless access technology trends. An increasing

number of mobile device users today want affordable communication capabilities anytime,

everywhere. Advent of short range wireless communication technologies, such as infrared,

Bluetooth and Wi-Fi have brought about the concept of opportunistic networks [1, 2],

where information can be stored and passed by taking advantage of device mobility, or

forwarded over a wireless link when an appropriate contact is met. Opportunistic net-

works can be realized by delay-tolerant networks (DTNs) [3].

The use of device mobility for data transmission over intermittent links requires funda-

mentally different networking protocols than those in mobile ad-hoc networks (MANETs) [4],

which rely on contemporaneous connectivity between source and destination endpoints.

In sparse, mobile, infrastuctureless environments, frequent network partitions and link

instability render conventional MANET routing protocols [5–7] ineffective, due to high
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numbers of route requests, timeouts in the underlying transmission protocol and most im-

portantly, the requirement of a-priori end-to-end connections between the source and final

destination before data transfers. DTN protocols [8–16], on the other hand, can handle

long, frequent, and intermittent link conditions in the network by using the store-and-

forward mechanism [68] and opportunistic contacts for routing, given that the sequence

of connectivity graphs over a time interval forms a virtual end-to-end path between a

source and a destination. The tradeoff is generally high delivery latency.

Suitable applications for DTNs are non-real time, such as file transfer, sensor data

collection, and buffered messaging. Examples of DTNs in practice include (but are not

limited to) sensor-based networks using scheduled intermittent connectivity, terrestrial

wireless networks that cannot ordinarily maintain end-to-end connectivity, satellite net-

works with moderate delays and periodic connectivity, underwater acoustic networks with

moderate delays and frequent interruptions due to environmental factors, vehicular net-

works with cyclic but non-deterministic connectivity, disaster recovery situations, rural

area communication scenarios, wildlife monitoring systems, and battlefield operations.

1.1 Motivations

The message delivery performance (such as delivery ratio and end-to-end delay) in a

mobile DTN highly depends on the time elapsed between encounters (the inter-contact

time) and the time two nodes remain in each others communication range once a contact

is established (contact duration) as node contacts are opportunistic and limited. Node
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mobility may cause nodes to move out of each others transmission range in the middle

of a transmission, interrupting the transmission and wasting the resource consumed by

the failed transfer. In addition, many other messages which have been processed and

ready for transmission cannot be forwarded. These messages will stay longer in buffers

of limited sizes, which may eventually be discarded due to buffer overflow, wasting node

resources. The end result is low message delivery ratio and long end-to-end delay. The

above problems are exacerbated in DTNs with highly mobile nodes that must handle

large messages, such as vehicular networks [17,18].

Inter-contact time depends primarily on node mobility and node density in the net-

work. In sparse networks, the inter-contact time can be reduced by introducing special

components, such as ferries [19] or data mules [20], that move at relatively faster speeds

on predefined routes and therefore increase contact opportunities.For example, in disas-

ter recovery operations, such as those performed after earthquakes or tsunamis, where

communication infrastructure has been damaged, mobile devices in that area may use a

temporarily deployed DataMule [20] to carry data to and from a sink remotely connected

to the Internet.

The contact duration is the length of time during which pair-wise nodes remain within

the transmission range of each other in the network. The contact duration directly

influences the capacity of opportunistic networks (e.g., DTNs) as it limits the amount of

data that can be transferred successfully between nodes.

The performance of DTNs can be improved by reducing the inter-contact time and
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increasing the contact duration. There exist routing algorithms that can reduce the inter-

contact time of nodes [19,20]. However, irrespective of the forwarding technique used by

a routing algorithm, the actual time to transfer messages between two nodes is limited

by the contact duration of the nodes, which depends inherently on node mobility.

Thus, when a node is forwarding a message to a neighbor node, if the expected

contact duration between the two nodes is not sufficient for the entire message to be

transmitted (e.g., due to node mobility), the message transfer will fail. This may cause

the transport protocol (e.g., TCP) to retransmit the message, thus wasting valuable

bandwidth, resources and opportunistic contacts in the network.

One way to tackle the above problem is to transmit smaller sized messages, i.e. mes-

sage fragmentation, to enable successful forwarding within shorter contact durations.

However, as we will discuss in Section 2.4.3, message fragmentation may not lead to an

optimal routing solution. A small (large) fixed-length fragmentation size can waste valu-

able bandwidth during a contact opportunity, as smaller (larger) fragments can under-

utilize (exceed) the bandwidth. Also, assuming a message m is split into n fragments,

these n fragments could, in the worst case, take n possible time-varying paths to reach

the final destination. Thus, reconstruction of message m at the destination can become

increasingly difficult with a growing number of fragments, as fragments can be lost while

being forwarded to the final destination due to being dropped from buffers or because of

transmission errors. Also, some fragments of the message may not reach the destination

in a timely fashion, and can cause the TTL (time-to-live) of message m to expire. Zhuo
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et al. [22] propose a packet-level replication protocol, which uses erasure coding to encode

large messages into smaller packets, to address the problem of limited contact duration.

However, this technique requires replication of packets at each node, which is expensive

in a DTN.

Our research objective is to present a solution for maximizing node contacts for mes-

sage transfers in delay-tolerant networks. The goal is to assist routing protocols by

providing a solution that can be implemented, irrespective of the routing protocol be-

ing used, to maximize utilization of the contact duration in order to meet the required

message transfer duration. Our proposed framework requires no additional mechanism

nor infrastructure other than the simple beaconing mechanism [80] which has been used

for many other purposes in wireless ad hoc networks. To the best of our knowledge, our

work is the first to propose the concept of ’sticky’ message transfers to extend contact

durations.

In the proposed sticky message transfer framework, nodes send out periodic beacons

for neighbor discovery. Once a neighbor is detected with which a node can perform sticky

transfers, the nodes exchange information such as their mobility speed and direction,

current location, transmission range, available buffer size, the amount of data to be

sent and the final destination, using our proposed sticky transfer protocol within the

framework. Based on the received information, a node A calculates the needed contact

duration based on the amount of data to be exchanged with or transferred to a neighbor

B, determines the required mode of movement (e.g., slowing down or stopping in order
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to stay in contact), and negotiates an agreement to stick with B (e.g., negotiating the

mode of movement and contact duration). After the sticky transfer is over, nodes A and

B resume their original movement behavior.

Sticky transfers can be used to improve the network performance of many applications.

For example, robots in a region survey application may be programmed to stick with

each other longer when needed to improve message delivery ratio and delay. Emergency

response team members could be asked to stop or follow each other when necessary to

improve the network performance. A network of mobile sensors engaged in ecological

monitoring could use sticky transfers to enable faster message delivery to the sink.

The sticky transfer mechanism is optional; nodes may choose not to run the protocol

or ignore sticky transfer requests from other nodes.

In the remainder of this thesis, “messages” denotes any type of payload content,

including but not limited to text, audio, video, and image. We also use the terms “mes-

sages”, “packets” and “bundles” interchangeably.

1.2 Methodology

The proposed sticky transfer scheme requires temporary changes in movements of nodes

upon sticky transfer agreements. It is useful where the required change in node movement

can be applied, such as in human-and robot-assisted mobility scenarios. As changing

node movement depends upon user cooperation, we implement a user’s agreement to

modified movement by defining a list of user preferences for each user in the network.
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A user’s preference consists of an ordered list of acceptable sticky modes. The order

defines the priority of user preferences, with higher priority modes coming first in the

list. Sticky modes set in preferences represent how the users would respond to a sticky

transfer request. We define five sticky modes: Stop (STP), Follow me (FLW1), Follow

you (FLW2), Slow down (SLW) and No stick (NO STK). Users can set one or more

modes in their preference settings to be used for implementing sticky transfer decisions.

Furthermore, sticky transfers are technically possible when the preferences of two

nodes are compatible. For example, FLW1 and FLW2 are compatible (i.e., one node

agrees to follow the other), while STP and FLW1 are not compatible (i.e., one node

wants to stop while the other node wants to be followed). Based on the five proposed

sticky modes, we design rules for compatibility between any two nodes. These rules

govern sticky transfer compatibility based on user preference settings. For example, if

both user’s preference allows STP , then the modes are compatible and they can engage

in sticky transfers. Also, two modes may or may not be compatible based on their speed

limitations and movement direction. For example, when node A allows SLW and B

allows FLW1 then they are compatible if B’s speed is slower than A’s speed. They are

not compatible if B’s speed is faster than A’s speed or they are not moving in the same

direction.

We also propose the sticky transfer protocol which defines a sequence of operations

for the sticky transfer of messages. This protocol involves several steps before the actual

message transfer, such as calculating the expected contact duration between nodes A and
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B, determining compatible stick modes between the nodes, determining messages to send

and receive (exchange), and calculating the stick time between the nodes.

To complete the framework we show a conceptual overview of the sticky transfer

protocol and components integrated in a layered DTN architecture. To evaluate the ef-

fectiveness of the proposed sticky transfer framework, we performed simulations using

a city-based network topology and the Spray-and-Wait [10], PRoPHET [9], and Epi-

demic [8] opportunistic routing protocols. We evaluated the performance of each routing

protocol with and without sticky transfers. We performed simulations on the Oppor-

tunistic Network (ONE) simulator, a simulation environment capable of routing messages

between nodes using various DTN routing algorithms [30].

1.3 Contributions

In summary, our contributions include:

1. A novel framework called the sticky transfer framework that enables mobile nodes in

a DTN to modify their mobility and prolong contact durations to enhance successful

message transfers.

2. A sticky transfer protocol within the framework that governs how two mobile nodes

will “stick” to each other for a negotiated period of time in order to complete the

transmission of messages.

We also demonstrate the seamless integration of the sticky transfer framework with the

existing DTN network management modules. Sticky transfers can increase the delivery
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ratio and shorten delivery delay by ensuring faster forwarding and reducing the number

of message transfer aborts. Our framework is especially beneficial for large message sizes

and/or high mobility situations which lead to short contact time between nodes and thus

low message delivery ratios.

Our simulation results show a significant improvement in the performance of the rout-

ing protocols in the presence of sticky transfers. The message delivery ratio is increased

by as much as 38%, while the end-to-end delay is shortened by as much as 36% with

sticky transfers.

1.4 Organization of the Thesis

The remainder of the thesis is organized as follows. We discuss background information

and related work in Chapter 2. We provide an overview of the state-of-the-art in DTNs,

and a review of issues in DTNs such as routing, replication scheme trade-offs, and delay

characteristics. In Chapter 3, we describe our proposed sticky transfer framework and

sticky transfer protocol. In Chapter 4, we present simulation results and an analysis

of our proposed framework and protocol. We conclude the thesis in Chapter 5 with a

summary of our findings and an outline of future work.
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Chapter 2

Background and Related Work

Research on delay-and disruption-tolerant networks (a.k.a., delay-tolerant networks) (DTNs)

and subsequently the standardization of the DTN architecture [43] stems from two dif-

ferent areas: (i) interplanetary networks where interoperability among dissimilar propri-

etary protocols is necessary; and (ii) ‘challenged’ terrestrial networks [46] where suffi-

cient infrastructure is not available. Hence existing reliable end-to-end protocols such

as, TCP/IP-based solutions, and wireless local area network (WLAN) solutions can not

apply. Furthermore, due to the lack of any end-to-end connectivity between the source

and destination of a packet and the intermittent nature of the path between a source

and a destination in a DTN, traditional mobile ad-hoc network (MANET) routing pro-

tocols [4], [5], [6], [7] can not be used either.

In this chapter, we look into the background of DTNs, discuss the DTN architecture,

and the DTN bundle protocol (BP), which is the central component of the DTN overlay

layer. We then discuss routing in a DTN by presenting several DTN routing protocols
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and distinguish DTN routing form MANET routing. Finally, we state issues related to

our thesis objective and show existing related work.

The DTN architecture provides an extra layer between an application and a network,

allowing data to be sent reliably over intermittent or long-haul links. It can be seen

as an overlay on top of a number of diverse regional networks, including the Internet.

Within a DTN, the regional networks may have varying connectivity, delay and loss

characteristics, and may employ different lower-layer technologies. The DTN overlay

accommodates these different network characteristics and provides a service that works

regardless of the underlying network environment.

Before we present an overview of the DTN architecture, we will briefly review the

Internet architecture to make the comparison between the two architectures more clear

and to identify why a new DTN architecture is necessary.

2.1 Overview of the TCP/IP Protocol Suite

The Internet interconnects communication devices across the globe by using a homoge-

neous set of communication protocols, called the TCP/IP protocol suite. Communication

on the Internet is based on packet switching. Packets are pieces of a complete block of

user data (e.g., pieces of an email message or a web page) that travel independently

from source to destination through a network of links connected by routers. The source,

destination, and routers are collectively called ‘nodes’.

Each packet that makes up a message can take a different path through the network.
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Figure 2.1: Packet-switching network

If one link is disconnected, packets take another link (Fig. 2.1). Packets contain both

application-program user data (the payload part) and a header (the control part). The

header contains a destination address and other information that determines how the

packet is switched from one router to another. The packets in a given message may arrive

out of order, but the destinations transport mechanism reassembles them in correct order.

The usability of the Internet depends on some important assumptions [51]:

• Continuous, Bidirectional End-to-End Path: A continuously available bidirectional

connection between source and destination to support end-to-end interaction.

• Short Round-Trips: Small and relatively consistent network delay in sending data

packets and receiving the corresponding acknowledgement packets.
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• Symmetric Data Rates: Relatively consistent data rates in both directions between

source and destination.

• Low Error Rates: Relatively little loss or corruption of data on each link.

Messages are moved through the Internet by protocol layers, a set of functions per-

formed by network nodes on data communicated between nodes. Hosts (computers or

other communicating devices that are the sources or destinations of messages) usually

implement at least five protocol layers, which perform the following functions:

• Application Layer: Generates or consumes user data (messages).

• Transport Layer: Source-to-destination (end-to-end) segmentation of messages into

message pieces and reassembly into complete messages, with error control and flow

control. On the Internet, the Transmission Control Protocol (TCP) is used.

• Network Layer: Source-to-destination routing of addressed message pieces through

intermediate nodes, with fragmentation and reassembly if required. On the Internet,

the Internet Protocol (IP) [58] is used.

• Link Layer: Link-to-link transmission and reception of addressed message pieces,

with error control. Common link-layer protocols include Ethernet for Local-Area

Networks (LANs) and Point-to-Point Protocol (PPP) for dial-up modems or very

high-speed links.

• Physical Layer: Link-to-link transmission and reception of bit streams. Common
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Figure 2.2: Routing in the Internet with TCP/IP

physical media include category 5 (cat5) cable, unshielded twisted pair (UTP) tele-

phone cable, coaxial cable, fiber-optic cable, and RF.

Figure 2.2 shows the basic mechanism or routing in the Internet. Routers implement

only the lower three protocol layers. However, routers also implement the higher layers

for routing-table maintenance and other management purposes. Each hop on a path can

use a different link-layer and physical-layer technology, but the IP protocol runs on all

nodes and the TCP protocol runs only on source and destination end points. Several

other Internet protocols and applications are also used to provide routing-path discovery,

path selection, name resolution, and error recovery services.

The term packet is applied to the objects actually sent over the physical links of a

network. They are often called IP packets because the IP protocol, the only protocol

used by all nodes on the path, is primarily responsible for directing them, node-by-node,

from source to destination along their entire path.

Packets consist of a hierarchy of data-object encapsulations that are performed by the
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Figure 2.3: Data Encapsulation in the Internet

protocol layers (see Figure 2.3). During transmission, higher-level data and its header

are encapsulated in a lower-layer data object, which is given its own header. The headers

are used by their respective protocol layers to control the processing of the encapsulated

data. Successive headers are added at the source as user data moves down the protocol

stack from application to physical layer. Headers are removed at the destination end as

data moves up the stack to the destination application.

TCP breaks user data into pieces called segments. IP encapsulates the TCP segments

into datagrams, and it may break the segments into pieces called fragments (not shown

in the figure below). The link-layer protocol encapsulates IP datagrams into frames.

The physical layer then transmits and receives a sequence of frames as a continuous bit

stream [51].
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Figure 2.4: TCP connection establishment

The TCP protocol is said to be conversational (interactive), because a complete one-

way message involves many source-to-destination signaling round-trips:

• Set Up: A three-way “Hello” handshake.

• Segment Transfer and Acknowledgement: Each TCP segment (or a few segments)

sent by the source is acknowledged by the destination.
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• Take Down: A four-way “Goodbye” handshake.

The use of positive or negative acknowledgments to control retransmission of lost or

corrupt segments is called an Automatic Repeat reQuest (ARQ) [60]. The TCP 3-way

handshake protocol to establish a connection between the source and destination nodes

is depicted in Figure 2.4.

The most common protocols used in the Internet today, e.g. TCP and UDP, are

designed for a network with continuous end-to-end paths between source and destination,

with relatively high bandwidth and low delays, providing for short round-trip times of

packets. However, as discussed in Section 2.2.1 and Section 2.2.2, there exists challenged

applications where a nodes or links may be unavailable for very long periods of time,

generating long delays for data waiting to be sent. Besides sporadic loss of connection, a

fluctuating link can also cause high error rates in transmissions when data gets dropped

or not transferred correctly. Long delays and intermittent connectivity between nodes

causes problems for ordinary transport protocols, especially connection-oriented ones such

as TCP, that need to establish a connection with the destination before sending data.

The problem of a TCP session timing out caused by too long delays is also an issue when

dealing with asymmetric data rates [51].

The DTN architecture address these concerns with highly challenged networks in

which application layer“sessions” lack contemporaneous end-to-end connectivity and are

not possible to address using the traditional Internet architecture. It provides a means for

transporting data across dissimilar lower-layer protocols with an overlay between the ap-
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Figure 2.5: Interplanetary network

plication and network layer, and uses a store-carry-forward mechanism to store messages

on intermediate hops for extended durations to address intermittent connectivity.

In the next section we discuss the origination of delay-tolerant networks before pro-

ceeding to discuss the architecture in detail.

2.2 History of Delay-Tolerant Networks (DTNs)

Research on DTNs and subsequently the standardization of the DTN architecture stems

from two different network and data communication areas: (i) interplanetary networks;

and (ii) ‘challenged’ terrestrial networks. Following are their contributions to the origi-

nation of DTNs.

2.2.1 Interplanetary Networks

In early 1998, the DARPA Next Generation Internet initiative funded the InterPlaNe-

tary Internet (IPN) Project [49], [53], [54], [55] with the aim to define a communication
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system together with Internet-like services across interplanetary distances. The project

was originally conceived to support deep space exploration with the vision of a stable

interplanetary backbone network among planets, satellites, asteroids, robotic spacecrafts,

and possible crewed vehicles, which later gave rise to other new challenging applications

from the mining of asteroids to the deployment of space-based hotels for tourism support

(see Fig. 2.5).

The case of interplanetary networks (IPN) is an extreme scenario where long distances

are involved between communicating nodes (e.g., satellites, base stations), the level of

noise is substantial and the node distribution is sparse. Communications in deep space

environments are characterized by [56]:

• High propagation delays and round trip times: distances between planets are enor-

mous and lead to propagation delays of tens of minutes of magnitude (the round trip

time at the speed of light, between Earth and Mars, for example, ranges between 8

and 40 minutes). This makes unfeasible utilization of transport protocols that rely

on long handshakings between peer nodes (for example TCP) because they would

take too long to complete a single data transfer.

• Low data rates: the radio signal easily degrades and attenuates over long distances.

• Intermittent connectivity: a complete path between the communicating parties is

likely not to be available due to the movements of the planets, the occultation of

satellites during planet-orbiting, and so on. In addition, distances between planets
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change over time and cause variations in delay, transmission capacity, connectivity,

and topology. Intermittent connectivity results in long periods of network parti-

tioning, and discontinuities in the capabilities of adjacent networks.

• Asymmetric links: transmissions from Mars to Earth, for example, may be received

at 100 kilobits/second while Mars-based systems may only receive from Earth at 1

kilobit/second.

• High bit error rate links: links are error-prone.

• Low available bandwidth: data rates range from hundreds of kilobits per second

to few megabits per second and will probably remain unmodified in the next few

decades. This is due to the combined effect of large distances, expense and difficulty

in deploying large antennas to distant planets, and difficulty in generating power in

space.

• Need for special equipment: transmissions are generally very expensive over the

deep space because they need special instrumentation like large antennas, high-

performance receivers, etc. This further worsens the end-to-end delay experienced

during transmissions because of the sharing of Earth-based resources that introduces

scheduling and queuing delays. An efficient use of the communication channel allows

more information to be carried per unit of transmitted power.

Transmission distances for deep space data communication currently span from Earth-

orbiting satellites to the Mars exploration mission, with no intermediate nodes for data
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store-and-forwarding [47]. The basic idea of an IPN is to try to make data communications

between Earth and (very) remote spacecraft seem almost as easy as that between two

people on different sides of the world. As it happens, before a network node can send

any application data using the Transmission Control Protocol (TCP) [48], a three-way

handshake is required that consumes 1.5 round-trip times (RTTs). Theres also a generic,

two-minute timeout implemented in most TCP stacks: if no data is sent or received for

two minutes, the connection breaks. Putting these facts together, its easy to see that once

a spacecraft is more than a minute away (in terms of light-trip time), every attempt to

establish a TCP connection will fail, and no application data will ever be transmitted. In

the case of Mars, for example, at its closest approach to Earth, the RTT is roughly eight

minutes, with a worst-case RTT of approximately 40 minutes. Thus, normal TCP cant

work at all for Earth to Mars communications [50]. The level of space and radiation noise

adds another obstacle to reliable communication, as does the intermittent connectivity

when there is no line of sight between the communication entities or when the interference

duration is beyond temporary [47].

It becomes clear from the above characteristics and observations on communications

in deep space that non-chatty communication protocols, which use paradigms similar to

the Postal and Pony Express systems [57], are more suitable for deep space environment

than protocols such as TCP. In addition, more suitable protocols for deep space commu-

nication should also pack as much data as possible per single transmission to minimize

the number of round-trips needed. For example, a protocol for file transfers should send
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an entire file with the relative control data all together in a single atomic transaction.

The total transmission would thus end faster within the IPN and make more efficient use

of terrestrial high-speed networks [56].

Furthermore, until recently, it has been common practice among space missions to: (i)

operate each spacecraft in isolation of others via direct-to-Earth communication links, (ii)

manually schedule, review and revise communication contacts between all spacecraft and

ground station antennas on Earth, (iii) inspect incoming data as it arrives and sends com-

mands to spacecraft in order to request retransmission of data either missing or received

in error, and (iv) often deploy customized and incompatible protocol stacks tailored to

accommodate each mission’s specific needs. This anachronistic model of operation poses

significant limitations on total communication time provided to spacecraft, requires te-

dious and error-prone human intervention and, essentially, forces mission designers to

“reinvent the wheel” every time an ad hoc communication system and protocol stack

needs to be deployed on some spacecraft. Likewise, space communications rely heavily

on proprietary protocols and confidential products, which often leads to incompatible

communication protocols among different agencies.

To address the challenges and problems mentioned earlier, the Delay-Tolerant Net-

working (DTN) architecture [43] appeared as an emergent solution to automated space

inter-networking and quickly gained wide acceptance in the space community [32]. The

DTN architecture emerging from the IPN project consists of a network of internets, i.e., a

collection of independent internets eventually interconnected by a system of (IPN) gate-

22



ways. Single internets are located apart from each other (e.g., on the surface of planets

or satellites, or in spacecrafts) forming distinct (IPN) regions. The internets are inde-

pendent to each other in that each one has its own protocols to rely on. Protocols are

chosen to best suit the particular infrastructure, communication means, and technologies

available in the particular internets region and they may differ from the protocols of the

other IPN regions internets. A novel overlay protocol is added on top of the traditional

transport layers at all the (IPN) nodes to manage the end-to-end data transfers among

the (IPN) regions. Two nodes that are adjacent in the overlay space may be many hops

apart in the context of the underlying network topology [56].

In [32] the authors do admit that communicating with spacecraft will never be as easy

as using the terrestrial Internet because many other difficulties must be overcome. For

example, the radio antenna may be frequently on the wrong side of the planet. At least in

terms of networking, however, they envision that good progress can be made compared to

how spacecraft data communications currently occur, which is to essentially be manually

scheduled on a mission-by-mission basis.

These characteristics of the IPN project’s DTN architecture have gradually found

their way into applications on earth, as we will describe in section 2.2.2. Today, delay-

tolerant networking has come to generally describe the concept of networking in unreliable

environments where the communication with endpoints is likely to be impaired due to

external factors. The architecture forms a message-oriented overlay that offers message

relay services across potentially long propagation delays or even network disruptions. It
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employs persistent storage to withstand network interruptions, and includes a hop-by-hop

transfer for reliable delivery [43]. We will shortly discuss the DTN architecture in detail.

2.2.2 Terrestrial Networks

A growing number of communicating devices are mobile and/or operate on limited power.

This is becoming much more common in terrestrial applications among mobile wireless

communication devices. The last few years have assisted to the deployment of Mobile Ad

hoc NETworks (MANETs) in many application environments. Originally conceived for

military applications and aimed at improving battlefield communications and survivabil-

ity, MANETs have lately begun pervading many civil scenarios. Precision agriculture, for

example, makes use of sensor ad hoc networks to collect information about soil conditions

and spatial and temporal variability in crop yield and quality. Data collected is exploited

to fine-tune seeding, fertilizer, chemical and water use, thus potential increase production,

lower costs, and reduce pollution. Lately supported by the development of the Zigbee

technology, which allows low data rate and low power consumption exchanges devices;

sensor ad hoc networks are also used by biologists for wildlife tracking, i.e., to gather

biological and position information from wild species like zebras, whales, and penguins,

to study their habits, mobility patterns, migratory phenomena, and so on. Intelligent

highways are being developed by exploiting the possibility of ad hoc vehicle-to-vehicle

and vehicle-to-roadside communications and provide driving assistance, improve driving

safety (e.g., with emergency warnings) and comfort, and also allow some leisure activities
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(e.g., with interactivity games for passengers). Personal Area Networks (PANs) are used

for health care applications. Specifically, by distributing biomedical sensor nodes on the

human body, continuous monitoring of vital functions is possible that may help prevent

acute crisis in healthy subjects, give assistance to the elderly, or even avoid hospitaliza-

tion for long time after an operation. Ad hoc networks may also serve small communities

of colleges or conferences, or can be used to deploy emergency-response or post-disaster

recovery networks, for example, to provide temporarily services like data sharing [56].

When communicating nodes are in motion, links can be obstructed by intervening

bodies. When nodes must conserve power or preserve secrecy, links are shut down. These

events cause intermittent connectivity. When no path exists to connect a source with a

destination, a network partition occurs. Also, when a node or a link is unavailable for a

very long period of time, it incurs long delays in data waiting to be sent. Besides sporadic

loss of connection, a fluctuating link can also cause high error rates in transmissions when

data gets dropped or not transferred completely.

The existing TCP/IP-based Internet operates on a principle of providing end-to-end

inter-process communication through a concatenation of dissimilar link-layer technologies.

End-to-end connectivity is enabled by the standardization of the IP protocol [58] and

its mapping into link-layer data frames at each router as required. A number of key

assumptions are made regarding the overall performance characteristics of the underlying

links in order to achieve smooth operation:

• end-to-end path exists between a data source and its peer,
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• the maximum round-trip time between any node pairs in the network is not exces-

sive,

• and the end-to-end path loss probability is small.

On the Internet, intermittent connectivity, such as the ones that may arise in ‘chal-

lenged’ terrestrial applications, as mentioned above, causes loss of data. Packets that

cannot be immediately forwarded are usually dropped (discarded), and TCP may re-

transmit them with slower retransmission timing. If packet-dropping is too severe, TCP

eventually ends the session, which can cause applications to fail.

However, when can we in tangible terms call a network “challenged”? The author in

[41] defines challenged networks as those which deviate significantly from the performance

experienced in the Internet. “Significantly” can be defined informally as anything an order

of magnitude larger (or smaller) than the comparable metric in the Internet.

Table 2.1: Typical path performance in challenged networks

Here; e2e OTT = end-to-end (one-way) latency; assym = raw bandwidth asymmetry;

loss = message or bit loss probability.

Table 2.1 [41] compares several metrics, placing a number of networks into the chal-
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lenged category. The table summarizes typical bounds for these metrics seen by users in a

number of network settings. The data for this table is collected from a number of sources

cited in [41]. The strikingly low loss rate for deep space links is due to extensive use of

forward error correction (FEC) and high power levels. Each network has found its place

in the table for different reasons. For some wireless networks (e.g. tactical military),

high loss rates, long queuing delay (due to competition from telecom traffic) and mobility

can lead to significantly different performance than experienced in the wired (or LAN-

based wireless) Internet. For acoustic-based networks in water, the channel provides up

to about 15KHz of bandwidth with a speed-of-sound propagation of about 67s/km and

typical communication distances of up to 5km using acoustic modems. This slow signal

propagation rate, in combination with errors created from interference of various natural

and man-made sources, makes this type of network challenged from both a latency and

error point of view.

With tolerance for delays and intermittent connectivity, the DTN architecture sup-

ports communication between intermittently connected nodes and unstable links, and

can handle nodes or links being unavailable for several days by isolating delay with a

store-and-forward buffering technique.

2.3 The DTN Architecture

The DTN architecture adds a layer between an application and a network, allowing data

to be sent reliably over intermittent or long-haul links. It can be seen as an overlay on top
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of a number of diverse regional networks, including the Internet. In such an overlay, delays

and disruptions (i.e., intermittency) can be handled at each DTN “hop” in a path between

a sender and a destination. Nodes on the path can then provide the storage necessary

for application data before forwarding that to the next node on the path. For example,

any required retransmissions in an ARQ scheme may come from an intermediate node,

and no end-to-end connection is required between the sender and destination. Thus, the

main benefit of protocols implementing the DTN architecture is that they do not require

the contemporaneous end-to-end connectivity that TCP and other standard Internet

transport protocols require in order to reliably transfer application data.

2.3.1 Message Switching

DTNs overcome the problems associated with intermittent connectivity, long or variable

delay, asymmetric data rates, and high error rates by using store-and-forward message

switching. As such, DTNs are often referred to as store-carry-forward networks. Mes-

sage switching is the precursor of packet switching, where messages are routed in their

entirety, one hop at a time. It was first built by Collins Radio Company, Newport Beach,

California, during the period 1959 –1963 for sale to large airlines, banks and railroads.

Message switching is still used for telegraph traffic and a modified form of it, known as

packet switching, is used extensively for data communications [68].

In a message switching network:
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Figure 2.6: Concept of message switching.

• Messages are routed in their entirety.

• Each message is treated as a separate entity.

• Each message contains addressing information (in case of broadcast, to all recipi-

ents). This information is read and at each node and the transfer path to the next

node (towards the destination) is decided (a function of routing).

• Each message is stored (usually on persistent storage) before being transmitted to

the next node.

The advantages to using message switching are:

• Data channels are shared among communication devices, improving the use of band-

width.

• Messages can be stored temporarily at message switches, when network congestion

becomes a problem.
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• Priorities may be used to manage network traffic.

In a message switching network (see Figure 2.6), no physical path is established in

advance between sender and receiver. When a message consisting of a block of data is

ready to be sent, it is stored in the first node (i.e. router) and then forwarded later

when it is convenient to do so to the next node, one hop at a time. As such the data

is not transferred in real-time. Each block is received in its entirety, inspected and later

retransmitted to the next hop. A network using this technique is referred to as a store-

and-forward network (as shown in Figure 2.7(a) [51]).

Since message switching stores each message at intermediate nodes in its entirety

before forwarding, messages experience an end to end delay which is dependent on the

message length, and the number of intermediate nodes. Each additional intermediate

node introduces a delay which is at minimum the value of the minimum transmission

delay into or out of the node. Note that nodes could have different transmission delays

for incoming messages and outgoing messages due to different technology used on the

links. The transmission delays are in addition to any propagation delays which will be

experienced along the message path.

In a message-switching node an incoming message is not lost when the required out-

going route is busy. It is stored in a queue with any other messages for the same route

and retransmitted when the required link becomes free. Message switching is thus an

example of a delay system or a queuing system.

Figure 2.7 shows the concept of store-and-forward message switching in a DTN. Here,
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a node is any entity in the network capable of forwarding bundles (i.e., messages), imple-

menting the BPL stack. Figure 2.7(b) [68] shows the forwarding of bundles from source

node A to destination node D over time.

(a) Message switching at each router.

(b) Message switching over time.

Figure 2.7: Store-and-Forward Message Switching

Implementations of the DTN architecture use persistent storage to hold bundles/mes-

sages. Persistent storage (such as, hard disks) can hold messages indefinitely, as opposed

to very short-term storage provided by memory chips. Internet routers use memory chips

to store (queue) incoming packets for a few milliseconds while they are waiting for their

next-hop routing table lookup and an available outgoing router port.

During bundle transmission along the path between the source node and the des-
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tination node, it may happen that a next hop is not available for forwarding, i.e., no

connection is available to the next hop (intermittent connectivity). This may happen be-

cause the resources to be used for transmission are temporarily busy in transmitting high

priority traffic or because the next hop is only reachable through a scheduled connection

(e.g., when a satellite is visible). Bundles therefore need for buffering while waiting for

forwarding.

DTN routers need persistent storage for their queues for one or more of the following

reasons [51]:

• A communication link to the next hop may not be available for a long time (some-

times in the range of hours, days, or even weeks).

• One node in a communicating pair may send or receive data much faster or more

reliably than the other node.

• A message, once transmitted, may need to be retransmitted if an error occurs at

an upstream (toward the destination) node or link, or if an upstream node declines

acceptance of a forwarded message.

By moving whole messages (or fragments thereof) in a single transfer, the message-

switching technique provides DTN nodes with immediate knowledge of the size of mes-

sages. By combining a-priori knowledge of messages awaiting delivery with network

topology and performance information; admission control, storage allocation and mes-

sage routing and scheduling can be dynamically computed relatively early in the lifetime
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of a message. By matching pending messages to network capacity (which may be inter-

mittent), more sophisticated path selection algorithms beyond shortest path may allow

for the use of multiple delivery paths simultaneously. Also, given an appropriate en-

capsulation, message switching easily supports multi-message multiplexing or“bundling”

together to form an aggregate useful for message scheduling and routing [41].

2.3.2 The Bundle Protocol

The key part in the DTN architecture is the bundle protocol (BP) described by the Delay-

Tolerant Network Architecture [43] and the Bundle Protocol Specification [33]. The basic

unit of data in the BP is a “bundle”, which is a message that carries application layer

protocol data units (APDUs), sender and destination names, and any additional data

required for end-to-end delivery. The bundle protocol allows hosts that normally cannot

communicate with each other (due to network partitioning or because they do not have

the same protocol set) to be able to communicate. This is done using message switching,

which means that only adjacent nodes need to share the same protocol set, and multiple

protocol sets are only required in nodes bridging protocol borders. The protocol uses

existing transport protocols for data transmission but also acts as a transport protocol

to applications, making it non-compliant with the traditional layer model for Internet

communication. Instead of categorizing the BP as a transport layer protocol, a new layer,

called the convergence layer, is added between the application and transport layers. This

also implies that applications need to be adapted to use the bundling services. Figure 2.8
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Figure 2.8: The Bundle Protocol

Figure 2.9: The DTN architecture

shows the bundle protocol as a transport layer for applications.

The BP can interface with different lower layer (usually transport) protocols through
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convergence layer adapters (CLA’s) as shown in Fig. 2.9. Various CLAs have been defined

for transport layer protocols, including for TCP [45], UDP [61], and the Licklider trans-

mission protocol (LTP) [62], [63]. Additional CLAs including NORM [64], DCCP [65],

Bluetooth, and raw Ethernet have been implemented in the most commonly used open-

source implementation of the BP, called DTN2 [66]. With the BP, each DTN node on a

path may use whatever CLA is best suited for the next forwarding operation [59].

2.3.2.1 Bundles

In the DTN architecture, in the DTN overlay, variable-length protocol data units (PDUs)

are called “bundles” (a.k.a., “messages”), and may carry application data along with in-

formation needed to deliver them to final destinations. Key DTN functionality is that

each bundle is kept in memory in its entirety, and is deleted upon receipt of acknowledg-

ment for its successful delivery to the next node on the path to the destination. However,

the DTN bundle protocol specification does not limit the bundle size or specify content

of bundles. Indeed, a bundle may: (i) contain a single file (e.g., a photograph), multiple

files (such as, small-sized engineering telemetry files), or a file segment (possibly part of

high-quality video); (ii) be of fixed size determined by an application type or network

management procedures; (iii) be of variable size set by the application, and containing

a coherent bundling of application data, e.g., a set of data records that can be indepen-

dently processed; (iv) be self-contained and include self-described metadata useful for the

application at the receiving end-system.

35



Figure 2.10: The structure of the primary block of a bundle.

Figure 2.10 depicts the structure of a primary bundle block. Each bundle consists of

one or more headers, stacked after each other. The first or primary block (or, header) of

each bundle contains the DTN equivalents of the data typically found in an IP header

on the Internet: version, source and destination IDs (called EIDs, as we will discuss

shortly), length, processing flags, and (optional) fragmentation information. It can also

contains some additional fields, for delivery options and handling: report-to EID, current

custodian EID, creation timestamp and sequence number, lifetime and a dictionary.

The primary header contains delivery options and references to addresses stored in a
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succeeding dictionary header. Other possible headers can follow in a non-specific order,

with the only exception that the payload header is placed at the very end. The payload is

placed last to allow for dynamic fragmentation in case of a link failure during transmission,

which means that in case of a link drop-out at the end of a transmission only the last

part needs to be resent. This can be used to always maximize link usage. Because of this,

the payload header has no information about any trailing header, whereas other headers

include this next-header information. A node sending a bundle can request reports of

what happens to the bundle during its journey to the destination. These so called status

report are placed in the payload of a new bundle, as a different payload type, and sent

to a specified report-to address. Most fields in the primary bundle block are variable

in length, and use a relatively compact notation called self-delimiting numerical values

(SDNVs) [33], discussion of which is beyond the scope of this thesis.

The name “bundle” derives from considering protocols that attempt to minimize

the number of round-trip exchanges required to complete a protocol transaction, and

dates back to the original IPN work. By “bundling” together all information required

to complete a transaction (e.g., protocol options and authentication data), the number

of exchanges can be reduced, which is of considerable interest if the round trip time is

hours, days or weeks [28].

The following definitions are taken from the Bundle Protocol Specification, RFC -

5050 [33].
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2.3.2.2 Bundle Nodes

A bundle node (or, in the context of this thesis, simply a “node”) is any entity that can

send and/or receive bundles. In the most familiar case, a bundle node is instantiated as

a single process running on a general-purpose computer, but in general the definition is

meant to be broader. A bundle node might alternatively be a thread, an object in an

object-oriented operating system, or a special-purpose hardware device.

In the context of the operation of a bundle node, a bundle is an instance of some

bundle in the network that is in that node’s local memory. Multiple instances of the

same bundle (the same unit of DTN protocol data) might exist concurrently in different

parts of a network, possibly in different representations, in the memory local to one or

more bundle nodes and/or in transit between nodes.

Each bundle node has three conceptual components: a “bundle protocol agent”, a set

of zero or more “convergence layer adapters”, and an “application agent”.

• Bundle protocol agent: The bundle protocol agent (BPA) of a node is the node

component that offers the BP services and executes the procedures of the bundle

protocol. The manner in which it does so is wholly an implementation matter. For

example, BPA functionality might be coded into each node individually; it might be

implemented as a shared library that is used in common by any number of bundle

nodes on a single computer; it might be implemented as a daemon whose services

are invoked via inter-process or network communication by any number of bundle

nodes on one or more computers; it might be implemented in hardware.
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The bundle protocol agent of each node is expected to provide the following services

to the node’s application agent (AA):

o commencing a registration (registering a node in an endpoint);

o terminating a registration;

o switching a registration between Active and Passive states;

o transmitting a bundle to an identified bundle endpoint;

o canceling a transmission;

o polling a registration that is in the passive state;

o delivering a received bundle.

We will discuss bundle endpoints, registration and delivery shortly.

• Convergence layer adapters: A convergence layer adapter (CLA) sends and receives

bundles on behalf of the BPA, utilizing the services of some ‘native’ internet protocol

that is supported in one of the internets within which the node is functionally

located. The manner in which a CLA sends and receives bundles is wholly an

implementation matter, exactly as described for the BPA.

• Application agent: The application agent (AA) of a node is the node component

that utilizes the BP services to effect communication for some purpose. The applica-

tion agent in turn has two elements, an administrative element and an application-

specific element. The application-specific element of an AA constructs, requests
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transmission of, accepts delivery of, and processes application, specific application

data units; the only interface between the BPA and the application-specific ele-

ment of the AA is the BP service interface. The administrative element of an AA

constructs and requests transmission of administrative records (status reports and

custody signals), and it accepts delivery of and processes any custody signals that

the node receives.

In addition to the BP service interface, there is a (conceptual) private control in-

terface between the BPA and the administrative element of the AA that enables

each to direct the other to take action under specific circumstances. In the case of a

node that serves simply as a ”router” in the overlay network, the AA may have no

application-specific element at all. The application-specific elements of other nodes’

AAs may perform arbitrarily complex application functions, perhaps even offering

multiplexed DTN communication services to a number of other applications. As

with the BPA, the manner in which the AA performs its functions is wholly an

implementation matter; in particular, the administrative element of an AA might

be built into the library or daemon or hardware that implements the BPA, and the

application-specific element of an AA might be implemented either in software or

in hardware.
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2.3.2.3 Bundle Endpoint IDs (EIDs)

A bundle endpoint (or simply “endpoint”) is a set of zero or more bundle nodes that all

identify themselves for BP purposes by some single text string, called a “endpoint ID”

(EID). Each endpoint ID conveyed in any bundle takes the form of a Uniform Resource

Identifier (URI) [67]. Each endpoint ID can be characterized as having this general

structure:

<scheme name>:<scheme-specific part, or ‘‘SSP’’>

As used for the purposes of the bundle protocol, neither the length of a scheme name

nor the length of an SSP may exceed 1023 bytes.

Using URIs as identifiers brings several advantages [28]. First, they can encode names

or addresses taken from many namespaces. For example, we might refer to a host by its

Ethernet address as ether://00-1c-c0-eb-0f-aa but also refer to it using some distinguished

hierarchical name like dns://myhost.foo.ca. While in the Internet, the scheme specifier

also tends to suggest the protocol stack used (e.g., http is typically http/TCP/IP) to

contact remote node(s), this need not be the case for DTN; we can use the bundle

protocol, or some other combination of protocols.

Next, using strings for representing EIDs opens up the possibility of creating inter-

esting DTN forwarding policies using string matching. For example, a wildcarded string

match could be be used in directing a DTN forwarder to cause any traffic destined for

York University to be directed to some particular next hop:

41



dtn://*.yorku.ca.dtn ->

ether://00-1c-c0-eb-0f-aa

This example illustrates that the addressing format for a DTN next hop (at a DTN

forwarding node) need not be of the same scheme as that of the source or destination in

the bundle. This is in contrast to Internet routing entries, where next hops are generally

expressed using the same address format.

Using URIs can also help to support application layer gateways by piggybacking on

a number of pre-existing URI schemes. For example, the URIs:

http://www.slashdot.org

dtn:http://www.slashdot.org

are syntactically legitimate bundle protocol EIDs. The full extent to which this capability

may be useful remains to be seen, as few such application layer gateways using existing

schemes have been constructed, but the naming compatibility is clear.

The special case of an endpoint that never contains more than one node is termed

a “singleton” endpoint; every bundle node must be a member of at least one singleton

endpoint. Singletons are the most familiar sort of endpoints, but in general the endpoint

notion is meant to be broader. For example, the nodes in a sensor network might consti-

tute a set of bundle nodes that identify themselves by a single common endpoint ID and

thus form a single bundle endpoint. Likewise, a given bundle node might identify itself

by multiple endpoint IDs and thus be a member of multiple bundle endpoints.
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2.3.2.4 Bundle States

A bundle may be in one of the following states:

• Registration - A registration is a given node’s membership in a given endpoint. Any

number of registrations may be concurrently associated with a given endpoint, and

any number of registrations may be concurrently associated with a given node. Any

single registration must at any time be in one of two states: Active or Passive.

• Forwarding - When the bundle protocol agent of a node determines that a bundle

must be “forwarded” to an endpoint, it causes the bundle to be sent to all of

the nodes that the bundle protocol agent currently believes are in the “minimum

reception group” of that endpoint. The nature of the minimum reception group for

a given endpoint can be determined from the endpoint’s ID.

The minimum reception group of an endpoint may be any one of the following:

(a) ALL of the nodes registered in an endpoint that is permitted to contain

multiple nodes, in which case forwarding to the endpoint is functionally similar to

“multicast” operations in the Internet, though possibly very different in implemen-

tation;

(b) ANY N of the nodes registered in an endpoint that is permitted to

contain multiple nodes, where N is in the range from zero to the cardinality of

the endpoint, in which case forwarding to the endpoint is functionally similar to

”anycast” operations in the Internet; or
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(c) THE SOLE NODE registered in a singleton endpoint, in which case

forwarding to the endpoint is functionally similar to “unicast” operations in the

Internet.

• Transmission - A transmission is a sustained effort by a node’s bundle protocol agent

to cause a bundle to be sent to all nodes in the minimum reception group of some

endpoint (which may be the bundle’s destination or may be some intermediate

forwarding endpoint) in response to a transmission request issued by the node’s

application agent. Any number of transmissions may be concurrently undertaken

by the bundle protocol agent of a given node.

• Deliverability, Abandonment - A bundle is considered “deliverable” subject to a

registration if and only if (a) the bundle’s destination endpoint is the endpoint with

which the registration is associated, (b) the bundle has not yet been delivered sub-

ject to this registration, and (c) delivery of the bundle subject to this registration

has not been abandoned. To “abandon” delivery of a bundle subject to a regis-

tration is simply to declare it no longer deliverable subject to that registration;

normally only registrations’ registered delivery failure actions cause deliveries to be

abandoned.

• Discarding, Deletion - A bundle protocol agent “discards” a bundle by simply ceas-

ing all operations on the bundle and functionally erasing all references to it. The

specific procedures by which this is accomplished are an implementation matter.
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“Retention constraints” are elements of the bundle state that prevent a bundle

from being discarded. A bundle cannot be discarded while it has any retention con-

straints. A bundle protocol agent “deletes” a bundle in response to some anomalous

condition by notifying the bundle’s report-to endpoint of the deletion and then ar-

bitrarily removing all of the bundle’s retention constraints, enabling the bundle to

be discarded.

• Fragmentation - DTN supports fragmentation and reassembly of bundles in order

to improve the efficiency of transfers. Fragmentation allows the bundle protocol to

fully utilize the available link capacity and to avoid retransmissions of partially sent

bundles.

There are two forms of DTN fragmentation: proactive and reactive. Proactive

fragmentation is performed when a DTN node knows in advance (or predicts) that

sending multiple fragments, rather than a single large bundle, is more likely to

succeed. For example, a node might know that a regularly occurring downstream

contact is always of such a short duration that the entire bundle cannot be sent

entirely. In this case the node would proactively fragment the bundle and transmit

the fragments during consecutive contacts.

Reactive fragmentation occurs when a lower layer indicates that some of the trans-

mitted bytes were successfully transferred, but the entire bundle was not. The

previous hop node may then retransmit the missing portion. With both fragmen-

tation types, the fragments are only reassembled at the final destination. Bundle

45



fragments may also be further fragmented along the way, either proactively or re-

actively.

If an application wants to prevent fragmentation it can set a “do not fragment” flag

in the bundle. This may be useful, for example, when the integrity of a bundle is

protected by a digital signature.

The above components of the DTN bundle layer have been presented from a systems

perspective, as defined by the protocol specification. Any networked software system

requires an implementation architecture to guide the choice of abstractions used to rep-

resent the corresponding concepts in the network architecture. In [29] authors present

one implementation of the DTN bundle protocol. Another one is also presented in [28].

Figure 2.11 (courtesy of [29]) is a block diagram enumerating the major components of

the DTN Bundle forwarding system. As can be seen from the diagram, the bundle router

module represents the most central component of the implementation; in general, it re-

quires the most detailed information regarding the state of the system upon which to

base routing decisions. Decisions made by the router are passed as a set of instructions

(actions) to the forwarder which is responsible for executing the actions. The function-

ality of each major component has been described in [29], and we refer the reader to the

paper if they wish to get a sense of the overall operation of the system.

As seen in Figure 2.11, implementations of the DTN architecture use persistent storage

for holding in-transit bundles. In standard networks, which assume continuous connectiv-

ity and short delays, routers perform non-persistent (short-term) storage and information
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Figure 2.11: An implementation of the Bundle protocol system components.

is persistently stored only at end nodes, i.e., outside the network core. This is because,

dealing with reliable transmission, information is supposed to be easily retrieved directly

from the source. This may not be the case in challenged networks. Therefore, to deal with

long RTTs and channel disruptions, and to cope with the extreme case of the absence of

end-to-end connectivity, in DTN networks information is persistently (long-term) stored

at intermediate DTN nodes [59] and forwarded from node to node (i.e. hop by hop) using

message switching.

2.3.3 Custody Transfer and Congestion

In some DTN use cases, the original sender of a bundle will never have the opportunity

to retransmit the application data, for example, due to physical movement away from the

47



network, or for power management reasons (if the sender will be powered off until after

the bundle expires). DTNs support node-to-node retransmission of lost or corrupt data

at both the transport layer and the bundle layer. However, because no single transport-

layer protocol (the primary means of reliable transfer) operates end-to-end across a DTN,

end-to-end reliability can only be implemented at the bundle layer. The bundle layer

supports node-to-node retransmission by means of custody transfers. Custody transfers

are an optional service.

In the BP, a sending node can request that other nodes on the path take custody

by signaling this in the bundle header. Any node on the path can take custody of the

bundle. If a node chooses to take custody of a bundle, it takes over all responsibilities

regarding the bundle, such as retransmission, and related resources can be released from

the previous custodian.

The node that first sends a bundle keeps a copy of it in its persistent memory af-

ter transmission until receipt of an acknowledgement from the next hop. It is the first

custodian of the bundle because it keeps the only reliable copy of the bundle and will

use it for retransmissions, if necessary. When the bundle custodian sends the bundle to

its next hop node, it requests the custody transfer for that bundle and starts a time-

to-acknowledgement retransmission timer. If the bundle layer of the next hop accepts

custody of the bundle, it returns an acknowledgement to the sender. If the bundle cus-

todian receives no acknowledgement before the senders time-to-aknowledgement expires,

it transmits the bundle again to the next hop. The bundle custodian stores the bun-
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Figure 2.12: Custody transfer for bundle forwarding reliability in a DTN.

dle until either another node accepts custody of the bundle or the bundle time-to-live

expires. Then, either a new bundle custodian exists or the bundle has no more reason

to exist. Thus, the copy of the bundle is discarded by the (obsolete) bundle custodian.

Figure 2.12 shows an abstraction of the custody transfer mechanism, from node n1 to

the finaldestination delivery of bundle B, as node n3 subsequently becomes a custodian

of the bundle. The time-to-live of a bundle is obviously much longer than the time-

to-acknowledgement of any custodian. The custody option increases reliability and is

particularly useful whenever the sender has limited memory and/or power resources, as

in sensor networks, or has good reasons not to keep in its memory sensitive information,

such as in military applications.

Node-to-node reliability is perceived by local retransmissions managed at the trans-

port layer inside single DTN regions. This is different from what happens in the TCP

protocol where retransmissions are handled end-to-end and the source node retransmits
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the data in case of a missed acknowledgement from the destination node. This approach

is unfeasible in an DTN environment because of the high end-to-end delays involved,

whereas retransmissions inside single DTN regions are faster and more efficient. So, reli-

able transport layer protocols and custody transfers are used by the bundle layer to move

points of retransmissions progressively forward towards the destination node.

In case the source node desires final notification of delivery, the destination node

should send a separate return receipt to the source after receiving the bundle. The return

receipt is transmitted as a new bundle, and is subject to the same custody transfers as

the original transmission. The return receipt is similar to those utilized within the postal

system [69].

Not every node in a DTN needs to offer custody transfer. A node may refuse to

accept custody for messages for implementation or policy reasons, because not enough

free storage space is currently available, or for other reasons. However, many users of DTN

networks wish to lose no data, so every node and every bundle operates using custody

transfer or some equivalent capability. This may be adequate for a stable network with

sufficient storage resources, but is not when the source rate exceeds the network delivery

rate beyond the networks buffering capability. This is, in essence, the main problem of

DTN congestion.

DTN congestion occurs when storage resources become scarce due to the presence of

too much bundle data or too many bundle fragments. A node experiencing these situa-

tions has several options to mitigate the situation, in the following order of preference:

50



drop expired bundles, move bundles somewhere else, cease accepting bundles with custody

transfer, cease accepting regular bundles, drop unexpired bundles, and drop unexpired

bundles for which the node has custody. Very few papers on DTN congestion control

have been published ( [71], [72]) and research in this area is on-going.

2.3.4 Regions, Gateways, and Naming

DTN is an “overlay” architecture in that it is expected to operate above the existing

protocol stacks present in other network architectures. For example, in the Internet

the overlay may operate over TCP/IP, in the space context it may operate over CFD-

P/CCSDS, and in sensor/actuator networks it may operate over a network composed

of a yet-to-be-standardized sensor transport protocol with some specialized routing (e.g.

Epidemic, Diffusion, DSDV). Each of these networking environments have their own spe-

cialized protocol stacks and naming semantics developed for their particular application

domain.

As such, a large DTN network can consist of nodes from several different network

topologies, each with a different addressing scheme. The use of different addressing

schemes is usually a reason why nodes from different networks are unable to communicate.

DTN solves this problem by defining a region [43] as a group of nodes in a network,

using the same protocol set for communication.

Achieving interoperability between regions is accomplished by special DTN gateways

located at their interconnection points. Interoperability gateways (see Figure 2.14 [41])
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Figure 2.13: DTN regions in a large network of networks.

Figure 2.14: DTN gateway for interoperability among dissimilar protocol stacks

are DTN forwarders interconnecting regions running potentially incompatible protocol

stacks. By operating above the transport protocols in use on the incident networks, they

provide message switching, in-network retransmission, and name mapping, allowing the

use of globally-interoperable names to be mapped to region-local names as required by

the adjacent region’s delivery semantics [41].

Figure 2.13 shows six DTN nodes in three regions, each having a region id and a local

id. Abstaction of how gateways reside at two region endpoints to provide interoperability

is depicted in Figure 2.14.

Since nodes in different regions often use different protocol sets, consequently using
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different addressing schemes; DTN defines a naming scheme comprising of a tuple with

two variable-length portions of the form R,L where R is a hierarchical regionID and L

contains a name local to region R, and is called an entityID.

Routing between regions is based only on region IDs, which are bound to their corre-

sponding addresses throughout the DTN. Routing within regions is based only on entity

IDs, which are bound to their corresponding addresses only within that region.

An entity may be a host (a DTN node), an application instance, a protocol, a URL,

a port (used to find the bundle service on a host) and potentially a token (used to find a

particular application instance that is using the bundle service), or something else.

To express the scope of the naming scheme we could have the following tuple, for

example:

internet.earth.sol.int,

‘‘http://www.cse.yorku.ca/grad/mastersGuidelines.html’’

The first portion identifies a region and is interpreted by DTN forwarders to find the

path to one or more interoperability gateways at the edge of the specified region, and the

second portion identifies a name within the specified region. As a message transits across

a potentially long and heterogeneous collection of regions, only the region part of the

endpoint ID is meaningful until the bundle has arrived somewhere within its destination

region. Once a bundle reaches the edge of the destination region, the name information is

locally-interpreted, and translated if necessary, into a name appropriate to the containing

region.
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Region IDs use the same name-space syntax as the Internets Domain Name System

(DNS); i.e. a tree structure with the root last.

In summary, routing in a DTN is primarily done based on the region part of the

eidpoint and then according to local rules used by each network topology; despite the

regional networks having varying connectivity, delay and loss characteristics, or employing

different lower-layer technologies.

2.3.5 Contact Types

The DTN architecture is targeted at networks where an end-to-end routing path cannot be

assumed to exist. Rather, routes are comprised of a cascade of time-dependent contacts

(communication opportunities) used to move messages from their origins toward their

destinations.

Contacts are parameterized by their start and end times, capacity, endpoints, and

direction. In addition, a measure of a contacts predictability can help to choose next-

hop forwarders for message routing as well as select the next message to be sent. The

predictability of a route exists on a continuum ranging from completely predictable (e.g.

wired connection or a periodic connection whose phase and frequency are well-known) to

completely unpredictable (an “opportunistic” contact in which a mobile message router

has come into communication range with another DTN node).

For example, in disaster recovery networks the future location of communicating en-

tities, such as emergency responders, may not be known. These types of contacts are
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known as intermittent or opportunistic contacts. On the other hand, DataMules carrying

data to certain infrastructure endpoints on a routine basis are examples of a scheduled or

predictable contact.

2.3.6 Routing

For most IP router implementations, routing protocols maintain a routing information

base (RIB) that maps destinations to a set of potential next-hop links (and/or other

information), and often a system-wide forwarding information base (FIB) stores the cur-

rent best route for each destination. Packet arrivals trigger lookups in the FIB structure,

resulting in forwarding or a drop. The job of the routing algorithm is generally confined

to maintaining the RIB.

A DTN router also requires state about next-hop contacts and networks reachable

through those contacts, but a large number of other factors come into play. Given the

store-and-forward nature of DTN, a router will likely consider its own storage state and

perhaps the storage state of a peer node when making forwarding decisions. Unroutable

messages are typically not dropped immediately, but rather queued in persistent storage

until they either expire or an appropriate next-hop peer becomes available. To handle

custody transfer based reliability, a router may still need to buffer a message even after

it has been transmitted. Finally, the uncertain nature of some networks may cause the

router to maintain historical contact state and make future predictions about contact

arrivals for scheduling purposes.
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Figure 2.15: An example event-action flow of Bundle routing.

In considering the list of potential inputs to the routing decision function, it is clear

that traditional RIB/FIB design for a router is insufficiently expressive. Furthermore,

due to the wide range of situations in which DTN may be applied, it is likely that policy

decisions may affect multiple system layers, and may vary widely from deployment to

deployment. As such, current implementations of the BP push all policy related decision

making to event handler routines in the BP that comprise the router implementation.

The advantages of doing so have been discussed in [29].

Figure 2.15 shows an example of this event exchange between the Convergence Layer,

Bundle Forwarder and the Bundle Router (see Figure 2.11). The Bundle Forwarder con-

verts lists of actions into queue manipulation options to the convergence layer. Based on
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the arrival of a new contact opportunity, the router schedules three bundles for transmis-

sion on the contact, and is then notified when one of the transmissions completes. The

arrival of a second contact causes the router to change an earlier scheduling decision to

use the new contact. Finally, when that contact is broken, the router is again notified,

triggering a fragmentation, and re-scheduling the unsent portion of the bundle back on

the first contact.

In this section we have discussed the hop-by-hop characteristics of DTN routing with

concentration on the BP layer.

Currently, no routing protocol has been defined to be used in conjunction with the

bundle protocol, to provide a complete end-to-end solution to bundle routing. In Sec-

tion 2.4 we discuss the end-to-end routing characteristics of a delay-tolerant network and

also discuss several DTN routing protocols that have been proposed.

2.3.7 Security

Since the resources of a DTN network can be limited, steps need to be taken to ensure

that only the intended data is accepted into the network.

In a DTN, standard Internet security mechanisms, such as TLS, IPsec and variants

do not perform well, or at all, because of long delays, possible disruptions, and the

possible lack of a continuous end-to-end connectivity. The DTN architecture addresses

this problem with new security tools. At present, the definition of BP security is still in

progress but many specifications are already contained in the bundle security protocol

57



(BSP) [70], which defines a set of BP extensions to support hop-by-hop and end-to-end

authentication, integrity validation, and confidentiality [59].

The bundle structure consists of a series of elements called blocks (see Figure 2.10).

Additional security blocks are defined in the BSP [70]. We discuss the payload security

header and the authentication header.

The payload security header is used to verify the payload integrity, and also can be

used to authenticate the original sender on an end-to-end basis. Verification is done by

calculating a hash of the payload and comparing it to the hash supplied int he header,

whereas the authenticity is verified by checking a supplied signature of the hash. Hashing

and signing are done using common algorithms and asymmetric keys. The services pro-

vided by the payload header can also be implemented in applications allowing for more

flexibility regarding new functionality [52].

The authentication header, on the other hand, is used to verify the entire bundle

on a hop-by-hop basis, using the same types of hashes and signatures as in the payload

verification. The use of a hop-by-hop verification has several benefits, such as early discard

of non-authenticated or damaged bundles and simplified key exchange. the benefits of

the simpler key exchange is achieved because a node will only need to know the keys of

adjacent nodes and any end node it communicates with, greatly reducing the number of

keys a node needs to store and also the time and resources used on a key update [52].
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2.4 Routing in DTNs

Delay-tolerant networks (DTNs) have the potential to connect devices and areas that are

can not be fully served by traditional network solutions, such as TCP/IP. One application

area of DTNs is terrestrial networks consisting of wireless, mobile nodes where issues

such as excessive delivery latency, high error rates in transmissions and consequently low

throughput may arise because of frequent, long-duration partitions in the network. Both

links and nodes may be inherently unreliable due to node mobility, geographic dispersion

density (or, lack thereof) of nodes, insufficient communication infrastructure, and power

conservation issues.

Presumably, in such networks establishment of an end-to-end connection between a

traffic source and its destination, prior to message forwarding is unattainable due to link

fluctuations, rendering many tested mobile ad hoc network (MANET) routing protocols

[4], [5], [6], [7] impracticable. We establish the non-applicability of MANET routing

protocols to DTNs environments in the following section.

2.4.1 MANET vs. DTN Routing

A wireless network is any type of computer network that uses wireless data connections

for connecting network nodes.

A wireless ad hoc network (WANET) is a decentralized type of wireless network. The

network is ad hoc because it does not rely on pre-existing infrastructure, such as routers

in wired networks or access points in managed (infrastructure) wireless networks.
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A mobile ad hoc network (MANET) is a continuously self-configuring, infrastructure-

less network of mobile devices connected without wires. They are a kind of wireless ad

hoc network that usually has a routable networking environment on top of a Link Layer

ad hoc network. Each node in a MANET is free to move independently in any direction,

and will therefore change its links to other devices frequently. Each node must forward

traffic unrelated to its own use, and thus be a router as well. Once two nodes are in

wireless communication range, they can communicate in a point-to-point fashion.

While the nodes in MANETs are mobile, it is generally assumed that end-to-end,

possibly multi-hop paths between node pairs exist most of the time. Routing protocols

designed to operate in MANETs assume that these paths are formed by a set of wireless

links that exist contemporaneously [4], [5], [6], [7]. It is also assumed that if these paths

are disrupted because of node mobility, then this disruption is only temporary and the

same or alternate paths are restored relatively quickly.

We briefly discuss the AODV routing protocol as an example of MANET routing. The

AODV routing protocol uses the following three types of packets to establish, maintain

and update routes:

• Sending out route request (RREQ):

If a node using the AODV routing protocol [5] desires to send a message to a desti-

nation node for which it does not have a valid route to, it initiates a route discovery

to locate the destination node. The source node broadcasts a route request (RREQ)

packet to all its neighbors, which then forwards the request to their neighbors and
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so on until either the destination or an intermediate node with a “fresh enough”

route to the destination listed in the RREQ is located. Nodes keep track of the

RREQ’s source IP address and broadcast ID. If they receive a RREQ which they

have already processed, they discard the RREQ and do not forward it.

AODV makes use of sequence numbers to ensure that the routes are loop free. Each

node maintains its own sequence number, and a broadcast ID. The sequence number

is incremented whenever there is a change in the neighborhood of a node and the

broadcast ID is incremented for every route discovery the node initiates. Along with

its own sequence number and the broadcast ID, the source node also includes the

most recent sequence number it has for the destination node. Intermediate nodes

may reply to the RREQ if they have a route to the destination with a destination

sequence number equal to or more than the one listed in the RREQ (a.k.a, a fresh

enough route).

• Receiving route reply (RREP):

When the RREQ reaches the destination or an intermediate node having a fresh

enough route to the destination, it responds by sending a route reply (RREP) packet

to the source. As the RREP propagates back to the source, nodes set up forward

pointers to the destination. Once the source node receives the RREP, it may begin

to forward data packets to the destination. If the source later receives a RREP

containing a greater sequence number or contains the same sequence number with

a smaller hopcount, it may update its routing information for that destination and
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begin using the better route.

• Maintaining routes with route error message (RERR):

As long as the route remains active, it will continue to be maintained. A route

is considered active as long as there are data packets periodically traveling from

the source to the destination along that path. Once the source stops sending data

packets, the links will time out and eventually be deleted from the intermediate

node routing tables.

Periodic HELLO broadcasts are used in AODV by the nodes in the network to

inform each mobile node of other nodes in its neighborhood. These broadcasts

are used to maintain local connectivity. If a link break occurs while the route is

active (node along the route moves, or powers down), its upstream neighbor notices

the move and propagates a link failure notification/route error message (RERR)

to each of its active upstream neighbors for the source node to inform it of of the

now unreachable destination(s). After receiving the RERR, if the source node still

desires a route to the destination, it can reinitiate route discovery.

Hence, a pre-established end-to-end path from the source to the destination (that

is, links on an end-to-end path) should exist contemporaneously in MANETs for mes-

sages to be successfully forwarded to intended recipients. However, in DTNs this pre-

establishment is not possible due to the nature of the nodes in the network, or the

application itself. Suitable applications for DTN environments are non-real time, such as
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Figure 2.16: Routing in a MANET versus store-(carry)-forward routing.

file transfer, sensor data collection and messaging. We have mentioned in section 2.2.2

that there exists numerous application areas for DTN’s, including those from deep sea

(e.g. underwater acoustic networks) to those in deep space (e.g. IPN).

For example, in underwater acoustic networks [72], which is usually a deployment of

wireless sensors on certain carriers (e.g. whales, underwater anchors, buoys) to collect

data, the sensors are in movement due to the motion of water or the carriers themselves.

The deployment and monitoring area is usually kept as large as possible as to not hamper

the natural habitat. It is easy to see how sensors may not always be within the wireless

transmission range of each other due to geographically being dispersed and only period-

ically, on certain opportunities, coming within the communication range of each other

(i.e. when two whales meet). Hence, the above AODV protocol would always fail, as

neighborhood discovery would fail and it would also timeout before receiving a RREP

from the destination.

Another example is vehicular networks, where nodes are moving continuously which

would cause AODV to keep on receiving RERRs on paths as soon as they were established,
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as nodes from the path have moved away. Any new route initiation would fail for the

same reason.

In disaster recovery operations, such as those performed after earthquakes or tsunami’s,

where communication infrastructure has been damaged, mobile devices in that area may

use a temporarily deployed DataMule [20] to carry data to and from a sink remotely

connected to the Internet. Due to the sparse nature of the mobile nodes locations and

the periodic, but continuously moving nature of the DataMules route, AODV routing

protocol would not be able to establish an end-to-end path for data communication.

However, for all the (DTN) network environments just mentioned, their primary dis-

tinction from MANETs is the fact that links on an end-to-end path may not exist con-

temporaneously, intermediate nodes may need to store data waiting for opportunities to

transfer data towards destinations, and applications may need to tolerate very long delays

in data delivery.

Routing protocols for DTN’s implement message switching with persistent storage,

utilizing the store-(carry)-forward mechanism to endure delays and preserve data packets

on intermittent links, allowing above such applications a solution to routing.

In figure 2.16, we show side-by-side the routing link establishment phases, and subse-

quent data forwarding of MANET and DTNs respectively among three nodes, where A is

the source and C is the destination. In MANETs, the end-to-end link must be established

a priori. Hence, when the actual data is transfered on the pre-established path, the data

packet may be received with very little delay (almost instantaneously). However, in the
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DTN, as links are established hop-by-hop, opportunistically between A to B, the B to

C, the data packets must endure longer delays as the total end-to-end delay will include

both the delay to encounter the contacts B and C, and also forward the actual data. The

delay times presented in the figures are fictional and not extracted from any real data.

2.4.2 DTN Network Model

Authors in [3] take a graph theory approach to model a DTN network to help address DTN

routing issues. Their model provides a set of definitions and a framework for evaluating

DTN routing algorithms. We present the model here, courtesy of [3]:

Figure 2.17: A graph representation of a DTN network.

The challenges in DTN routing stem largely from the fact that the DTN network

model is not simply a graph, as in most present networking systems, but instead is a

time varying multigraph, as is presented in figure 2.17 [3]. To represent the multigraph

properties, nodes may be connected by multiple edges, representing different physical

links. Each node j performs store-and-forward routing, and has finite storage capacity

(bj). To represent time variance, an edge is parameterized by its source and destination
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nodes plus a capacity (c(t)) and delay function (d(t)).

Definitions of the graph components are as follows:

• Nodes and Edges: The DTN graph is a directed multi-graph, in which more than one

edge (also called link) may exist between a pair of nodes (figure 2.17). The reason

for using a multigraph is straightforward: it may be possible to select between two

distinct (physical) connection types to move data between the same pair of nodes.

Furthermore, the link capacities (and to a lesser extent, propagation delay) are

time-dependent (capacity is zero at times when the link is unavailable). Thus, the

set of edges in the graph must capture both time-varying capacity and propagation

delay as well as multiple parallel edges.

• Contact: A contact is an opportunity to send data over an edge. More precisely, it

is a specific edge and a corresponding time interval during which the edge capacity

is strictly positive.

• Messages: Communication demands are represented by messages. A message is a

tuple (u; v; t;m), where u is the source of the message, v is the destination, t is the

time at which the message is injected into the system and m is its size (messages

can be of arbitrary size). The set of all messages is called the traffic demand.

• Storage: The nodes in a DTN have finite long-term storage (buffers) used for holding

in-transit data or data waiting to be consumed by the application at a destination

node. In our model, the storage is exclusively used for holding in-transit data.
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Destination nodes are assumed to have sufficient capacity for holding data to be

consumed by an application.

• Routing: Routing occurs in a store and forward fashion. The routing algorithm is

responsible for determining the next edge(s) that a message should be forwarded

along. Messages not immediately forwarded wait until they are assigned to contacts

by the routing algorithm.

2.4.3 Considerations in Designing DTN Routing Protocols

There are several characteristics of a network and its components a DTN routing protocol

must take into consideration [73].

The first consideration is if information about future contacts is readily available. We

have discussed briefly about contact types in section 2.3.5 where contacts may be either

scheduled, opportunist, or some variance of these two. A ‘contact’ has been defined

as a duration during which one node can send to another with a certain bandwidth

expectation.

The second consideration is if mobility can be exploited and, if so, which nodes are

mobile. There are three major cases, classifying the level of mobility in the network. First,

it is possible that there are no mobile entities. In this case, contacts appear and disappear

based solely on the quality of the communication channel between them. For instance, in

interplanetary networks, large objects in space, such as planets, can block communicating

nodes for a set period of time. Second, it is possible that some, but not all, nodes in
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the network are mobile. These nodes, sometimes referred to as Data Mules, [19] [20] are

exploited for their mobility. Since they are the primary source of transitive communication

between two non-neighboring nodes in the network, an important routing question is how

to properly distribute data among these nodes. Third, it is possible that the vast majority,

if not all, nodes in the network are mobile. In this case, a routing protocol will most likely

have more options available during contact opportunities, and may not have to utilize

each one [18], [27], [10], [23] An example of this type of network is a disaster recovery

network where all nodes (generally people and vehicles) are mobile [13], [?]. A second

example is a vehicular network where mobile cars, trucks, and buses act as communicating

entities [18].

The third consideration is the availability of network resources. Many nodes, such as

mobile phones, are limited in terms of storage space, transmission rate, and battery life.

Others, such as buses on the road, may not be as limited. Routing protocols can utilize

this information to best determine how messages should be transmitted and stored to not

over-burden limited resources. Only recently has the scientific community started taking

resource management into consideration, and this is still an active area of research.

The fourth consideration is whether to send message in their entirety or to split

messages into smaller sizes. A message is split when it is forwarded in such a way that

different parts (fragments) are routed along different paths (or across different contacts on

the same path). This technique may reduce the delay or improve load balancing among

multiple links. It is particularly relevant as messages can be arbitrarily large and may
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not fit in a single contact. However, splitting complicates routing because, in addition to

determining the sizes of the fragments, corresponding paths for the fragments also need

to be determined.

2.4.4 Routing Objectives and Challenges

The routing objective of traditional routing schemes has been to select a path which

minimizes some simple metric (e.g. the number of hops). For DTN networks, however,

the most desirable metric to optimize/address during routing is not immediately obvious

and varies depending on the application. An important objective for DTN, in general,

is to increase the probability of bundle delivery, but reducing the delivery delay is also

usually important for applications, due to mission deadlines or the validity period of the

message itself (TTL). Storage management is also related to routing, as is energy effi-

ciency. A critical challenge for DTNs is determining routes through the network without

potentially having an end-to-end connection between the sender and receiver. To make

communication possible, intermediate nodes temporarily store the data being transferred

and forward it as the opportunity arises. Both links and nodes may be inherently unre-

liable (nodes may change their routes randomly) and disconnections may be long-lived.

Moreover, buffer and bandwidth restrictions may force routing protocols to send discovery

and topology information as sparingly as possible to avoid consuming resources. Routing

protocol design must take these factors into consideration, all at the same time balancing

the outcome of the performance expectations (i.e., delivery ratio, end-to-end delay, and
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so on) of the network.

Furthermore, DTN routing algorithms need to know:

• When to send/forward a message - (opportunistically/periodically)

• Where to send a message - (next hop selection strategy)

• Which message to send/forward - (queuing and forwarding strategy)

• Which message to delete - (message priority)

2.4.5 Goals of DTN Routing Protocols

Despite the strategy a DTN routing protocol implements to accomplish the task of routing

for a particular application, all DTN protocols have, more or less, the following common

goals:

• Low latency: Latency is the time taken by the packet to reach its destination from

its source.

• Low latency jitter: Latency jitter is the variation in latency, for real time appli-

cations such as streaming video, the requirement for low latency jitter is more

important than the requirement of low latency.

• High throughput: Throughput can be defined as the number of data packets deliv-

ered per second. Throughput is affected by packets being dropped, and protocol

data units that are used by protocols to set up communication with peers.
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• Low packet loss or High Reliability: Packet loss causes decrease in throughput and

increases latency.

• Low convergence: time in case of changes in network topology. It is necessary for

routing algorithm to adapt to changes in network as quickly as possible, so that

utilization of network resources is maximized.

• Low routing overhead: Routing overhead is caused by the update packets that are

exchanged by routing protocols to convey network information to its peers. Routing

overhead decreases throughput.

It is not possible for a routing protocol to achieve all the goals. Also, some of the above

stated goals are conflicting in nature, for example to achieve low convergence time in case

of change in topology certainly requires high routing overhead which in turn reduces the

throughput for end to end communication.

2.4.6 Routing Strategies

Based on the above considerations, objective and goals of a DTN, there are several strate-

gies routing protocol designs can take into consideration and choose to implement, ac-

cordingly:

• Deterministic vs. stochastic: Deterministic approaches to routing make use of

exact and known mobility patterns to perform scheduling of messages over time-

varying links. An example of deterministic DTNs are interplanetary satellite com-
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munication networks where the exact times of communication opportunities between

devices can be calculated due to known device movement. The network dynamics

are deterministic and routing can be pre-computed. Stochastic approaches work

based on probabilities that e.g. describe contacts of devices, or recurrence of de-

vices to specific geographic areas. Dissemination-based protocols, as we will discuss

shortly, are an example of the stochastic approach to DTN routing.

• One-copy vs. n-copy: DTN routing protocols differ in replication strategies, i.e.,

how many copies of a messages they create for forwarding. This, in turn, has a

direct impact on the load incurred on the network. Some protocols generate just

a single copy [16], others a fixed number limited by the sender [10], while others

create an “infinite” number of messages [8].

• Knowledge vs. replication: The more knowledge of nodes there is available,

or can be gathered and utilized, the less replication necessary. However obtaining

knowledge of the network, especially for networks with large number of nodes in high

load scenarios, imposes problems in case of communication overhead and resource

utilization (regarding knowledge maintenance; e.g. when metrics are fresh or stale).

• Random mobility vs. structured mobility: Protocols may take into consid-

eration the characteristics of the mobile nodes, which may follow random mobility

patterns such as Random Waypoint (RWP) or; may follow structured mobility

patterns such as Community-based models (CMM) or Map-based mobility models
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(MBM).

2.4.7 Overview of Opportunistic Routing

In recent years numerous routing protocols have been proposed for DTNs [8] - [26],

each with solutions depending on, but not limited to, the amount of tolerable delay by

the application, link characteristics, contact types, and resource availability. Different

mechanisms are applied depending on whether the network is primarily of mobile ad-hoc

nature (e.g., mobile devices carried by humans) or is based upon a (fixed or mobile)

infrastructure (e.g., space networks, bus networks). Mixed networks exist as well (e.g.,

mobile users supported by infrastructure nodes).

Numerous papers, articles and journals have been published regarding the classifica-

tion of DTN routing protocols, where authors have categorized the protocols based on

criteria they independently deem important. In our review of DTN routing protocols,

we mainly focus on a category of DTN networks called opportunistic networks [1] (as

opposed to scheduled DTNs, which employ comparatively trivial routing solutions).

In opportunistic networks, no assumption is made with regard to the existence of a

complete path between two nodes wishing to communicate. Source and destination nodes

might never be connected to the same network, at the same time. Furthermore, nodes

may not possess or acquire any knowledge about the network topology (e.g. hop count,

fresh routes), which is necessary in traditional MANET routing protocols. Routes are

built dynamically, while messages are en route between the sender and the destination(s),
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and any possible node can opportunistically (i.e. when the chance arises) be used as a

next hop. An “opportunity” refers to the possibility to transmit to an intermediate

node (next hop) which is nearer to the destination node with respect to the source node.

Figure 2.18 [8] shows an example of hop-by-hop opportunistic forwarding. In the figure,

a source, S, wishes to transmit a message to a destination but no connected path is

available in part (a). Carriers, C1−C3 are leveraged to transitively deliver the message

to its destination at some later point in time as shown in (b).

Figure 2.18: Routing in opportunistic networks.

The terms “opportunistic networks” and “delay-tolerant networks” are sometimes

used interchangeably. However [1] cites opportunistic networks to correspond to a more

general concept, which includes DTNs.

The distinction is as follows:

• Routes in DTNs are typically computed via legacy-Internet techniques by taking

into consideration the link unavailability as another component of link cost. In op-

portunistic networks, routes are computed at each hop while a packet is forwarded.

Each node receiving a message for an eventual destination exploits local knowledge
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to decide which is the best next hop, among its current neighbors, to reach the

eventual packet destination. When no forwarding opportunity exists (e.g., no other

nodes are in the transmission range, or the neighbors are evaluated not suitable

for that communication), the node stores the message and waits for future contact

opportunities with other devices to forward the information.

• DTNs assume the knowledge of Internet-like topologies, in which some links be-

tween gateways could be available just at certain (possibly unspecified) times. In

opportunistic networks, as it is not mandatory to have a priori knowledge about

the network topology, each single node acts as a gateway.

This makes opportunistic networks a more flexible environment than DTNs, and calls

for a more radical revision of legacy routing approaches designed for the Internet or for

well-connected MANETs.

Researchers have implemented a number of real-application scenarios (projects) in

opportunistic networks. Among these are ZebraNet [27], DakNet [75], Haggle [2], and

SWIM [26].

• ZebraNet [27]: is a wildlife tracking application aimed at monitoring wild species

(zebras, wearing special collars) in unmanned scenarios (its deployment scenario

is the vast savanna area of central Kenya). The base station consists of a mobile

vehicle for the researchers, which periodically moves around in the savanna and

collects data from the zebras encountered. Two alternative protocols have been

considered for data collection in ZebraNet.
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The first one is simple flooding - each collar sends all its data to each encountered

neighbor until the data eventually reach the base station.

The second one, a history-based protocol - proposes that each node selects only

one of its neighbors as relay for its data. The selected node is the one with the

highest probability to eventually encounter the base station. Each node is thus

assigned a hierarchy level (initially zero) that increases each time it encounters the

base station, and conversely decreases after not having seen the base station for a

certain amount of time. When sending data to a relay (intermediate) node, the

neighbor to be selected is the one with the highest hierarchy level.

• DakNet [75]: to provide intermittent Internet connectivity to rural and developing

areas where they typically represent the only affordable way to help bridge the

digital divide. Kiosks are built up in villages and equipped with digital storage and

short-range wireless communications.

Periodically, mobile access points (MAPs) mounted on buses, motorcycles, or even

bicycles pass by the village kiosks and exchange data with them wirelessly. MAPs

can upload any sort of request or data stored at the kiosks, and download them

to the Internet when passing by an access point (AP) in a nearby town. Similarly,

MAPs may download, from the Internet, the requested information and bring it to

villages.

DakNet has the potential to support Internet/Intranet messaging (e.g., email,audio/video

messaging, and mobile e-commerce), distribution of information (e.g., public health
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announcements, community bulletin boards, news, and music), and collection of

information (e.g., environmental sensor information, voting, health records, and

census).

• Haggle [2], [76]: is a project funded by the European Commission for studying

the properties of Pocket Switched Networks (PSNs) [2], and to measure and model

pair-wise contacts between devices (e.g., cell phones and PDAs that users carry in

their pockets).

Pair-wise contacts between users/devices can be characterized by the means of

two parameters: contact durations and intercontact times. For the purpose of the

project, the duration of a contact is the total time that a tagged couple of mobile

nodes are within reach of each other, and thus have the possibility of communicating.

Intercontact time is the time in between two contact opportunities between the same

couple of tagged devices.

To characterize contact durations and intercontact times occurring in real-world

environments, different sets of traces were collected and analyzed. Traces were in-

ferred from the logs collected by the APs of some university campuses; directly

logged by Bluetooth devices carried by students and researchers in their university

and laboratories; and also by the participants of some international conferences.

The analysis of all the traces led to an important result stating that both intercon-

tact times and contact durations were characterized by heavy-tailed distribution

functions approximately following power laws. The implications of the results are
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further discussed in [76] and also in [56].

• SWIM [26]: similar to ZebraNet, whales (with special tags) are the wild species to

be monitored. Data is replicated at each pair-wise contact between whales (similar

to what happens in the flooding protocol of ZebraNet) and finally arrives to spe-

cial SWIM stations that can be fixed (on buoys) or mobile (on seabirds). Hence,

both whale-to-whale and whale-to-base-station communications are allowed. From

the SWIM stations, data are eventually forwarded onshore for final processing and

utilization. No real deployment currently exists for SWIM. however, extensive sim-

ulations have been performed and show that mobile SWIM stations have shown

better performance than fixed SWIM stations.

In opportunistic networks, the concepts of routing and forwarding are mixed together,

since routes are actually built while messages are forwarded. In remainder of this thesis

we will use the terms “routing” and “forwarding” interchangeably.

2.4.8 Classification of Opportunistic Routing Protocols

The design of efficient routing strategies for opportunistic networks is generally compli-

cated due to the absence of knowledge about the topological evolution of the network.

Routing performance improves when more knowledge about the expected topology of the

network can be exploited. Unfortunately, this kind of knowledge is not easily available in

opportunistic networks.

A common technique used to maximize the probability of a successful message transfer
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is to replicate/disseminate/flood many copies of the message in hopes that one will succeed

in reaching its destination. This is feasible only on networks with large amounts of local

storage and inter node bandwidth relative to the expected traffic. In many common

problem spaces, this inefficiency is outweighed by the increased efficiency and shortened

delivery times made possible by taking maximum advantage of available unscheduled

forwarding opportunities. In others, where available storage and inter node throughput

opportunities are more tightly constrained, a less indiscriminate algorithm is required.

The storage duration in opportunistic networking is typically longer than in classical

routing approaches because nodes have to wait for a communication opportunity to occur.

The mobility of nodes helps create communication opportunities and reduce the storage

duration and the end-to-end delay of transmissions.

Figure 2.18 [1] shows a categorized view of the routing/forwarding algorithms in op-

portunistic networks. For brevity, we will only discuss the dissemination/flooding-based

routing protocols in detail. We will discuss each of the branches briefly, but refer to the

respective citations for further details.

Figure 2.19 classifies opportunistic networks into algorithms designed for ad hoc net-

works without infrastructure, and algorithms in which the ad hoc networks exploit some

form of infrastructure to opportunistically forward messages.

Infrastructure-less approaches can be further divided in dissemination based and con-

text based approaches. Dissemination-based algorithms are essentially forms of controlled

flooding, and differentiate themselves for the policy used to limit flooding. Context-based
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Figure 2.19: A classification of routing techniques for opportunistic networks.

approaches usually do not adopt flooding schemes, but use knowledge of the context that

nodes are operating in to identify the best next hop at each forwarding step.

Algorithms that exploit some form of infrastructure can be divided (depending on

the type of infrastructure they rely on) into fixed infrastructure and mobile infrastructure

approaches. In both cases the infrastructure is composed by special nodes that are more

powerful with respect to the other nodes commonly present in the ad hoc network. They

have high storage capacity and hence they can collect messages from many nodes passing

by, even for a long time. They also have high levels of energy, and may be seen as

“always on” nodes. Nodes of a fixed infrastructure are located at specific geographical

points whereas nodes of a mobile infrastructure move around in the network following

either pre-determined known paths or completely random paths.

We discuss opportunistic routing protocols with infrastructure first, then proceed

to describe infrastructure-less ones. Infrastructure-less routing protocols can be further
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divided into context-based versus replication based approaches. As we envision our pro-

posed framework to be efficient under scenarios suitable for dissemination based routing,

we will discuss three popular dissemination-based protocols: Epidemic [8], ProPHET [9]

and Spray-and-Wait [10], in detail.

2.4.8.1 Routing with Infrastructure

Infrastructure, with consideration to opportunistic routing, can be divided into fixed

infrastructure or mobile infrastructure schemes.

• Fixed Infrastructure In infrastructure-based routing, a source node wishing to

deliver a message generally keeps it until it comes within reach of a base station

belonging to the infrastructure, then forwards the message to it. Base stations are

generally gateways towards less challenged networks, e.g., they can provide Internet

access or they can be connected to a LAN. Hence, the goal of an opportunistic

routing algorithm is to deliver messages to the gateways, which are supposed to be

able to find the eventual destination more easily.

Two variations of the protocol are possible. The first one works exactly as described

above, and only node-to-base-station communications are allowed. As a result,

messages experience fairly high delays. The classic example of this approach is the

Infostation model [17]. A second version of the protocol allows both node-to-base-

station and node-to-node communications. The Shared Wireless Infostation Model

(SWIM) [26] is an example of this approach.
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• Mobile Infrastructure This category of opportunistic routing is also known as

carried-based algorithms as base stations actively participate as carriers of messages.

In carrier-based routing, nodes of the infrastructure are mobile data collectors.

They move around in the network area, following either pre-determined or arbitrary

routes, and gather messages from the nodes they pass by. These special nodes

are referred to as carriers, supports, forwarders, MULEs, or ferries. They can

be the only entities responsible for message delivery, when only node-to-carrier

communications are allowed, or they can simply help increasing connectivity in

sparse networks and guaranteeing that also isolated nodes can be reached. In the

latter case, delivery of messages is accomplished both by carriers and ordinary

nodes, and both node-to-node and node-to-carrier communication types are allowed.

2.4.8.2 Routing without Infrastructure

In the case of little or no infrastructure availability, due to environmental, geographical

or other reasons, infrastructureless routing schemes can be divided into context-based or

dissemination-based routing, and are described below.

• Context-based Routing Context-based routing [14], [15] exploits information

about the context that nodes are operating in to identify suitable next hops to-

wards the eventual destinations e.g., the home address of a user is a valuable piece

of context information to decide the next hop. The usefulness of a host as next hop

for a message is hereafter referred to as utility of that host. Context-based rout-
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ing techniques are generally able to significantly reduce the messages duplication

with respect to dissemination-based techniques. On the other hand, context-based

techniques tend to increase the delay that each message experiences during delivery.

This is due to possible errors and inaccuracies in selecting the best relays. Moreover,

utility-based techniques have higher computational costs than disseminationbased

techniques. Nodes need to maintain a state to keep track of the utility values asso-

ciated to all the other nodes in the network (i.e., all the possible destination nodes),

and hence need storage capacity for both state and messages. Finally, the cost to

hold and update the state at each node should also be considered in the overall

protocol overhead.

• Dissemination-based Routing Routing techniques based on data dissemination

(a.k.a., flooding) perform delivery of a message to a destination by simply diffusing

it all over the network. The heuristic behind this policy is that, since there is no

knowledge of a possible path towards the destination nor of an appropriate next-hop

node, a message should be sent everywhere. It will eventually reach the destination

by passing node by node. Dissemination-based techniques obviously work well in

highly mobile networks where contact opportunities, which are needed for data

diffusion, are very common. They tend to limit the messages delay, but they are also

very resource hungry. Due to the considerable number of transmissions involved,

dissemination-based techniques suffer from high contention and may potentially

lead to network congestion. To increase the network capacity, the spreading radius
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of a message is typically limited by imposing a maximum number of relay hops to

each message, or even by limiting the total number of message copies present in the

network at the same time. When no relaying is further allowed, a node can only

send directly to destination when/in case met.

In our proposed framework, we evaluate the following three dissimenation-based rout-

ing protocols: Epidemic, PRoPHET, and Spray-and-Wait (SnW). Following are the de-

scriptions of these protocols.

Epidemic [8]

In the Epidemic Routing protocol messages diffuse in the network by means of pair-

wise contacts between individuals/nodes. Each node possesses a buffer to store both the

messages it generates and the incoming messages from other nodes that need forwarding.

Messages are ordered in a list which is accessible through a hash table and is generally

managed according to a FIFO policy. A summary vector describes which entries of the

hash table correspond to actual messages and further contains a compact representation

of them all.

Each node has its own IDentifier (ID). Whenever two nodes come into communication

range of each other (i.e., a pair-wise contact occurs) the one with the smaller ID, say node

A, delivers its summary vector to the other node with the greater ID, say node B. Node

B contrasts the received summary vector with its own summary vector and builds up

a list with those messages stored by node A that it has not received yet (messages are
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Figure 2.20: Message forwarding in the Epidemic routing protocol

discriminated by the means of unique identifiers and hop counts). Node B then makes

request of the messages it misses to node A and afterwards waits for node A to send them

to it. After messages have transferred from node A to node B, node B sends its proper

summary vector to node A that repeats the same procedure as node A. This process has

been depicted in Figure 2.20.

The choice of messages to ask for to the other node is based on considerations on

the total buffer size available. A more intelligent choice may also keep into account the

destination node of the announced messages. So, a node will preferentially request to the

encountered node those messages that have as destination a node which is most frequently

encountered. To avoid repeating this procedure uselessly, nodes are recommended to

maintain a list of the most recently met nodes and to start exchanges only with nodes

that do not belong to this list.

Dissemination throughout the network guarantees that messages eventually arrive to

their actual destinations. The dissemination process is somehow bounded because each
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message when generated is assigned a hop count limit giving the maximum number of

hops that that message is allowed to traverse till the destination. Moreover, the delivery

latency is more likely to be low. When the hop count limit is imposed to be low, a

message cannot be frequently forwarded and mostly moves from point to point thanks

to the mobility of the nodes that store it (delivery exploits mobility more than wireless

transmissions).

Epidemic routing allows delivery of messages in disconnected ad hoc networks where

traditional routing algorithms generally fail. However, this protocol tends to consume

great deal of resources, specifically storage capacity, network bandwidth for transmis-

sions, and energy for both message storing and sending. Clearly, the efficacy of epidemic

routing, as originally conceived, is severely limited by the scarcity of the storage capacity

available at nodes. After generation of a message, many copies of it are spread all over

the network and continue to be stored even after arrival of one of the replicas to the

destination. This obviously leads to memory wastage.

PRoPHET [9]

In the Probabilistic Routing Protocol using History of Encounters and Transitivity (PRoPHET),

each node holds a delivery predictability table with the probabilities of successful delivery

towards each known node in the network. Also in this case, the probability to deliver

a message to a certain destination node increases whenever it comes within sight, and

decreases over time in case no meeting occurs.
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The Delivery Predictability at any node a, for each know destination node b is indicated

as P(a,b) ∈ [0, 1]. This is a probabilistic metric that indicates how likely it is that node a

will be able to deliver a message to destination b.

The operation of PROPHET is similar to that of Epidemic Routing. When two

nodes meet, they exchange summary vectors which in this case also contain the delivery

predictability information stored at the nodes. This information is used to update the

internal delivery predictability vector as described below, and then the information in the

summary vector is used to decide which messages to request from the other node based

on the forwarding strategy used.

The delivery predictability metric, P(a,b) has three properties, based on which it is

(re)calculated. The three properties are update, aging, and transitivity. The calculation

of the delivery predictability based on these properties are as follows:

• Update:

Every time two nodes a and bmeet each other, their delivery predictabilities increase

as follows (Eq. 2.1):

P(a,b) = P(a,b)old + (1− P(a,b)old)× Pinit (2.1)

P(a,b)old is the last known delivery-predictability value, whereas Pinit ∈ [0, 1] is an

initialization constant. This update is done so that nodes that are encountered more

often have a higher delivery predictability.

87



• Aging:

If a pair of nodes does not encounter each other in a while, they are less likely to be

good forwarders of messages to each other, thus the delivery predictability values

must age, being reduced in the process. The aging equation is shown in Eq. 2.2:

P(a,b) = P(a,b)old × γk (2.2)

γ ∈ [0, 1) is the aging constant, and k is the number of time units that have elapsed

since the last time the metric was aged. The time unit used can differ, and should be

defined based on the application and the expected delays in the targeted network.

• Transitivity:

The transitive property is based on the observation that if node a frequently en-

counters node b, and node b frequently encounters node c, then node c probably is

a good node to forward messages destined for node a. The transitivity equation is

shown in Eq. 2.3:

P(a,c) = P(a,c)old + (1− P(a,c)old)× P(a,b) × P(b,c) × β (2.3)

β ∈ [0, 1] is a scaling constant that decides how large impact the transitivity should

have on the delivery predictability.

Every time two nodes are within transmission range of each other, they exchange

the summary vectors of the messages they store. They add to each message entry their
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delivery predictability related to the destination node of that message (i.e., how likely it is

that it can successfully forward the message). Both nodes, then, decide which messages to

request to the other, based on these probabilities. Specifically, node a requests a message

from node b which is destined to node c only if the delivery predictability from node a to

node c is higher than the delivery predictability from node b to node c.

Figure 2.21: Message forwarding in the PRoPHET routing protocol

Figure 2.21 shows the delivery predicitbilty tables of four mobile nodes in the network,

using the PRoPHET protocol for message forwarding. The source A needs to send the

message to destination D. Each node has a delivery predictability stored for other nodes

in the networks. The values (high, low, medium) used for P(a,b) in this particular example

are used to give a conceptual view of the probability a has of delivering a message to b.

A will choose to forward to node B if it has a higher value stored for sending the message

to D. In this example, A forwards the message to B when it is encountered, as upon

exchanging summary vectors A finds that P(B,D) >P(A,D), thus determining node B to

be a better candidate for delivering the message to the eventual destination D.
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PRoPHET outperforms Epidemic routing in terms of both delivery success rate and

delay experience of messages. It also introduces far less traffic overhead than Epidemic

routing to manage forwarding. However, for large number of nodes in high load scenarios,

the exchange and maintenance of delivery predictability vectors imposes problems in case

of communication overhead and resource utilization.

Spray-and-Wait [10]:

Spray and Wait (SnW) protocol is an n-copy routing protocol. This routing algorithm

consists of two phases:

• Spray phase: for every message M originating at a source node, K copies of the

message are initially spread (forwarded by the source and possibly other nodes

receiving a copy) to “K” distinct relays (i.e. intermediate nodes).

• Wait phase: if the destination is not found in the spraying phase, each of the K

nodes carrying a message copy performs direct transmission (i.e. will forward the

message only to its destination).

This definition of Spray and Wait leaves open the issue of how the K copies are to

be spread initially. A number of different “spraying” heuristics can be envisioned. Two

modes have been proposed by the authors of the protocol.

• Normal mode: In this case, the sender node replicates a message to all nodes that

are encountered. Only K nodes get copies as there are K message copies available.
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• Binary mode: In this case, out of K copies, K/2 copies are stored at the sender

node and the remaining copies are forwarded to all first encountered nodes. These

K/2 stored copies are then relayed in the same binary manner until a single copy

is left and the last copy is forwarded to the final destination.

Authors in the paper [10] discuss models to optimize and choose the K value in SnW

to meet performance constraints, for example:

• Choosing K to achieve a required expected delay

• Estimating K when network parameters are unknown

Spray and Wait routing decouples the number of copies generated per message, and

therefore the number of transmissions performed, from the network size.

Spray and Wait could be viewed as a trade-off between single and multi-copy schemes.

It combines the speed of epidemic routing with the simplicity and thriftiness of direct

transmission.

Simulation results on SnW shows its performance is better with respect to both num-

ber of transmissions and delay than all other practical single and multi-copy dissemination-

based routing schemes, in most scenarios considered.

2.5 Related Work

It can be concluded from the discussion in the previous section that opportunistic network-

ing in DTNs utilize node mobility to achieve message delivery. Nodes forward messages
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only when they encounter the appropriate relay or the destination node. Due to this de-

pendence on the mobility of nodes participating in the network, understanding mobility

characteristics such as inter-contact times and contact duration’s of mobile nodes plays

an important role in the analysis of routing algorithms and the overall performance of

the network.

Routing algorithms can exploit mobility, but they can not essentially change the

mobility characteristics inherent of a networks participating nodes. Routing algorithms

build solutions “around” these characteristics. Our proposed sticky transfer framework

derives motivation from this fact.

We discuss the inter-contact time, contact duration and delay characteristics of DTNs

next.

2.5.1 Delay and Encounter Characteristics

One of the most important performance measures of a data communication network is

the average delay required to deliver a packet from origin to destination. Furthermore,

delay considerations strongly influence the choice and performance of network algorithms,

such as routing. Delays of traditional data and communication networks mostly focus

on packet delay within the communication subnet (i.e., the network layer). The delay

is usually measured as the sum of delays on each subnet link traversed by the packet.

However, in the absence of stationary infrastructure or connected network components,

such as in opportunist DTNs, delay measurements are redefined.
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Figure 2.22: Delay characteristics of a DTN

Figure 2.22 depicts delay parameters in an opportunist DTN and the characteristics

of inter-contact time and contact duration based on those parameters.

We observe the four delay components of Figure 2.22, where C is the sender of a

message and A is the receiver and each discrete event is placed on an ordered timeline

from t0 to t6.

The delay parameters are:

1. Encounter Delay (E.D.): The encounter delay is the time between when a message is

received (if intermediate hop)/generated at a mobile host to the time the mobile host

carrying the message comes into contact with another mobile host. This ‘coming

into contact’ is an encounter. In Figure 2.22 node C receives a message at time t0
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and comes into contact with node A at time t2; (t0 - t0) is the encounter delay.

2. Queuing Delay (Q.D.): The queuing delay is the time between when the message

is received (if intermediate hop)/generated at the node and assigned to a queue for

transmission to the time it starts being transmitted. During this time, the mes-

sage waits in the nodes buffers while other messages in the transmission queue are

transmitted. In Figure 2.22, the transmission of the message from C to A begins

at time t3; the queuing delay is (t3 - t0). Queuing delay also includes the E.D.

Transmission delay (T.D.) and propagation delay (P.D) are the same as in oppor-

tunistic networks as in existing networks based on packet switching.

3. Transmission Delay (T.D.): The transmission delay is the amount of time required

to put an entire message into the communication medium (in our case, the wireless

link). It is essentially the delay caused by the data-rate of the link, and can be It

can be computed by the following equation (Eq. 2.4):

T.D. =
L

R
(2.4)

where, L is the length of a packet in bits and R is the transmission rate in bits per

time unit.

In Figure 2.22 (t4 - t3) is the transmission delay.

4. Propagation Delay (P.D.): Propagation delay is defined as the amount of time it
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takes for a certain number of bytes to be transferred over a (wireless) medium.

Propagation delay is the distance between the two routers/nodes divided by the

propagation speed, and can be defined by the following equation (Eq. 2.5):

P.D. =
d

s
(2.5)

where, d is the distance from the node to the next node and s is propagation speed

of the medium.

In Figure 2.22 (t5 - t4) is the propagation delay.

In opportunistic DTNs, the encounter delay can be quite large, especially if the net-

work is sparse. The success of message delivery highly depends on the likeliness of nodes

encounters and the time elapsed between encounters greatly influences other performance

metrics of the network, such as delay, storage occupancy, and so on. We define the two

main contributing factors [21] that determine the performance of an opportunistic net-

work based on encounters:

• Average Inter-contact Time, IC : The average inter-contact time measures how fre-

quently nodes encounter other nodes in the network. Specifically, it is the duration

from the moment a node Amoves out of the transmission range of node B until node

A encounters another node (which could be B again). Inter-contact time depends

primarily on node mobility and node density in the network. In sparse networks,

the inter-contact time can be reduced by introducing special components, such as
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ferries [19] or data mules [20], that move at relatively faster speeds on predefined

routes and therefore increase contact opportunities.

• Average Contact Duration, TC : The average contact duration is the length of time

during which pair-wise nodes remain within the transmission range of each other

on average in the network. The contact duration directly influences the capacity

of opportunistic networks (e.g., DTNs) as it limits the amount of data that can be

transferred successfully between nodes. By using the proposed sticky transfer frame-

work, nodes can intelligently and cooperatively increase their contact durations to

improve the capacity of the network by agreeing to brief, temporary modifications

in their movement patterns and speeds.

In Figure 2.22, node C losses contact with node B at time t1 and comes into contact

with node A at time t2; (t2 - t1) is the inter-contact time. Subsequently, node C looses

contact with node A at time t6. Therefore, the contact duration between C and A is (t6

- t2).

We can also observe from the above definitions and in Figure 2.22, the inter-contact

time and contact duration directly impacts the throughput of the network. We can

characterize the average throughput (THP), which is the maximum data rate that can

be sent between two nodes as:

THP =
TC · R

(TC + IC)
(2.6)

where, R is the transmission rate in bits per time unit.
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Thus, the performance of DTNs can be improved by reducing the inter-contact time

and increasing the contact duration, which is observed from Eq. 2.6.

Now, we address the following question:

Why is it important to address the encounter characteristics just discussed and how

do they affect the performance of the DTN?

Routing algorithms have been proposed which can reduce the inter-contact time

(meeting time in-between contacts) of nodes. However, irrespective of the forwarding

technique used by routing algorithms, the actual time to transfer messages between two

nodes is limited by the contact duration (duration of the contact) of the nodes, which

depends inherently on node mobility.

Thus, when messages are being forwarded to pair-wise contacts, if the expected con-

tact duration is not sufficient for the entire message to be transmitted, which can change

at any moment due to node mobility, messages tend to fail to be forwarded to the next

hop. This can cause the routing protocol to retransmit the message, thus wasting valuable

bandwidth, resources and “opportunities” in the network.

For example, when using the PRoPHET routing protocol, referring back to Fig-

ure 2.21, A may encounter B. As determined by their delivery predectabilities, B is

a suitable forwarder for A’s message to D. However, if the contact duration when A and

B are exchanging the message is not sufficient, the message transfer will be aborted. In

this case, A may have to retransmit (see Section 2.3.3) the message. However, the next
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encountered node may not be B (due to B moving out of the transmission range of A

in the meantime), and may be some other node E, who’s delivery probability to D is

lower than that of A or perhaps ‘NULL’. Hence, A has to postpone the forwarding of the

message. This not only requires additional bandwidth consumption (and hence resource

wastage on A’s part) but also prolongs the delivery of the message to destination D.

Note that the PRoPHET routing protocol in this case can help node A to decide

‘who’ to forward to, but has no way to ‘ensure’ that A will actually be able to forward

the message to the most suitable next hop.

Next, we address the question:

Why are we proposing our sticky message transfer framework and what will it solve

regarding encounter delays and routing performance in DTNs?

One way to tackle the above problem is to allow smaller sized messages; i.e. fragmen-

t/split the message, to allow for forwarding within smaller contact duration’s. However,

as mentioned in Section 2.4.3, splitting complicates routing because, in addition to de-

termining the sizes of the fragments, corresponding paths for the fragments also need to

be determined. Moreover, if the message fragmentation size is fixed then the actual size

of the splits may not be optimal to ‘fit’ within the contact duration.

We see the necessity to assist routing protocols in enchaining the performance of the

DTN by providing a solution that can be implemented irrespective of the routing proto-

col being used to extended the contact duration to meet the required message transfer
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duration.

Our proposed sticky transfer framework addresses the following:

• Contact Duration vs. Required Transfer Duration:

In an opportunistic DTN, forwarding opportunities can be lost due to:

− Lack of buffer space at the next hop: message gets dropped.

− Limited bandwidth: there is not enough time to forward all messages in the

queue while the two nodes are in range (contact duration).

− MAC contention: more than one nodes within range are trying to access the

media at the same time.

− Interference: ongoing communications in the surrounding area contribute to the

noise level [21].

Any MACAW (Multiple Access with Collision Avoidance for Wireless) [77] protocol,

such as the IEEE 802.11 RTS/CTS, could be used to cope with collisions and

hidden/exposed terminal problems. Due to the rapidly declining cost of data storage

[78], limited buffer is an issue that is becoming non-existent in practical scenarios.

In this paper we deem it more important to address the issues of limited bandwidth,

since it depends on a fixed property of the wireless channel.

• Contact Duration vs. Number of Contacts:

The average delay of message delivery in DTNs can be decreased by increasing the

contact duration. Providing enough time for messages to be exchanged in their
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entirety eliminates the number of aborted messages (i.e., message exchanges that

start, but do not complete because nodes move out of each others transmission

range), thus reducing the necessity for retransmitting the message to subsequent

encounters. Less intuitively, increasing the contact time reduces drops due to full

buffers or expiring TTLs. Sticky transfers use coordination between nodes to achieve

a contact duration long enough to ensure all data that needs to be transferred

between pair-wise nodes are transferred before the contact is broken.

2.5.2 Packet-level Replication

Zhuo et al. [22] propose a packet-level replication protocol, which uses erasure coding to

encode large messages into smaller packets, to address the problem of limited contact

duration. However, this technique requires replication of packets at each node, which is

expensive in a DTN. Our sticky transfer protocol requires no additional mechanism nor

infrastructure other than the simple beaconing mechanism which has been used for many

other purposes in wireless ad hoc networks. To the best of our knowledge, our work is

the first to propose the concept of ’sticky’ message transfers to extend contact durations.

Our proposed sticky transfer framework is independent of, but can function with,

any DTN routing protocol. DTN routing protocols use different strategies in forward-

ing messages at each encounter. For example, dissemination/replication based routing

protocols [8, 10, 23] create and forward multiple copies of a message when an encounter

happens. In replication-based protocols, any node A can receive a copy of a message
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from any other node B when they come in contact. Other protocols try to improve the

performance by using information (such as encounter history) to intelligently forward a

limited number of copies [9, 18,25–27].

In our simulations, we show the performance of three replication based DTN routing

protocols: Epidemic [8], PRoPHET [9], and Spray-and-Wait [10]. Our results have shown

the proposed method to improve the performance of each protocol and enhance the relia-

bility of the network, compared to each DTN routing protocols performance standalone.

2.6 Chapter Summary

In this chapter, we review the DTN architecture, opportunistic network routing protocols,

and work related to our proposed sticky transfer framework.

We looked into the background of DTNs, discussed the contrast between the DTN

architecture and the Internet architecture. We described the DTN bundle protocol (BP),

which is the central component of the DTN overlay and presented an implementation

of the bundle (BP) layer modules and their dependencies. We then discussed message-

switched routing in a DTN by presenting several DTN routing protocols and distin-

guished DTN routing form MANET routing. We presented a classification of opportunist

DTN routing protocols and discussed three prominent replication-based DTN protocols

in depth. Finally, we stated issues related to our thesis objective and presented existing

related work.

In the next chapter, we discuss our proposed framework in detail.
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Chapter 3

The Proposed Sticky Transfer

Framework and Protocol

In opportunistic networks such as DTNs, the message delivery performance, such as de-

livery ratio and end-to-end delay, highly depends on the time elapsed between encounters

(i.e., inter-contact time) and the time two nodes remain in each other’s communication

range once a contact is established (i.e., contact duration). Inter-contact time and con-

tact duration have been discussed in section 2.5.1. Limitations in the actual time to

transfer data between nodes result from the inherent mobility of hosts, as illustrated by

the example shown in Figure 3.1.

In this example, at time t node A has three variable-length messages {#1, #2, #3}

queued in it’s buffer to send to the next encountered node using a flooding-based routing

strategy for message forwarding (see section 2.4.8.2). At time t+δt, A is presented with

contact opportunity B as node B comes within the wireless communication range of A.

102



Figure 3.1: Data transfer limitations due to natural movement

A successfully transmits message #1 to B, and retains metadata of the copy of message

#1 sent to B. At time t+2δt, A proceeds to transfer message #2 to B, while A and B

are gradually moving out of each other’s communication range. Due to their velocity, the

contact duration to transmit message #2 is insufficient. Hence at time t+3δt, node A was

unsuccessful to transmit message #2 to B, which may have been a better candidate (next

hop node) for delivery on the time-varying path to the message’s eventual destination.

Also, node A now requires to re-transmit the message to the next viable encounter.

Moreover, the DTN Bundle Protocol specification [33] does not limit bundle size or

specify content of bundles. Indeed, a bundle may: (i) contain a single file (e.g., a photo-

graph), multiple files (such as small-sized engineering telemetry files), or a file segment

(possibly part of high-quality video); (ii) be of fixed size determined by application type or

network management procedures; (iii) be of variable size set by application, and contain-
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ing a coherent bundling of application data. Key DTN functionality is that each bundle

is kept in memory in its entirety, and is deleted upon receipt of acknowledgment for its

successful delivery to the next node on the path to the destination (see section 2.3.6).

Fragmentation allows smaller sized messages to be forwarded within smaller contact

duration’s. However, as mentioned in Section 2.4.3, splitting complicates routing be-

cause, in addition to determining the sizes of the fragments, corresponding paths for the

fragments also need to be determined, which is complicated in opportunistic networks.

Moreover, if the message fragmentation size is fixed then the actual size of the splits may

not be optimal to ‘fit’ within the contact duration.

When nodes move out of each other’s transmission range, data transfer is discontinued.

Thus, many messages which are ready for forwarding cannot be forwarded. Additionally,

if a message happens to be in transit during the disconnection, the transmission is dis-

rupted, which can result in an unsuccessful transmission. Therefore, insufficient contact

duration during opportunistic communications results in underutilized contact opportuni-

ties (i.e. wasted contact time and bandwidth), which limits the capacity of the network.

Furthermore, messages will stay longer in limited buffers, which may lead to message

lifetime (TTL) expiration. Such problems are exacerbated in highly mobile DTNs (e.g.

vehicular networks) that must handle large message sizes [17], [18].

To solve the above problem, we propose a novel framework called the sticky trans-

fer framework for maximizing node contacts for message transfers in DTNs . In the

proposed framework, to ‘stick’ means mobile devices remain within the communication
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range of each other longer than the contact duration that would be expected between

them without using the framework. By using the proposed sticky transfer scheme, nodes

can cooperatively increase the contact duration to improve the capacity of the network

by agreeing to brief, temporary modifications in their movement patterns. Nodes adjust

mobility at the instance of an encounter, and return to normal movement behaviors after

the encounter is over. Thus, by encouraging cooperative and voluntary mobility changes,

the sticky transfer mechanism can substantially improve network performance.

As part of the framework, we also propose a sticky transfer protocol which governs

how nodes engage and participate in sticky message transfers. The protocol allows nodes

to exchange information, upon encounter, and calculate a compatible mode and duration

for message exchanges. The agreement is made based on information gathered about

current network parameters and user preferences (discussed in section 3.3.2). Based on

this mutual decision, nodes may remain within the transmission range of each other until

message transfers are completed. The amount of messages that are transferred depends

on the underlying routing protocols message selection and forwarding strategy and the

agreed stick-time. Ideally, all the messages that the routing protocol decides to transfer.

In this chapter, we first state the definitions and assumptions, and then describe the

concept and components of the sticky message transfer framework and protocol. We also

explain how the proposed framework can be seamlessly integrated into the existing DTN

architecture.
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3.1 Definitions and Assumptions

The natural contact duration TC is the length of time during which two nodes are expected

to remain within the transmission range of each other, and can be estimated as follows.

Consider two nodes A and B that are in contact (i.e., within the transmission range W

of each other) and moving on a plane at angles of θA and θB (0 ≤ θA, θB ≤ 2π), and

at speeds of vA and vB (vA, vB > 0), respectively. Let (xA, yA) and (xB , yB) be the

coordinates of A and B, respectively. By projecting the speeds and directions of the two

nodes along their movements, the natural contact duration TC of the two nodes can be

estimated to be:

TC =
−(ab+ cd) +

√

(a2 + c2)W 2 − (ad− bc)2

a2 + c2
(3.1)

where a = vA cos θA − vB cos θB, b = xA − xB, c = vAsinθ − vBsinθB, and d = yA − yB.

This estimated value is the expected contact duration between the two nodes. Note that

when vA = vB and θA = θB , TC approaches ∞. That is, A and B will always stick to

each other.

We make the following assumptions regarding Equation 3.1:

− We assume that every node is equipped with a GPS, which helps to determine it’s

speed and direction of movement.

− All nodes have the same transmission range, W . This can easily be modified to include

nodes with heterogeneous transmission ranges [40].
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− A node is in the transmission range of only one node. If at time t0, A comes into the

transmission range of B and moves away from B at time t1, then TC(A,B) = t1 − t0.

If multiple nodes are in the transmission range of each other, we assume the mutual

encounter sequence comes naturally from the order in which a nodes receives beacon

messages [80] from other nodes. For example, if at time t0, A comes into the transmission

range of B and C and receives B’s beacon message first, A will finish sticky transfers

with B first and then begin sticky transfers with C (assuming that C has not already

moved away). Assuming that at time t1, A moves away from the transmission range of

B and C, then TC(A,B) + TC(A,C) = t1 − t0. However, if C has already moved out of

range while A is transferring messages to B then TC(A,C) = 0.

On the other hand, the time required for A to complete transferring all messages

scheduled by the routing protocol to B is the required transfer duration TR. Let R be

the transmission rate of the nodes. (The calculation can easily be extended to nodes

transmitting at different rates). If node A has p messages to send to node B, B has q

messages to send to A, and Mi denotes the size of message i, then the required transfer

duration between A and B is

TR =

p
∑

k=1

Mk +
q
∑

l=1

Ml

R
(3.2)

Assuming that the message transfer starts immediately after nodes encounter each

other, if TC(A,B) < TR(A,B) then message aborts are probable and not all of the
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Figure 3.2: Extending the contact duration

messages that A wants to forward to B can be transferred within the estimated contact

time.

We envision the sticky transfer protocol to be a part of the bundle layer (see Sec-

tion 2.3.2.4), and hence any lower layer technology for each layer in the protocol stack

can be implemented. For example,

− At the MAC layer, any MACAW (Multiple Access with Collision Avoidance for Wire-

less) [77] protocol, such as IEEE 802.11 RTS/CTS, could be used to cope with collisions

and hidden/exposed terminal problems.

− At the transport layer, we can assume a point-to-point reliability protocol such as

Saratoga [81], [82]. Saratoga is a UDP-based protocol, supporting a Selective Negative

Acknowledgment (SNACK) with holes-to-fill strategy [81] for reliable retransmissions.

Additionally, for reliable transfer, data packets are sent using UDP with checksums turned

on.

− 802.11b, or 802.11g can be used at the physical layer.
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3.2 The Concept of Sticky Message Transfers

To maximize the use of valuable contact opportunities, the sticky transfer mechanism

allows nodes to come to a mutual agreement on the time during which they will remain

in each other’s communication range. Once all message transfers are complete, nodes may

“unstick” and resume their natural mobility patterns. Assuming that TC is the natural

but insufficient contact duration for the message transfer, the additional time the nodes

should remain in contact beyond the natural contact duration is δ = TR − TC , where

TR = M/R and M is the total size of all the messages to be transferred between the two

nodes (Fig. 3.2). We call δ the stick duration, which is calculated by nodes using the

sticky transfer protocol described later on in section 3.5.

We expect this mechanism to improve the performance of the network in two ways.

First, sticky transfers will be able to deliver messages faster in the network, hence

minimize the end-to-end delay. For example, if a routing protocol wants to forward K

copies of a message to different nodes in order to improve delivery, the sticky transfer

mechanism ensures that the K copies are forwarded faster; in fact, they will be forwarded

during the first K contacts with encountered nodes. This leads to lower latencies and

higher delivery ratios, which improves network performance.

Second, sticky transfers will minimize the number of message aborts, improving mes-

sage delivery ratio and network resource utilization, as it allows the atomic transfer of

messages.

The sticky transfer scheme is optional. Any user may opt-in or opt-out from exchanges
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using the sticky transfer protocol at any time. Several applications exist where sticky

transfers can be used to improve performance: (1) robots in a region survey application

may be programmed to stick with each other for a certain stick time to improve message

transfers, (2) emergency response team members could be asked to stop or follow each

other for a while to improve the network performance, or (3) people may be asked to

stick with each other to help in a socially-aware forwarding protocol, thus helping with

data delivery in their community.

3.3 The Proposed Sticky Transfer Framework

The sticky transfer framework consists of three components: sticky modes, user prefer-

ences, and compatibility lists. Sticky modes are modes of operation defining users agree-

ment to modify their natural movement. A user preference consists of an ordered list of

acceptable sticky modes. Modes set as preferences represent how the users would respond

to a sticky transfer request. A compatibility list, stored on each device/node/user, de-

fines if two modes chosen by two encountered nodes allow for the engagement in a sticky

transfer. A schematic of the framework is shown in Fig 3.3. We discuss each of these

components as follows.

3.3.1 Sticky Modes

Two neighbor nodes can “stick” to each other by reducing their relative speed so that they

remain within the transmission range of each other for the required transfer duration. The
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Figure 3.3: The sticky transfer framework

relative speed of the two nodes can be reduced by changing the speed and/or movement

direction of one or both nodes. We define five sticky modes: Stop, Follow me, Follow

you, Slow down and No stick.

The Stop (STP) mode is implemented by changing the relative speed of two nodes

to zero. One way to achieve this is to change both of the nodes velocity to zero, i.e.,

stopping the nodes. Another way of achieving zero relative speed is to allow the two

nodes to move at the same speed as the other in the same direction, i.e., one node follows

the other node. The mode of the node which is followed by the other node is called Follow

me (FLW1) mode. The mode of a node that adjusts its speed and direction to the other

node’s speed and direction in order to follow it is called Follow you (FLW2). When a

node reduces its speed to match that of a slower moving node, its mode is called Slow

down (SLW). Finally, a node may not agree to stick for message transfers. This mode is

called No Stick (NO STK).
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Users (e.g., network administrators) can set one or more sticky modes in mobile

nodes (e.g., sensors or robots), which make decisions based on the pre-defined modes

and collected information (e.g., mobility speeds, movement directions, buffer sizes, and

message sizes).

3.3.2 User Preferences

When setting sticky modes in mobile nodes, a user (e.g., network administrator) may not

be able to select some of the modes at all. For example, a robot performing region surveys

may not be able to use FLW2 mode due to its fixed route and schedule, but it may be

able to use SLW mode for a very short duration. On the other hand, emergency response

team members in a disaster stricken area may choose to accommodate all modes and set

a low priority for NO STK mode to ensure the highest level of cooperation among team

members. We assume that nodes will have sticky mode preferences set according to the

application before engaging in a mission.

A user preference consists of an ordered list of acceptable sticky modes. The order

defines the priority of user preferences, with higher priority modes coming first in the list.

In the framework (Fig. 3.3), users A and B have input and stored their preferred sticky

modes (i.e. SM1, SM2 , and so on). When setting preferences, some nodes may not be

able to select some of the stick modes at all. For example, a robot performing region

surveys may not be able to use FLW2 mode due to its fixed route and schedule but it

may be able to use SLW mode for a very short duration. On the other hand, emergency
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Table 3.1: Sticky mode compatibility

SMA

SMB

STP SLW FLW1 FLW2

Stop (STP)
√ √ × √

Slow down (SLW)
√ √ √

/× √

Follow me (FLW1) × √
/× × √

/×

Follow you (FLW2)
√ √ √

/× ×

response team members in a disaster stricken area may prefer all modes and set a low

priority for NO STK, to ensure cooperative rescue operations. We assume that nodes

will have sticky preferences set according to applications before engaging in any mission.

3.3.3 Compatibility List

Among the five sticky modes defined above, modes may or may not be compatible de-

pending on the speeds and movement directions of the nodes involved in the negotiation.

Sticky transfers are technically possible when nodes have compatible modes that allow

for the mobility of each to mutually extend the contact. Two modes may or may not be

compatible based on their speed limitations and movement direction. For example, when

A’s mode allows SLW and B’s mode allows FLW1 then they are compatible if B’s speed

is slower than A’s speed. They are not compatible if B’s speed is faster than A’s speed

or both are not moving in the same direction.
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For this reason, we construct a table that determines the compatibility between any

two sticky modes (Table 3.1). In the table,
√

indicates mode compatibility, × indicates

incompatibility and
√
/× indicates the modes may sometimes not be compatible due

to user limitations. When implementing the framework, each node has a copy of the

compatibility table. Among compatible modes, the most preferred modes are used during

the sticky transfer. If compatible modes cannot be found, then sticky transfers are not

possible and the nodes will exchange messages in the normal transfer mode, possibly with

limited contact time.

3.4 The Sticky Transfer Framework within the DTN Overlay Architec-

ture

The DTN architecture (section 2.3) was designed as an overlay to accommodate not

only network connection disruption, but also to provide a framework for dealing with

heterogeneity [28]. In Fig. 3.4 we show a conceptual overview of the sticky transfer

Figure 3.4: Sticky transfer framework integration in the DTN architecture
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protocol and components integrated in a layered DTN architecture. The overlay spans

several planes where the sticky transfer module resides in the management plane along

with the DTN routing module. As DTN can use a multitude of different delivery protocols

including TCP/IP, raw Ethernet, serial lines, or hand-carried storage drives for delivery,

the convergence layer provides the functions necessary to carry DTN protocol data units

(PDUs) on each of the corresponding protocols at lower layers. The bundle protocol

(BPL) is the central component in the overlay; it requires detailed information of the

state of the system upon which to base routing decisions [29]. The management plane

handles providing such information to the BPL. The sticky transfer module interacts

with the routing module and adds components to existing routing management features to

implement sticky forwarding decisions. The sticky control database contains compatibility

information which is used by the control management system to calculate sticky modes.

The sticky control management system communicates sticky transfer decisions to physical

movement systems; such as - to the motion sensors on an environmental monitoring

robot/vehicle. Essentially, when sticky transfer is combined with a specific DTN routing

protocol, the overall network performance will depend on the performance of the routing

protocol and the benefit of sticky transfers.

In the following section we describe the sticky message transfer protocol in detail.
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3.5 The Proposed Sticky Transfer Protocol

We assume nodes have user preferences P and status information I consisting of move-

ment vectors V (i.e., speed, direction, and current location), transmission range W , trans-

mission rate R, free buffer size Buf , and message vectors µ (i.e., containing the message

size and ID). Here, V = {vj , θj , (xj , yj)} and µ = {(µ1, id1), (µ2, id2), (µ3, id3), . . . , (µk, idk)},

j = 1, . . . , n and k = 1, . . . ,m, where n is the number of nodes in the network and m

is the number of messages to be transferred from node j. The set of messages in µ is

decided for node j by the routing protocol strategy [8–10]. Suppose that nodes A and

B have just come into each other’s transmission range and have a number of messages

to exchange. Fig. 3.5 shows the protocol sequence diagram for the sticky transfer of

messages, assuming A sends the request first.

First, A sends a sticky transfer request to B along with its status information IA and

user preferences PA. Sticky requests can be included in the beacon messages to reduce

Figure 3.5: The sticky transfer protocol sequence diagram
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the number of messages exchanged.

After receiving the stick request from A, B first calculates the expected contact duration

TC between A and B using Eq. 3.1, the status information in IA and its own status

information IB. B then determines the messages it needs from A by removing from µA

the messages B already received. B then records the IDs of the messages it needs from

A in a ‘receive’ vector Mr. B could remove some messages from Mr if it does not have

enough buffer for all messages in Mr. Next, if B has messages to send to A from its own

message vector µB , it will use A’s free buffer space information BufA to determine the

messages it wants to send to A without overflowing A’s buffer and records their IDs in

a ‘send’ vector Ms. B then calculates an upper bound on the required transfer duration

TR using the total size of the messages recorded in Mr and Ms, the transmission rate

and Eq. 3.2. B can compare TC and TR to determine if the natural contact duration is

sufficient. B also determines if a compatible stick mode exists between A and B using

user preferences PA and PB .

If TC is sufficient for completing the message exchange, sticky transfers are not necessary.

B will notify A through a reply with the stick mode SM set to NO STK and stick

duration δ = 0. B would also send a NO STK message to A if A’s and B’s sticky

preferences are not compatible. On the other hand, if compatible sticky modes exist

between them and sticky transfers are necessary (i.e., TC < TR), B will update its own

sticky mode (e.g., Follow you) and record the mode it expects A to use in a variable

SMA. B then sends an OK message to A, which contains the following information:
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message vectors µB, Mr and Ms, stick duration δ, status information IB , and stick mode

SMA.

A receives the OK message from B and sets its stick mode as defined in SMA. Next it

updates vector Ms by removing from Ms the messages it had received. A then sends to

B the data messages B has indicated in vector Mr. A also sends the updated vector Ms

to B by piggybacking Ms onto some of the data messages.

After receiving Mr and the updated vector Ms, B will send messages indicated in Ms

to A to complete the transfer. After completing the message transfers, the nodes will

resume their natural movements.

Since the estimation of the required transfer time may be slightly lower than necessary

or nodes may opt-out from the stick transfer agreement, a limited number of aborts are

still possible. As previously mentioned in section 3.1, during sticky transfers if there are

in fact multiple nodes in range, the requester (e.g., A) selects one particular sequence of

mutual encounters. This sequence may come naturally from the order in which A hears

the advertisement messages of other nodes.

3.6 Setting the Speed in Sticky Modes

To complete message transfers, as described in section 3.1, it is necessary to extend the

natural contact duration, TC when it is smaller than the required transfer duration, TR.

This extension can be achieved by reducing the relative speed of the two encountered
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nodes. Let the initial relative speed of the two nodes be v1 and the required relative

speed of the two nodes for completing the transfer be v2 (Figure 3.6). If the relative

distance traveled by the two nodes before going out of contact is d, then

v2 =
d

M/R
(3.3)

Figure 3.6: Relative speed in the sticky transfer framework

Here, M is the message size and R is the transmission rate. If they are going in the

same direction the required relative speed can be achieved by either increasing the speed

of the slower node or by reducing the speed of the faster moving node. But if they are

going in opposite directions, this can be achieved by slowing down one or both nodes.

Also, extension of the contact duration can be achieved by reducing the relative speed of

the two nodes to zero, i.e., stopping them or by one node following the other at matching

velocities. In that case, the time T2 for which they should stop or follow will be

T2 =
M

R
− d

v1
(3.4)
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3.7 Performance Limitations of Sticky Transfers

Nodes using the sticky transfer protocol may experience transitory changes to their nat-

ural movement in order to successfully engage in the sticky transfer of messages. An

effect on the network performance, which depends on node mobility, is expected when

sticky transfer is used, as mobility itself is know to increase the capacity wireless ad hoc

networks [79]. Generally in DTN, both the end-to-end delay and delivery ratio can be

improved by reducing pair-wise inter-contact times. A shorter inter-contact time means

getting a forwarding opportunity faster, which results in less delivery delay. Sticky trans-

fer is achieved by reducing nodes movement speed which may increase the inter-contact

time in the network. Thus, if sticky transfers are used persistently (e.g., all nodes engage

in sticky transfers with a high probability) in highly loaded network conditions, the effec-

tiveness of sticky transfers may be reduced due to lower mobility (i.e., nodes stopping for

long periods to finish their exchanges). Lower mobility can also be detrimental from the

point of view of the mission. For example, it may take longer for the robots to map an

area, or it takes longer for the first responders to do their job). Finally, sticky transfers

may lead to incessant buffer overflows when the network load is very high and the routing

protocols make many copies (see section 2.4.8.2) of each message.

3.8 Chapter Summary

In this chapter we presented our proposed sticky transfer framework by stating definitions

and assumptions, and then describing the concept and components of the sticky transfer
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framework. We then also described the proposed sticky transfer protocol that governs the

exchange of messages within the framework. We explained how the proposed framework

can be seamlessly integrated into the existing DTN architecture. We also discussed how

the sticky transfer framework may impose limitations on the the performance of the DTN

network due to its assumption of modified mobility behavior.

In Chapter 4, we will present simulation results to demonstrate the effectiveness and

performance of the proposed sticky transfer framework.
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Chapter 4

Performance Evaluation

In this chapter, we provide performance evaluations of the sticky transfer framework us-

ing the Opportunistic Network (ONE) simulator, a simulation environment capable of

routing messages between nodes using various DTN routing algorithms and sender/re-

ceiver types [30]. We compare the performance of DTN routing protocols with and

without sticky transfers. In particular, we evaluate the performance gain resulting from

the sticky transfer mechanism with the following DTN routing protocols: Epidemic [8];

Spray-and-Wait (SnW) [10]; and PRoPHET [9].

In our simulations, we assume that a node agrees to a sticky transfer request with

a probability value of SP (stick probability), where 0 ≤ SP ≤ 1. A value of SP =

0, 0.5, and, 1 indicates that a node does not agree, agrees to 50% of the requests, or

always agrees to sticky transfer requests, respectively. Our study mainly observes the

trade-offs of various SP values on parameters such as delivery reliability, traffic overhead,

and memory utilization. The SP of a node does not change during the duration of a
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simulation run. Also, we assume that all nodes in the network will have the same stick

probability. In future work, we will develop algorithms to enable nodes to determine the

optimal stick probability when receiving a stick request based on the collected information

(e.g., mobility speed, direction, and message sizes) and network conditions (e.g., network

density).

We implement the “STOP” (STP ) mode as the mode for sticky agreements from

the possible sticky transfer modes described in Section 3.3.1. The implementation choice

is based on the observation that the “STOP” mode has the most inhibiting effect on

the natural mobility of nodes, as not only the relative but also the actual speed of the

two nodes agreeing to participate in the sticky transfer becomes 0 m/s. They must

momentarily stop on their natural movement path(s) until sticky transfers are completed.

Implementation of the “STOP” mode will provide a worst-case scenario analysis of the

effect of our proposed sticky transfer framework. When using alternative modes such

as “FOLLOW” and “SLOW DOWN” (SLW ) only the relative speeds of both nodes

become 0 m/s. Nodes participating in the sticky transfer do not have to stop moving.

An alteration (i.e. change in direction) on one or both of the nodes natural movement

paths might be required. For example when participating in the sticky transfer with the

mode set to “FOLLOW”, the node using the “FOLLOW ME” (FLW1) mode may not

have to change the direction of its natural movement path, but only adjust its speed to

accommodate and enable the other node to follow it. The node using the “FOLLOW

YOU” (FLW2) mode might have to change both direction and speed to enable the
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sticky transfer to be successful. In a realistic case, this may happen when one node’s

(node in “FOLLOW ME” mode) message has a higher delivery priority than that of

other nodes in the network and delivering that package may be critical for the mission.

Hence, other nodes will have incentive to engage in the “FOLLOW YOU” mode. Nodes

engaging in sticky transfers in the “SLOW DOWN” (SLW ) mode will also have a greater

advantage than nodes engaging in sticky transfers in the “STOP” mode, as they only need

to move at a relative speed of 0 m/s and do not require a change in direction of their

natural movement path. These observations leads us to believe that implementation of

the “STOP” (STP ) mode will be the most effective for observing the lower-bound of

sticky transfer performance. The implement and comparison of other sticky modes are

part of our future work.

In our implementation of the sticky transfer protocol (see Section 3.5), we ignore

the time for calculating the stick mode agreement at nodes during the initiation of the

protocol as this overhead is negligible compared to the overall message transfer time,

which depends on the wireless transmission capabilities of nodes.

4.1 Performance Metrics

As discussed in Section 2.4.8.2, replication-based DTN routing protocols such as Epidemic

[8] and PRoPHET [9] forward multiple copies of a message to increases the probability

of message delivery to the destination. Replication-based routing is also know as multi-

copy forwarding, or flooding. In this process, a source node generates multiple copies of a
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message m in its buffers and forwards them to nodes/contacts that have not yet ‘seen’ (i.e.

received) m. The specific number of copies depend on each individual routing protocol

strategy. Flooding-based routing guarantees a higher delivery probability compared to

other DTN routing strategies at the expense of higher energy consumption and lower

scalability. We design/select performance metrics with multi-copy message forwarding in

mind and take into account the multiple copies of messages in our analysis.

We use the following performance metrics to evaluate the effectiveness of the proposed

framework.

Average message delivery ratio. The message delivery ratio of a destination d is the

ratio of the number of unique messages for d generated by its source(s) and successfully

received by d to the total number of unique messages created. The average message

delivery ratio is the average of the delivery ratios of all the destinations in the network.

Average end-to-end delay. The end-to-end delay of every message successfully received

at every destination is recorded. Once the copy of a particular message is received at the

final destination, subsequent copies are disregarded. The average over all the messages

received is then computed.

Average buffer time. The buffer time for a message m is the interval between the time

the message is saved in the buffer at a node to the time it is removed from the buffer

of that node. Essentially, it is the time the message was queued in the node’s buffer.

The average buffer time is the average taken over all messages stored at every node in
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the network. 1 Average buffer time significantly impacts performance as: (a) it is an

indicator of how fast messages are being forwarded at nodes, and thus are propagating

through the network, as longer buffer time leads to longer end-to-end delays; and (b)

the longer messages are stored in buffers the more buffer overflows will occur, leading

to higher loss rates.

Average overhead ratio. The overhead ratio is defined as follows:

H − hd
hd

(4.1)

where H is the number of hops a message m and all copies of mtraverse in the network

before a copy is successfully delivered to the intended recipient, and hd is the number

of hops the delivered message (or its copy) had traversed before reaching the final des-

tination. It represents the quantity of excessive relays required to deliver the message

and quantifies the bandwidth and energy consumption of the routing protocol. The

average overhead ratio is the total number of transmissions required over all messages

successfully delivered to their destinations.

Average number of disrupted transmissions. A successful message transfer from one hop

(sender) to another (receiver) entails that a message is transmitted in its entirety (all

bits) from the senders queue and all bits of the message are received at the receivers

1Note that messages may be removed from nodes either because the message was relayed to the next
encountered node or it was dropped from the current node due to buffer overflow. Hence, the average
buffer time can be higher than the average end-to-end delay, as end-to-end delay considers successfully
delivered messages only.
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queue (explained in section 2.5.1). Some messages may be received at the destination

with bit errors, which are not counted as disrupted messages. Unsuccessful/disrupted

transmissions in our DTN network environment can be caused by nodes moving out of

the transmission range of each other in the middle of message transfers, or by packet

collisions. Obviously, these cases can not be avoided. The number of disrupted trans-

missions is an implicit measure of the wasted bandwidth in the network. The average

number of disrupted message transmissions is the sum of the number disrupted trans-

missions observed by each sender over the total number of nodes in the network.

Average number of contact opportunities per hour. We define a ‘contact opportunity’

as two nodes coming within the wireless transmission range of each other, presenting

an opportunity to transfer messages. The average number of contact opportunities per

hour is the total number of contact opportunities for the duration of a simulation run

divided by the total simulated time (in hours). To be counted as a contact opportunity,

nodes do not necessarily have to use that contact opportunity to transfer messages. The

number of contact opportunities in the network is important, particularity for DTN’s

where the routing strategy is multi-copy forwarding because more contact opportunities

increase the delivery probability by providing the opportunity to spread more message

copies in the network.

Average stick time. We define ‘stick time’ as the time after two nodes come within the

wireless communication range of each other, and use the contact opportunity to engage

in message transfers using one of the sticky transfer modes. This is measured at each
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node by the δ-value introduced in section 3.2. The average stick time is the sum of

the stick time of pair-wise contacts during each simulation run over the total number of

pair-wise contact opportunities used for sticky transfers in that simulation run. In our

results, we represent the stick time as a percentage of the total simulation time for one

run. For example, lets assume the stick time was measured as 3,000 simulated seconds.

The stick time in this case would be represented as 10% given the total time for each

experiment run was 30,000 simulated seconds.

4.2 Simulation Parameters

We choose a map of the Helsinki downtown area of size 4500 m x 3400 m as our network

area. Mobile nodes move according to the Shortest Path Map Based Movement model [37]

[38]. Nodes randomly choose next locations from eleven disconnected points of interest

(POIs). POIs are places on the map used to model office buildings, tourist attractions,

shops, restaurants and parks. Nodes move to selected POIs with random speeds between

1 m/s to 25 m/s and pause for a period with a value randomly distributed between 1

second and 50 seconds before selecting the next POI. We use 5 to 30 mobile nodes in the

network. In the graphs, we refer to nodes as hosts or mobile hosts (MH).

We consider a uniform traffic model where all mobile nodes have data to send to

destinations selected randomly. Each simulation runs for 30,000 seconds in simulated

time. Messages are generated on average every 5 seconds after a warm-up period of 1,000

seconds. Sources stop generating messages after 21,000 seconds to allow for all message
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Table 4.1: Default simulation parameters

Parameter Value

Network size (map area) 20 mobile nodes in 4500m x 3400m

Points of interest (POI’s) 11

Movement model Shortest Path Map Based Movement [31]

Pause time at POI’s random between 1 to 50 seconds

Movement speed Total of 20 nodes

4 nodes (pedestrians): 1.25 - 1.53 m/s

6 nodes (cyclist): 2.5 - 8.33 m/s

10 nodes (cars): 20 - 25 m/s

Traffic model at sources 0.2 messages/second

Message generation rate 5 seconds on average

Simulation time 30,000 seconds of simulated time

Message generation start time at 1,000 simulated seconds

Message generation stop time at 21,000 simulated seconds

Message size 100 Kbytes ; 20 Mbytes

Time-to-live (TTL) of messages 8

Buffer size of nodes 1GB

Transmission range 100 meters

Transmission rate 11 Mbps (modeling IEEE 802.11b)

54 Mbps (modeling IEEE 802.11g)

DTN routing protocols Epidemic [8]

PRoPHET [9]

Spray-and-Wait [10]

Number of runs per data point 10
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copies already generated in the network a chance to propagate and be distributed fairly

compared to messages previously generated. The average message generation rate in the

network is 0.2 messages/second, as messages are generated randomly at the ith second of

every 5 second generation interval.

Message sizes vary between 0.1 Mbytes to 30 Mbytes with infinite lifetime (TTL)

values. These sizes cover different types of messages such as text, photos, or short videos.

The sticky transfer mechanism is expected to show its effectiveness especially for larger

message sizes, which are desirable in DTNs. Given the same amount of data to be

sent, larger messages mean less data units to be transmitted, and thus lower overhead

incurred by data unit headers at different layers of the TCP/IP protocol stack. The buffer

size of each mobile node is 1 GB. The transmission range of nodes are 100 meters with

transmission rates of 11 Mbps (modeling IEEE 802.11b) and 54 Mbps (modeling IEEE

802.11g).

Table 4.1 summarizes the simulation settings; the default values are used unless oth-

erwise stated. Under these settings, we will evaluate the performance of the sticky

transfer mechanism with the following routing protocols: Epidemic [8]; Spray-and-Wait

(SnW) [10]; and PRoPHET [9].

In the Spray-and-Wait [10] protocol, the source of a message initially starts replication

with K copies of the message. When any node with K>1 message copies (source or relay)

encounters another node with no copies of the message, it transfers ⌊K/2⌋ copies to the

other node and keeps ⌈K/2⌉ copies for itself. When a node is left with only one copy,
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Table 4.2: Parameter settings for experiments

Function of Parameter Value

Different Transmission Rates Transmission rate 11 Mbps ; 54 Mbps
Message size 100 KB ; 20 MB
No. of nodes 20
Movement speed default (Table 4.1)
TTL 8

Different Node Densities Transmission rate 11 Mbps
Message size 20 MB
No. of nodes 30 ; 50
Movement speed 30 nodes: 4 pedestrians, 6 cy-

clist, 20 cars (Table 4.1)

30 nodes: 10 pedestrians, 10

cyclist, 30 cars (Table 4.1)
TTL 8

Different Node Mobility Speeds Transmission rate 11 Mbps
Message size 20 MB
No. of nodes 20
Movement speed 5 m/s ; 20 m/s
TTL 8

Different TTL Values Transmission rate 11 Mbps
Message size 20 MB
No. of nodes 20
Movement speed default (Table 4.1)
TTL 1 simulated hour

5 simulated hours

Different Message Sizes Transmission rate 54 Mbps
Message size 5 MB ; 30 MB
No. of nodes 20
Movement speed default (Table 4.1)
TTL 8

Supporting Message Sizes Transmission rate 54 Mbps
Message size 100 KB, 5 MB, 20 MB, 30 MB
No. of nodes 20
Movement speed default (Table 4.1)
TTL 8

Routing protocol Spray-and-Wait
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it waits to meet the destination and directly delivers the message upon encounter. The

performance of Spray-and-Wait depends largely on the number of initial copies, K at

the source. In our experiments we implement SnW in binary mode (see section 2.4.8.2)

with K=4. The K value for SnW was chosen after reviewing existing literature on the

protocol and observing standard values from simulations performed in the DTN research

community.

Each simulation was run 10 times. Each data point plotted on graphs is an average

value over 10 runs.

We conducted a total of five sets of experiments to provide in-depth insight into the

performance of the sticky transfer mechanism. We performed the experiments on three

DTN routing protocols: Epidemic, ProPHET, and SnW. In each experiment we varied

the stick probability (SP) and one of the following parameters:

• Transmission rate at the physical layer [Section 4.3.1]: The first set of experiments

was performed by varying the transmission rates of nodes on both small and large

message sizes. We measured several performance metrics for this experiment set

mentioned in Section 4.1. The results depict the performance of the sticky transfer

mechanism under networks that support different transmission rates at the physical

layer.

• Node density [Section 4.3.2]: The second set of experiments was performed by vary-

ing the number of nodes in the network area. We measured two performance metrics

for this experiment set: (i) the average message delivery ratio, and (ii) the average
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end-to-end delay. In this experiment set, we show the performance of the sticky

transfer mechanism with varying node densities at 5 mobile hosts(MH) to represent

a low density network and 30 mobile hosts(MH) to represent a higher density. The

transmission rate of nodes is 11Mbps and the message size is 20MB. We measure

two performance metrics: average delivery ratio and average end-to-end delay.

• Node speed [Section 4.3.3]: The third set of experiments was performed by varying

the speed of nodes in the network. We measured two performance metrics for this

experiment set: (i) the average message delivery ratio, and (ii) the average end-to-

end delay. In this experiment set, we present results for 5m/s and 20m/s node speeds

with varying stick probabilities for 20MB message sizes with nodes transmitting

messages at 11Mbps. In order to observe the performance improvement with sticky

transfers for different node movement speeds, we set the same speed for all 20 nodes

per experiment, as opposed to the default simulation setting in table 4.1.

• Time-to-live (TTL) value [Section 4.3.4]: The fourth set of experiments was per-

formed by varying the TTL value of messages in the network. We measured two

performance metrics for this experiment set: (i) the average message delivery ratio,

and (ii) the average end-to-end delay. We run experiments for 20MB message sizes

at 11Mbps transmission rates on two time-to-live (TTL) values for messages: 1 hour

and 5 hours, respectively,

• Message size [Section 4.3.5]: The fifth set of experiments was performed by varying
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the size of the messages generated in the network. We measured two performance

metrics for this experiment set: (i) the average message delivery ratio, and (ii)

the average end-to-end delay. We show the performance improvement using sticky

transfers varying the message size at 5MB and 30MB message sizes. In each exper-

iment 20 nodes are in the network transmitting messages at 54Mbps. We choose

a higher transmission rate for this set of experiments as it involves larger message

sizes. By having a faster transmission rate we could reduce the simulated time

required to run the experiments, yet still observe the effect of the sticky transfer

protocol.

We summarize the set of parameters used in the five experiments in Table 4.2. Note

that the sixth column in the table, ‘supporting message sizes’, is an accumulated analysis

from previous experiments and did not require new simulation runs.

4.3 Simulation Results and Analysis

We present simulation results in Fig 4.1 to Fig 4.12.

When analyzing simulation results we note the following:

• due to the nature of the protocol design (i.e., message dissemination strategy),

the Spray-and-Wait (SnW) protocol incurs lower network traffic than the Epidemic

and PRoPHET protocols, as the number of copies of a message that can exist in

the network is limited by the K parameter in SnW. In PRoPHET and Epidemic,

in worst-case scenarios, it is theoretically possible for each node to be carrying a
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copy of every message generated in the network, leading the number of copies of a

message m to be equal to the number of nodes N in the network.

• traffic in the network impacted by the message forwarding strategy of the rout-

ing protocol. For example, the Epidemic protocol incurs higher loads than the

PRoPHET or Spray-and-Wait protocol as it is a flooding protocol and copies of

messages are forwarded to every encountered node.

4.3.1 Different Transmission Rates

In the first set of results we measure the performance of the sticky transfer protocol using

two different transmission rates at the physical layer: 11 Mbps and 54 Mbps. The results

presented in this section show the effect of using the sticky transfer protocol for delivering

messages in the network considering several performance metrics as defined in section 4.1

and presented as follows:

4.3.1.1 Average Message Delivery Ratio

Fig. 4.1 presents the delivery ratio as a function of the stick probability (SP). The graph in

Fig. 4.1(a) depicts the performance of the average message delivery ratio with a message

size of 20 MBytes and messages being transmitted at 11 Mbps and 54 Mbps transmission

rates, respectively.

At 54 Mbps, a high delivery ratio was achieved even without sticky transfers due

to the shorter transfer time of messages. Gradually increasing SP values increased the
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Figure 4.1: Average Delivery Ratio as a function of Stick Probability.

delivery ratio of SnW up to 6% but did not significantly increase the delivery ratio of

flooding based protocols (Epidemic, PRoPHET) because of buffer overflows.

At 11 Mbps, the delivery ratio increased up to 38% with increasing SP values as more

messages could be exchanged upon encounters due to mobile hosts’ increasing willingness

to stick for transfers.

At the lower transmission rate (11 Mbps) when buffers were not a limitation, the

maximum delivery ratio was achieved at SP=1.0 in SnW. However, in Epidemic and

PRoPHET, the maximum delivery ratio was achieved at a SP value around 0.9. In these

two algorithms, the delivery ratio decreased as SP increased from 0.9 to 1 because nodes

always agreed to stick for message transfers (i.e., the stop mode), which reduced the node

movement. The above difference is due to the fact that SnW forwards fewer copies of a

message than the Epidemic and PRoPHET protocols.
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The graph in Fig. 4.1(b) depicts the performance of the average message delivery ratio

for smaller message sizes (e.g., 100KB). On average, a 100% delivery ratio was achieved

in all three protocols even without the sticky transfer mechanism (i.e. at SP=0) at both

transmission rates due to the smaller size of messages and sufficient contact opportunities

(see Fig. 4.6(b)).

In summary, the benefit of sticky transfers is clearly evident in scenarios with larger

message sizes and lower transmission rates, which indicates that DTN networks with

these characteristics can benefit from sticky transfers.

4.3.1.2 Average End-to-End Delay
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Figure 4.2: Average End-to-End Delay as a function of Stick Probability.

Fig. 4.2 presents the average end-to-end delay of messages as a function of the stick

probability (SP). In general, the end-to-end delay decreased gradually with increasing
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SP. Fig. 4.2(a) shows the end-to-end delay with increasing stick probabilities for 20 MB

message sizes. The reduction of the delay using sticky transfers was significant especially

at the lower transfer rate of 11 Mbps. A maximum of up to 25% and up to 36% reduc-

tion in the end-to-end delay was observed at 54 Mbps and 11 Mbps, respectively. As

expected, the delays for 54 Mbps were much lower than those for 11Mbps due to the

higher transmission rate.

Fig. 4.2(b) shows the end-to-end delay with increasing stick probabilities for 100 KB

message sizes. The improvement on the delay performance was about 10% overall be-

cause in most cases sticky transfers was not used due to the nature of contact duration’s

available. However, this does show that increasing the stick probability despite the de-

livery ratio being almost 100% (see Fig. 4.1(b)) for all stick probabilities did improve the

end-to-end delay of those delivered messages. Note that the delay is minimum around

SP=0.9, instead of at SP=1.0 as would be expected, for flooding based protocols (e.g.,

Epidemic) because persistent stick restricts movement in high loads.

4.3.1.3 Average Buffer Time

Fig. 4.3 shows the average amount of time messages spend in node buffers before being

forwarded to the next node. In Fig. 4.3(a), as the SP was gradually increased, the

average buffer time of messages decreased (by 38%) compared to the no-stick transfer

case (SP=0). With increasing SP values, messages spent less time in buffers and message

copies were forwarded faster in the network, thus reducing delay significantly. The average
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Figure 4.3: Average Buffer Time as a function of Stick Probability.

time spent in buffers is lower for 54 Mbps than 11 Mbps due to faster transmission rates.

In both cases at higher SP values (0.9 and 1.0), SnW has a higher average buffer time

as it goes into the direct delivery (i.e., waiting) mode once all its copies are forwarded;

thus messages remained longer in node buffers just prior to the final delivery. Also, for

Epidemic and PRoPHET, we can expect that more message drops occurred.

A similar trend was observed for the three routing protocols at a transmission rate

of 11 Mbps for smaller messages sizes of 100KB as shown in Fig. 4.3(b). However, we

observe in this graph that at the faster transmission rate of 54 Mbps, the buffer occupancy

time is negligible across all SP values. This is of course due to the smaller messages

along with faster transmission speeds and nodes having sufficient contact durations upon

encounters. Also comparing Fig. 4.3(a) and Fig. 4.3(b), we can see that the average time

messages spent in buffers was much less for messages sizes of 100KB compared to the

139



larger messages of 20MB overall.

4.3.1.4 Average Overhead Ratio
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Figure 4.4: Average Overhead Ratio as a function of Stick Probability.

Fig. 4.4 shows the average overhead ratio which signifies the number of ‘extra’ (ad-

ditional) hops a messages requires for end-to-end delivery. We consider direct delivery

as a 0-hop delivery. Direct delivery is when the source itself meets the destination and

forwarding to an intermediate node is not necessary. When there is one intermediate

node (relay) involved in the end-to-end delivery, we consider it a 1-hop delivery. Direct

or 0-hop delivery is considered the ideal case. Any additional hop after a 0-hop delivery

is considered as overhead. Hence, if the message required 2 relays to be delivered, the

overhead is 2. As mentioned in section 4.1, the overhead ratio quantifies the bandwidth

and energy consumption of the routing protocol.
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In Fig. 4.4(a), for Epidemic and PRoPHET, each time nodes encounter each other,

copies of messages are forwarded in the network until any one of the copies reaches the

final destination. For SnW once all 4 copies are spread, nodes go into direct delivery

mode. So, there is naturally less overhead for SnW and the number of extra hops a copy

is spread before being finally delivered is less than 1 (for both 54Mbps and 11Mbps).

At gradually higher SP values and 54Mbps transfer rates, more copies are spread

faster due to nodes always successfully forwarding copies to other encounters because of

sticky agreements. This fulfills the strategy of flooding protocols at a cost of overhead.

At SP=1.0, this overhead can cause ‘thrashing’. Thrashing is a condition where due to

buffer limitations messages are dropped incessantly to make room for new ones. This can

lead to reduced network performance.

Fig. 4.4(b) shows the average overhead ratio for 100KB sized messages. Thrashing was

not noticed in this scenario as buffers were sufficient to accommodate messages. Hence,

the overhead ratio was higher as when messages were forwarded hop-by-hop, they could

be accommodated and not dropped from the buffers. SnW incurred the least overhead

due to the design of the protocol as there is the initial ‘spray’ phase which accounts for 1

hop, then the ‘wait’ phase commences and messages wait in buffers until encountering the

final destination (i.e. intended recipient), aligning with the results of buffer occupancy

being higher for SnW (Fig. 4.3). Epidemic and PRoPHET’s overhead ratio was much

higher on average, as all copies forwarded are accounted for in the overhead ratio.
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4.3.1.5 Average Number of Disrupted Message Transmissions
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Figure 4.5: Average Number of Disrupted Message Transmissions.

Fig. 4.5 shows the average number of message aborts with varying stick probabilities.

We first analyze Fig. 4.5(a) with 20MB message sizes. In the SnW protocol, a limited

number of copies of the message are created and hence the number of transfer requests

(and aborts) is smaller than those from the other two protocols.

For smaller message sizes of 100KB sticky transfer was rarely used and thus the reduc-

tions in the number of aborts were small (Fig. 4.5(b)). However, for 20MB message sizes

the number of aborts were large without sticky transfers. An improvement of (decrease in

the number of aborts) 9% to 19% and 36% to 38% were observed at 54Mbps and 11Mbps

transmission rates respectively in different protocols when the SP>0.
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4.3.1.6 Average Number of Contact Opportunities per Hour
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Figure 4.6: Average Number of Contact Opportunities per Hour.

Fig. 4.6 shows the number of contacts per hour as a function of stick probability.

We observe for 100KB-sized message (Fig. 4.6(b)), the number of contacts remained

almost linear across all stick probabilities due to the fact that as the message sizes were

small, sticky transfers were not required for long durations. We expect that the aver-

age stick time in these cases was negligible, as messages were being transmitted almost

instantly upon mutual encounters.

For 20MB-sized messages (Fig. 4.6(a)), the stick time is expected to be longer. Hence,

as the SP is increased, the number of contacts per hour decrease, as pair-wise contacts

stick longer to successfully transfer message and thus meet fewer new contact within the

same amount of time (i.e., in comparison to smaller message sizes). This is even more
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observable in the case of the flooding-based Epidemic routing protocol, as gradually every

pair-wise encounter will lead to a sticky transfer.

In Fig. 4.6(a), in the case of flooding based protocols the number of contacts decreased

by 13% when SP=1.0. This is because the movement of the nodes were restricted during

sticky transfers and thus the number of contacts decreased. However, compared to the

benefit of sticky transfers (via improving delivery performance, reducing message transfer

aborts etc.), this negative impact on node mobility is insignificant. Also, instead of the

“Stop” mode if other modes, like “Follow” or “Slow down” are used, then the above

discussed impeding effect of sticky transfers on the network performance will be very

small.

4.3.1.7 Average Stick Time
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Figure 4.7: Average Stick Time as a function of Stick Probability.
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Fig. 4.7 illustrates a measurement of the total time nodes stick in the network as a

percentage of the total simulation time. Since we implement sticky transfers through

the “STOP” mode, the stick time represents the total amount of time that a node stops

(is stationary) and thus is the cumulative delay on its journey to all of its destinations.

We notice the same trend for this parameter for both larger and smaller sized messages,

shown in Fig. 4.7(a) and Fig. 4.7(b), respectively. The stick time was non-existent (zero

value) for all routing protocols at SP=0, since the probability of sticky transfers is zero.

In Fig. 4.7(b), since the message sizes was smaller, nodes needed not engage much in

sticky transfers and the stick time was less that 2% across all protocols. In general, for

both graphs, the stick time was higher for flooding protocols (up to 25%), particularly

at SP=1, since nodes remained in contact upon mutual encounters until all messages

were forwarded. For both 11Mbps and 54Mbps, SnW incurs less cumulative stick time in

general as nodes have message copies to forward upon encounters. Too much stick time

can reduce node mobility in the DTN, which can lead to fewer contact opportunities over

time.

4.3.2 Different Node Densities

Fig. 4.8 shows the performance improvement achieved with sticky transfers at differ-

ent node densities for large message sizes (MS=20MB). The delivery ratio is shown in

Fig. 4.8(a). At the lower node density (30MH), the performance increased by 40%. At

the higher node density (50MH), the performance increased by 33%. Better performance
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Figure 4.8: Performance of sticky transfers at different node densities.

at lower node densities compared to higher node densities results from more contact op-

portunities in the same area and an increase in stick time compared to movement time,

specially when SP=1.0. The performance at higher node densities improved from SP=0

until up to SP=0.9, then fell significantly at SP=1.0 due to an always sticking tendency

among nodes. The end-to-end delay (Fig. 4.8(b)) was reduced by as much as 43% at lower

node densities and by as much as 40% at higher node densities as the SP increased.

In summary, using sticky transfers provides an improvement in the delivery ratio

compared to not using sticky transfers. However, at higher node densities the sticky

parameter should be adjusted to consider the mobility factor as well.
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Figure 4.9: Performance of sticky transfers at different node speeds.

4.3.3 Different Node Mobility Speeds

Delivery ratio improved by 12% (for node speeds of 5m/s) and by 49% (for node speeds

of 20m/s) across different DTN protocols (Fig. 4.9(a)). Also end-to-end delay decreased

by 15% and 45% respectively for 5m/s and 20m/s speeds (Fig. 4.9(b)). When sticky

transfers were not used in the network (SP=0), delivery performance at lower speeds

(5m/s) were much better than at higher speeds (20m/s), because at faster node speeds

the natural contact duration of the nodes were not enough to successfully complete the

message transfers of larger message sizes (20MB). However, as we increased the SP, the

improvement in the delivery performance increased significantly at higher node speeds.

Nodes were able to extend the contact duration to the required duration by using the

sticky transfer protocol. Thus with the combination of meeting encounters faster (faster

147



movement speed) and being able to transfer more messages (longer contact durations),

the delivery and latency performance at 20m/s speeds surpassed that of the lower speed

scenario. Therefore, sticky transfers give higher benefits in higher mobility conditions

where message transfer disruptions are more likely.

4.3.4 Different Time-to-Live(TTL) Values

As we know from our literature review, DTN technology can be applied in the case of a

wide range of applications, starting from underwater to outer space. Messages may have

an expiration timeout (TTL) set by applications. Generally there is a mission deadline,

to be met by nodes/participants in the network. Messages may have TTL values set to

meet these deadline requirement. The messages may be useless for the mission after this

and therefore, once the TTL expires, are dropped. For space applications the TTL of

messages may be very large, maybe upto several months. For military applications the

TTL could be in the range of days or hours. For emergency situations the TTL could

be in the range of minutes. To keep the simulation time feasible and to shed insight into

how the sticky transfer mechanism can assist applications with different TTL values, the

results in In Fig. 4.10 show the average delivery ratio and average end-to-end delay with

TTL values for 1 and 5 simulation hours, respectively.

Delivery ratio improved by 34% (for TTL of 1 hour) and by 37% (for TTL of 5 hours)

across different DTN protocols (Fig. 4.10(a)). Also end-to-end delay decreased by 8%

and 32% respectively for 1 hour and 5 hour TTL values (Fig. 4.10(b)). We notice in
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Figure 4.10: Performance of sticky transfers at different message time-to-live values.

Fig. 4.10(b), the end-to-end delay was almost constant across all SP values for messages

having TTL value of 1 hour, meaning using sticky transfers do not have much impact

on the delay performance (i.e. were not able to reduce the end-to-end delay) due to the

already shortened lifetime of the messages. However, the delay was significantly reduced

at larger TTL values, meaning when applications have a large message (20MB), and TTL

values ranging in the hours - our sticky transfer mechanism can help to meet application

critical deadlines by delivering the messages faster in the network. Furthermore, the

delivery ratio for 20MB messages was greatly improved (by up to 37%) by using sticky

transfers. Therefore, the sticky transfer mechanism can help with guaranteed delivery for

time critical applications.
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Figure 4.11: Performance of sticky transfers at different message sizes.

4.3.5 Different Message Sizes

In (Fig. 4.11), the delivery ratio increased by 24% and 20% in Epidemic protocol while it

increased by 43% and 37% in the other protocols for 5MB and 30MB messages respectively

(Fig. 4.11(a)). End-to-end delay (Fig. 4.11(b)) decreased gradually from 30% to 39%

with increasing SP for 30MB-sized messages. This shows the benefit of using higher SP

values when message sizes are large. The overall end-to-end delay for 5MB message sizes

is much lower compared to 30MB sizes in general. However, an increase in delay was

observed around SP=0.3 for all protocols when transmitting 5MB-sized messages (see

Fig. 4.11(b)). We observe in the corresponding delivery ratio graph (Fig. 4.11(a)) that

at this point the delivery ratio increased as well from a ratio of 0.5 to 0.9. At SP=0

sticky transfers were not being used and we anticipate only a few packets were being
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delivered, and the delivery was mostly within a single hop. However, at SP=0.3 as more

packets were delivered and since SP 6= 0, multiple hops were required contributing to the

higher end-to-end delay. The delay from this point (SP=0.3) gradually dwindled and the

increase became smaller towards SP=1.0, as expected with increasing stick probability.

Thus, sticky transfer improves delivery ratio for all message sizes, but may increase end-

to-end delay in some cases if more packets have to travel longer distances.

4.3.6 Supporting Message Sizes: 100kB, 5MB, 20MB, 30MB

DTN Protocol Data Units (PDU) are called bundles (a.k.a ‘messages’). A key DTN

functionality is that each bundle is kept in memory in its entirety, and is deleted upon

receipt of an acknowledgment for its successful delivery to the next node on the path

to the destination. However, the DTN Bundle Protocol specification [33] does not limit

bundle size or specify content of bundles. A bundle may be of any size depending on

the application. As discussed in [34], the bundle protocol uses bundle as a protocol

data unit which may be of various lengths. Ivancic et al. have used bundle sizes of 160

MB to transfer images from orbit to a ground station [35]. On the other hand in [36],

Scott Burleigh suggests use of small bundles, less than 64KB long, to enable partial data

delivery at application-appropriate granularity. It is obvious that the scientific community

has not yet defined a commonly accepted formula of encapsulating application data into

specifically sized bundles.

This lack of a fixed bundle size for DTNs suggests that a mechanism to improve
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Figure 4.12: Performance of sticky transfers at different message sizes: Spray-and-Wait

the performance of the DTN across various message sizes would be beneficial and would

address an area which requires attention. We believe that the sticky transfer protocol is

able to achieve this goal, which we show by Fig. 4.12. These graphs are composed by

integrating results from 4.3.5, 4.3.1.1 and 4.3.1.2. It shows the performance improvement

achieved by the sticky transfer protocol across a range of message sizes: 100kB, 5MB,

20MB, and 30MB. The number of nodes is 20 and the transmission rate (Tx) is 54 Mbps.

We perform a brief analysis of the graphs as the results have already been covered in

previous sections. The graph shows results for the SnW routing protocol. The trend is

similar for Epidemic and PRoPHET. Fig. 4.12(a) shows the average delivery ratio across

message sizes. The delivery ratio was improved in each case by using sticky transfers.

Fig. 4.12(b) shows the average end-to-end delay across the different message sizes. Using

the sticky transfer protocol, end-to-end delay was reduced across all message sizes (with
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the exception of 5MB, which has been explained in Section 4.3.5).

4.4 Chapter Summary

Based on our results and analysis of the sticky transfer mechanism, we can conclude that

using the sticky transfer protocol can improve several performance parameters such as

the delivery ratio, end-to-end delay, overhead ratio, and so on. It can be well adopted

for challenged scenarios where larger messages sizes need to be delivered with application

deadline constraints. Performance of the DTN improved (upto 43%) at higher node

densities (30 nodes) with sticky transfers. Message transfer disruptions are more likely in

increased mobility conditions, and by using sticky transfers the performance of the DTN

improved (up to 49%) at higher movement speeds (20 m/s). Furthermore, sticky transfers

improve the delivery ratio at all message sizes (5MB-30MB), but may increase end-to-

end delay for larger message sizes (30MB) at certain stick probabilities depending on the

routing protocol. This is due to the combined effects of restricting mobility and reducing

message aborts simultaneously, while sticking to transfer larger messages. Specifically,

sticky transfers improve the performance of the DTN, specially under high mobility speeds

or high node densities.

We implemented the “STOP” mode as the mode for sticky agreements from the pos-

sible sticky transfer modes described in section 3.3.1. As we mentioned at the beginning

of this chapter, we chose this mode as it will have the most inhibiting effect on the

natural mobility of nodes and thus will be the most effective for observing the lower-
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bound of sticky transfer performance. We expect the other sticky trasfer modes, namely

“FOLLOW” and “SLOW DOWN”, to perform at least as well as the “STOP” mode or

better.

Our current assumption is that nodes have preset SP values; e.g. set by a network

administrator. Algorithms to predict optimal SP values for nodes on-the-fly, which will

be calculated based on the network environment and relevant node parameters, is part

of our future work.
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Chapter 5

Conclusions and Future Work

Delay-and disruption-tolerant networks(DTNs) implement a store-carry-forward network

technology to facilitate data forwarding in infrastructure-less networks with lack of in-

stantaneous end-to-end paths between communicating end points. Application areas of

such networks include disaster recovery, emergency operations, ecological monitoring,

underwater communications, vehicular communications, and virtual social networks.

The terms “opportunistic networks” and “delay-tolerant networks” are sometimes

used interchangeably, in scenarios where the network comprises mostly of wireless mobile

nodes/devices with network constraints, such as intermittent connectivity, due to mobil-

ity of nodes, power cycle of nodes, or geographical sparsity. In opportunistic networks, no

assumption is made with regard to the existence of a complete path between two nodes

wishing to communicate. Source and destination nodes might never be connected to the

same network, at the same time. Furthermore, nodes may not possess or acquire any

knowledge about the network topology. Routes are built dynamically, while messages are
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en route between the sender and the destination(s), and any possible node can oppor-

tunistically (i.e. when the chance arises) be used as a next hop, provided it brings the

message closer to the destination than the current node.

An encounter refers to two neighbor nodes coming within the communication range of

each other, presenting an opportunity to exchange data. When a encounter occurs in an

opportunistic network, it is usually of limited duration. To be able to analyze situations

that include limited bandwidth, we discussed the properties of inter-contact time (i.e.

how frequently nodes encounter other nodes in the network on average) and contact

duration (i.e. the average time two nodes have to exchange data during an encounter)

and established that they directly impact the throughput of the network.

Several routing protocols have been proposed and implemented for opportunistic net-

works which use strategies such as flooding messages, or using historical encounters to

predict future encounter probabilities. Irrespective of the forwarding technique used by

routing algorithms, the actual time to transfer messages between two nodes is limited by

the contact duration of the nodes, which depends inherently on node mobility.

If the expected contact duration is not sufficient for the entire message to be transmit-

ted, which can change at any moment due to node mobility or other factors, messages tend

to fail to be forwarded to the next hop. This can cause the routing protocol to retransmit

the message, thus wasting valuable bandwidth, and wasting the resource consumed by

the failed transfer. In addition, many other messages which have been processed and

ready for transmission cannot be forwarded. These messages will stay longer in buffers

156



of limited sizes, which may eventually be discarded due to buffer overflow, wasting node

resources. The end result is low message delivery ratio and long end-to-end delay. The

above problems are exacerbated in highly mobile DTNs that must handle large messages

such as vehicular networks.

The objective of our thesis was to:

• prolong the natural contact duration of mobile nodes in a DTN to improve the

network performance, measured by the delivery ratio, end-to-end delay, and average

buffer time.

• propose a solution that can be integrated into the existing DTN architecture without

requiring additional infrastructure or storage.

We addressed the above objectives of our thesis by proposing a novel framework called

the sticky transfer framework that enables nodes to prolong their contact durations for

message transfers in DTNs. In this framework, nodes send out periodic beacons for

neighbor discovery. Once a neighbor is detected with which a node can perform sticky

transfers, the nodes exchange information such as mobility speed and direction, current

location, transmission range, available buffer size, the amount of data to be sent and

the corresponding destination, using our proposed sticky transfer protocol within the

framework.

5.1 Summary of Contributions

The main contributions of the thesis include:
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1. a novel framework called the sticky transfer framework that enables mobile nodes in

a DTN to modify their mobility and prolong contact durations to enhance successful

message transfers. The framework allows users of mobile devices to cooperatively

adjust their natural movement behaviors and ensures users flexibility in the agree-

ment to ‘stick’ using the following three components: user preference, sticky modes,

and compatibility list.

2. a sticky transfer protocol within the framework that governs how two mobiles nodes

will stick to each for a negotiated period of time in order to complete the transmis-

sions of messages.

3. seamless integration of the sticky transfer framework with the existing DTN network

management modules.

4. evaluation of the proposed framework with extensive simulations showing the perfor-

mance of the sticky transfer protocol under various network setting and measuring

several performance parameters. To evaluate the effectiveness of our framework,

we ran tests on three DTN routing protocols: Epidemic, PRoPHET, and Spray-

and-Wait; with and without sticky transfers in a realistic mobile environment. Our

analysis showed that the sticky transfer protocol improved the performance parame-

ters we considered, and that our framework is especially beneficial for large message

sizes and/or high mobility situations, where contact times allow for few successful

transfers.
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5.2 Future Work

The sticky transfer framework and protocol can be enhanced and extended in many

ways. Currently, we use a constant stick probability in our simulations for all nodes

in the network. A more intelligent, adaptive algorithm can be developed which allows

nodes to dynamically decide whether to stick or not using available information such as

its mobility speed relative to its neighbors’ speeds and local node density.

We also plan to consider the overhead of sticky negotiations and time required for

resolving medium contention prior to sticky data transfers. Other future research issues

include:

• developing new algorithms using Bayesian networks and Markov models that con-

sider past network performance to predict future optimal stick decisions without

requiring intervention from the network administrator.

• developing algorithms to select the best neighbors to perform sticky transfers with,

which will take into account several factors such as neighbors’ residual energy, trans-

mission rates, and amounts of data to be exchanged.

• evaluating the effectiveness of sticky transfers in multi-rate networks.

• implementing sticky message transfers in a realistic network using Mindstorm R©

NXT robots.
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