15,729 research outputs found

    Development of a fusion adaptive algorithm for marine debris detection within the post-Sandy restoration framework

    Get PDF
    Recognition of marine debris represent a difficult task due to the extreme variability of the marine environment, the possible targets, and the variable skill levels of human operators. The range of potential targets is much wider than similar fields of research such as mine hunting, localization of unexploded ordnance or pipeline detection. In order to address this additional complexity, an adaptive algorithm is being developing that appropriately responds to changes in the environment, and context. The preliminary step is to properly geometrically and radiometrically correct the collected data. Then, the core engine manages the fusion of a set of statistically- and physically-based algorithms, working at different levels (swath, beam, snippet, and pixel) and using both predictive modeling (that is, a high-frequency acoustic backscatter model) and phenomenological (e.g., digital image processing techniques) approaches. The expected outcome is the reduction of inter-algorithmic cross-correlation and, thus, the probability of false alarm. At this early stage, we provide a proof of concept showing outcomes from algorithms that dynamically adapt themselves to the depth and average backscatter level met in the surveyed environment, targeting marine debris (modeled as objects of about 1-m size). The project relies on a modular software library, called Matador (Marine Target Detection and Object Recognition)

    Airborne chemical sensing with mobile robots

    Get PDF
    Airborne chemical sensing with mobile robots has been an active research areasince the beginning of the 1990s. This article presents a review of research work in this field,including gas distribution mapping, trail guidance, and the different subtasks of gas sourcelocalisation. Due to the difficulty of modelling gas distribution in a real world environmentwith currently available simulation techniques, we focus largely on experimental work and donot consider publications that are purely based on simulations

    Laser Based Mid-Infrared Spectroscopic Imaging – Exploring a Novel Method for Application in Cancer Diagnosis

    Get PDF
    A number of biomedical studies have shown that mid-infrared spectroscopic images can provide both morphological and biochemical information that can be used for the diagnosis of cancer. Whilst this technique has shown great potential it has yet to be employed by the medical profession. By replacing the conventional broadband thermal source employed in modern FTIR spectrometers with high-brightness, broadly tuneable laser based sources (QCLs and OPGs) we aim to solve one of the main obstacles to the transfer of this technology to the medical arena; namely poor signal to noise ratios at high spatial resolutions and short image acquisition times. In this thesis we take the first steps towards developing the optimum experimental configuration, the data processing algorithms and the spectroscopic image contrast and enhancement methods needed to utilise these high intensity laser based sources. We show that a QCL system is better suited to providing numerical absorbance values (biochemical information) than an OPG system primarily due to the QCL pulse stability. We also discuss practical protocols for the application of spectroscopic imaging to cancer diagnosis and present our spectroscopic imaging results from our laser based spectroscopic imaging experiments of oesophageal cancer tissue

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection

    Advanced Feature Learning and Representation in Image Processing for Anomaly Detection

    Get PDF
    Techniques for improving the information quality present in imagery for feature extraction are proposed in this thesis. Specifically, two methods are presented: soft feature extraction and improved Evolution-COnstructed (iECO) features. Soft features comprise the extraction of image-space knowledge by performing a per-pixel weighting based on an importance map. Through soft features, one is able to extract features relevant to identifying a given object versus its background. Next, the iECO features framework is presented. The iECO features framework uses evolutionary computation algorithms to learn an optimal series of image transforms, specific to a given feature descriptor, to best extract discriminative information. That is, a composition of image transforms are learned from training data to present a given feature descriptor with the best opportunity to extract its information for the application at hand. The proposed techniques are applied to an automatic explosive hazard detection application and significant results are achieved

    HIRIS (High-Resolution Imaging Spectrometer: Science opportunities for the 1990s. Earth observing system. Volume 2C: Instrument panel report

    Get PDF
    The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements
    corecore