A number of biomedical studies have shown that mid-infrared spectroscopic images can provide
both morphological and biochemical information that can be used for the diagnosis of cancer. Whilst
this technique has shown great potential it has yet to be employed by the medical profession. By
replacing the conventional broadband thermal source employed in modern FTIR spectrometers with
high-brightness, broadly tuneable laser based sources (QCLs and OPGs) we aim to solve one of the
main obstacles to the transfer of this technology to the medical arena; namely poor signal to noise
ratios at high spatial resolutions and short image acquisition times. In this thesis we take the first
steps towards developing the optimum experimental configuration, the data processing algorithms
and the spectroscopic image contrast and enhancement methods needed to utilise these high
intensity laser based sources. We show that a QCL system is better suited to providing numerical
absorbance values (biochemical information) than an OPG system primarily due to the QCL pulse
stability. We also discuss practical protocols for the application of spectroscopic imaging to cancer
diagnosis and present our spectroscopic imaging results from our laser based spectroscopic imaging
experiments of oesophageal cancer tissue