573 research outputs found

    Sensored and sensorless speed control methods for brushless doubly fed reluctance motors

    Get PDF
    The study considers aspects of scalar V/f control, vector control and direct torque (and flux) control (DTC) of the brushless doubly fed reluctance machine (BDFRM) as a promising cost-effective alternative to the existing technological solutions for applications with restricted variable speed capability such as large pumps and wind turbine generators. Apart from providing a comprehensive literature review and analysis of these control methods, the development and results of experimental verification, of an angular velocity observerbased DTC scheme for sensorless speed control of the BDFRM which, unlike most of the other DTC-concept applications, can perform well down to zero supply frequency of the inverter-fed winding, have also been presented in the study

    An Advanced Model Predictive Current Control of Synchronous Reluctance Motors

    Get PDF
    Synchronous reluctance motors (SynRMs) have, in recent years, attracted much attention due to their high-efficiency output and nature of their construction denoted by the lack of expensive magnetic materials, thus cheapening the overall cost whilst increasing in robustness. These benefits have made the SynRM a strong contender against other established electric motors in the market. Similarly, model predictive current control (MPCC) has recently become a powerful advanced control technology in industrial drives, being, therefore, a suitable choice for SynRM drives granting overall high control performance and efficiency. However, current prediction in MPCC requires a high number of voltage vectors (VVs) synthesizable by the converter, being therefore computationally demanding. Accordingly, the main goal of this work is the development and analysis of a more efficient and advanced MPCC for SynRMs whilst reducing the computational burden and delivering good control performance in contrast with the standard MPCC. Therefore, to achieve the intended levels of efficiency and control performance in SynRM drives, a combination of two control strategies is developed, which combines hysteresis current control (HCC) and MPCC, dubbed in this work HCC-MPCC. Furthermore, the SynRM dynamic model equations comprising the magnetic saturating effects and iron losses are presented through a detailed theoretical and computational analysis of the drive’s control. Conclusively, the developed HCC-MPCC for SynRM drives is analyzed through thorough and rigorous experimental tests alongside the standard MPCC, whose obtained results are detailed comprehensively.Os motores sĂ­ncronos de relutĂąncia (SynRMs) tĂȘm, nos Ășltimos anos, atraĂ­do muita atenção devido Ă s suas caracterĂ­sticas construtivas, designadamente pela falta de materiais magnĂ©ticos caros, depreciando assim o custo em geral; e simultaneamente pelo aumento em robustez. Esses benefĂ­cios tornaram o SynRM num forte concorrente face a outros motores elĂ©tricos existentes no mercado. Da mesma forma, o modelo preditivo de controlo de corrente (MPCC) tornou-se recentemente numa poderosa estratĂ©gia de controlo avançado em acionamentos industriais, sendo, portanto, uma escolha adequada para acionamentos envolvendo SynRMs, garantindo elevado desempenho e eficiĂȘncia de controlo. No entanto, a previsĂŁo da corrente no MPCC requer um grande nĂșmero de vetores de tensĂŁo (VVs) sintetizĂĄveis pelo conversor, sendo, portanto, exigente computacionalmente. Consequentemente, o objetivo principal deste trabalho Ă© o desenvolvimento e anĂĄlise de um MPCC mais eficiente e avançado para SynRMs, reduzindo a carga computacional e, simultaneamente, demonstrando um bom desempenho de controlo em contraste com o MPCC clĂĄssico. Portanto, para atingir os nĂ­veis pretendidos de eficiĂȘncia e desempenho de controlo em acionamentos com SynRMs, uma combinação de duas estratĂ©gias de controlo Ă© desenvolvida, combinando o controlo de corrente de histerese (HCC) e MPCC, denominado neste trabalho HCC-MPCC. AlĂ©m disso, as equaçÔes do modelo dinĂąmico do SynRM, compreendendo os efeitos de saturação magnĂ©tica e as perdas de ferro, sĂŁo apresentadas atravĂ©s de uma anĂĄlise teĂłrica e computacional detalhada do controlo do acionamento. Conclusivamente, o HCC-MPCC desenvolvido para acionamentos com SynRMs Ă© analisado por meio de testes experimentais conjuntamente com o MPCC padrĂŁo, sendo os resultados obtidos detalhados de forma abrangente

    Performance Comparison of Field-oriented Control, Direct Torque Control, and Model-predictive Control for SynRMs

    Get PDF
    Simulation studies of three synchronous reluctance motor (SynRM) control strategies are presented: field-oriented control (FOC), direct torque control (DTC), and finite-set model-predictive control (FS-MPC). FOC uses linear controllers and pulse-width modulation to control the fundamental components of the load voltages vectors. In contrast, DTC and FS-MPC are nonlinear strategies wherein the voltage vectors are directly generated in the absence of a modulator. Theoretical operating principles and control structures of these control strategies are presented. Moreover, a comparative analysis of the static and dynamic performance of the control strategies is conducted using Matlab/Simulink to identify their advantages and limitations. It is confirmed that each of the control strategies has merits and that all three of them satisfy the requirements of modern high-performance drives.info:eu-repo/semantics/publishedVersio

    Torque Control

    Get PDF
    This book is the result of inspirations and contributions from many researchers, a collection of 9 works, which are, in majority, focalised around the Direct Torque Control and may be comprised of three sections: different techniques for the control of asynchronous motors and double feed or double star induction machines, oriented approach of recent developments relating to the control of the Permanent Magnet Synchronous Motors, and special controller design and torque control of switched reluctance machine

    Multiple Objective Co-Optimization of Switched Reluctance Machine Design and Control

    Get PDF
    This dissertation includes a review of various motor types, a motivation for selecting the switched reluctance motor (SRM) as a focus of this work, a review of SRM design and control optimization methods in literature, a proposed co-optimization approach, and empirical evaluations to validate the models and proposed co-optimization methods. The switched reluctance motor (SRM) was chosen as a focus of research based on its low cost, easy manufacturability, moderate performance and efficiency, and its potential for improvement through advanced design and control optimization. After a review of SRM design and control optimization methods in the literature, it was found that co-optimization of both SRM design and controls is not common, and key areas for improvement in methods for optimizing SRM design and control were identified. Among many things, this includes the need for computationally efficient transient models with the accuracy of FEA simulations and the need for co-optimization of both machine geometry and control methods throughout the entire operation range with multiple objectives such as torque ripple, efficiency, etc. A modeling and optimization framework with multiple stages is proposed that includes robust transient simulators that use mappings from FEA in order to optimize SRM geometry, windings, and control conditions throughout the entire operation region with multiple objectives. These unique methods include the use of particle swarm optimization to determine current profiles for low to moderate speeds and other optimization methods to determine optimal control conditions throughout the entire operation range with consideration of various characteristics and boundary conditions such as voltage and current constraints. This multi-stage optimization process includes down-selections in two previous stages based on performance and operational characteristics at zero and maximum speed. Co-optimization of SRM design and control conditions is demonstrated as a final design is selected based on a fitness function evaluating various operational characteristics including torque ripple and efficiency throughout the torque-speed operation range. The final design was scaled, fabricated, and tested to demonstrate the viability of the proposed framework and co-optimization method. Accuracy of the models was confirmed by comparing simulated and empirical results. Test results from operation at various torques and speeds demonstrates the effectiveness of the optimization approach throughout the entire operating range. Furthermore, test results confirm the feasibility of the proposed torque ripple minimization and efficiency maximization control schemes. A key benefit of the overall proposed approach is that a wide range of machine design parameters and control conditions can be swept, and based on the needs of an application, the designer can select the appropriate geometry, winding, and control approach based on various performance functions that consider torque ripple, efficiency, and other metrics

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio

    Direct Torque Control of Permanent Magnet Synchronous Motors

    Get PDF

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine

    Get PDF
    Optimal performance of the electric machine/drive system is mandatory to improve the energy consumption and reliability. To achieve this goal, mathematical models of the electric machine/drive system are necessary. Hence, this motivated the editors to instigate the Special Issue “Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine”, aiming to collect novel publications that push the state-of-the art towards optimal performance for the electric machine/drive system. Seventeen papers have been published in this Special Issue. The published papers focus on several aspects of the electric machine/drive system with respect to the mathematical modelling. Novel optimization methods, control approaches, and comparative analysis for electric drive system based on various electric machines were discussed in the published papers

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines
    • 

    corecore