911 research outputs found

    Mobile Robots and Autonomic Ambient Assisted Living

    Get PDF
    The use of Smart Environments in the delivery of pervasive care is a research topic that has witnessed increasing interest in recent years. These environments aim to deliver pervasive care through ubiquitous sensing by monitoring the occupants Activities of Daily Living. In order for these environments to succeed in achieving their goal, it is crucial that sensors deployed in the environment perform faultlessly. In this research we investigate addressing anomalous sensor behavior through the utilization of a mobile robot. The robot’s role is twofold; it must provide substitution in the presence of suspected sensor faults and act as an observer of anomalous sensor behavior in order to understand the changes that occur in the behavior of sensors deployed within the environment over time. The aim of this work is to explore a paradigm shift to the use of Autonomic Ambient Assisted Living.We have discovered that the use of a mobile robot is a viable means of introducing this paradigm to a Smart Environment

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    A Software Suite for the Control and the Monitoring of Adaptive Robotic Ecologies

    Get PDF
    Adaptive robotic ecologies are networks of heterogeneous robotic devices (sensors, actuators, automated appliances) pervasively embedded in everyday environments, where they learn to cooperate towards the achievement of complex tasks. While their flexibility makes them an increasingly popular way to improve a system’s reliability, scalability, robustness and autonomy, their effective realisation demands integrated control and software solutions for the specification, integration and management of their highly heterogeneous and computational constrained components. In this extended abstract we briefly illustrate the characteristic requirements dictated by robotic ecologies, discuss our experience in developing adaptive robotic ecologies, and provide an overview of the specific solutions developed as part of the EU FP7 RUBICON Project

    Intelligent environments: a manifesto

    Get PDF
    We explain basic features of an emerging area called Intelligent Environments. We give a short overview on how it has developed, what is the current state of the art and what are the challenges laying ahead. The aim of the article is to make aware the Computer Science community of this new development, the differences with previous dominant paradigms and the opportunities that this area offers to the scientific community and society

    A Sensing Platform to Monitor Sleep Efficiency

    Get PDF
    Sleep plays a fundamental role in the human life. Sleep research is mainly focused on the understanding of the sleep patterns, stages and duration. An accurate sleep monitoring can detect early signs of sleep deprivation and insomnia consequentially implementing mechanisms for preventing and overcoming these problems. Recently, sleep monitoring has been achieved using wearable technologies, able to analyse also the body movements, but old people can encounter some difficulties in using and maintaining these devices. In this paper, we propose an unobtrusive sensing platform able to analyze body movements, infer sleep duration and awakenings occurred along the night, and evaluating the sleep efficiency index. To prove the feasibility of the suggested method we did a pilot trial in which several healthy users have been involved. The sensors were installed within the bed and, on each day, each user was administered with the Groningen Sleep Quality Scale questionnaire to evaluate the user’s perceived sleep quality. Finally, we show potential correlation between a perceived evaluation with an objective index as the sleep efficiency.</p

    Robotic-based well-being monitoring and coaching system for the elderly in their daily activities

    Get PDF
    The increasingly ageing population and the tendency to live alone have led science and engineering researchers to search for health care solutions. In the COVID 19 pandemic, the elderly have been seriously affected in addition to suffering from isolation and its associated and psychological consequences. This paper provides an overview of the RobWell (Robotic-based Well-Being Monitoring and Coaching System for the Elderly in their Daily Activities) system. It is a system focused on the field of artificial intelligence for mood prediction and coaching. This paper presents a general overview of the initially proposed system as well as the preliminary results related to the home automation subsystem, autonomous robot navigation and mood estimation through machine learning prior to the final system integration, which will be discussed in future works. The main goal is to improve their mental well-being during their daily household activities. The system is composed of ambient intelligence with intelligent sensors, actuators and a robotic platform that interacts with the user. A test smart home system was set up in which the sensors, actuators and robotic platform were integrated and tested. For artificial intelligence applied to mood prediction, we used machine learning to classify several physiological signals into different moods. In robotics, it was concluded that the ROS autonomous navigation stack and its autodocking algorithm were not reliable enough for this task, while the robot’s autonomy was sufficient. Semantic navigation, artificial intelligence and computer vision alternatives are being sought.This research was funded by the Spanish Ministerio de Ciencia, Innovación y Univesidades, Agencia Estatal de Investigación (AEI) and the European Regional Development Fund (ERDF) under project ROBWELL (RTI2018-095599-A-C22) and by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation

    Acceptance of ambient assisted living (AAL) technologies among older Australians : a review of barriers in user experience

    Get PDF
    One of the great challenges facing Australian society is that of an ageing population. Amongst the issues involved in this drastic demographic change, the most significant aspect is the demand for older Australians to live independently at home. The development of Ambient Assisted Living (AAL) technologies aims to address this issue. The advancement of AAL applications have been done to support the users with their daily-life activities and health concerns by providing increased mobility, security, safety in emergencies, health-monitoring, improved lifestyle, and fall-detection through the use of sensors. However, the optimum uptake of these technologies among the end-users (the elderly Australians) still remains a big concern. Thus, there is an elevated need to understand the needs and preferences of the seniors in order to improve the acceptance of AAL applications. The aim of this study is to investigate the barriers and perceptions in the use of AAL applications amongst older Australians. Focus groups and quantitative surveys have been conducted to provide a detailed analysis of these impediments. The results show that there are different factors that restrict the use of these technologies along with the fact that elderly people have certain preferences when using them. An understanding of these factors has been gained and suggestions have been made to increase the acceptance of AAL devices. This work gives useful insights towards the design of AAL solutions according to user needs

    What Characterizes Safety of Ambient Assisted Living Technologies?

    Get PDF
    Ambient assisted living (AAL) technologies aim at increasing an individual's safety at home by early recognizing risks or events that might otherwise harm the individual. A clear definition of safety in the context of AAL is still missing and facets of safety still have to be shaped. The objective of this paper is to characterize the facets of AAL-related safety, to identify opportunities and challenges of AAL regarding safety and to identify open research issues in this context. Papers reporting aspects of AAL-related safety were selected in a literature search. Out of 395 citations retrieved, 28 studies were included in the current review. Two main facets of safety were identified: user safety and system safety. System safety concerns an AAL system's reliability, correctness and data quality. User safety reflects impact on physical and mental health of an individual. Privacy, data safety and security issues, sensor quality and integration of sensor data, as well as technical failures of sensors and systems are reported challenges. To conclude, there is a research gap regarding methods and metrics for measuring user and system safety in the context of AAL technologies
    • …
    corecore