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Abstract— Adaptive robotic ecologies are networks of hetero-
geneous robotic devices (sensors, actuators, automated appli-
ances) pervasively embedded in everyday environments, where
they learn to cooperate towards the achievement of complex
tasks. While their flexibility makes them an increasingly popu-
lar way to improve a system’s reliability, scalability, robustness
and autonomy, their effective realisation demands integrated
control and software solutions for the specification, integration
and management of their highly heterogeneous and computa-
tional constrained components. In this extended abstract we
briefly illustrate the characteristic requirements dictated by
robotic ecologies, discuss our experience in developing adaptive
robotic ecologies, and provide an overview of the specific
solutions developed as part of the EU FP7 RUBICON Project.

I. INTRODUCTION
Robotic ecologies are an emerging paradigm, which

crosses the border between the fields of robotics, sensor net-
works, and ambient intelligence (AmI). Central to the robotic
ecology concept is that complex tasks are not performed by
a single, very capable robot (e.g., a humanoid robot butler),
instead they are performed through the collaboration and
cooperation of many networked robotic devices performing
several steps in a coordinated and goal oriented fashion while
also exchanging sensor data and other useful information
in the process. Building smart spaces in this way reduces
application complexity and costs, and enhances the individ-
ual values of the devices involved, by enabling new services
that cannot be performed by any device by itself. Consider
for instance the case of an ecology-supported robot vacuum
cleaner that avoids cleaning when any of the inhabitants
are home after receiving information from the home alarm
system, or of a robot informing an elderly person living alone
that she has forgotten to switch off the stove, after receiving
a signal from a wireless sensor installed in the kitchen. One
of the key strengths of such an approach is the possibility
of using alternative means to accomplish application goals
when multiple courses of action are available. For instance,
a robot may be able to localise itself with the help of an
environmental camera or through the use of an on-board laser
sensor, if the network connection to the camera is disrupted
or if the light is not sufficient for the camera to track the
location of the robot.
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An important prerequisite to the practical realisation of
the robotic ecology concept is the necessary software in-
frastructure subtending the specification, integration, and the
distributed management of its components. Robotic ecologies
are expected to operate in dynamic, open and evolving envi-
ronments; their skills are the result of many interacting com-
ponents, both hardware and software. Such a multiform de-
gree of complexity constitutes a very challenging obstacle to
their effective development. Building robotic ecologies and
testing them in practical experiments are costly and difficult
enterprises, which require researchers to deal with a number
of practical robotic and engineering issues and present them
with many of the difficulties associated with open, research
projects involving intelligent controllers. Using traditional
robot control solutions to support the operations of robot
ecologies in real home settings would quickly become in-
effective, unmanageable and prohibitively costly, especially
if we consider the fast innovation rates of the underlying
technology, evolving settings and changing requirements,
and the lack of robust control and software systems able to
support the operations and the communication of information
among robotic ecologies. The EU FP7 RUBICON (Robotic
UBIquitous COgnitive Network) project [5] tackles these
issues by endowing robotic ecologies with cognitive and
learning abilities that allow them to autonomously adapt
to evolving situations and achieve useful services that are
not restricted to only those situations and methods that are
envisioned by their designer. The aim is to greatly reduce
the need of costly and long pre-programming phases and
ultimately widen the levels of the user’s acceptance of
the technology. Instrumental to supporting those advance-
ments, a software suite for the specification, integration
and coordinated management of adaptive robotic ecologies
has been developed. This has been done by building on
middleware, planning and monitoring systems for robotic
ecologies, and multi-agent solutions for self-adaptive and
distributed software systems. The remainder of this extended
abstract is organised in the following manner: Section 2
illustrates the characteristic requirements dictated by adaptive
robotic ecologies. Section 3 overviews the specific solutions
we have implemented and how they have been integrated into
the RUBICON software suite. Section 4 briefly illustrates
the work most closely related to our efforts, while Section
5 summarises our contributions and points to some of the
directions to be explored in future research.
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II. REQUIREMENTS

The main goals for an adaptive robotic ecology are to
provide sensing and actuating services that are efficient,
robust, and adaptable. This requires that arbitrary combi-
nations of a subset of the devices in the ecology should be
able to be deployed in unstructured environments, such as
those exemplified in a typical household, and there efficiently
cooperate to the achievement of complex tasks. In doing so,
robotic ecologies should take into account both a sufficient
amount of exogenous events and the specific capabilities
of the devices used to enact each task. To these ends,
we build on learning solutions [17][6] to address the core
cognitive problems of how the participants of the ecology
and their capabilities should analyse the situation of the
environment, decide what they need to do in order to satisfy
the application’s objectives, and use their past experience
to drive their autonomous adaptation. However, applying a
consistent approach to learning contrasts with the the many
requirements that must be upheld during strategy synthesis,
execution and adaptation. Specifically, robotic ecologies must
be able to cope with key scientific and technical challenges
in the following areas:

Goal priorities, temporal and resource constraints -
Robot ecologies are commonly subjected to multiple, dynam-
ically changing and possibly conflicting goals (e.g. recharge
batteries versus explore, cleaning the kitchen versus asking
the user if she took her medicine). To this end, they need to
handle goal priorities and temporal and resource constraints,
to evaluate different combinations of goals, and find the
combination that will maximise the number of high-priority
goals actually pursued with the resources available to the
system. Since they will typically find multiple options to
satisfy each goal, they need the ability to evaluate different
options in terms of resource utilisation and time-frames.

Scalability - A robot ecology must choose a combination
of hardware and software components whose exchange of
information and combined ability to change the state of the
environment can achieve desired goals. Robust behaviour
of the ecology contrasts with the combinatorial explosion
stemming from the existence of multiple options to achieve
each goal. For this reason, robot ecologies needs mechanisms
to promote their scalability, in terms of the number of goals
that can be achieved at the same time and the number of
resources that can be co-ordinated to work toward their
achievement. Their operations should be robust to failures
of individual devices, and their performance should degrade
gracefully as the system’s workload increases.

Distribution - At least some parts of the high-level
decision making mechanisms of a robot ecology must be
deployed in close proximity to its sensors and actuators in
order to minimise communication and thus reduce network
bandwidth usage, latency, and energy consumption, but cru-
cially also to avoid introducing a single point of failure and
subjecting each component of the ecology to the control of
a centralised planner.

Communication & re-configuration - Robotic ecologies
need to be supported by flexible communication capabilities
able to connect components (both software and hardware)
across different devices (robots, appliances, sensors, actua-
tors) and allow sharing of data while changing communica-
tion path-ways to implement different tasks or in response
to changing circumstances, such as when components join
or leave the ecology, for instance, as a result of system
maintenance, component failure, network disruptions and
mobility.

Heterogeneity - Supporting varying computational con-
straints is a primary priority, as target environments will
contain devices such as computers with large processing and
bandwidth capacities, as well as much simpler devices such
as micro-controller-based actuators and sensor nodes, and
even devices with no (customisable) computational capability
at all, such as Radio Frequency Identifications (RFIDs).

Interoperability - In order to perform useful services
operating in real homes with real users, robotic ecologies
should be integrated with mainstream domotic and AAL
infrastructures. On one hand, the latter should be able to
consider and use the capabilities of the robotic ecology,
for instance, to leverage robot mobility and advanced user-
system interaction, as well as their learning and reasoning
mechanisms. On the other hand, robotic ecologies should be
able to leverage and augment the services supported within
existing smart homes, including home automation systems
used to interact with embedded sensors and actuators.

Re-use & Integration - In order to generally reduce
the complexity of their development, robot ecologies need
explicit mechanisms to facilitate software re-use and integra-
tion with legacy components. Besides the obvious economic
advantages associated with the re-use of existing and well-
tested components (e.g. for path-planning, safe navigation,
localisation and activity recognition) robotic ecologies re-
quire functional primitives to avoid the need for online
learning of complex sensing-acting strategies. Rather, a robot
ecology needs pre-existing modules to provide a base-line
behaviour, to constrain their online exploration, but also to
guarantee that the system will not behave too erratically
during its initial learning stage

Monitoring - Notwithstanding the heterogeneity of their
components, robotic ecologies need to monitor their own
execution and assess their own performance in carrying out
their services. This must happen not only when the robotic
ecology has completed some service, or in response to failure
(e.g. to trigger component and/or robot replacement), but
also at runtime, for instance, in order to give interim status
feedback to high-level cognitive and learning functionalities
and give them the opportunity to re-assess the goals of the
ecology.

III. RUBICON CONTROL & MONITORING
ARCHITECTURE AND MIDDLEWARE

In order to accommodate the above requirements, the RU-
BICON project has developed a software suite that includes
a middleware for robotic ecologies and general planning,
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Fig. 1. Control and Monitoring System architecture

monitoring and execution modules. We employ a simple
yet robust hierarchical system architecture, shown in Fig. 1,
whereas a planning module oversees the main operations and
the necessary collaborations among the distributed devices in
the ecology - cooperating thanks to our peer-to-peer middle-
ware. Access to heterogeneous sensing and acting networks
is facilitated by a number of sensing and actuating proxy
components. An agent layer, installed on each robotic device,
lends each device a degree of autonomy, by instantiating
and monitoring local functionalities. Such an organization
is intended to simplify the job of the planner, which does
not need to deal with every single device-specific detail, and
to reduce the use of communication bandwidth necessary
to communicate status updates between each device and the
planner.

Each component in our system architecture is briefly
summarised in the following section.

A. PEIS Middleware

Interoperability among robots, wireless sensor nodes and
traditional computers is ensured by the PEIS Middleware
[19]. This is a fully decentralised, low footprint, portable
middleware that employs a shared, distributed tuple-space
as its main communication and coordination mechanism.
The PEIS Middleware affords smooth integration of highly
heterogeneous devices, including low-power ones like WSN
Motes, spanning across multiple and heterogeneous net-
works; dynamic addition and removal of devices; full run-
time configurability, including the replacement of devices
and re-routing of messages; reflection mechanisms to inspect
the available resources and their capabilities; and full decen-
tralisation, with no broker or registry.

In order to incorporate heterogeneous and computationally
constrained sensing and acting resources within a robotic
ecology (including, most recently, also a range of wireless
network standards and KNX home automation infrastruc-
tures), we employ a proxy design pattern, whereas a special
type of PEIS component - the proxy component - is used
to interface the robotic ecology with the sensing and acting
resources available in each specific network.

Each proxy component supports the following mecha-
nisms:

• Introspection and resource discovery mechanisms to
provide an index of available sensing and acting devices,

in terms of available sensor signals and accepted actua-
tor signals. Devices in each network may join or leave
the system at run-time without affecting the operations
of the robotic ecology.

• Proxied sensing and actuation by accepting subscrip-
tions to sensors automatically leading to the publication
of this sensor data from the underlying sensors, and by
accepting actuation signals that are transmitted to the
underlying actuators.

Finally, a specific PEIS-ROS interface component is used
in order to allow multiple robots equipped with ROS (Robot
Operating System) to be part of a robotic ecology, i.e. to
exchange data with other devices in a peer-to-peer fashion.
Such a choice is dictated by the fact that ROS entails the
presence of a centralized master program (ROS master)
managing the connections between cooperating modules; this
structure doesn’t fit the purpose of having a distributed and
dynamic system where robots can join and leave the network
at any time.

From the point of view of the robotic ecology, each robot
leveraging ROS can be seen like a monolithic structure
internally constituted by a set of nodes. The data exchange
between these nodes is managed by the related ROS master
while the data flow within the robotic ecology is achieved
through the PEIS-ROS interface (see Fig. 2).

Fig. 2. the communication between ROS nodes and PEIS middle-
ware is managed by the PEIS-ROS interface

A full description of the PEIS Middleware can be found
in [7].

B. Configuration Planner

This provides our robot ecology the ability to dynamically
and autonomously re-configure to achieve the given goals
using the currently available resources. The configuration
planner uses the PEIS Middleware introspection mechanism
to be informed about which robots and devices are available
in the robot ecology, what are their capabilities, and what is
their status.

A full description of the configuration planner can be
found in [18]. Here we briefly summarise its most important
features:

• First, our configuration planner represents activities,
plans and configurations through the concept of a tem-
poral network. This allows us to characterize activities
by an explicit duration, which can be made flexible
in order to absorb contingencies during the execution
of the plan. It also allows us to associate temporal
constraints like deadlines about task completion.
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• Secondly, our system’s planning and execution are
tightly coupled by sharing the same temporal network.
This allows the planner, among other things, to cope
with multiple and dynamic goals. A goal can be posted
during the execution of other ones and the planner
adapts the configurations depending on the state of the
execution that is continuously monitored.

• Thirdly, our framework includes provisions to explicitly
reason about resource consumption: the related alloca-
tion can be modified at run time by dedicated schedulers
taking into account the feedback from the sensors.

• Finally, other heterogeneous reasoners can be incor-
porated in addition to the schedulers, which all act
on the same network (as shown in Fig. 3), which is
continuously updated during the execution of the plan
to be in synch with the actual environment.

Fig. 3. Architecture of the Configuration Solver: multiple reasoners act
on the same temporal network. Each modification is checked through a
temporal consistency check

C. Self-OSGi Component & Agent Monitoring System

The other technical challenge tackled by our software suite
is the lack of a component model shared across all the
heterogeneous functional components harnessed by a robotic
ecology. We address this issue by building on Self -OSGi
[9], a modular and lightweight agent & component-based
framework based on the Open Service Gateway Initiative
(OSGi) [2]. OSGi defines a standardised component model
and a lightweight container framework, which is used as a
shared platform for network-provisioned services and com-
ponents specified through Java interfaces and Java classes.
OSGI offers container and life cycle operations to install,
start, stop and remove components together with a declarative
model for automatically publishing, finding and binding
their required/provided services based on XML component
definitions.

OSGi specification is currently the most widely adopted
technology for building modular control systems for net-
worked home applications, with many implementations tar-
geting computationally constrained platforms. Within the
Ambient Assisted Living (AAL) domain, OSGi-based mid-
dleware have long been used to provide the technical basis
for integrating network devices and services, e.g. in EU
projects such as Amigo, OASIS, SOPRANO, and their recent
consolidation in the UniversAAL platform.

Self -OSGi addresses the lack of common adaptation
mechanisms in OSGi and in other component-like frame-
works by injecting agent-based autonomic features to each
component. Specifically, with Self -OSGi, each component’s
service requirement is treated as a goal of the agent system,
which then manages the automatic and context-sensitive
search for components that are able to provide each ser-
vice requirement, as well as the automatic recovery from
their failure. In addition, as in PEIS, Self -OSGi adopts a
proxy design pattern to manage external components, that
is, components that do not live within the OSGi container,
and that communicate among each other through legacy
communication mechanisms.

Fig. 4. Snapshot from the ROS rxgraph visualization tool showing the
details of a robot navigation system dynamically assembled by the agent
control system to satisfy a navigation goal request

These features are used to define an agent-based interface
layer toward heterogeneous software modules, including
ROS-based robotic nodes. Rather than actually implement-
ing low-level functionalities and directly supporting their
collaborations, each agent is used to manage the actual
components running on the robotic devices, by re-using the
communication and configuration mechanisms employed in
the underlying managed system, such as topics, services
and namespaces in ROS, to monitor their progress toward
their objectives and their connectivity (wiring) with the other
components in the system (see Fig. 4).

A full description of Self -OSGi and its integration with
PEIS can be found in [9][8].

IV. RELATED WORK

Existing robot/WSN combined approaches (e.g. in related
EU projects such as URUS [20], IWARD [3], GUARDIANS
[1]) investigate many related issues such as cooperative
monitoring, localisation and navigation. However, these is-
sues are confronted rather in isolation, providing applied
solutions that usually lack a broader applicability and that
usually necessitate large scale, and costly computer systems
running computationally heavy processes. Our approach in
RUBICON fully embraces the robotic ecology concept, by
developing robotic ecologies that exhibit tightly coupled in-
teraction across the behaviour of all of their participants and
that target computationally constrained and heterogeneous
systems.

The general problem of self-configuration of a distributed
system is addressed in several fields, including ambient intel-
ligence [12][15], web service composition [11], distributed
middleware and autonomic computing [10]. These works,
however, do not address the same type of problem considered
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here: functional coordination of a robotic ecology, in which
the components of the system exchange continuous streams
of data and can interact with the physical world.

The two most prominent approaches to configuration plan-
ning for multiple robots are the ASyMTRe system, and the
system by Lundh and colleague. ASyMTRe [16] exploits
a set of robots, each of which is equipped with a set of
schemas, i.e. programs that allow the robot to: (a) acquire
data from the environment, (b) process the gathered data, (c)
exchange information between robots, and (d) modify the
environment through actuation. A configuration represents a
set of communication links that connect several schemas in
order to achieve the goals. This framework has been extended
to deal with multiple goals in [21] and [22], by splitting
the set of robots into coalitions, which compete for tasks
through an iterative auction process. The approach by Lundh
and colleagues [13] considers a robot ecology deployed in a
home facility. The framework leverages concepts of classical
planning, and employs two interacting planners. The first is
a standard action planner that builds a sequence of actions to
modify the world. Such a sequence is further refined through
the configuration planner that interconnects functionalities.
Lundhs approach has been extended to multiple goals [14]
through the use of an additional procedure: after generating
stand alone configurations for each goal, a merging phase
is performed to allow concurrent execution. The two above
systems would not fully satisfy our configuration planning re-
quirements, because: (1) they could not easily accommodate
multiple and dynamic goals; (2) they could not represent and
reason about time, which is needed in our target application
scenarios; (3) they could not represent and reason about
resources, which is needed to allow the concurrent execution
of multiple tasks by a robot ecology; and (4) it is unclear
how other forms of reasoning useful in a localized ecology,
like spatial or topological reasoning, may be exploited in
those frameworks.

Finally, recent efforts within the ROS community have
been addressing ROS extensions to multirobot systems. For
instance, the project Rocon [4] is an effort to make mul-
timaster ROS as practical as possible in order to provide
practical solutions to multi-robot-device-problems, e.g. in-
volving robotic devices and mobile (tablet) user interfaces. In
contrast, our design addresses highly heterogeneous robotic
ecologies where there is the need to integrate multiple
middleware and both robotics and mainstream (e.g. service-
oriented) software offerings used in our application domains.

V. CONCLUSION AND FUTURE WORK

While the software described in this paper is successfully
supporting our cognitive architecture, our current integrated
approach has not been tested on large scale systems and still
relies on a number of ad-hoc interventions to the functional
components in the robotic ecology. The goal of our future
work is to develop integration mechanisms that make this
job as easy and automatic as possible and provide systematic
evaluation of the advantages of our system architecture, for
instance, in terms of scalability and robustness.
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