10,749 research outputs found

    The D-ring, Not the A-ring, Rotates in Synechococcus OS-B' Phytochrome

    Get PDF
    Phytochrome photoreceptors in plants and microorganisms switch photochromically between two states, controlling numerous important biological processes. Although this phototransformation is generally considered to involve rotation of ring D of the tetrapyrrole chromophore, Ulijasz et al. (Ulijasz, A. T., Cornilescu, G., Cornilescu, C. C., Zhang, J., Rivera, M., Markley, J. L., and Vierstra, R. D. (2010) Nature 463, 250–254) proposed that the A-ring rotates instead. Here, we apply magic angle spinning NMR to the two parent states following studies of the 23-kDa GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) domain fragment of phytochrome from Synechococcus OS-B′. Major changes occur at the A-ring covalent linkage to the protein as well as at the protein residue contact of ring D. Conserved contacts associated with the A-ring nitrogen rule out an A-ring photoflip, whereas loss of contact of the D-ring nitrogen to the protein implies movement of ring D. Although none of the methine bridges showed a chemical shift change comparable with those characteristic of the D-ring photoflip in canonical phytochromes, denaturation experiments showed conclusively that the same occurs in Synechococcus OS-B′ phytochrome upon photoconversion. The results are consistent with the D-ring being strongly tilted in both states and the C15=C16 double bond undergoing a Z/E isomerization upon light absorption. More subtle changes are associated with the A-ring linkage to the protein. Our findings thus disprove A-ring rotation and are discussed in relation to the position of the D-ring, photoisomerization, and photochromicity in the phytochrome family

    Conformations and coherences in structure determination by ultrafast electron diffraction

    Get PDF
    In this article we consider consequences of spatial coherences and conformations in diffraction of (macro)molecules with different potential energy landscapes. The emphasis is on using this understanding to extract structural and temporal information from diffraction experiments. The theoretical analysis of structural interconversions spans an increased range of complexity, from small hydrocarbons to proteins. For each molecule considered, we construct the potential energy landscape and assess the characteristic conformational states available. For molecules that are quasiharmonic in the vicinity of energy minima, we find that the distinct conformer model is sufficient even at high temperatures. If, however, the energy surface is either locally flat around the minima or the molecule includes many degrees of conformational freedom, a Boltzmann ensemble must be used, in what we define as the pseudoconformer approach, to reproduce the diffraction. For macromolecules with numerous energy minima, the ensemble of hundreds of structures is considered, but we also utilize the concept of the persistence length to provide information on orientational coherence and its use to assess the degree of resonance contribution to diffraction. It is shown that the erosion of the resonant features in diffraction which are characteristic of some quasiperiodic structural motifs can be exploited in experimental studies of conformational interconversions triggered by a laser-induced temperature jump

    Experimental library screening demonstrates the successful application of computational protein design to large structural ensembles

    Get PDF
    The stability, activity, and solubility of a protein sequence are determined by a delicate balance of molecular interactions in a variety of conformational states. Even so, most computational protein design methods model sequences in the context of a single native conformation. Simulations that model the native state as an ensemble have been mostly neglected due to the lack of sufficiently powerful optimization algorithms for multistate design. Here, we have applied our multistate design algorithm to study the potential utility of various forms of input structural data for design. To facilitate a more thorough analysis, we developed new methods for the design and high-throughput stability determination of combinatorial mutation libraries based on protein design calculations. The application of these methods to the core design of a small model system produced many variants with improved thermodynamic stability and showed that multistate design methods can be readily applied to large structural ensembles. We found that exhaustive screening of our designed libraries helped to clarify several sources of simulation error that would have otherwise been difficult to ascertain. Interestingly, the lack of correlation between our simulated and experimentally measured stability values shows clearly that a design procedure need not reproduce experimental data exactly to achieve success. This surprising result suggests potentially fruitful directions for the improvement of computational protein design technology

    Evolutionary fine-tuning of conformational ensembles in FimH during host-pathogen interactions

    Get PDF
    Positive selection in the two-domain type 1 pilus adhesin FimH enhances Escherichia coli fitness in urinary tract infection (UTI). We report a comprehensive atomic-level view of FimH in two-state conformational ensembles in solution, composed of one low-affinity tense (T) and multiple high-affinity relaxed (R) conformations. Positively selected residues allosterically modulate the equilibrium between these two conformational states, each of which engages mannose through distinct binding orientations. A FimH variant that only adopts the R state is severely attenuated early in a mouse model of uncomplicated UTI but is proficient at colonizing catheterized bladders in vivo or bladder transitional-like epithelial cells in vitro. Thus, the bladder habitat has barrier(s) to R state–mediated colonization possibly conferred by the terminally differentiated bladder epithelium and/or decoy receptors in urine. Together, our studies reveal the conformational landscape in solution, binding mechanisms, and adhesive strength of an allosteric two-domain adhesin that evolved “moderate” affinity to optimize persistence in the bladder during UTI

    Co-populated Conformational Ensembles of β(2)-Microglobulin Uncovered Quantitatively by Electrospray Ionization Mass Spectrometry

    Get PDF
    Ordered assembly of monomeric human β(2)-microglobulin (β(2)m) into amyloid fibrils is associated with the disorder hemodialysis-related amyloidosis. Previously, we have shown that under acidic conditions (pH <5.0 at 37 °C), wild-type β(2)m assembles spontaneously into fibrils with different morphologies. Under these conditions, β(2)m populates a number of different conformational states in vitro. However, this equilibrium mixture of conformationally different species is difficult to resolve using ensemble techniques such as nuclear magnetic resonance or circular dichroism. Here we use electrospray ionization mass spectrometry to resolve different species of β(2)m populated between pH 6.0 and 2.0. We show that by linear deconvolution of the charge state distributions, the extent to which each conformational ensemble is populated throughout the pH range can be determined and quantified. Thus, at pH 3.6, conditions under which short fibrils are produced, the conformational ensemble is dominated by a charge state distribution centered on the 9+ ions. By contrast, under more acidic conditions (pH 2.6), where long straight fibrils are formed, the charge state distribution is dominated by the 10+ and 11+ ions. The data are reinforced by investigations on two variants of β(2)m (V9A and F30A) that have reduced stability to pH denaturation and show changes in the pH dependence of the charge state distribution that correlate with the decrease in stability measured by tryptophan fluorescence. The data highlight the potential of electrospray ionization mass spectrometry to resolve and quantify complex mixtures of different conformational species, one or more of which may be important in the formation of amyloid
    • …
    corecore