2,442 research outputs found

    Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family

    Get PDF
    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems.Fil: Uhart, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Flores, Gabriel. Eventioz/eventbrite Company; ArgentinaFil: Bustos, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentin

    Extracting Functional Modules from Biological Pathways

    Get PDF
    It has been proposed that functional modules are the fundamental units of cellular function. Methods to identify these modules have thus far relied on gene expression data or protein-protein interaction (PPI) data, but have a few limitations. We propose a new method, using biological pathway data to identify functional modules, that can potentially overcome these limitations. We also construct a network of these modules using functionally relevant PPI data. This network displays the flow and integration of information between modules and can be used to map cellular function

    Conformational dynamics of the Hop1 HORMA domain reveal a common mechanism with the spindle checkpoint protein Mad2.

    Get PDF
    The HORMA domain is a highly conserved protein-protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short 'closure motifs' in partner proteins by wrapping their C-terminal 'safety belt' region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain-closure motif interactions underlie both Hop1's initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed 'closed' conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13

    MCAM: Multiple Clustering Analysis Methodology for Deriving Hypotheses and Insights from High-Throughput Proteomic Datasets

    Get PDF
    Advances in proteomic technologies continue to substantially accelerate capability for generating experimental data on protein levels, states, and activities in biological samples. For example, studies on receptor tyrosine kinase signaling networks can now capture the phosphorylation state of hundreds to thousands of proteins across multiple conditions. However, little is known about the function of many of these protein modifications, or the enzymes responsible for modifying them. To address this challenge, we have developed an approach that enhances the power of clustering techniques to infer functional and regulatory meaning of protein states in cell signaling networks. We have created a new computational framework for applying clustering to biological data in order to overcome the typical dependence on specific a priori assumptions and expert knowledge concerning the technical aspects of clustering. Multiple clustering analysis methodology (‘MCAM’) employs an array of diverse data transformations, distance metrics, set sizes, and clustering algorithms, in a combinatorial fashion, to create a suite of clustering sets. These sets are then evaluated based on their ability to produce biological insights through statistical enrichment of metadata relating to knowledge concerning protein functions, kinase substrates, and sequence motifs. We applied MCAM to a set of dynamic phosphorylation measurements of the ERRB network to explore the relationships between algorithmic parameters and the biological meaning that could be inferred and report on interesting biological predictions. Further, we applied MCAM to multiple phosphoproteomic datasets for the ERBB network, which allowed us to compare independent and incomplete overlapping measurements of phosphorylation sites in the network. We report specific and global differences of the ERBB network stimulated with different ligands and with changes in HER2 expression. Overall, we offer MCAM as a broadly-applicable approach for analysis of proteomic data which may help increase the current understanding of molecular networks in a variety of biological problems.National Institutes of Health (U.S.) (NIH-U54-CA112967 )National Institutes of Health (U.S.) (NIH-R01-CA096504

    Non-stationary continuous dynamic Bayesian networks

    Get PDF

    Toxoplasma and Plasmodium protein kinases: roles in invasion and host cell remodelling

    Get PDF
    Some apicomplexan parasites have evolved distinct protein kinase families to modulate host cell structure and function. Toxoplasma gondii rhoptry protein kinases and pseudokinases are involved in virulence and modulation of host cell signalling. The proteome of Plasmodium falciparum contains a family of putative kinases called FIKKs, some of which are exported to the host red blood cell and might play a role in erythrocyte remodelling. In this review we will discuss kinases known to be critical for host cell invasion, intracellular growth and egress, focusing on (i) calcium-dependent protein kinases and (ii) the secreted kinases that are unique to Toxoplasma (rhoptry protein kinases and pseudokinases) and Plasmodium (FIKKs)

    Characterizing regulatory path motifs in integrated networks using perturbational data

    Get PDF
    Pathicular – a Cytoscape plugin for analysing cellular responses to transcription factor perturbations is presente

    MOTIPS: Automated Motif Analysis for Predicting Targets of Modular Protein Domains

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many protein interactions, especially those involved in signaling, involve short linear motifs consisting of 5-10 amino acid residues that interact with modular protein domains such as the SH3 binding domains and the kinase catalytic domains. One straightforward way of identifying these interactions is by scanning for matches to the motif against all the sequences in a target proteome. However, predicting domain targets by motif sequence alone without considering other genomic and structural information has been shown to be lacking in accuracy.</p> <p>Results</p> <p>We developed an efficient search algorithm to scan the target proteome for potential domain targets and to increase the accuracy of each hit by integrating a variety of pre-computed features, such as conservation, surface propensity, and disorder. The integration is performed using naïve Bayes and a training set of validated experiments.</p> <p>Conclusions</p> <p>By integrating a variety of biologically relevant features to predict domain targets, we demonstrated a notably improved prediction of modular protein domain targets. Combined with emerging high-resolution data of domain specificities, we believe that our approach can assist in the reconstruction of many signaling pathways.</p

    Simultaneous Genome-Wide Inference of Physical, Genetic, Regulatory, and Functional Pathway Components

    Get PDF
    Biomolecular pathways are built from diverse types of pairwise interactions, ranging from physical protein-protein interactions and modifications to indirect regulatory relationships. One goal of systems biology is to bridge three aspects of this complexity: the growing body of high-throughput data assaying these interactions; the specific interactions in which individual genes participate; and the genome-wide patterns of interactions in a system of interest. Here, we describe methodology for simultaneously predicting specific types of biomolecular interactions using high-throughput genomic data. This results in a comprehensive compendium of whole-genome networks for yeast, derived from ∼3,500 experimental conditions and describing 30 interaction types, which range from general (e.g. physical or regulatory) to specific (e.g. phosphorylation or transcriptional regulation). We used these networks to investigate molecular pathways in carbon metabolism and cellular transport, proposing a novel connection between glycogen breakdown and glucose utilization supported by recent publications. Additionally, 14 specific predicted interactions in DNA topological change and protein biosynthesis were experimentally validated. We analyzed the systems-level network features within all interactomes, verifying the presence of small-world properties and enrichment for recurring network motifs. This compendium of physical, synthetic, regulatory, and functional interaction networks has been made publicly available through an interactive web interface for investigators to utilize in future research at http://function.princeton.edu/bioweaver/
    • …
    corecore