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ABSTRACT

It has been proposed that functional modules are the fundamental units of cellular function
(Hartwell et al., 1999). Methods to identify these modules have thus far relied on gene
expression data or protein-protein interaction (PPI) data, but have a few limitations. We propose
a new method, using biological pathway data to identify functional modules, that can potentially
overcome these limitations. We also construct a network of these modules using functionally
relevant PPI data. This network displays the flow and integration of information between

modules and can be used to map cellular function.
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INTRODUCTION

Biological functions of the cell are products of complex molecular interactions and thus

are difficult to analyze at the single-molecule, or single-gene, level. Functional modules,

relatively independent sets of molecular components that have separable biological functions

(Hartwell et al., 1999), offer a more relevant level of analysis. Furthermore, networks of these

modules, where two modules are linked if they functionally influence one another, can map the

flow of information in the cell, thus enhancing understanding of the underlying biology

(Barabasi and Oltavi, 2004, Segal et al., 2004).

To date, identification of these functional modules and construction of module networks

have generally revolved around the use of three major methods of analysis to infer modules from

two major types of data. Expression data have been clustered (Preli¢ et al. 2006; Segal et al.,

2004), or transformed to a graph and analyzed with topological methods (Chen and Yuan, 2006;

Voy et al., 2006). Similarly, protein-protein interaction (PPI) data have been transformed into an

association matrix and clustered (Rives and Galitski, 2003), or analyzed with topological meth-

ods (Pereira-Leal et al., 2004; Spirin and Mirny, 2003). Finally, statistical procedures have been

used to infer modules from either, or both, of these types of data (Lee et al., 2004; Segal et al.,

2003).
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But there are limitations to the identification of modules using these approaches that stem
from the types of data on which the approaches are based. First, methods using expression data
may overlook some modules. Expression experiments only examine genes that are related
through changes in transcription levels, but transcription is not the sole measure of gene activity.
Second, modules discovered by methods based on PPI data might not actually exist in vivo. A set
of genes may form a highly-connected subgraph and thus be identified as a functional module,
but if the genes in the set interact under different conditions and these conditions do not coexist
in vivo, this set is not a true module.

APPROACH

In hopes of overcoming these issues, we propose using human-curated biological path-
way data, instead of expression or PPI data, to identify functional modules. Because genes as-
signed to the same pathway already share a functional relationship, genes that appear together in
multiple pathways may have a tight functional relationship. Furthermore, different sets of co-oc-
curring genes are separable, because they co-occur in different sets of pathways, potentially from
different biological processes. We see that these sets of co-occurring genes fit exactly the defini-
tion of a functional module. In contrast to previous work, ours is a descriptive, rather than an in-
ferential, approach to finding modules.

This approach can potentially address the two problems mentioned previously. First,

modules are not likely to be overlooked, because pathway data include genes related not only by
3
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transcription, but also by many other types of interaction, and thus contain modules that would

not be found by expression data-based methods. Second, the discovered modules will exist in

vivo, because genes found together in well-curated pathways were placed there precisely because

the curators believed them to function together in vivo.

In this paper we evaluate our new approach for finding functional modules. We use fre-

quent pattern mining to extract modules from biological pathway data. Our ultimate goal is to

understand how cell functions not through individual modules, but through interactions among

many modules. To move toward this goal, we then construct a network of functional modules by

linking them together using well-annotated PPI data, which contain information about the direc-

tion and the nature of the protein interactions. For example, the PPI data may show that gene A

positively influences the phosphorylation of gene B. We link two modules only if the interac-

tions between their genes have clear functional implications. For example, when gene A has a

positive effect on the phosphorylation of gene B, it’s likely that gene A may influence the activ-

ity of gene B. On the other hand, mere binding interactions between A and B would not suffice.

We find that our method produces a network of interesting and useful modules. We note that

while we were preparing this manuscript, Huang et al. published a related approach to finding

modules, using the same frequent pattern mining method to find recurrent network patterns in

expression data (Huang et al., 2007).
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MATERIALS AND METHODS

Generating modules

Pathway data

We collected pathway data from the following sources:

e BioCarta (http://www.biocarta.com/)

e Gene Ontology (GO) consortium (http://www.geneontology.org/)

o GeneGO (http://www.genego.com/)

e GenMAPP (http://www.genmapp.org/)

o GlaxoSmithKline internal data

e HumanCyc (http://humancyc.org/)

e Jubilant Biosys (http://jubilantbiosys.com/index.htm)

e Molecular Connections (http://www.molecularconnections.com/home.html)

We first removed all non-leaf nodes from the GO tree, because non-leaf nodes include

every gene in the nodes below them in the tree, and this would artificially skew the recurrence

count of those genes. We next used only pathways with between 2 and 100 genes, because we

believed that genes in large pathways were not as closely related as genes in smaller pathways.

This resulted in a total of 5426 pathways containing 8422 unique genes.

Extracting modules
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We used frequent pattern mining to extract recurrent sets of genes to be used as candidate
for functional modules. An introduction to frequent pattern mining can be found in Yahia et al.
(Yahia et al., 2006), but briefly, a transaction is a set of items, and a frequent itemset is a set of
items that occurs in more than a user-specified number of transactions. The support of a frequent
itemset is the number of transactions containing the itemset. A frequent closed itemset is a fre-
quent itemset for which there is no superset that has the same support. Treating pathways as
transactions and genes as items, we used CLOSET+ (Wang et al., 2003), an algorithm available
from Illimine (http://illumine.cs.uiuc.edu/), to generate a comprehensive list of frequent closed
itemsets with a minimum support of five. We then removed all modules that came only from one
pathway data source. This list formed our list of functional modules candidates.

To be more confident that the genes in each candidate actually functioned together, we
checked whether the genes co-occurred more often than they would have by mere chance. To do
so, we first generated a randomized set of pathways. Using our original data, we determined the
frequency of occurrence of every gene (the number of pathways containing that gene). We then
replaced each gene in each pathway of our original dataset with another gene randomly selected
from a set of genes with similar frequencies of occurrence. Each of these sets was constructed to
contain an adequate number of genes. The probability of selecting a particular gene from a set
was weighted by the frequency of that gene relative to the frequencies of the other genes in the

set. We simulated 1000 of these randomized pathway datasets. For each frequent closed itemset
6
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in our functional module candidate list, we determined the support of that itemset in each of the
randomized datasets. We then selected only those module candidates whose supports were high-
er than 95% of their supports under the 1000 randomized pathway datasets.

In order to select high-quality significant modules, we ranked the candidates according to
a composite score function that combined the sizes of the pathways containing the module, the

support, the number of data sources, and the size of the module:

Support .
. 1 1 .
Score = —— E Sources -
Support — PathwaySize;

logy Support - logg ModuleSize

Our score function was adapted from Okada et al. (Okada et al., 2007), and penalizes modules

supported by larger pathways, since genes in larger pathways are less closely related. We have

also tried ranking by support level or number of data sources (data not shown), but the score

function produced modules with better size distribution (about one-third of final modules have at

least 3 genes) and higher support for each size groups (Supplementary Table 1). Next, moving

from highest to lowest rank, we counted the number of genes in each successive module that had

already been included in previously selected modules. If the number of redundant genes made up

more than 25% of the genes in the module, the module was not selected. The cutoff of 25% was

chosen because this would allow for at most one out of 4 genes in a module to overlap with pre-
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vious modules, which we thought was a reasonable allowance. In this way we produced a final

module list containing high-quality, and relatively mutually independent, modules.

Generating the module network

PPI data

We collected PPI data from the following sources:

o GeneGO (http://www.genego.com/)

e Ingenuity (http://www.ingenuity.com/)

e Jubilant Biosys (http://jubilantbiosys.com/index.htm)

e Molecular Connections (http://www.molecularconnections.com/home.html)

e PRIME (http://prime.ontology.ims.u-tokyo.ac.jp:8081/)

e Transfac (http://www.gene-regulation.com/)

e TRRD (http://wwwmegs.bionet.nsc.ru/mgs/dbases/trrd4/trrdintro.html)

We limited our dataset to functionally relevant interaction types supported by 2 or more

publications to obtain 22099 total interactions averaging 3.82 publications each. The included in-

teraction types were transcription, phosphorylation, activation, cleavage, transport, dephos-

phorylation, degradation, and modulation. The data also included the direction of the interaction

and the effect of the source gene on the target gene, which could be either positive, negative, or

unknown.

Constructing the network
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All final module pairs were examined for interactions present in our PPI dataset. Module
pairs where at least one gene in one module interacted with at least one gene from the other mod-
ule were connected by an edge.

RESULTS
Modules

CLOSET+ produced 258982 module candidates in under 21 seconds on a 1.5 GHz Penti-
um Centrino machine with 512 MB of RAM, and after removing all modules containing only
one gene, and all modules supported by only one pathway data source, we were left with 227961
modules. Our randomization procedure next produced 197542 significant modules, and our rank-
ing and selection process reduced the number to 623 functional modules.

Around two-thirds of our final modules were two-gene modules (see Supplementary
Table 1). This is not surprising because it is more likely for fewer numbers of genes to be found
together, so smaller modules tend to have larger supports and thus are more likely to be chosen
by our ranking and selection system. However, there were also quite a few three-, four- and five-
gene modules, indicating that our procedure is not limited to finding only small modules. Our
largest module contained 22 genes and corresponded to an NADH dehydrogenase complex,
which had a support of five and came from three pathway data sources.

Table 1 displays a few examples of the modules that we discovered, along with broad

functional annotations. Of interest are the modules MAPK1IMAPK3 and MAP2K1IMAP2K2. It
9
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is not surprising that these modules, so important to cell signaling, were included in our list with
very large support levels and supported by nearly every data source we used. Note that the
kinases (MAPK) and the kinase-kinases (MAP2K) are found in separate modules, indicating the
strong resolving power of our approach. Finally, sets of genes that have been well-characterized
to function together are also found in our list, such as the BCL2L1IBIDICASPICYCS module in-
volved in apoptosis, and the ADCY 1IGNAS1IGNB1IGNGT1 module involved in G-protein sig-
naling.
Network

Our final network contained 532 nodes and 6611 edges, involving 1289 of the 8422
unique genes from our original pathway dataset and covering 4410 of the 5426 original pathways
(in other words, at least 4410 pathways contained at least one gene of the 1289 genes in the net-
work). The module IL1BITNF, with a support of 247 coming from 5 pathway sources, was the
highest-degree node in our network, connected to 236 other modules. MAPK1IMAPK3 was the
second-most connected module, with 182 connections, and IFNGIIL10IIL4 (support of 80, from
5 pathway sources) rounded out the top three network hubs with a degree of 178. These three
modules are involved in many aspects in inflammation, cell signaling, and immune response, re-
spectively, and thus it makes sense that they are so well-connected.

Because our PPI data included information about the direction of the interaction as well

as the type of effect (positive or negative), different edges in our network had different charac-
10
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ters. Analysis of these edges may help us understand how two modules functionally influence
each other and generate testable hypotheses for follow-up experiments. Figure 1a illustrates
some examples of different edge types. Some modules can be linked by positive feedback loops,
as in 1). REN is an activator of AGT, so the edge seen in ii1) encapsulates a negative feedback
loop. Finally, since CDKN1A and CDKN1B are both inhibitors of CDK4, the edge in iii) is actu-
ally a unidirectional edge, with an overall inhibitory effect on the cell cycle control module.

The value of a module network, however, lies in its ability to depict the patterns of inter-
connectedness of not just two, but many, modules. Figure 1b gives one example of such a pat-
tern. DNA replication is initiated after entry into S phase and the MCM2IMCM4IMCM6IMCM7
module plays an essential role during replication initiation. Two modules, namely CCNE1|
CDK2IE2F1IRB1ITFDP1 and E2F1IE2F2IE2F3IE2F5, which are well known to promote entry
into S phase, are shown here to activate the MCM module. On the other hand, DNA replication
must not occur after entry into mitosis, and so the CDC2ICDC25AICDC25BICDC25C module, a
master regulator of mitosis, acts to inhibit the MCM module.

CONCLUSION AND DISCUSSION

We have presented a new approach to extracting functional modules and constructing a
network of these modules. Our method is based on human-curated pathway and PPI data and has
advantages over the current expression data- and PPI data-based methods: we can capture mod-

ules based on functional relationships other than coexpression, and we avoid modules that cannot
11



Nature Precedings : doi:10.1038/npre.2007.1457.1 : Posted 22 Dec 2007

actually exist in vivo. We have found many modules that make biological sense (Table 1) and we
have demonstrated the usefulness of a network representation of the modules (Figures 1a and
1b).

We believe that the modules we found are likely to be functionally relevant because the
pathway data that we used are human-curated, and the curators can use their expertise to group
into a pathway genes that would not be grouped by computational methods. One potential limita-
tion to this approach is that the curators can make mistakes, so we do not rely merely on one
source for pathway data (we used eight sources in this report).

Our module selection procedure itself, however, needs improvement, for it is very diffi-
cult to operationalize the selection of “good” modules. While the consensus among biologists is
that modules are real, most don’t agree on what actually constitutes a module (Wolf and Arkin,
2003). Modules must have “separable functions,” but the difficulty is that function is context-
specific. There have been efforts to deal with this issue (Huang et al., 2007) but no definite rules
have emerged. We may benefit from some computational techniques meant to deal with uncer-
tainty, such as fuzzy frequent pattern mining techniques (Hiillermeier, 2005) or itemset summar-
ization techniques (Yan et al., 2005).

Despite these limitations, the modules extracted by our approach can aid biologists in
making sense of the large amounts of information often produced by high-throughput experi-

ments. Mapping this information onto functional modules rather than large pathways makes
12
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high-throughput experiments easier to understand. Furthermore, our representation of the mod-
ules in a functional network can help biologists trace the transfer and integration of information
and interaction between and among modules, and can lead to experimentally verifiable hypo-
theses. Cell biology is a complex phenomenon in which the interactions of modules give rise to a
whole that is greater than the sum of its parts. Mapping and understanding those interactions is a
step closer toward a complete understanding of the cell itself.
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FIGURES

Table 1. Examples of discovered modules

Genes (support, sources) Involved in

BCL2L1, BID, CASP9, CYCS (16, 5) Apoptosis

MAPKI1, MAPK3 (899, 7) Cell signaling
MAP2K1, MAP2K2 (213, 6) Cell signaling
MMP2, MMP9, TIMP1, TIMP2 (17, 5) Maintenance of ECM
MCM2, MCM4, MCM6, MCM7 (8, 5) DNA replication
ADCY1, GNAS1, GNB1, GNGTI1 (19, 3) G-protein signaling
C1S, C2,C3,C4B, C5,C6,C7, C9 (6, 4) Blood coagulation
MYH1, MYH4, MYH6, MYH7, MYHS8, MYL1, MYL3, Cytoskeleton

MYL9 (5, 3)

CCNDI1, CDK2, CDK4, CDKN1A, CDKNI1B (26, 5) G1/S phase transition

Selected examples of functional modules. The support, the number of data sources, and a broad

functional annotation are given for each module.
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D | |
PTGER2-PTGER4 (16, 4) PTGS1-PTGS2 (30, 6)

Prostaglandin neceptor Prostaglandfﬂ synthesis
ii)
\ \
AGT-REN (10, 5) EDN1-EDNRA(20, 5)
Angiotensin, |increases bp Endothelin, increases bp
iii) —— \
CCND1-CDK2-CDK4-CDKN1A-CDKN1B || IFNAI-STAT1-STAT2-TYK2
(26, 5) Cell cycle Aontrdl (5,4) Intlerferon, STATs

b)

CCNE1-CDK2-E2F1-RB1-TFDP1 E2F1-E2F2-E2F3-E2F5 (6, 3)
(13,5) G,/S transition Transcription factors in G,/S

MCM2-MCM4-MCM6-MCM7
(8, 5) DNA replication

=

CDC2-CDC25A-CDC25B-CDC25C
(9,5) G, /M transition

Figure 1. A deeper look into the module network.

a) Example of the different types of edges that can exist between modules. Lines represent

interactions between genes. Lines ending in arrows signify activation, and lines ending in bars

signify inhibition. b) Example of information integration between and among modules. Lines

represent interactions between modules. Support level and number of data sources are shown in

parentheses after each module followed by a functional annotation of that module.
18
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Supplementary Table 1. Frequency of module sizes,

with supports

Size I?requency Mean Support Median Support
2 454 15.13 7
3 76 11.36 7
4 64 11.09 7
5 13 16.31 8
6 6 8.83 7.5
7 2 25 25
8 3 5.67 6
9 1 6 6
12 1 6 6
13 2 6.5 6.5
22 1 5 5

Characteristics of the final list of functional modules. Module size is equivalent to the number of

genes in the module. The number of modules of any given size is shown, as well as the average

and median supports for modules of that size.
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