3,023 research outputs found

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    An adaptive algorithm for Internet multimedia delivery in a DiffServ environment.

    Get PDF
    To meet the Quality of Service (QoS) requirements of multimedia applications and to reduce the network congestion, several service models and mechanisms have been proposed. Among these, Differentiated Service (DiffServ) architecture has been considered as a scalable and flexible QoS architecture for the Internet. DiffServ provides class-based QoS guarantees. Applications in different classes receive different QoS and are priced differently. If network congestion occurs, DiffServ may not be able to guarantee the QoS for the application. Thus, the QoS may not reflect the price paid for the service. A problem of considerable economic and research importance is how to achieve a good price and quality tradeoff even at times of congestion. This thesis presents an Adaptive Class Switching Algorithm (ACSA) which intends to provide good quality with good price for real-time multimedia applications in a DiffServ environment. The ACSA algorithm combines the techniques of Real-time Transport Protocol (RTP), DiffServ, and Adaptation together. It also takes both QoS and price into account to provide users a good QoS with a good price. The algorithm dynamically selects the most suitable class based on both the QoS feedback received and the highest user utility. The user utility is a function of quality, price, and the weight which reflects the relative sensitivity to quality and price. The class with the highest user utility is the class that provides the best quality and price tradeoff. The QoS feedback is conveyed by RTP\u27s Control Protocol (RTCP) Receiver Reports. The results of simulation demonstrate that ACSA can react fast to the current class state in the network and reflects the best QoS and price tradeoff. It always seeks to find a class which provides the highest user utility except when the Internet is congested and the required QoS in all classes can not be satisfied. If this happens, the real-time multimedia flow chooses Best-Effort class with no payment. (Abstract shortened by UMI.) Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .F46. Source: Masters Abstracts International, Volume: 44-01, page: 0389. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Adaptive Capacity Management in Bluetooth Networks

    Get PDF

    Towards Internet QoS Provisioning Based on Generic Distributed QoS Adaptive Routing Engine

    Get PDF
    Increasing efficiency and quality demands of modern Internet technologies drive today’s network engineers to seek to provide quality of service (QoS). Internet QoS provisioning gives rise to several challenging issues. This paper introduces a generic distributed QoS adaptive routing engine (DQARE) architecture based on OSPFxQoS. The innovation of the proposed work in this paper is its undependability on the used QoS architectures and, moreover, splitting of the control strategy from data forwarding mechanisms, so we guarantee a set of absolute stable mechanisms on top of which Internet QoS can be built. DQARE architecture is furnished with three relevant traffic control schemes, namely, service differentiation, QoS routing, and traffic engineering. The main objective of this paper is to (i) provide a general configuration guideline for service differentiation, (ii) formalize the theoretical properties of different QoS routing algorithms and then introduce a QoS routing algorithm (QOPRA) based on dynamic programming technique, and (iii) propose QoS multipath forwarding (QMPF) model for paths diversity exploitation. NS2-based simulations proved the DQARE superiority in terms of delay, packet delivery ratio, throughput, and control overhead. Moreover, extensive simulations are used to compare the proposed QOPRA algorithm and QMPF model with their counterparts in the literature

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    A multi-objective particle swarm optimized fuzzy logic congestion detection and dual explicit notification mechanism for IP networks.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2006.The Internet has experienced a tremendous growth over the past two decades and with that growth have come severe congestion problems. Research efforts to alleviate the congestion problem can broadly be classified into three groups: Cl) Router based congestion detection; (2) Generation and transmission of congestion notification signal to the traffic sources; (3) End-to-end algorithms which control the flow of traffic between the end hosts. This dissertation has largely addressed the first two groups which are basically router initiated. Router based congestion detection mechanisms, commonly known as Active Queue Management (AQM), can be classified into two groups: conventional mathematical analytical techniques and fuzzy logic based techniques. Research has shown that fuzzy logic techniques are more effective and robust compared to the conventional techniques because they do not rely on the availability of a precise mathematical model of Internet. They use linguistic knowledge and are, therefore, better placed to handle the complexities associated with the non-linearity and dynamics of the Internet. In spite of all these developments, there still exists ample room for improvement because, practically, there has been a slow deployment of AQM mechanisms. In the first part of this dissertation, we study the major AQM schemes in both the conventional and the fuzzy logic domain in order to uncover the problems that have hampered their deployment in practical implementations. Based on the findings from this study, we model the Internet congestion problem as a multi-objective problem. We propose a Fuzzy Logic Congestion Detection (FLCD) which synergistically combines the good characteristics of the fuzzy approaches with those of the conventional approaches. We design the membership functions (MFs) of the FLCD algorithm automatically by using Multi-objective Particle Swarm Optimization (MOPSO), a population based stochastic optimization algorithm. This enables the FLCD algorithm to achieve optimal performance on all the major objectives of Internet congestion control. The FLCD algorithm is compared with the basic Fuzzy Logic AQM and the Random Explicit Marking (REM) algorithms on a best effort network. Simulation results show that the FLCD algorithm provides high link utilization whilst maintaining lower jitter and packet loss. It also exhibits higher fairness and stability compared to its basic variant and REM. We extend this concept to Proportional Differentiated Services network environment where the FLCD algorithm outperforms the traditional Weighted RED algorithm. We also propose self learning and organization structures which enable the FLCD algorithm to achieve a more stable queue, lower packet losses and UDP traffic delay in dynamic traffic environments on both wired and wireless networks. In the second part of this dissertation, we present the congestion notification mechanisms which have been proposed for wired and satellite networks. We propose an FLCD based dual explicit congestion notification algorithm which combines the merits of the Explicit Congestion Notification (ECN) and the Backward Explicit Congestion Notification (BECN) mechanisms. In this proposal, the ECN mechanism is invoked based on the packet marking probability while the BECN mechanism is invoked based on the BECN parameter which helps to ensure that BECN is invoked only when congestion is severe. Motivated by the fact that TCP reacts to tbe congestion notification signal only once during a round trip time (RTT), we propose an RTT based BECN decay function. This reduces the invocation of the BECN mechanism and resultantly the generation of reverse traffic during an RTT. Compared to the traditional explicit notification mechanisms, simulation results show that the new approach exhibits lower packet loss rates and higher queue stability on wired networks. It also exhibits lower packet loss rates, higher good-put and link utilization on satellite networks. We also observe that the BECN decay function reduces reverse traffic significantly on both wired and satellite networks while ensuring that performance remains virtually the same as in the algorithm without BECN traffic reduction.Print copy complete; page numbering of 105-108 incorrect

    Design of Feedback Controls Supporting TCP Based on the State–Space Approach

    Get PDF
    This paper investigates how to design feedback controls supporting transmission control protocol (TCP) based on the state-space approach for the linearized system of the well-known additive increase multiplicative decrease (AIMD) dynamic model. We formulate the feedback control design problem as state-space models without assuming its structure in advance. Thereby, we get three results that have not been observed by previous studies on the congestion control problem. 1) In order to fully support TCP, we need a proportional-derivative (PD)-type state-feedback control structure in terms of queue length (or RTT: round trip time). This backs up the conjecture in the networking literature that the AQM RED is not enough to control TCP dynamic behavior, where RED can be classified as a P-type AQM (or as an output feedback control for the linearized AIMD model). 2) In order to fully support TCP in the presence of delays, we derive delay-dependent feedback control structures to compensate for delays explicitly under the assumption that RTT, capacity and number of sources are known, where all existing AQMs including RED, REM/PI and AVQ are delay-independent controls. 3) In an attempt to interpret different AQM structures in a unified manner rather than to compare them via simulations, we propose a PID-type mathematical framework using integral control action. As a performance index to measure the deviation of the closed-loop system from an equilibrium point, we use a linear quadratic (LQ) cost of the transients of state and control variables such as queue length, aggregate rate, jitter in the aggregate rate, and congestion measure. Stabilizing gains of the feedback control structures are obtained minimizing the LQ cost. Then, we discuss the impact of the control structure on performance using the PID-type mathematical framework. All results are extended to the case of multiple links and heterogeneous delays

    Contributions based on cross-layer design for quality-of-service provisioning over DVB-S2/RCS broadband satellite system

    Get PDF
    Contributions based on cross-layer design for Quality-of-Service provisioning over DVB-S2/RCS Broadband Satellite Systems Nowadays, geostationary (GEO) satellite infrastructure plays a crucial role for the provisioning of IP services. Such infrastructure can provide ubiquity and broadband access, being feasible to reach disperse populations located worldwide within remote areas where terrestrial infrastructure can not be deployed. Nevertheless, due to the expansion of the World Wide Web (WWW), new IP applications such as Voice over IP (VoIP) and multimedia services requires considering different levels of individual packet treatment through the satellite network. This differentiation must include not only the Quality of Service (QoS) parameters to specify packet transmission priorities across the network nodes, but also the required amount of bandwidth assignment to guarantee its transport. In this context, the provisioning of QoS guarantees over GEO satellite systems becomes one of the main research areas of organizations such as the European Space Agency (ESA). Mainly because, their current infrastructures require continuous exploitation, as launching a new communication satellite is associated with excessive costs. Therefore, the support of IP services with QoS guarantees must be developed on the terrestrial segment to enable using the current assets. In this PhD thesis several contributions to improve the QoS provisioning over DVB-S2/RCS Broadband Satellite Systems have been developed. The contributions are based on cross-layer design, following the layered model standardized in the ETSI TR 102 157 and 462. The proposals take into account the drawbacks posed by GEO satellite systems such as delay, losses and bandwidth variations. The first contribution proposes QoSatArt, an architecture defined to improve QoS provisioning among services classes considering the physical layer variations due to the presence of rain events. The design is developed inside the gateway, including the specification of the main functional blocks to provide QoS guarantees and mechanisms to minimize de delay and jitter values experienced at the application layer. Here, a cross-layer design between the physical and the network layer has been proposed, to enforce the QoS specifications based on the available bandwidth. The proposed QoSatArt architecture is evaluated using the NS-2 simulation tool. In addition, the performance analysis of several standard Transmission Control Protocol (TCP) variants is also performed. This is carry out to find the most suitable TCP variant that enhances TCP transmission over a QoS architecture such as the QoSatArt. The second contribution proposes XPLIT, an architecture developed to enhance TCP transmission with QoS for DVB-S2/RCS satellite systems. Complementary to QoSatArt, XPLIT introduces Performance Enhanced Proxies (PEPs), which breaks the end-to-end semantic of TCP connections. However, it considers a cross-layer design between the network layer and the transport layer to enhance TCP transmission while providing them with QoS guarantees. Here, a modified TCP variant called XPLIT-TCP is proposed to send data through the forward and the return channel. XPLIT-TCP uses two control loops (the buffer occupancy and the service rate to provide optimized congestion control functions. The proposed XPLIT architecture is evaluated using the NS-2 simulation tool. Finally, the third contribution of this thesis consists on the development of a unified architecture to provide QoS guarantees based on cross-layer design over broadband satellite systems. It adopts the enhancements proposed by the QoSatArt architecture working at the network layer, in combination with the enhancements proposed by the XPLIT architecture working at the transport layer.Actualmente, los satélites Geoestacionarios (GEO) juegan un papel muy importante en la provisión de servicios IP. Esta infraestructura permite proveer ubicuidad y acceso de banda ancha, haciendo posible alcanzar poblaciones dispersas en zonas remotas donde la infraestructura terrestre es inexistente. Sin embargo, en la provisión de aplicaciones como Voz sobre IP (VoIP) y servicios multimedia, es importante considerar el tratamiento diferenciado de paquetes a través de la red satelital. Esta diferenciación debe considerar no solo los requerimientos de Calidad de Servicio (QoS) que especifican las prioridades de los paquetes a través de los nodos de red, si no también el ancho de banda asignado para garantizar su transporte. En este contexto, la provisión de garantías de QoS sobre satélites GEO es una de las Principales áreas de investigación de organizaciones como la Agencia Espacial Europea (ESA) persiguen. Esto se debe principalmente ya que dichas organizaciones requieren la explotación continua de sus activos, dado que lanzar un nuevo satélite al espacio representa costos excesivos. Como resultado, el soporte de servicios IP con calidad de servicio sobre la infraestructura satelital actual es de vital importancia. En esta tesis doctoral se presentan varias contribuciones para el soporte a la Calidad de Servicio en redes DVB-S2/RCS satelitales de banda ancha. Las contribuciones propuestas se basan principalmente en el diseño ”cross-layer” siguiendo el modelo de capas definido y estandarizado en las especificaciones ETSI TR 102 157 [ETS03] y 462 [10205]. Las contribuciones propuestas consideran las limitaciones presentes de los sistemas satelitales GEO como lo son el retardo de propagación, la perdida de paquetes y las variaciones de ancho de banda causados por eventos atmosféricos. La primera contribución propone QoSatArt, una arquitectura definida para mejorar el soporte a la QoS. Esta arquitectura considera las variaciones en la capa física debido a la presencia de eventos de lluvia para priorizar los niveles de QoS. El diseño se desarrolla en el gateway e incluye las especificaciones de los principales elementos funcionales y mecanismos para garantizar la QoS y minimizar el retardo presente en la capa de aplicación. Aquí, se propone un diseño ”cross-layer” entre la capa física y la capa de red, con el objetivo de reforzar las especificaciones de QoS considerando el ancho de banda disponible. La arquitectura QoSatArt es simulada y evaluada empleando la herramienta de simulación NS-2. Adicionalmente, un análisis de desempeño de diversas variantes de TCP (Transmission Control Protocol) es realizado con el objetivo de encontrar la variante de TCP más adecuada para trabajar en un ambiente con QoS como QoSatArt. La segunda contribución propone XPLIT, una arquitectura desarrollada para mejorar las transmisiones TCP con QoS en un sistema satelital DVB-S2/RCS. Complementario a QoSatArt, XPLIT emplea PEPs (Performance Enhanced Proxies), afectando la semántica end-to-end de las conexiones TCP. Sin embargo, XPLIT considera un diseño ”cross-layer” entre la capa de red y la capa de transporte con el objetivo de mejorar las transmisiones TCP considerando los parámetros de QoS como la ocupación de la cola y la tasa de transmisión (_i, _i). Aquí, se propone el uso de una nueva variante de TCP es propuesta llamada XPLIT-TCP, que usa dos bucles para proveer funciones mejoradas en el control de congestión. La arquitectura XPLIT es simulada y evaluada empleando la herramienta de simulación NS-2. Finalmente, la tercera contribución de esta tesis consiste en el desarrollo de un arquitectura unificada para el soporte a la QoS en redes satelitales de banda ancha basada en técnicas ”cross-layer”. Esta arquitectura adopta las mejoras propuestas por QoSatArt en la capa de red en combinación con las mejoras propuestas por XPLIT en la capa de transporte

    Enterprise network convergence: path to cost optimization

    Get PDF
    During the past two decades, telecommunications has evolved a great deal. In the eighties, people were using television, radio and telephone as their communication systems. Eventually, the introduction of the Internet and the WWW immensely transformed the telecommunications industry. This internet revolution brought about a huge change in the way businesses communicated and operated. Enterprise networks now had an increasing demand for more bandwidth as they started to embrace newer technologies. The requirements of the enterprise networks grew as the applications and services that were used in the network expanded. This stipulation for fast and high performance communication systems has now led to the emergence of converged network solutions. Enterprises across the globe are investigating new ways to implement voice, video, and data over a single network for various reasons – to optimize network costs, to restructure their communication system, to extend next generation networking abilities, or to bridge the gap between their corporate network and the existing technological progress. To date, organizations had multiple network services to support a range of communication needs. Investing in this type of multiple communication infrastructures limits the networks ability to provide resourceful bandwidth optimization services throughout the system. Thus, as the requirements for the corporate networks to handle dynamic traffic grow day by day, the need for a more effective and efficient network arises. A converged network is the solution for enterprises aspiring to employ advanced applications and innovative services. This thesis will emphasize the importance of converging network infrastructure and prove that it leads to cost savings. It discusses the characteristics, architecture, and relevant protocols of the voice, data and video traffic over both traditional infrastructure and converged architecture. While IP-based networks present excellent quality for non real-time data networking, the network by itself is not capable of providing reliable, quality and secure services for real-time traffic. In order for IP networks to perform reliable and timely transmission of real-time data, additional mechanisms to reduce delay, jitter and packet loss are required. Therefore, this thesis will also discuss the important mechanisms for running real-time traffic like voice and video over an IP network. Lastly, it will also provide an example of an enterprise network specifications (voice, video and data), and present an in depth cost analysis of a typical network vs. a converged network to prove that converged infrastructures provide significant savings

    Segment Routing based Traffic Engineering

    Get PDF
    In modern networks, the increasing volume of network traffic and the diverse range of services with varying requirements necessitate the implementation of more advanced routing decisions and traffic engineering. This academic study proposes a QoS adaptive mechanism called ”Sepitto”, which utilizes Segment routing protocols, specifically SRv6, to address network-traffic control and congestion avoidance. Sepitto leverages data-plane traffic to convey Linux Qdisc statistics, such as queue size, packet drops, and buffer occupancy, in each Linux-based virtual router. By incorporating this information, edge routers become aware of the current network status, enabling them to make informed decisions regarding traffic paths based on QoS classes. SRv6 is employed to direct traffic along desired paths, avoiding congested links and minimizing queuing delays and overall latency. Moreover, Sepitto offers network administrators an interface to customize decision-making processes based on their policies, assigning costs to network graph edges by associating the provided statistics to a certain cost. To incorporate these costs, the implementation employs the Dijkstra algorithm to determine the path with the lowest cost. Performance analysis of Sepitto reveals minimal overhead compared to traditional routing methods, while effectively mitigating network congestion. The results demonstrate that Sepitto reduces traffic round-trip time during congestion while maintaining differentiated treatment for various QoS classes
    corecore