
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2005 

An adaptive algorithm for Internet multimedia delivery in a An adaptive algorithm for Internet multimedia delivery in a 

DiffServ environment. DiffServ environment. 

Yang Feng 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Feng, Yang, "An adaptive algorithm for Internet multimedia delivery in a DiffServ environment." (2005). 
Electronic Theses and Dissertations. 942. 
https://scholar.uwindsor.ca/etd/942 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/942?utm_source=scholar.uwindsor.ca%2Fetd%2F942&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


An Adaptive Algorithm for Internet Multimedia 

Delivery in a DiffServ Environment

by

Yang Feng

A Thesis
Submitted to the Faculty of Graduate Studies and Research 

through the School of Computer Science 
in Partial Fulfillment of the Requirements for 

the Degree of Master of Science at the 
University of Windsor

Windsor, Ontario, Canada 
2005 

©2005 Yang Feng

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1*1 Library and 
Archives Canada

Published Heritage 
Branch

Bibliotheque et 
Archives Canada

Direction du 
Patrimoine de I'edition

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 0-494-04940-5 
Our file Notre reference 
ISBN: 0-494-04940-5

NOTICE:
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



l o l l  I UC

Abstract
In recent years, an explosive growth of real-time multimedia applications has occurred. 

Many of these applications need high bandwidth. In addition, an increasing number of 

Internet users are using real-time multimedia applications. Thus, congestion occurs in the 

Internet. Also, the services required of these applications differ significantly from the 

traditional network applications (e-mail, file transfer, etc.) because they are 

delay-sensitive and loss-tolerant. Network congestion degrades the quality of real-time 

multimedia applications greatly.

To meet the Quality of Service (QoS) requirements of multimedia applications and to 

reduce the network congestion, several service models and mechanisms have been 

proposed. Among these, Differentiated Service (DiffServ) architecture has been 

considered as a scalable and flexible QoS architecture for the Internet. DiffServ provides 

class-based QoS guarantees. Applications in different classes receive different QoS and 

are priced differently. If network congestion occurs, DiffServ may not be able to 

guarantee the QoS for the application. Thus, the QoS may not reflect the price paid for 

the service. A problem of considerable economic and research importance is how to 

achieve a good price and quality tradeoff even at times of congestion.

This thesis presents an Adaptive Class Switching Algorithm (ACSA) which intends to 

provide good quality with good price for real-time multimedia applications in a DiffServ 

environment. The ACSA algorithm combines the techniques of Real-time Transport 

Protocol (RTP), DiffServ, and Adaptation together. It also takes both QoS and price into 

account to provide users a good QoS with a good price. The algorithm dynamically 

selects the most suitable class based on both the QoS feedback received and the highest 

user utility. The user utility is a function of quality, price, and the weight which reflects 

the relative sensitivity to quality and price. The class with the highest user utility is the

in
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class that provides the best quality and price tradeoff. The QoS feedback is conveyed by 

RTP’s Control Protocol (RTCP) Receiver Reports.

The results o f  simulation demonstrate that ACSA can react fast to the current class state 

in the network and reflects the best QoS and price tradeoff. It always seeks to find a class 

which provides the highest user utility except when the Internet is congested and the 

required QoS in all classes can not be satisfied. If this happens, the real-time multimedia 

flow chooses Best-Effort class with no payment.

Keyword: Differentiated Services (DiffServ), Real-time Transport Protocol (RTP), Real 

Time Control Protocol (RTCP), Quality of Service (QoS), User Utility, Receiver Report 

(RR), Adaptive Class Switching Algorithm (ASCA)
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Chapter 1 Introduction

In recent years, there has been a growing demand for real-time multimedia applications 

over the Internet such as telephony, videoconferencing, etc. More new multimedia 

products will come into the market very soon. These applications are different than the 

traditional text applications (e-mail, file sharing and so on). This chapter is an overview 

of real-time multimedia applications in the Internet. It covers the characteristics of 

real-time multimedia applications, the techniques for the applications, and the problems 

in providing QoS for the applications.

1.1 Characteristics of multimedia applications

Real-time multimedia applications have time constraints. Comparing with the traditional 

text applications, multimedia applications have special characteristics [LiuOO],

First, real-time multimedia applications are delay-sensitive. They are valuable only if the 

user receives the data with a certain quality. For example, in Internet telephony, if the 

latency exceeds the limit that human beings can tolerate (250-400 milliseconds), users 

will complain about the quality of the call.

Second, many of these applications send large amount of data so they require much 

higher bandwidth. Meanwhile, there is an increasing number of Internet users using 

real-time multimedia applications. A large amount of Internet traffic load comes from 

multimedia applications. They are likely to bring congestion to the Internet which 

degrades the quality of the applications significantly.

Third, multimedia data stream is usually bursty and the receiver buffer is limited. If there 

is nothing done to smooth the bursty data flow*, it may overflow the receiver buffer and

* See Appendix A for the definition o f  flow

1
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some data packets will be lost. Packet loss may occur due to other reasons, e.g., network 

congestion. Although many real-time multimedia applications are loss-tolerant, there is a 

threshold (about 20% loss rate) that human beings can tolerate.

1.2 Techniques for multimedia applications

Real-time multimedia applications need high bandwidth and they are delay-sensitive. 

These characteristics bring challenges as well as new Quality of Services (QoS) 

requirements to the Internet. In addition to the fast hardware development (high speed 

routers, high speed links, and so on), network software architectures, protocols, and 

algorithms for multimedia applications are very important for overcoming these 

challenges and satisfying the new QoS requirements. The main architectures and 

protocols include:

Real-time Transport Protocol (RTP) together with its Real Time Control Protocol 

(RTCP) [SC03]

Adaptive approaches.

Real-time Streaming Protocol (RTSP) [SC98]

Resource ReSerVation Protocol (RSVP) [BZ97, Wro97a]

The Integrated Services (IntServ) [CSZ92, BCS94] and RSVP model 

The Differentiated Services (DiffServ) model [BB98a, BB98b]

We focus on RTP/RTCP, DiffServ, and adaptive approaches in this thesis.

1.2.1 RTP and RTCP

Most of today’s real-time multimedia applications in the Internet use the Real-time 

Transport Protocol (RTP) for transmission of real-time multimedia data, e.g. audio and
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video. RTP contains two parts: RTP Data Transfer Protocol for real-time data 

transmission; and RTP’s Control Protocol (RTCP) for monitoring the QoS of the data 

delivery and providing minimal session control [SC03]. RTCP packets, especially 

Receiver Reports (RRs), provide feedback information, e.g., number of packets lost since 

the beginning of the transmission, packet loss fraction incurred in the current interval, 

interarrival jitter, and delay. Sender receives the feedback information from receivers and 

uses it to detect the current network state. Accordingly, it can dynamically adapt the 

transmitting rate to suit the current network state. However, this adaptation can not 

guarantee a minimum quality if the available bandwidth is too low.

1.2.2. Adaptive algorithms

In addition to the rate adaptation technique, there are other adaptive algorithms, e.g., 

dynamic bandwidth allocation [SM02, EK02, YL03], and dynamic class selection 

algorithm [DR01, NVOO, SB02], which are used in class-based network environment. 

The dynamic bandwidth allocation techniques focus on maximizing the network 

bandwidth usage. It dynamically allocates the network resources according to the current 

traffic condition. The dynamic class selection algorithms focus on using minimum cost to 

provide acceptable QoS. It dynamically chooses the service class according to the current 

class state.

1.2.3 DiffServ architecture

The Differentiated Services (DiffServ) architecture has been considered as a scalable and 

flexible QoS architecture for the Internet. DiffServ provides class-based QoS guarantees. 

Packets in a DiffServ network are classified and marked differently into several classes 

[see Appendix A]. The forwarding behaviors of the packets in the same class are identical. 

Thus, DiffServ does not maintain per-flow information [see subsection 2.6] in its core. 

This feature allows DiffServ to achieve scalability. Basically, DiffServ provides two

3
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classes of service: Expedited Forwarding (EF) class [JN99] and Assured Forwarding (AF) 

class [HB99] in addition to the Best-Effort class. EF is used by applications requiring low 

delay and jitter guarantees. AF is supposed to provide different levels of forwarding 

assurance for IP packets which require better reliability than BE service. Currently, there 

are four independent AF subclasses (AF1, AF2, AF3, and AF4). Each AF subclass in a 

DiffServ node is allocated a certain amount of resources for minimum QoS guarantees.

1.3 Problem and thesis goal

DiffServ EF and AF services provide class-based QoS and these services are associated 

with the cost. Usually, high-cost class provides high QoS guarantees. However, when the 

Internet is congested, DiffServ may not be able to guarantee the QoS for the application. 

Thus, the QoS may not reflect the price paid for the service. A problem of considerable 

commercial and research importance is how to achieve a good price and quality tradeoff 

even at times of congestion.

To solve the price and quality tradeoff problem, we propose an Adaptive Class Switching 

Algorithm (ACSA) that provides good quality with good price for real-time multimedia 

applications running in a DiffServ environment. The price paid for the service and the 

quality of the transmission are both important factors for a user to choose the service. 

Hence, QoS and price tradeoff should be taken into account when designing our adaptive 

algorithm to solve this problem.

We assume that service classes in the DiffServ architecture are ordered so that a class 

with a higher numerical number costs more than a class with a lower numerical number, 

e.g., AF4 costs more than AF3. In a normal network state, a higher price class should 

provide better QoS than that provided by a lower price class. But when the Internet is 

congested, or the traffic in some classes is overloaded, this relation may not be 

guaranteed. In these cases, the higher price class may not provide better service than the

4
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lower price class. To combine the two factors (QoS and price) together, we use the user 

utility [SK98] function which is a function of QoS, price, and a weight that represents the 

user sensitivity to QoS and is determined by the user. RTCP QoS feedback report, 

(Receiver Reports (RRs)) [SC03], are sent by the receivers to the sender to summarize 

the QoS provided in the current interval for all classes. This QoS information is used to 

calculate the user utility for all classes. A class with the highest user utility means it is the 

most suitable class for the user application to run [see subsection 5.3], By using our class 

switching algorithm, the user will be able to use the service class with the highest user 

utility.

The thesis is organized as follows. Chapter 2 provides some background about 

multimedia delivery. These techniques include RTP/RTCP protocol, DiffServ, IntServ 

architectures, and some adaptive approaches. Chapter 3 reviews the network simulator 

(NS) which we used to build our simulation and points out the contributed features in NS, 

e.g., RTP and DiffServ. Chapter 4 discusses related work. We compare the previous work 

to our work and summary the features of our algorithm. Chapter 5 explains our algorithm 

in details. It presents the problems to be solved by our algorithm, our solution, and some 

important terms used in our algorithm. It also analyzes the complexity of the algorithm. 

Chapter 6 describes our simulation topology, experimental scenarios and the results. 

Chapter 7 concludes the thesis and gives the future work. Appendix A provides terms 

used in this thesis. Appendix B is for the abbreviations.
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Chapter 2 Multimedia Delivery Background

Multimedia networking plays a very important role on today’s Internet. It enables 

different users on different machines to share image, video, and audio and to 

communicate with each other over the Internet. Multimedia network involves many 

issues and techniques. Real-time Transport Protocol together with Real-time Control 

Protocol (RTP/RTCP) [SC03] is suitable for transmitting and controlling applications 

with real-time characters. Real-time Streaming Protocol (RTSP) [SC98] provides 

“VCD-style” remote control for these applications. Resource ReSerVation Protocol 

(RSVP) [BZB97, Wro97a] is a signaling protocol to reserve resource. The Integrated 

Services (IntServ) and RSVP architecture, and the Differentiated Services (DiffServ) 

architecture are used for providing QoS for these applications. This chapter discusses 

these techniques in details.

2.1 Quality of Service (QoS)

Currently, the Internet’s IP protocol provides Best-effort service which provides no 

guarantee for actual packet delivery, in order delivering and packet delay. In other words, 

packets could be delay, could be lost, or arrive out of order. Also, there is no 

differentiation between different flows within the service. The lack of guarantees and the 

same treatment of the flows can not meet the requirements for multimedia delivery 

especially for real-time multimedia applications because they need higher level of 

Quality of Service (QoS) guarantees than the current Internet offers.

QoS refers to the ability of a network to achieve the required functionality of an 

application. It can be parameterized as a set of quantitative and qualitative characteristics 

such as throughput, delay, jitter, packet loss and error rates, etc [Bha02, VK95]. For a 

particular application, different characteristics will be considered as important parameters.

6
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The QoS parameters affecting multimedia delivery are delay, jitter, throughput, and 

packet loss rate [See Appendix A].

2.2 QoS for real-time multimedia applications

Transmitting the multimedia applications over the Internet needs to solve following 

issues [LiuOO]:

Multimedia applications means huge amount of data and heavy traffic. When 

bandwidth is lacking, the traffic quality will degrade due to the congestion.

Real-time multimedia applications are very sensitive to packet delay but can tolerate 

some packet loss. There is no retransmitting mechanism needed for real-time 

applications. So the minimum bandwidth should be guaranteed when the transmission 

starts.

Real-time multimedia applications need to be played back in order, and the audio and 

video data should be synchronized when playing back. The protocols should take into 

account the correct timing and synchronization.

Multimedia applications usually work in a multicast environment. That means the 

same data stream from a sender is sent to a group of receivers. The protocols for 

multimedia applications must consider the multicast issue.

In order to solve these issues and meet the QoS requirements for real-time multimedia 

applications, several protocols and network architectures have been proposed including 

Real-time Transport Protocol together with Real-time Control Protocol (RTP/RTCP) 

[SC03], Real-time Streaming Protocol (RTSP) [SC98], Resource ReSerVation Protocol 

(RSVP) [BZB97, Wro97a], the Integrated Services (IntServ) and RSVP architecture, and 

the Differentiated Services (DiffServ) architecture. In this chapter, we discuss the 

protocols and network architectures in details.

7
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2.3 RTP and RTCP protocols

This subsection provides an introduction to the RTP protocol and its companion protocol, 

RTCP.

Real-time Transport Protocol (RTP) provides end-to-end network transport functions 

suitable for applications transmitting real-time data, such as audio, video or simulation 

data, over multicast or unicast network services [SC03], It is integrated within the 

application layer, typically running on top of User Datagram Protocol (UDP) [Pos80]. 

RTP provides services including payload type identification, sequence numbering, 

timestamping, and QoS monitoring. Through these services, RTP takes care of the timing 

and synchronization issues for real-time applications. Also, the QoS monitoring 

mechanism allows the sender to react to the current network state. It should be 

emphasized that RTP itself does not provide any mechanism to ensure timely delivery or 

provide other QoS guarantees. It does not guarantee delivery or prevent out-of-order 

delivery, nor does it assume that the underlying network is reliable and delivers packets 

in sequence.

Data transmission SR SDES BY APP

RTP

RTP RTCP

Feedback reports

Figure 2.1 RTP protocol 

RTP contains two protocols (Figure 2.1):

RTP Data Transfer Protocol (RTP) for real-time multimedia transmission; and

RTP Control Protocol (RTCP) for monitoring the QoS of the data delivery and

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



providing minimal control within a RTP session.

2.3.1 RTP Data Transfer Protocol (RTP)

RTP Data Transfer Protocol is for real-time data transmission. A RTP packet is 

composed of a header and the payload. The header contains several fields such as the 

payload type, a sequence number, a timestamp, and synchronization source identifier 

(SSRC), and so on.

The payload type field (7 bits) identifies the encoding type of the RTP payload (e.g., 

PCM, MPEG) and determines its interpretation by the application.

The sequence number field (16 bits) increments by one for each RTP data packet sent, 

and may be used by the receiver to detect the packet loss and to restore the packet 

sequence to be in order.

The timestamp field (32 bits) reflects the sampling instant of the first octet in the RTP 

data packet. It may be used for synchronization and jitter calculations. The initial 

value of the timestamp is random.

The SSRC field (32 bits) identifies the synchronization source. This identifier is 

chosen randomly to avoid any two synchronization sources within the same RTP 

session to have the same SSRC identifier. It allows the receivers to know where the 

data is coming from.

IP header UDP header RTP header RTP payload

Figure 2.2 RTP data in an IP packet [LiuOO]

9
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A RTP packet includes RTP header and audio/video data (RTP payload). A RTP packet 

is sent to UDP socket and encapsulated to be a UDP packet. It then goes to the IP layer to 

be encapsulated as an IP datagram (See Figure 2.2). The encapsulation is seen only at the 

end systems. Routers do not know if the IP datagrams carries RTP packets or not.

RTP packets can be sent over both unicast and multicast network. In a multicast scenario, 

for example many-to-many multicast, each medium (audio or video) should be carried in 

a separate RTP session. All of the sessions typically use the same multicast group.

2.3.2 Real Time Control Protocol (RTCP)

The Real Time Control Protocol (RTCP) is based on the periodic transmission of control 

packets. It performs three main functions:

QoS monitoring

This is the primary function of RTCP. RTCP provides feedback of the quality of 

data transmission. Based on the feedback information, senders can estimate the 

current QoS of the network and adjust its transmission parameters such as sending 

rate or compression level. Receivers can use the feedback information as fault 

diagnosis to determine whether problems are local, regional or global. Also, 

network managers can use the feedback to evaluate the performance of their 

networks.

Source identification

RTCP SDES (source description) packets contain canonical names or CNAME as 

unique identifiers for RTP sources within one RTP session. They also contain other 

source description items such as NAME (personal name) and EMAIL (email 

address). Receivers require the CNAME to keep track of each participant and to 

associate multiple data streams from a given participant in a set of related RTP

1 0
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sessions, for example to synchronize audio and video.

Control information scaling

RTCP packets are sent periodically among participants. When the number of 

participants increases, it is necessary to control the rate and limit the traffic in order 

for RTP to scale up to a large number of participants. In general, RTCP traffic is 

limited to 5 percent of the session bandwidth. To reduce the traffic, RTCP modifies 

the transmission rate as a function of the number of participants in the session. This 

number is obtained by having each participant send its control packets to all the 

others so that each can independently observe the number of participants.

In an RTP session, each participant sends RTCP packets to all other participants in the 

same session. The RTCP packets convey feedback on quality of data delivery as well as 

identify information about participants. In [SC03], there are five RTCP packet types that 

have been defined to carry a variety of control information:

Receiver report (RR) - RRs are generated by participants that are not active data 

senders. They contain statistical data such as number of packets lost, interarrival jitter, 

and delay to indicate the reception quality of the data delivery.

Sender report (SR) - SRs are generated by active data senders who are also receivers. 

In addition to the same quality feedback as in RR, SRs contain more information 

from senders such as number of packets sent and RTP timestamp. The timestamp is 

used for synchronization and jitter calculations.

Source description (SDES) - SDES packets contain source description items to 

describe the sources, e.g., CNAME, NAME, EMAIL, and so on.

Goodbye RTCP packet (BYE) -  It is sent by a multicast participant to leave the 

session.

11
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Application-defined RTCP packet (APP) - Application specific functions. The APP 

packet is intended for experimental use as new applications and new features are 

developed.

In RTCP, the feedback control information is carried in two RTCP reports: Sender 

Reports (SRs) and Receiver Reports (RRs). SRs are generated by active senders and 

contain reception statistics from active senders. Receiver Reports (RRs) are generated by 

receivers and contain reception statistics from receivers. These statistics can be used to 

measure long-term and short-term QoS (delay, packet loss rate, and jitter) of the 

transmission. The only difference between the SR and RR forms is that the SR includes a 

20-byte sender information section for use by active senders.

Some common and important fields in SR and RR are:

The reception report count (RC) indicates the number of reception report blocks 

contained in this packet.

The packet type (PT) contains a number to identify the RTCP packet type. For RTCP 

SR, PT is 200, for RR, PT is 201. The PTs for SDES, BYE and APP are 202, 203, 

and 204.

SSRC is the synchronization source identifier for the originator of this report.

SSRC_n is the nth SSRC identifier o f the source to which the information in this 

reception report block pertains.

Fraction lost is the fraction of RTP data packets lost from source SSRC_n since the 

previous SR or RR packet was sent. We refer to this field as packet loss rate or packet 

loss in this thesis.

Cumulative number of packets lost is the total number of RTP data packets from 

source SSRC_n that have been lost since the beginning of reception.

12
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Interarrival jitter is an estimate of the statistical variance of the RTP data packet 

interarrival time.

Delay since last SR (DLSR) is the delay between receiving the last SR packet from 

source SSRC n and sending this reception report block.

RTCP SRs and RRs convey the reception quality feedback information which will be 

useful not only for data senders but also for other receivers and third-party monitors (e.g., 

network managers). By analyzing sender and receiver reports, the short-term or long-term 

network states will be learned. People may use the information to develop new 

algorithms or mechanisms to perform QoS control or network congestion control. The 

adaptive algorithm proposed in this thesis uses RRs to collect QoS of the current network 

state.

2.4 Real-Time Streaming Protocol

This subsection is a brief introduction to Real-Time Streaming Protocol (RTSP).

Today, multimedia data is usually sent across the network in streams. Video and audio 

data are broken into packets with size suitable for transmission between the servers and 

clients. A client can play the first packet and decompress the second while receiving the 

third. Thus the user can start enjoying the multimedia without waiting to the whole files. 

This "VCR-style" remote control for multimedia applications is performed by Real-Time 

Streaming Protocol (RTSP).

RTSP [SC98] is a client-server multimedia presentation protocol for providing user 

interactivity. It enables on-line playing and controlling the delivery of streamed 

multimedia data over IP network. It provides "VCR-style" remote control functionality 

for audio and video streams, like play, pause, rewind, and so on.

13
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RTSP is an application-level protocol designed to work with other protocols like RTP to 

provide a complete streaming service over the Internet. This protocol is intended to 

control multiple data delivery sessions, to provide a means for choosing delivery 

channels such as UDP and TCP, and to delivery mechanisms based upon RTP [SC98].

RTSP messages use a different port number than the media stream. The messages start 

with rtsp://. Each RTSP session has a session identifier. The client starts the session with 

the SETUP request. The server responds with a session identifier. The session ends when 

the client sends a TEARDOWN request. Besides SETUP, TEARDOWN, RTSP supports 

other methods including PLAY, PAUSE, RECORD, OPTIONS, DESCRIBE, and so on.

RTSP is considered as "remote control" for multimedia delivering between client and 

server. It neither defines multimedia compression schemes, nor defines the encapsulation 

or the transmission of the data packets.

2.5 Resource ReSerVation Protocol

This subsection introduces RSVP protocol, its features and how it works.

RSVP [BZ97] is a signaling protocol that allows a host to request a special end-to-end 

quality of service for its data flows. The hosts running real-time multimedia applications 

use RSVP to reserve necessary resources (link bandwidth and router buffers) at routers 

along the transmission paths so that the requested resources can be available when the 

transmission actually takes place. Also, it allows hosts to establish and tear down 

reservation for data flows.

RSVP has three features.

RSVP provides reservation for bandwidth in multicast trees and the reservation 

involves the end hosts and all intermediate routers.

14
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RSVP accommodates heterogeneous receivers. Different receivers on the same 

multicast delivery tree may have different capabilities and therefore need different 

QoS.

The reservation is receiver-oriented. The RSVP reservation messages originate at the 

receivers and flow upstream toward the senders.

RSVP resource reservation involves several procedures [LiuOO].

Policy control determines whether the user has administrative permission to make 

the reservation.

Admission control keeps track of the system resources and determines whether the 

node has sufficient resources to supply the requested QoS.
i

The packet classifier determines the QoS class for each packet.

The packet scheduler orders packet transmission to achieve the promised QoS for 

each stream.

In general, RSVP operates as follows (Figure 2.3):

Before the application data is transmitted, the sender must set up a path by sending 

PATH messages to the receiver(s) specifying the QoS requirements.

The admission routine involved in each router or host along the path decides if  the 

new flow can be granted the requested QoS without impacting earlier guarantees for 

other flows.

The receiver(s) send back RESV messages carrying reservation requests to request 

resources for the flow. Routers along the patch determine if the request is rejected or 

accepted. If the request is accepted, resources (link bandwidth and buffer space) are 

allocated and reserved for the flow and the corresponding flow state information is
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installed in routers.

Data is transferred from the sender to the receiver(s).

PATH
PATHPATH

R outerRouter RESV

RESVRESV
PATH

Sender

Receiver 2

Receiver 1

Figure 2.3: RSVP: Multicast- and receiver-oriented resource reservation

Although RSVP provides reservation for data flows, RSVP standard does not specify how 

the network provides the reserved bandwidth to the data flows. It does not determine 

which links are chosen for the reservations either. To provide the QoS guarantee, RSVP 

has to cooperate with other network protocols and scheduling mechanisms.

RSVP message is placed in the information field of the IP datagram. If a RSVP message 

is lost, a replacement refresh message should arrive soon.

2.6 Integrated Services (IntServ) and RSVP model

This subsection gives a brief introduction to IntServ [BCS94] and RSVP model including 

services provided in IntServ, how resources are reserved using RSVP, and drawbacks of 

IntServ.

Integrated Services was proposed to be the framework to provide QoS guarantees to 

individual flows. This model proposes two services classes in addition to the Best-Effort 

service: Guaranteed and Controlled-Load services. In the Guaranteed service [SP97] 

class, the QoS parameter values are deterministic and it guarantees both delay and 

bandwidth. In the Controlled-Load [Wro97b] service (also called Predictive Service) 

class, the QoS parameter values are estimated and it “provides the client data flow with a 

quality of service closely approximating the QoS that same flow would receive from an
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unloaded network element”, but when the network element is overloaded, it “uses 

admission control to assure that this service is received even” [Wro97b], Otherwise the 

network provides Best-effort service class in which no QoS parameters specified.

IntServ service model needs resource reservation and it usually done by some signaling 

protocol (e.g. RSVP). The RSVP [BZ97, Wro97a] signaling process has been introduced 

in subsection 2.5. When a sender’s request is accepted, the reservation information for 

this flow is stored in the routers along the path. When it is rejected, the network won’t 

admit this flow.

The resource reservation and admission control in IntServ can guarantee the QoS of an 

application. However, they also bring problems to this service. We can see that the 

amount of the reservation information for each flow is proportional to the number of the 

flows, so in a large network, the per-flow information brings significant storage and 

processing overhead to routers. This architecture does not scale well in the Internet core. 

Also, the requirements on routers are high because all involved routers should implement 

RSVP, admission control, classification, and scheduling functions. Due to the scalability 

and manageability problem, IntServ received very limited acceptance among the network 

community [DR99],

2.7 Differentiated Services (DiffServ) Model

This subsection introduces DiffServ model including DiffServ overview, architecture, 

edge functions, core functions, and services provided in DiffServ.

2.7.1 DiffServ Overview

Today’s Internet users desire service differentiation to accommodate heterogeneous 

application requirements and user expectations, and to permit differentiated pricing of 

Internet service. The DiffServ approach is introduced to provide more scalable and
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manageable service differentiation for the applications than IntServ. The service model 

employs a small, well-defined set of building blocks from which a variety of services 

may be built.

In contrast to the per-flow-based QoS guarantees proposed by IntServ, DiffServ networks 

provide a class-based QoS assurance to achieve scalability. In a DiffServ network, 

packets are marked differently to create several classes, each of which can be identified 

in terms of DiffServ CodePoint (DSCP) located in the IP packet header [NB98], The 

edge routers (either the DiffServ-capable hosts that generate traffic or the first 

DiffServ-capable routers that the traffic passes through) of the DiffServ domain are more 

complex as the packets are classified and marked at these routers. The core routers do not 

care about the per-flow information and simply forward packets so that DiffServ avoids 

the per-flow overhead and reduces the cost. That is why the DiffServ architecture is more 

scalable and manageable, and accepted widely in today’s Internet. The forwarding is 

according to a Per-Hop Behavior (PHB) (See subsection 2.7.4) determined by the DSCP 

of the packets. The PHB provides services to allocate the buffer and bandwidth resources 

at each node among the competing traffic streams. Packets in the same class are treated 

the same way. Figure 2.4 shows a simple DiffServ domain.

ER ER ER ERCRHost Host

DS core router 

DS edge router

Figure 2.4 Differentiated Services Architecture 

Network A and C are client domain. Network B is a backbone DiffServ domain. ERs are
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DiffServ edge nodes [See Appendix A] (also called DS boundary nodes) which connect 

one DiffServ domain to a node either in another DiffServ domain or in a domain that is 

not a DiffServ domain. ERs provide DiffServ edge functions (See subsection 2.7.3). CR 

is DiffServ core node (also called DS interior node, DS core router) that provides 

DiffServ core functions (See subsection 2.7.4).

In summary, the architecture accomplishes the list of requirements as follows [Kil99]:

Versatility: DiffServ provides a wide variety of end-to-end services which are 

independent of applications.

Simplicity: The system or part of the system does not depend on the individual flow. 

Only a small set of forwarding behaviors is necessary.

Cost efficiency: Information about individual flows is only used in edge routers and 

the states of aggregate streams are used in core routers. This reduces the cost of the 

network.

2.7.2 Differentiated Services CodePoint (DSCP)

In DiffServ domain, a packet is classified and marked by setting the Differentiated 

Services CodePoint (DSCP) in the packet header. Each DS node must use the DSCP to 

select the PHB to forward the packet.

The DSCP is carried in IP packet header. It is made of the six most significant bits of the 

IPv4 ToS (Type of Service) octet or the IPv6 Traffic Class octet [NB98], The structure of 

this field is shown in Figure 2.5.

0 5 7

DSCP CU

Figure 2.5 Structure of the DS field in IP header
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Note: CU -  currently unused subfield

2.7.3 Edge Functions -  Traffic Classification and Conditioning

Differentiated services are achieved through the combination of traffic conditioning at the 

edge and Per-Hop Behavior (PHB)-based forwarding in the core.

Before we explain the edge functions, we need to introduce the concept of SLA -  Service 

Level Agreement. SLA is a service contract between a customer and a service provider 

that specifies a forwarding service a customer should receive at a certain cost. A 

customer may be a user organization (source domain) or another DS domain (upstream 

domain) [HB99]. SLA may include traffic conditioning rules which constitute a part or 

whole TCA (Traffic Conditioning Agreement). TCA is an agreement specifying classifier 

rales, corresponding traffic profiles (a description of the temporal properties of a traffic 

stream such as rate and burst size), and conditioning rales (metering, marking, shaping, 

and policing).

ForwardPackets

Drop

Classifier Shaper/
Dropper

Meter

Marker

Figure 2.6 A logical view of a packet classifier and traffic conditioner

To enforce rules specified in a TCA, DiffServ architecture has traffic conditioners and 

classifiers. A traffic conditioner is an entity which performs traffic conditioning functions 

and contains meters, markers, droppers, and shapers. Traffic conditioners are typically
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deployed in DS boundary nodes only. Together with a classifier which performs traffic 

classification function, a logical view of a packet classifier and traffic conditioner shows 

in Figure 2.6. Note that a traffic conditioner may not necessarily contain all four elements 

(meter, marker, shaper, and dropper).

The arrived packets have been classified and marked at boundary nodes by setting values 

of DSCP to the DS fields in the IPv4 or IPv6 packet header to determine the forwarding 

behavior. Then the packets will be forwarded, shaped, or dropped.

A classifier selects packets based on the values of one or more packet header fields 

(e.g., source address, destination address, protocol ID, etc) according to defined rules 

and steers the packet to the meter or marker.

A meter measures the temporal properties (e.g., packet sending rate, peak rate, etc) of 

the stream of packets selected by a classifier against a traffic profile specified in a 

TCA to determine whether a packet is within the negotiated traffic profile. If the 

packet stream is compliant with the profile, it is in-profile. Otherwise, it is 

out-of-profile. Out-of-profile packet might be marked differently, might be shaped, or 

might be dropped.

A marker sets the DS field of a packet to a particular codepoint, adding the marked 

packet to a particular DS behavior aggregate.

A shaper delays some or all of the packets in a traffic stream in order to bring the 

stream into compliance with a traffic profile (e.g., delays some packets so that the 

maximum rate constraint would be met).

A Dropper discards some or all of the packets in a traffic stream in order to bring the 

stream into compliance with a traffic profile. This process is known as "policing" the 

stream.
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2.7.4 Core Function - Forwarding

When the DS-marked packet arrives at a DiffServ-capable router, it will be forwarded to 

the next hop according to the Per-Hop Behavior (PHB) associated with that packet’s class. 

PHB is “a description of the externally observable forwarding behavior applied at a 

DS-compliant node to a DS behavior aggregate” [BB98b], Here a DS-compliant node is a 

node that is able to support Differentiated Services functions. DS behavior aggregate is a 

collection of packets with the same DSCP crossing a link in a particular direction. The 

PHB is determined by the DSCP and it is a service defining the forwarding behavior such 

as the buffer management and packet scheduling.

PHB’s may be specified individually, or as a group (a single PHB is a special case o f a 

PHB group). A PHB group usually consists of a set of two or more PHB’s that can only 

be meaningfully specified and implemented simultaneously, due to a common constraint 

applying to all PHBs in the group, such as a packet scheduling or buffer management 

policy [NB98]. For example, in our algorithm, we use 5 PHBs in a group to provide 5 

levels of services (BE, AF1 -  AF4 class service). In each link, the 5 PHBs have the same 

packet scheduling policy (Priority scheduling).

2.7.5 Services Defined in DiffServ

Besides Best-Effort services, DiffServ provides two services: Expedited Forwarding (EF) 

[JN99] and Assured Forwarding (AF) [HB99]. EF is for applications requiring low 

queuing delay and little jitter service. AF intends to provide different levels of forwarding 

assurance for IP packets which require better reliability than Best-Effort Service.

Currently, the AF PHB group defines four independent AF subclasses (for simplicity, in 

this thesis, we will refer to the 4 subclasses as AF1, AF2, AF3, and AF4 classes). Each 

AF class in each DiffServ node is allocated a certain amount of forwarding resources
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(buffer space and bandwidth) for minimum QoS guarantees. We refer to the minimum 

bandwidth as committed information rate (CIR) [see Appendix A]. The packets in one 

AF class must be forwarded independently from the packets belonging to another AF 

class. Within each AF class, an IP packet can be assigned one of three different levels 

of drop precedence. The drop precedence means loss probabilities. So, a packet with a 

lower loss probability has to be assigned to the lower level of drop precedence, and the 

higher loss probability has to be assigned to the two remaining levels of drop precedence. 

When congestion occurs, within an AF class, a router can drop the packets based on their 

drop precedence values.

To perform the AF services, the most widely used mechanisms are Random Early 

Detection (RED) [FJ93] and Multi-level RED (MRED). The RED scheme is based on 

detecting the congestion and notifying the congestion by dropping or marking the 

arriving packets. RED computes the average queue size for each output queue in order to 

detect congestion before the queue overflows. If the average queue size exceeds a preset 

threshold, it indicates congestion occurs. RED randomly chooses flows to notify of that 

congestion and the arriving packet is dropped or marked with a certain loss probability by 

setting the DSCP in the packet header.

MRED is an extension of RED. It is used to deal with the packets with multiple drop 

probabilities and mark the packets with different colors (green, yellow, or red). Figure 2.7 

shows the MRED scheme with three drop probabilities [SM02], In the figure, Rmaxp, 

Ymaxp, and Gmaxp are three drop probabilities for packets marked as red, yellow, and 

green respectively. Rminth, Yminth, and Gminth are low queue size thresholds length. 

Rmaxth, Ymaxth, and Gmaxth are high queue size thresholds. The relationship of these 

thresholds is: Rminth < Rmaxth = Yminth < Ymaxth = Gminth < Gmax,h. Incoming packets 

colored with green are not dropped if the average queue length is less than Gminth, and 

these packets are dropped with probability Gmaxp if the average queue length is greater
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than Gmaxth- If the average queue length is between Gminth and Gmaxth, green packets 

are dropped with a probability proportional to the average queue length. Same rule 

applies to packets colored with red and yellow except that the parameters are Gminth, 

Rmaxth, and Rmaxp for red packets and Ymintj, Yrnax*, and Ymaxp for yellow packets.

Drop 1 
probability

Red

Yellow

Green

E m i n  t u  R m a x r  h Y m a x t l l  G m a x t ti Average 
Y r a i n t t i  G m i n t ls

Averaget t i
queue
length

Figure 2.7 MRED scheme [SM02]

There are many policies used to provide AF service in the Internet. One is to 

over-provision the network so that service quality can be guaranteed under any traffic 

conditions. This policy needs mechanisms to handle the excessive resources allocation. 

The other way is to utilize the network resources more efficiently and to minimize the 

network costs by minimizing over-provisioning, even under-provisioning the network 

resources. This may cause the QoS degradation as there is a potential problem of too 

much traffic.

2.7.6 Problems in DiffServ

Although the DiffServ architecture is widely deployed across the Internet, it still needs to 

be improved to meet more and more critical requirements on networks. For example, 

because the DS core nodes only perform the forwarding function, there is no way for DS 

edge nodes to learn the internal network. That means the DiffServ is unaware of its 

internal network status so that it can hardly perform the desired per-class QoS when the

2 4
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traffic overloads and the network state changes [LH03],

In AF services, each AF class in each DiffServ node is allocated a minimum amount of 

forwarding resources (committed information rate) to provide a minimum QoS 

guarantees. Based on the different QoS provided by DiffServ classes, applications in 

different classes receive different QoS and are priced differently. For example, AF4 to 

AF1 are four levels of services with decreasing quality, and possibly decreasing cost. In a 

normal network state, AF4 should always provide a service with higher QoS than or at 

least equal to other classes (AF3 -  AF1). But when the Internet is congested, or the traffic 

in some classes is overloaded, this relation may not be guaranteed. In these cases, the 

higher price class may not provide better service than the lower price class. In an even 

worse case, the service provided by a higher level class such as AF4 may be worse than 

the one provided by a lower level class such as AF3. That means the QoS may not reflect 

the price paid for the service. However, the price paid for the service and the quality of 

the transmission are both important factors for a user to choose the service. Hence, there 

is a problem of how to achieve a good quality and price tradeoff and this tradeoff should 

be taken into account when designing the adaptive algorithm.

2.8 Adaptation

This subsection explains the concept of adaptation and several adaptation algorithms.

The Internet is a heterogeneous environment connecting various networking technologies 

such as Ethernet, ATM, and wireless links and so on. When delivering a multimedia 

application over the Internet, the available network resources will vary because of the 

different conditions of the networks. An efficient way to perform a desired QoS for a 

multimedia application is using adaptation. That means the multimedia applications are 

capable of adapting to changing network conditions.
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For instance, the typical usage of adaptation is that the sender adapts its transmission rate 

dynamically based on the feedback from the receiver which reflects the current network 

state. Figure 2.8 shows the rate-adaptation.

Data transmission

RR feedback

Receiver

Sender adapts the 
transmission rate

Figure 2.8 Rate-adaptation

The rate-adaptation can not guarantee a minimum quality if  the available bandwidth is 

too low. In Differentiated Services (DiffServ) environment, dynamic bandwidth 

allocation [SM02, EK02, YL03], and dynamic class selection algorithm [DR01, NVOO, 

SB02] are proposed. The dynamic bandwidth allocation approach focuses on maximum 

network bandwidth usage. In addition, it focuses on fairly sharing the excess bandwidth 

[SM02, YL03]. Here the excess bandwidth is the bandwidth left after the minimum 

bandwidth guarantees of all flows are satisfied. [SM02] has provided a scheme that 

allocates the excess bandwidth by the combination of CIR-proportional allocation and 

equal-share allocation. The CIR-proportional allocation part allocates the excess 

bandwidth proportional to their CIRs for flows with CIRs grater than zero. The 

equal-share allocation part allows flows in the class BE and flows with zero CIRs to 

utilize minimum share of the bandwidth. [EK02] focuses on the scalable pricing model 

which takes into account both the network users and the network providers. The proposed 

scalable service delivery policy based on the pricing model provides an improved level of 

bandwidth utilization.

The dynamic class selection algorithms focus on using minimum cost to provide 

acceptable QoS. Chapter 4 provides related work of dynamic class selection algorithms in 

details.
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2.9 Conclusion

This chapter introduces the detailed techniques related to the real-time multimedia 

application delivery over the Internet. The topics focus on providing QoS for these 

applications. Among these techniques, RTP/RTCP protocol, DiffServ architecture, and 

adaptation are very important because our work is based on these techniques.
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Chapter 3 Network Simulator

This chapter is a brief introduction to network simulator, the DiffServ model and RTP 

model implemented in NS. It also points out the contributed features for RTP and 

DiffServ in NS.

NS stands for the network simulator. The purpose of this simulator is for networking 

research. NS provides support for simulation over wired and wireless networks.

The network topologies defined in NS compose of routers, links and shared media. NS 

supports a rich set of protocols such as TCP and UDP, routing models such as static and 

dynamic routing, multicast protocols, applications such as FTP, HTTP, Telnet, Traffic 

generators, and queuing algorithms such as RED, DropTail, priority and fair queuing 

[NSHome],

3.1 NS architecture

NS is an object oriented simulator, written in C++ and OTcl to provide both efficiency 

and simplicity. The simulator supports a C++ compiled hierarchy and a similar OTcl 

interpreter hierarchy. The reasons of the need of the two languages are that:

C++ is suitable for efficiently processing large data sets as it runs fast in run-time. So 

it is used for manipulating bytes, packet headers and for detailed protocols and 

algorithms implementation which need fast run-time speed.

OTcl is suitable for those tasks which need to be tuned very often (e.g. topology 

configuration, setting parameters). In these cases, re-run time is important. OTcl runs 

slow but easy to change. Thus, it is suitable to be used to control objects and 

topology.
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NS is a single-thread, event-driven simulator, only one event is in execution at any given 

time. If there is more than one event scheduled to execute at the same time, their 

execution is performed in a first-in-first-out manner. NS does not support partial 

execution o f events or pre-emption.

3.2 DiffServ simulation in NS

The originally DiffServ module has been developed by Nortel Networks, but it is no 

longer supported by them. DiffServ is class-based QoS architecture which provides 

different QoS guarantees to flows. DiffServ divides traffic into different categories by 

marking each packet with a codepoint to indicate its category. The forwarding behaviors 

are according to the codepoint.

The DiffServ module in NS can support four classes of traffic. Within a single class, 

there are three dropping precedences allowing differential treatment of traffic. Each class 

corresponds to a physical RED (random early detection [FJ93]) queue, which contains 

three virtual queues (one for each drop precedence). A packet with a higher dropping 

precedence is dropped more frequently than packets with a lower precedence at times of 

congestion.

The DiffServ' module in NS has three major components:

Policy: “Policy is specified by network administrator about the level of service a class 

of traffic should receive in the network” [NSHome], It defines the Per-Hop Behavior 

(PHB) parameters such as meter type, queuing model, rates, and burst sizes, and so 

on.

In NS implementation, a policy is established between a source and destination node. 

All flows having the same source-destination pair are treated as a single traffic 

aggregate. Some contributed code has added new features to set up a policy based on

2 9
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source-destination pair and the flow id in the IPv6 packet header. The Policy for each 

different traffic aggregate has an associated meter type, policer type, and initial 

codepoint. The meter type specifies the method for measuring the state variables (in- 

or out-of- profile, see subsection 2.7.3) needed by the policer. When a packet arrives 

at an edge router, it is examined and marked. The meter updates all state variables.

Then the policer marks the packet (sets the codepoint) depending on these state

variables. Then the packet is enqueued accordingly.

There are six policy models defined in NS and each has a corresponding policer and 

meter type:

- Time Sliding Window with 2 Color Marking (TSW2CMPolicer)

- Time Sliding Window with 3 Color Marking (TSW3CMPolicer)

- Token Bucket (tokenBucketPolicer)

- Single Rate Three Color Marker (srTCMPolicer)

- Two Rate Three Color Marker (trTCMPolicer)

- Nullpolicier.

Edge router: Edge router marks packets with a codepoint according to the policy 

specified before it puts packets into the corresponding physical and virtual queues.

Core router: Core router checks packets’ codepoint in order to forward or drop them 

accordingly.

RED queue in DiffServ module

DiffServ RED queue uses Multi-level RED [MRED] scheme to handle the packets with 

multiple drop precedences and put packets into queues according to their codepoints.

A DiffServ RED queue provides basic DiffServ functionalities mentioned above 

(classifying, metering, marking, shaping or dropping). It has the following abilities:

3 0
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Implementing multiple physical RED queues along a single link;

Implementing multiple (at most 3) virtual queues within a physical queue;

Determining in which physical and virtual queue a packet is enqueued according to 

its codepoint;

Determine from which physical and virtual queue a packet is dequeued according to 

the scheduling scheme chosen.

The DiffServ edge and core routers are derived from DiffServ RED queue. Edge routers 

have the abilities to classify, meter, mark, shape or drop packets. Core routers forward or 

drop packets.

Scheduler

A scheduler determines the manner in which packets are selected for transmission in a 

network. Currently, NS supports the following scheduling modes: Round Robin (RR), 

Weighted Round Robin (WRR), Weighted Interleaved Round Robin (WIRR) and Priority 

(PRI). Some contributed codes provides new scheduling modes such as Weighted Fair 

Queuing scheduling (WFQ), Self-Clocked Fair Queuing (SCFQ), Stochastic Fairness 

Queuing (SFQ), Low Latency Queuing (LLQ), and so on [NSCon].

Contributed features for DiffServ model

Other than the scheduling modes mentioned above, some contributed code added new 

features to DiffServ model [NSCon]:

Marking for multiple flows along same source-destination path using flow id in the IP 

packet header (for IPv6 packets)

Dynamically changing the policer parameters such as transmitting rate, burst sizes, 

and so on

Default policy for all flows which has no particular policy defined
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3.3 RTP simulation in NS

The RTP implementation in NS environment consists of three C++ classes:

RTP Agent performs the functionalities of RTP data protocol such as sending RTP 

packets, Sender Reports (SRs);

RTCPAgent performs the functionalities of RTP control protocol (RTCP) such as 

sending RTCP packets containing Receiver Reports (RRs);

RTPSession manages the RTP session such as determining the time interval of 

sending RRs and processing RTP and RTCP packets.

The corresponding OTcl classes are Agent/RTP, Agent/RTCP and Session/RTP.

The RTP/RTCP implementation in NS is not complete, especially the implementation for 

RTCP reports. Contributed code by El-Marakby [EL01] provides additional 

functionalities including complete RTCP packet structure, RTCP sender report (SR), and 

Receiver Report (RR) in NS. The new RTP implementation enhances the RTP in NS and 

is used in our simulation.

3.4 Conclusion

Network Simulator provides a rich set of functionalities to support the simulation of 

wired and wireless, local and satellite networks. Among these functionalities, DiffServ 

module is well defined but RTP protocol needs to be extended. To simulate our algorithm, 

we need strong support of DiffServ architecture and RTP protocol. Although NS is weak 

on RTP part, adding our new functions can be easily accomplished by recompiling NS. 

Thus, NS is suitable for our simulation.
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Chapter 4 Comparison of ACS A and Related Work

There exists some work on providing required even better QoS for real-time multimedia 

applications in the Internet over the past several years. This chapter discusses the 

previous work in the context of dynamic class selection and pricing. It also compares 

related work with our work.

4.1 Related work

In [SK98], Sairamesh et al have proposed a price dynamics of a vertically differentiated 

market which is based on the user utility function (1). The buyer makes the purchase 

decision according to the highest utility. If the highest utility is positive, the buyer 

purchases a unit from the seller who provides the utility. If the highest utility is zero or 

negative, the buyer does not purchase a unit from any seller.

U = (W(q - MIN Q) + (1 - W)(MAX_P -  p))0(MAX P -  p)0(q-MIN_Q) (1)

(Where W is a weight that ranges between 0 and 1 and reflects the relative sensitivity to 

quality and price, MAX_P is the maximum price the buyer is willing to pay, MIN_Q is 

the minimum quality the buyer is willing to accept, q is the quality provided by a product, 

p is the price of the product, and 0(x) represents the step function: 1 for x>0 and 0 

otherwise)

In this function, if price p is greater than MAX_P, then 0(MAX_P -  p) = 0. If the quality 

q is less than MIN_Q, then 0(q-MIN_Q) = 0. At both cases, the utility is zero and the user 

will not buy any product. The original user utility function in [SK98] is good for 

analytical purpose but not for practical usage because it does not consider the balance 

between quality and price. The values are not normalized. We modified function (1) to 

function (2) by dividing the price with the maximum price (MAX_P) to make this part as 

a fraction and dividing the quality with the packet loss threshold (THQ) to make the two

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



parts have the same value range (see details in subsection 5.4). The modified utility 

function normalizes the values and is more suitable for the real network.

U = W (q, - MIN Q) / THD + (1 - W) (MAX_P - pi) / MAX P (2)

Che et al [CZOO] have proposed an analytic model which studies the impact of quality 

and price on the user selection of a suitable class and link bandwidth allocation. The user 

selection decision is calculated by a user utility function proposed in [SK98]. Therefore, 

the user’s sensitivity to quality or to price impacts the user application switching decision. 

The model assumes that the quality can be measured in the same unit as the price, so it 

uses the original utility function. This model is an analytic model for a single link case. It 

has to be changed to be used in the real network where the quality cannot be measured in 

the same unit as the price. The authors give several numerical samples to show the impact 

on a single link case. With this model, a user will choose the class with the highest utility. 

If the highest utility is zero, he will not use any of the classes and his application will be 

dropped. In our algorithm, our function is justified to be used in the DiffServ 

environment. Also, when the highest utility is zero, we allow the user to use the 

best-effort class which provides services with no payment. This is more realistic than this 

model.

Nandagopal et al [NVOO] have proposed an end-to-end delay adaptation mechanism for a 

core-stateless network that routers can use to dynamically adjust the class in order to 

match the delay bound of the flow. The algorithm seeks to achieve the delay requirement 

for soft real-time applications. The routers themselves provide the QoS feedback 

information and process it. In [NVOO], each class is associated with a delay weight and 

the QoS of each class is measured by the delay. Each flow specifies a price that it is 

willing to pay and the price gets mapped to a maximum class for this flow. The authors 

assume a continuous range of class choices and these classes are ordered in terms of 

delay weight. So, when a router sees a violation of a delay requirement, it always chooses

3 4
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the higher class which implies lower delay than the current one. On the other hand, when 

it sees the received delay is less than the required delay bound, it chooses the lower class 

if the delay received in this lower class satisfy the delay bound. By this way, each flow 

converges to a class which provides the required delay bound of this flow. When a flow 

is unable to get the required delay average, it will remain in its maximum class that 

associates with the price it is willing to pay. In our algorithm, our classes are ordered in 

terms of price instead of QoS (in the [NVOO] case, it is delay). We measure the QoS 

using the packet loss rate incurred in the current interval and the QoS feedback (RTCP 

Receiver Reports) is provided by the end users. We believe, at times of overloading in 

some classes, a higher class (more expensive) may not provide better service than a lower 

class (cheaper). At the time of network congestion affecting all classes, our application 

will use the BE class but not the maximum class. We also take both price and quality into 

account. Therefore, the class switching will not have the same pattern as this one.

Dovrolis et al have designed a dynamic class selection (DCS) algorithm [DR01] 

particularly used in a relative differentiation model [DR99] to provide absolute QoS 

guarantees. Relative differentiation model is not same as DiffServ model that our 

algorithm uses. Relative differentiation model gives the assurance that services provided 

by higher classes are better than lower classes. The algorithm computes the minimum 

acceptable class selection (the lowest class which satisfies the absolute QoS requirement) 

for each user. If the class can be found, the user will converge to this minimum 

acceptable class. Otherwise, the user will stay in the highest class even when the 

requirement is unsatisfied. Interestingly, by selecting different values of some factors in 

the algorithm, the algorithm can control the tradeoff between the performance and cost of 

a flow. As this is a complex algorithm, to control the performance and cost tradeoff, 

many parameters should be considered. Our algorithm uses an efficient way to control the 

quality and price tradeoff by adjusting only the weight of the quality in the user utility 

function. Moreover, in our algorithm, we assume that the higher class may not always
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provide better service than the lower class when the higher class is overloaded or at times 

of congestion. Also, if the user is very sensitive to the price, a higher class may not be a 

better choice. Another different result in our algorithm is that, when the quality 

requirement cannot be satisfied in all classes, the user will choose BE class instead of 

staying in the highest class with high cost.

Scheidegger et al [SB02] have presented the class switching algorithm (CSA) which 

allows a real-time application always to select the lowest and cheapest service class that 

still can achieve the QoS requirements in a DiffServ environment. [SB02] assumes the 

classes are ordered and higher order classes should always provide a service that is “at 

least equal or better than” lower order classes. Under this assumption, when the QoS of 

an application in current class is satisfied, to reduce the cost, the algorithm probes the 

next lower service class only and the application switches to it if  the QoS of the lower 

class is sufficient. When the QoS of the current class is violated, the algorithm chooses 

the next higher class directly without probing the QoS of the class. If this higher class 

still cannot satisfy the QoS requirement of the application, the application will continue 

to switch to the next higher class until this is the highest class. Therefore, if  the highest 

class cannot satisfy the QoS requirement, the algorithm has the same result as in [DR01] 

that the application will stay running in the highest class unsatisfied with high cost. Thus, 

this algorithm is good for the well-provisioned DiffServ network with no congestion in 

higher classes. This algorithm does not control the price and quality tradeoff. Comparing 

this algorithm with our ACSA algorithm, the ACSA algorithm uses the user utility 

function and puts weight for the quality to control the price and quality tradeoff. We 

probe all classes simultaneously and the application will switch to the most suitable class 

directly. This accelerates the application to converge to the suitable class. Also, our 

algorithm works in a more general DiffServ environment. No matter if the higher class is 

overloaded or the network is congested, our algorithm allows the application to switch to 

the class with the best quality and price tradeoff.

3 6
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4.2 Features of our work

Our algorithm intends to work in a more general Differentiated Services (DiffServ) 

environment. No matter whether the network is congested or not, it seeks the most 

suitable class that provides the best quality and price tradeoff and let the application 

switch to it.

In summary, our algorithm has the following features:

It is a combination of RTP, DiffServ, and Adaptation

The algorithm uses DiffServ AF and BE services to provide a means for QoS 

control for real-time multimedia applications.

The algorithm uses only RTCP Receiver Reports (RRs) feedback information to 

detect the current network state. We use packet loss rate conveyed in RRs to reflect 

the current QoS received in classes because experimentation shows that the packet 

loss is the dominating factor to make the class switching decision [SB02],

It is a combination of both quality and price

In addition to the QoS (here it is measured by packet loss rate carried by RRs), the 

switching is also based on the price of the service, i.e. based on the tradeoff 

between QoS and price. The algorithm provides a good quality and price tradeoff 

for real-time multimedia applications

It works in a general DiffServ environment - even at times of congestion

The classes are ordered in terms of price. In a normal network state, a higher price 

class should provide a better QoS than that provided by a lower price class. But 

when the Internet is congested, or the traffic in some classes is overloaded, this 

relation may not be guaranteed. In our algorithm, we use the user utility function to
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calculate the utilities for all classes and the switching is based on the highest utility. 

If a higher class provides worse quality then a lower class, the application may 

switch to the lower class. If the highest utility is zero, the application switches to 

BE class with no payment.

The algorithm probes the QoS in all classes simultaneously so that the application 

can choose the most suitable class directly and switch to it.

4.3 Conclusion

This chapter discusses the related work in the context of dynamic class switching. It 

compares related previous work with our work and presents a summary of our work. The 

main contribution of our work is that our algorithm is a combination of price and quality. 

It provides good quality and price tradeoff for real-time multimedia applications running 

in a DiffServ environment even at times of congestion.
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Chapter 5 Adaptive Class Switching Algorithm

This chapter explains our algorithm in details. It presents the problems to be solved by 

our algorithm, our solution, and some important terms used in our algorithm. It also 

analyzes the complexity of the algorithm.

5.1 Overview

We consider four AF [HB99] classes (AF1, AF2, AF3, and AF4) provided in a DiffServ 

architecture and the Best-Effort (BE) class in our algorithm. As the QoS of data flows 

running in Expedited Forwarding class (EF) [JN99] has strict guarantees, this class is out 

of our scope.

The goal of our Adaptive Class Switching Algorithm (ACSA) is to provide customers a 

good service with a good price and to control the tradeoff between quality and price. This 

is accomplished by taking both quality and price into account. The algorithm uses the 

current QoS feedback in all considered classes (BE and AF classes) to calculate the user 

utilities [SK98] in these classes and the switching decision is based on the highest utility. 

The user utility is a function of quality, price, and the weight which reflects the relative 

sensitivity to quality and price. The quality is measured using the fraction of packet loss 

(i.e., the packet loss incurred in the current interval) carried by RTCP Receiver Reports 

(RRs). The weight is negotiated between the user and the Internet Service Provider (ISP) 

and assigned by the ISP. We believe that by using our algorithm, the user will be able to 

use the service class which provides a good quality and price tradeoff. Hence, there will 

be no bad service at high price.

In our algorithm, we assume that BE and AF1..AF4 classes are ordered in terms of price 

and denoted by class 0 to class 4. Class 0 refers to the BE class, while classes 1 ..4 refer to 

AF1..AF4 classes respectively. The following are more assumptions:

3 9
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The price is predetermined for each class.

A class with a high numerical number has a higher price than a lower numerical 

number class 1, e.g. class 2 has a higher price than class 1.

The price for Best-Effort service is 0.

The user is charged according to the class that his application is using and according 

to the number of bytes/s sent.

When a RR arrives, the sender stores the packet loss rate for the current interval carried 

in the RR into a table. The packet loss rate is used to calculate the user utility which is a 

function of quality, price, and the weight of quality. The sender updates the packet loss 

rates table each time when there is a new RR arrives. Only the RR reporting feedback of 

the quality of the real-time multimedia data flow generates a call to the algorithm. Then 

the algorithm uses the packet loss rates stored in the table to calculate the user utilities of 

all classes and get the class with the highest utility. If this class is not equal to the current 

one, the application2 switches to this class. If the highest utility is zero, which means the 

network is congested, the application switches to the BE class with no cost.

Because the user utility is a function of quality, price, and the weight of the quality, the 

class with the highest utility provides the best quality and price tradeoff. Switching based 

on the highest utility provides a good service with a good price. Also, by adjusting the 

weight of the quality, the algorithm can control the tradeoff between quality and price.

5.2 Packet loss threshold (THQ) and QoS

The current packet loss incurred is calculated by the receiver and sent to the sender in an

1 T hrough out the thesis, we refer the low er/h igher num erical num ber class to the low er/h igher class and refer the 

low est/highest numerical num ber class to low est/highest class.

2 Through out the thesis, we use the w ord application  to m ean the  real-tim e m ultim edia data flow  that will be  running 

in different classes.

4 0
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RR feedback report. The current packet loss rate indicates the recent quality received by 

the receiver. I f  the loss rate is large, the quality is bad, and vice versa. We use the packet 

loss rate to indicate the QoS of the data transmission as it is the dominating factor to 

make the class switching decision [SB02]. We assume that a packet loss threshold (THD) 

is negotiated by the user and the Internet Service Provider (ISP) when signing the Service 

Level Agreement (SLA) [see Appendix A], In our simulation (see chapter 6), we simulate 

an Internet voice application. We set THD = 0.2 as 0.2 is the threshold that a human 

being can tolerate in a voice application. If the application experiences packet loss greater 

than THD, then the quality is considered bad. We use function (1) to calculate the quality 

received by the receiver in class i.

q; = 1 -  currPktLossj (1)

Where

qi is the QoS received by the receiver in class i

currPktLoss; is the current packet loss experienced by the application running in 

class i.

Suppose our real-time multimedia application is currently using the current class, denoted 

by currClass. When the sender receives a new RR from the receiver, it saves the most 

recent packet loss rate of the class currClass into a table. Meanwhile, the sender sends 

helper packets to other classes to probe the transmission quality o f these classes. When 

the sender receives new RRs from the other classes, it also stores the packet loss rate 

experienced in the other classes into the table. Hence, the sender always keeps the most 

recent QoS information of the BE and AF classes in the Internet. The sender uses the 

packet loss incurred to compute user utilities for all classes.

5.3 User utility (U)

The user utility [SK98] is a function of quality (q), price (p), and weight (W) that reflects

41
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the user sensitivity to quality and price. We modified the original function in [SK98] and 

defined it using function (2).

U = W (q; - MIN_Q) / THD + (1 - W) ( M AX P  - Pi) / M A X P  (2)

Where:

U is the user utility

W is the weight reflecting the relative sensitivity to quality and price. It is 

negotiated and assigned when the user signs the SLA (see Appendix A) with the 

Internet Service Provider

qi is quality received in class i

MIN_Q is the minimum quality that a user is willing to tolerate and willing to 

pay for (MIN Q = 1 -  THD)

pi is the price paid for class i

MAX_P is the price paid for the highest class AF4 which his the maximum price

The original user utility function in [SK98] (function (2a)) does not consider the balance 

between the quality and price. That means the values are not normalized. So it is for 

analytical purpose. For our experimental purpose, we have to modify this function to 

make the values normalized.

U = (W(q - MIN Q) + (1 - W)(MAX P - p))0(MAX_P -  p)0(q-MIN_Q) (2a)

First of all, as function (2a) has a step function 0 which is not used in our algorithm, we 

modified the function to function (2b).

U = W(q - MIN Q) + (1 - W)(MAX_P - p) (2b)

Second, function (2a) has two parts, one is for the quality and the other is for the price. If

4 2
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one of the parts is much greater than the other one, the smaller one will be ignored. For 

example, the quality is a fraction (from 0 to 1) and the price is determined by 20 

cents/byte. Then, no matter how big the weight of the quality is assigned, the quality part 

will be ignored as it is too small to affect the utility. So we divide the price by the

maximum price (MAX P) to make this part as a fraction too so that it has the same scale

as the quality part (function (2c)).

U = W (q, - M I N Q )  + (1 - W) (MAX P - p,) / MAX P (2c)

Third, we consider that the utility should evenly depend on the quality and the price 

regardless the weight. Let see the following numerical examples (Suppose THD = 0.2, 

MAX P = 20 cents/byte, MIN Q = 1 -  THD = 0.8.):

For the price part,

( M A XP  - pj) / M A X P  = 0 if pi = M A X P

(MAX P - Pi) / MAX P = 1 if pi = 0

Thus, the value range of the price part is from 0 to 1. For the quality part,

qi - M I N Q  = 0 if  q; <= MIN Q

q; - MIN Q = THD =0.2 if qj = 1

The value range of the quality part is from 0 to 0.2. The quality has less influence on the 

utility function than the price. The price becomes the dominant fact when calculate the 

user utility. Moreover, it is the dominant fact to make the class switching decision as our 

class switching is based on the user utility. This is not correct for our algorithm.

To let the utility evenly depends on the quality and price, we divide the quality part by

4 3
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THD to make this part has the same value rang (0 -  1) as the price. This results in our 

final utility function (function (2)).

U = W (q; - MIN Q) / THD + (1 - W) ( M A XP  - pO / MAX_P (2)

The quality weight W indicates the user’s sensitivity to the quality. There are several 

ways to set the quality weight W:

If (qi < MIN Q), then U = 0

If (W = 0), then user chooses the service with the lowest price as long as the quality is 

no less than MIN Q

If (W =1),  then user chooses the service with the highest quality

If (0 < W < 1), then user chooses the service based on the quality and price tradeoff'

Chapter 6 shows different simulation results when choosing different values for W.

5.4 Algorithm

The Adaptive Class Switching Algorithm (ACSA) algorithm is explained in this 

subsection.

In addition to the variables explained above, there are other variables used in the 

algorithm which are listed in Table 5.1.

NUMCLASS Number of classes = 5

currClass The class that our real-time multimedia data flow is running in

maxU Maximum utility

switchClass The class with the maxU

Table 5.1 Some variables used in the ACSA algorithm
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When the sender receives a RTCP RR feedback report in class currClass in which the 

real-time multimedia flow is running, it will trigger the algorithm. The sender stores the 

new packet loss rate included in the RR into a table and uses all packet loss rates in the 

table belonging to all classes to calculate the user utilities in all classes (lines 3 -  11). If 

the packet loss rate of class i is greater than the threshold (THD), it means that the quality 

received in this class is less than the MIN Q accepted. Then, the utility (U) for this class 

becomes zero (line 10). If the packet loss < THD, the algorithm will update the maximum 

utility (maxU) and the corresponding class (switchClass) to be switched to accordingly 

(line 7). After comparing all classes, if maxU is zero, that means that the quality of all the 

classes is bad and the Internet is congested. Thus, the application will switch to the BE 

class with no cost (line 13). When classes have higher utilities than zero, the application 

will switch back accordingly. At line 15, if maxU is greater than the utility of the current 

class, switching occurs (line 16). Otherwise, the application stays in current class (line 

18).

1 Receive a new RR feedback in class currClass
2 maxU = 0 // maximum utility
3 FOR each class i // classes AF1.. AF4 and BE
4 IF currPktLoss(i) < THD // in the most recent RR for class i
5 { Compute the user utility (U(i)) of this class
6 IF U(i) > maxU
7 Update maxU and the corresponding class (switchClass)
8 } ELSE
10 U(i) — 0
11 END FOR
12 IF maxU = 0
13 Application switches to BE
14 ELSE
15 IF currClass != switchClass
16 Application switches to switchClass
17 ELSE
18 Application stays in currClass

We probe all classes simultaneously to get the most recent Internet state by sender
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sending the helper packets to these classes. The helper packets only contain RTP headers 

in order to minimize the additional network load.

By calculating the user utilities for all classes, the sender chooses the one with the highest 

user utility and switches to it directly. If several classes have the same highest utility, the 

sender chooses the class with the lowest numerical number. The class with the highest 

utility reflects the best quality and price tradeoff. Thus, the user is always willing to 

choose this class. Therefore, our algorithm provides users a good service with a good 

price when the Internet is in normal state. If all classes are congested, the algorithm 

chooses the BE class. Thus, there is no high cost for a bad service.

5.5 Complexity analysis

This part analyzes the time and space complexity for the ACSA algorithm. Time 

complexity determines the way in which the number of steps required by an algorithm 

varies with the input size of the problem it is solving. The space complexity determines 

the way in which the amount of storage space required by an algorithm varies with the 

input size of the problem it is solving.

This ACSA algorithm is composed by two main parts (see the algorithm above): user 

utility calculation (line 3 -  line 12) and comparison (line 13 -  line 19). Table 5.2 shows 

the time and space complexity for each part and the overall complexity.

Step Line 1 -2 Line 3 - 1 2 Line 13 - 19 Overall

Time complexity 0(1) 0(N) 0(1) 0(N)

Space complexity O(N) 0(N) 0(1) 0(N)

Table 5.2 Complexity analysis
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(Where N is the number of the DiffServ service classes. 0(1) + O(N) = 0(N))

The reason o f  why the space complexity of line 1 - 2 is 0(N) is that we need to store the 

packet loss rates conveyed by the Receiver Reports into a table that is a one-dimension 

array (See detailed implementation in subsection 6.2). Thus, the overall complexity of the 

algorithm is 0(N) where N is the number of the DiffServ service classes.

5.6 Conclusion

This chapter introduces the ACSA algorithm in details. It explains the goal, the 

assumption, and some main terminologies of the algorithm. It also explains the algorithm 

itself and analyzes its complexity.
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Chapter 6 Simulation Environment
This chapter explains the simulation topology, implementation, different experimental 

scenarios, and the results.

6.1 Simulation topology

To evaluate the algorithm, we simulated, using NS-2 [NSHome], an Internet voice 

application that uses RTP/RTCP and that runs over a DiffServ network. The packet loss 

threshold (THD) for this application is set to 0.2 as this is the threshold that a human 

being can tolerate in this application. The network topology is shown in Figure 6.1.

10Mb, 1 M b  s10Mb s5Mb,

Edgel Edge!Corel Core

Sourcel

Source2

Destl

Dest2

Figure 6.1 Simulation topology

Our real-time multimedia application runs in Sourcel host. The sender in Sourcel host 

sends a flow of size 512 bytes each at a high rate to Destl. Other flows containing small 

packets that have RTP headers only are sent by Sourcel into other classes to probe the 

current state in other classes. The packet size of a probing packet is 12 bytes. Sourcel is a 

DiffServ capable node which can perform the DiffServ functions such as packet 

classification, marking, and shaping. Source2 is not a DiffServ node. An interfering 

application runs on Source2 host and sends to Dest2 UDP packets that overload the traffic 

in different DiffServ classes. Corel and Core2 are DiffServ core routers and Edgel and 

Edge2 are DiffServ edge routers. Destl and Dest2 hosts receive data from sourcel and 

source2. The bandwidth of each link between a host and an edge router is set to 5Mb/s 

and the bandwidth of each link within the DiffServ domain (Edgel to Edge2) is set to 

lOMb/s except the bottleneck link between Core2 and Edge2 is set to IMb/s.

4 8
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The real-time multimedia application path in the topology starts from Sourcel -  Edgel -  

Corel -  Core2 -  Edge2, until Destl. Sourcel sends real-time multimedia data and 

receives RTCP packets from Destl. The packet size of the multimedia application is 512 

bytes. Sourcel also sends probing packets into other classes to probe the class states of 

these classes. The probing packets contain only RTP header and the size is 12 bytes 

which is much smaller than the multimedia application. We keep the probing packet 

small size to reduce the probing overhead as much as possible.

The interfering application path starts form Source2 -  Edgel -  Corel -  Core2 -  Edge2, 

until Dest2. Source2 sends UDP interfering traffic to Dest2.

6.2 Implementation

The implementation uses the Network Simulator (NS) 2.26 which we installed in 

Windows XP operating system. The programming languages of NS are Tel and C++. 

C++ is used to implement new functions used in the simulation and Tel is used as a 

front-end.

The implementation of the simulation contains 6 modules:

Setting up and configuring the network topology 

Collecting the RRs and storing the current packet loss rates 

Calling the algorithm 

Class switching 

Recording 

* Plotting the graphs

The following subsections explain each part in details.

4 9
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6.2.1 Setting up and configuring the network topology

The network topology is very important to the simulation because it determines the 

packet forwarding behaviors and the service levels. In original DiffServ implementation 

in NS2, the flow is distinguished by the source and destination. So, between each 

source-destination pair there is only one flow. This is insufficient for our implementation 

because we need several flows transmitting between one source-destination pair. For 

example, Sourcel sends multimedia data flow as well as probing flows to Destl. To 

distinguish these flows, we use IPv6 packet in this implementation. In IPv6 data packet 

header, there is a flow label that is used to identify a flow [BM95], In NS2, this 

functionality has been added by a DiffServ patch from [NSCon]. This patch provides the 

DiffServ classification and marking at edge node for flows distinguished by the source, 

destination, and flow id. We assign different flow id to different data flow and assign 

these flows to different classes.

Then we configure each link within the DiffServ domain. In our simulation, each link 

contains 5 DiffServ RED queues for 5 classes (BE, AF1 -  AF4) respectively. We assign 

different parameters such as transmitting rate, burst size, and initial codepoint for 

different queues to perform different levels of service. For example, AF4 class has the 

highest transmitting rate and BE class has a rate of zero which means no minimum QoS 

guarantees at all. Thus, AF4 class should provide the best service and BE class should 

provide the lowest service under the same network condition.

Supporting the applications using RTP protocol over DiffServ network should configure 

the DiffServ queues for all RTP flows including the multimedia data flow and the 

probing flows. These flows join to the same multicast group. Thus, one RTCP RR 

contains information of all flows in the group. All RTP flows start at the beginning of the 

simulation.
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6.2.2 Collecting the RRs and storing the current packet loss rates

The input of this module is the packet loss rate (loss) incurred in the current interval and 

the output is an updated table (currPktLoss).

When a RTCP RR comes, the packet loss rate incurred in the current interval contained in 

the RR is stored for further use. We use a 1-Dimension table (currPktLoss) to store the 

information. The table is updated when there is a new RR arriving so that it always keeps 

the most current packet loss information for all classes. Only the packet loss rate o f the 

real-time multimedia data flow generates a call to the algorithm.

RRs summarize QoS of the transmission. When the sender sends the real-time 

multimedia flow, it receives RRs reporting feedback information about the quality 

received by the flow. After a class switching occurs, the first coming RR may not report 

the QoS of the new class but rather reports the QoS of the previous class, where the 

application (real-time multimedia flow) was running before switching, or a combination 

of the quality received in two classes. So this first RR does not reflect the QoS of the 

current class (i.e. the new class). To avoid network oscillations, we discard the first RR 

arriving after each switching and use the RR from the probing flow in the new class.

6.2.3 Calling the algorithm

When a RR belonging to the real-time multimedia flow is received by the sender, the 

algorithm is called. The utility of all classes will be compared, and the real-time 

multimedia flow will switch to the class with the highest utility. So, the only delay that 

occurs for switching to another class will be the time between issuing the RR by the 

receiver until it is received by the sender plus the utilities’ comparison time at the sender 

which is very minimal. The input of this module is the class name of which the 

application is running. This module decides whether to call the class switching module or
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not.

The C++ function getCodePoint is added for retrieving the current class where the 

application is running. The module uses the packet loss rates stored in currPktLoss table 

to calculate the user utilities for all classes and updates the maximum utility and the 

corresponding class to be switched to.

Theoretically, MAX P is the highest price paid for the service and it should be the price 

for class AF4. In the implementation, we have to set it greater than the price paid for 

class AF4, otherwise, the price part of the utility for class AF4 is always 0. Moreover, 

when the quality weigh W = 0, the utility for class AF4 is always 0. That means, if 

MAX P = p4, (1 - W) (MAX P - p4) / MAX_P = 0. Then

U = W (q4 - MIN_Q)/THD + (1 - W) (MAX P - p4) / MAX P = W (q4 - MIN_Q)/THD

If W = 0, then U = W (q4 - MIN_Q)/THD = 0. This is not true for AF4 class. Thus, we 

have MAX_P > p4.

The current utility for each class stores in a 1-D table U. The maximum utility maxU and 

the corresponding class switchClass are updated while computing the utilities. The table 

U, maxU, and switchClass are reset each time the algorithm module is called.

After the algorithm computes the maxU and knows the class to switch to (switchClass), it 

compares maxU with the utility of the current class (currClass) where the application is 

running (see subsection 5.5). If the condition is satisfied and the currClass != switchClass, 

switching occurs.

6.2.4 Class switching

Class switching means resetting the transmission parameters for the multimedia
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application flow. The input of the module is the class to switch to and there is no output.

To let the real-time multimedia flow reacts to the network state as fast as possible, the 

parameters should be adjusted in run-time instead of stopping the transmission, changing 

parameters, and restarting the transmission. However, NS2 does not support dynamically 

adjusting the parameters for DiffServ network. We have added some functions and 

imported other functions from the contributed code [NSCon]. There are two functions for 

changing the parameters dynamically and they are implemented in C++:

updateCodePoint is used to reassign the service class for the flow by updating the 

DiffServ CodePoint (DSCP) stored in IP packet header. The DSCP indicates the 

service class in DiffServ network.

changeMeterParms is used to change the transmission parameters for the flow after 

the flow switches to a new class. These parameters define the QoS provided by the 

service class.

6.2.5 Recording

This module is used to record the history of the packet loss rates, from the beginning of 

the transmission, for all probing flows and the real-time multimedia flow. Also, it records 

all classes where real-time multimedia flow was running throughout the life time of the 

session. The procedure call is generated every 0.5 second. It writes the packet loss rates 

into files for displaying the graphs.

6.2.6 Plotting the graphs

This module is the final procedure to stop the transmission, close the recording files, and 

plot the graphs according to the data stored in the recording files. These graphs show the 

history of the packet loss of all classes. Also, to make the comparison clearer, we 

generate the packet loss and service class for the real-time application separately. These
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graphs show the goals and the problems solved by our algorithm.

6.3 Simulation experiments

Initially, our real-time multimedia data flow runs in BE class as this service has no cost. 

In the next subsection, we present different simulation scenarios with different values of 

the quality weight (W) to show how the class switching algorithm reflects the quality and 

price tradeoff. The total simulation time is 30s. The data recording time period is 0.5.

The simulation experiments test and compare the class switching behaviors under the 

following conditions (scenarios):

Application without implementing the adaptive class switching algorithm (ACSA) 

Application implementing ACSA

- Quality weight W = 0 - Switching based on the lowest price

- Quality weight W = 1 - Switching based on the highest quality

-  Quality weight W = 0.5 - Switching based on the tradeoff between quality and 

price

We choose different W to test how this parameter impacts the switching behaviors. W=0 

expresses the extreme price sensitivity and W=1 expresses extreme quality sensitivity. 

While W=0.5 gives the quality and price the same weight to the user utility, i.e., the user 

have equal sensitivity to the price and the quality. Setting W to these three values can 

represent all features of our algorithm. When W=0.5, we simulate 2 Internet states to 

show that our algorithm has different switching results than the other related work. These 

states are the higher class in the Internet is overloaded, and the Internet is congested.

6.3.1 Application without implementing the Adaptive Class Switching Algorithm
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In this scenario, the interfering traffic flows run in BE and AF1 classes. These flows start 

at time 5s and stop at 15s.

Without implementing the ACSA algorithm, the application (real-time multimedia flow) 

stays in the same class as when it is initialized (in BE class). If there is overload traffic in 

the class, the application suffers high packet loss rate until the interfering traffic stops 

(See Figure 6.2).

As we talked in subsection 6.2.2, the feedback information conveyed in RRTCP RRs 

summarizes QoS of the transmission. It reports the transmission quality received before it 

is sent out. Thus, when the interfering flows start at time 5s, the feedback returns to the 

sender at time 6.5s. The feedback shows that the application (real-time multimedia flow) 

starts to suffer a packet loss in BE and its QoS has no improvement until time 17.5 

because the interfering traffic flows stop at time 15s (same reason as why the interfering 

flows start at time 5s and the packet loss occurs at time 6.5s). During this time period, the 

application suffers high packet loss rates and most of them are greater than the THD. 

Meanwhile, the QoS in other classes are much better (packet loss rate is zero) but the 

resources are wasted because the application is always running in the BE class and cannot 

switch to other classes even if these class resources are idle. From the following 

experiments, we will see that our algorithm solves this problem by switching to other 

class to utilize the network services and improve the QoS of the application.
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Figure 6.2 Packet loss of the real-time multimedia flow versus time
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(No ACSA implementing)

6.3.2 Switching based on the lowest price

When the user is very sensitive to the price, he will choose the quality weight (W) to have 

a smaller value, even set it to 0. In this case, the user utility will depend mainly on the 

price part, i.e. U = (1 -  W)(MAX_P -  p0 / MAX_P

In our ACSA algorithm, we assumed that the classes are ordered in terms of price. A 

class with a higher numerical number has a higher price than a lower numerical number 

class (see subsection 5.1). In this case, the class switching is based on the lowest price as 

long as the current packet loss rate is less than the threshold. Here we set the packet loss 

threshold THD = 0.2 because this is a threshold that human beings can tolerate in a voice 

application. The real-time multimedia flow will stay in the lowest class (lowest numerical 

number class with lowest price) which can guarantee the QoS requirement (i.e., packet 

loss < THD). Figure 6.3 shows the results. In the following subsections, we use figures 

6.Na, 6.Nb, and 6.Nc, where N=3..7. Figures Na show the packet loss for all classes 

considered in our algorithm (BE, AF1..AF4). If the packet loss of a class is constantly 

zero during the simulation time, then it will not show in the figure. Figures 6.Nb show the 

packet loss incurred by our real-time multimedia application flow. Figures 6.Nc show the 

class where the real-time multimedia flow was running during the simulation.

In this scenario, the interfering flows in BE and AF1 classes start at time 5s and stop at 

15s.

At time 7.5s, the feedback shows that the quality in BE degrades (Fig. 6.3a). The 

application (real-time multimedia flow) switches to AF1 (Fig. 6.3c). The packet loss 

of the application reduces to zero soon (Fig. 6.3b) because it is using the resource in
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AF1 class now and the packet loss rate in this class is zero at this time.

After time 8.5s, the packet loss in AF1 (Fig. 6.3a, Fig. 6.3b) increases because the 

application increases the traffic in AF1. Before it reaches THD, the application stays 

in AF1 because AF1 class is the lowest class that satisfies the QoS requirement of the 

application (packet loss < THD). The utility table (Table 6.1) shows that during time 

7.5s to 15s, the utility of AF1 class is the highest utility.

At time 15s, the packet loss of AF1 is over THD because that the resource assigned to 

AF1 class is used out (queuing buffer is full). Then the utility for AF1 reduces to 0 

and the application switches to AF2 right away.
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Figure 6.3a Packet loss in BE and AF1 versus time.
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Figure 6.3b Packet loss of the real-time multimedia flow versus time
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Figure 6.3c The class where the real-time multimedia flow is running versus time 

Figure 6.3 Packet loss and class switching based on the lowest price (W = 0)
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Time BE AF1 AF2 AF3 AF4
7.5 0 0.83 0.67 0.5 0.33
15.0 0 0 0.67 0.5 0.33
17.0 1.0 0.83 0.67 0.5 0.33

Table 6.1 User utilities -  switching based on the lowest price (W=0)

After the interfering flows stop, the packet loss in BE as well as AF1 decrease and the 

application switches back to BE at time 17s.

The results show that at anytime, the real-time multimedia flow seeks to stay running in 

the lowest numerical number class which meets the QoS requirement, i.e., packet loss < 

THD (Fig. 6.3, Table 6.1).

6.3.3 Switching based on the highest quality

When the user is very sensitive to the QoS of the application, he will choose the quality 

weight (W) to have a higher value, even set it to 1.0. In this case, the user utility depends 

mainly on the quality part. i.e. U = W (qi - MIN Q) / THD.

Switching will be based on the lowest numerical number class offering the best QoS 

regardless of the class price. In this scenario, there are three interfering traffic in BE, AF1, 

and AF2 classes. Interfering flows in BE and AF1 start at time 5s and stop at 15s. The 

interfering flow in AF2 starts at timelOs and stops at 20s. The purpose of using the short 

interfering in AF2 is for the comparison to the next scenario -  Switching based on both 

quality and price. Figure 6.4 shows the results.

At time 7.5s, when the interfering flows cause the quality degradation in the BE class 

(Fig. 6.4a), the application (real-time multimedia flow) switches to AF1 (Fig. 6.4c) 

and its packet loss reduces to zero (Fig. 6.4b) (same reason as in subsection 6.3.2).

When packet loss in AF1 increases at time 10s, the application switches to AF2 (Fig. 

6.4c) because it seeks the lowest class offering the best QoS which is AF2 at this time. 

The packet loss reduces to zero soon (Fig. 6.4b).
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The application flow and the interfering flow overload AF2. At time 13s, there is a 

very small packet loss (0.01) in AF2 which is too small to be shown in Fig. 6.4b. 

Because the switching is based on the best quality in this case, the application seeks 

to switch to the lowest class with the best quality no matter how small the packet loss 

is in the current class. So, it switches to AF3 class and stays there until the packet loss 

of AF2 becomes zero.
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Figure 6.4a Packet loss in BE, AF1, and AF2 versus time
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Figure 6.4b Packet loss of the real-time multimedia flow versus time
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Figure 6.4c The class where the real-time multimedia flow is running versus time 

Figure 6.4 Packet loss and class switching based on the highest quality (W =1)

Time BE AF1 AF2 AF3 AF4
7.5 0 1.0 1.0 1.0 1.0
10.0 0 0.5 1.0 1.0 1.0
13.0 0 0.65 0.95 1.0 1.0
15.5 0 0.60 1.0 1.0 1.0
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18.0 1.0 1.0 1.0 1.0 1.0
Table 6.2 User utilities -  switching based on the highest quality (W=l)

At time 15.5s, the application switches to AF2 because AF2 is the lowest class which 

offers best QoS (see table 6.2).

After the interfering flows in BE and AF1 class stop, the packet loss in all classes 

decrease to zero (Fig. 6.4a) and the application switches to BE at time 18s (Fig. 6.4c).

The results show that at anytime, the real-time multimedia flow tries to stay in the class 

that is the lowest class providing the highest utility (in this case, it means the highest 

quality or lowest packet loss (Fig. 6.4, Table 6.2)).

6.3.4 Switching based on both quality and price

Usually, users are interested in receiving a good service with a good price. Without loss 

of generality, we set weight W= 0.5. The results show how both the price and the quality 

are taken into account and how they influence the switching results.

The initial state of this scenario is the same as the one described in subsection 6.3.3 

except that the weight is 0.5. Interfering flows in BE and AF1 start at time 5s and stop at 

15s. The interfering flow in AF2 starts at time 10s and stops at 20s.

At time 7.5s, when the interfering flows cause the quality degradation in the BE class 

(Fig. 6.5a), the application (real-time multimedia flow) switches to AF1 (Fig. 6.5c) 

and its packet loss reduces to zero (Fig. 6.5b).

At time 10s, the packet loss in AF1 is 0.1 which is less than THD (Fig. 6.5a, Fig. 

6.5b). Because the application considers the price and quality together, it switches to 

AF2 (Fig. 6.5c) which is the class with the highest utility (Table 6.3). Meanwhile, the 

interfering flow in AF2 starts. The interfering here is used to degrades the quality of 

this class to a certain extend.
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At time 13s, the packet loss in AF2 is 0.01 (Fig. 6.5a). Again, because the application 

considers the quality as well as the price, AF2 is still the class with the highest user 

utility and the application stays running here.

After the interfering flows in BE and AF1 stop, the application switches to AF1 at 

17.5s, then to BE at 19.5s.
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Figure 6.5a Packet loss in BE, AF1, and AF2 versus time
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Figure 6.5c The class where the real-time multimedia flow is running versus time 

Figure 6.5 Packet loss and class switching based on both quality and price (W=0.5)

Time BE AF1 AF2 AF3 AF4
7.5 0 0.92 0.83 0.75 0.67
10.0 0 0.67 0.83 0.75 0.67
17.5 0.9 0.92 0.83 0.75 0.67
19.5 1.0 0.92 0.83 0.75 0.67

Table 6.3 User utilities -  switching based on both quality and price (W=0.5)
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Comparing this result (Fig. 6.5c) to the one in subsection 6.3.2 (W = 0, switching based 

on the lowest price) between time 7.5s to 15s (Fig. 6.3c), we see different switching 

results. In subsection 6.3.2, switching is based on the lowest price class which can 

provide packet loss < THD. During the period between time 7.5s and 15s, although the 

application suffers a packet loss in AF1, the application stays running in AF1 (Fig. 6.3b, 

Fig. 6.3c) as long as the packet loss of AF1 is less than THD. When W=0.5, the switching 

is based on both quality and price. So when the utility of AF1 is less than the utility in 

AF2 at time 10s, the application switches to AF2 (Fig. 6.5c).

Comparing this result (Fig. 6.5c) to the one in subsection 6.3.3 (W = 1, switching based 

on the highest quality) between time 10s to 15s (Fig. 6.4c), the different results show how 

the weight W influences the switching decision. In subsection 6.3.3, switching is based 

on the lowest class offering the best QoS. At time 13s, the packet loss in AF2 is 0.01 in 

both cases. When W=l, the application switches to AF3 (Fig. 6.4c) because it takes the 

quality only into account. When W = 0.5, the application considers both quality and price 

and AF2 is still the best choice. The application stays in AF2 (Fig. 6.5c) with no change.

These results show that when the weight is between 0 - 1  (0<W<1), the algorithm can 

control the tradeoff between price and quality and switching is based on the highest 

utility.

6.3.5 Switching when higher classes are overloaded

Each AF subclass in a DiffServ node is allocated a certain amount of resources for 

minimum QoS guarantees and is priced based on the QoS guarantees. At the beginning, 

we assume that service classes in the DiffServ architecture are ordered in terms of price. 

In a normal network state, a higher price class should provide better QoS than that 

provided by a lower price class. However, when some of the classes in the Internet are 

overloaded, DiffServ may not be able to guarantee the QoS for the application. In the
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worst case, the quality among classes may be disordered -  higher more expensive classes 

provide less quality than lower cheaper classes. Previous work did not handle this case 

[NVOO, DROl, SB02], i.e. when the QoS requirement is violated in a class, the 

application switches directly to a higher class. But using our algorithm, we probe all 

classes simultaneously and the switching is based on the highest utility. Application will 

switch to the class with the highest utility directly and the new class may be lower than 

the current class. Figure 6.6 shows the results of this scenario.

1
L o s s  BE

0. 8 L o s s  AF1

A F 20. 6
AF 3

0.  4

0 . 2

0 ■ « * -

200 5 10 1 5 2 5 T im e

Figure 6.6a Packet loss in BE, AF1, AF2, and AF3 versus time
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Figure 6.6c The class where the real-time multimedia flow is running versus time 

Figure 6.6 Packet loss and class switching when higher classes are overloaded (W=0.5)

Time BE AF1 AF2 AF3 AF4
7.5 0 0.92 0.83 0.75 0.67
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9.0 0 0.67 0.48 0.75 0.67
11.0 0 0.92 0.68 0 0.67
13.0 1.0 0.92 0.83 0.75 0.67

Table 6.4 User utilities -switching when higher classes are overloaded (W=0.5)

In this scenario, class switching is based on both quality and price (W = 0.5). At the 

beginning the application (real-time multimedia flow) runs in the BE class. Interfering 

flows in BE and AF2 classes start at time 5s and stop at 1 Os. The interfering flow in AF3 

class starts at time 7s and stops at 15s and it is used to overload the higher class (AF3).

When the application experiences high packet loss in the BE class at 7.5s (Fig. 6.6a, 

Fig. 6.6b), it switches to AF1 class (Fig. 6.6c). Before the application makes the next 

switching decision, it has the choices of switching to higher or lower classes.

The application decreases the quality in AF1, so at time 9s, it switches to AF3 class 

which has the highest utility (Table 6.4).

At time 11s, the application suffers a packet loss over THD in AF3 because of the 

interfering flow and itself. At the same time, the packet loss in AF1 and AF2 are 

below THD. So, instead of switching to a higher class, our application switches to 

AF1 which has the highest utility (Table 6.4).

After the interfering flows in BE and AF2 stop, the packet loss in BE, AF2, and AF3 

reduce to 0 at time 13s. The application switches to BE.

These results show that when higher classes are overloaded, the QoS in higher classes 

may be worse than lower classes and with our algorithm, the application can switch to the 

most suitable class directly.

6.3.6 Switching when all classes are congested

The interesting results using ACSA algorithm show in Figure 6.7 when there are 

interfering flows in all classes so that the network gets fully congested. According to our
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assumption, if  the quality in all classes cannot be guaranteed so that the highest utility is 

zero, the application will use the BE service with no payment. This result is quite 

different than results in other previous work. In [CZOO], if the highest utility is zero, the 

application will not use any of the classes, i.e. the application will be dropped. In [NVOO], 

if the application cannot receive the required QoS, it will remain in its maximum class 

that it is willing to pay. In [DR01, SB02], at this time, the application stays in the highest 

class unsatisfied.
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Figure 6.7a Packet loss in all classes versus time
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Figure 6.7b Packet loss of the real-time multimedia flow versus time
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Figure 6.7c The class where the real-time multimedia flow is running versus time 

Figure 6.7 Packet loss and class switching when all classes are congested (W=0.5)

Time BE AF1 AF2 AF3 AF4
7.0 0 0.68 0.83 0.75 0.67
$ffi5 0 0.78 0.67 0.62 0.53
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18.5 1.0 0.92 0.83 0.75 0.67
Table 6.5 User utilities -  switching when all classes are congested (W=0.5)

In this case, the quality weight (W) is 0.5 so the class switching is based on both quality 

and price. There are 2 interfering flows in each class. At time 5s, two interfering flows 

start in BE and AF1, one in each class. Then, the other 8 flows start at time 7s. All 

interfering flows stop at 15 s. These interfering flows are used to overload the network.

The interfering flows starting at time 5 s in BE and AF1 degrade the quality in these 

two classes. Therefore, at time 7s, the application (real-time multimedia flow) 

switches to AF2 class (Fig. 6.7a, 6.7b). Meanwhile, the other interfering flows start 

and overload the network.

At time 9.5, the packet loss rates in all classes are over THD (Fig. 6.7a) and all 

utilities are zero (Table 6.5). This indicates that there is congestion in the network. 

Because the quality in all classes cannot be guaranteed, why pay money for the bad 

quality? Our application switches to BE class right away (Fig. 6.7c).

The application stays in class BE until the packet loss in AF1 is below the THD and 

the highest utility is greater than zero at time 16.5s after all interfering flows stop. 

Then it switches back to BE.

These results show that at time of congestion, the application will use BE class with no 

payment for the bad services.

6.4 Conclusion

This subsection explains the simulation topology, implementation, different scenarios, 

and the results. The simulation results show that the ACSA algorithm will allow the 

real-time multimedia data flow to switch fast to the class with the highest utility. The 

followings are the results of different experimental scenarios:
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When the switching is based on price only (W = 0), the real-time multimedia flow 

chooses the lowest cheapest class (i.e., class with the lowest numerical number) 

which meets the QoS requirement, i.e. packet loss < THD.

When the switching is based on QoS only (W =1),  the real-time multimedia flow 

chooses the lowest class with the best quality, i.e. the lowest packet loss incurred.

When the switching is based on both QoS and price (0 < W < 1), the real-time 

multimedia flow chooses the lowest class which has the highest utility.

When the higher classes are overloaded in the network, the real-time multimedia 

flow may choose a lower class which offers the highest utility.

When the network is congested and the QoS cannot be satisfied in all classes, the 

real-time multimedia flow stays in BE class with no payment.
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Chapter 7 Conclusion and Future Work

This chapter presents the conclusion and future research directions for the ACSA 

algorithm.

This thesis proposes an Adaptive Class Switching Algorithm (ACSA) that provides 

dynamic QoS control for real-time multimedia applications in a DiffServ environment. 

Our algorithm focuses particularly on DiffServ EF and AF services.

The DiffServ EF and AF services provide class-based QoS and these services are 

associated with the cost. Usually, the high-cost class provides high QoS guarantees. 

However, when the Internet is congested, DiffServ may not be able to guarantee the QoS 

for the application. Thus, the QoS may not reflect the price paid for the service. How to 

achieve a good price and quality tradeoff even at times of congestion is the problem 

solved in this thesis.

The ACSA algorithm combines the techniques of RTP protocol, DiffServ, and 

Adaptation together and works in a general DiffServ environment even at times of 

congestion. It also takes both QoS and price into account to provide users a good QoS 

with a good price. The user utility is a function of quality, price, and the weight of quality 

and it reflects the quality and price tradeoff. The quality is measured using the fraction of 

packet loss (i.e., the packet loss incurred in the current interval) carried by RTCP 

Receiver Reports (RRs). The adaptation is achieved by dynamically selecting the most 

suitable class based on the highest user utility which reflects the best quality and price 

tradeoff.

The simulation results show that the ACSA algorithm allows the real-time multimedia 

data flow to switch fast to the class with the highest utility. It reflects the best quality and 

price tradeoff. It always seeks to find a class with the highest user utility except when the
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Internet is congested and the required QoS in all classes can not be satisfied. If this 

happens, the real-time multimedia flow chooses Best-Effort class with no cost. The 

followings are detailed results in different network scenarios:

When the switching is based on price only (weight of quality W = 0), the real-time 

multimedia flow chooses the lowest cheapest class (i.e., class with the lowest 

numerical number) which meets the QoS requirement, i.e. packet loss < THD.

When the switching is based on QoS only (W = 1), the real-time multimedia flow 

chooses the lowest class with the best quality, i.e. the lowest packet loss incurred.

When the switching is based on both QoS and price (0 < W < 1), the real-time 

multimedia flow chooses the lowest class which has the highest utility.

When the higher classes are overloaded in the network, the real-time multimedia flow 

may choose a lower class which offers the highest utility.

When the network is congested and the QoS cannot be satisfied in all classes, the 

real-time multimedia flow stays in BE class with no payment.

Some extensive work needs to be done for future improvement.

First, in our algorithm, the packet loss threshold THD is negotiated by the user and 

the Internet Service Provider (ISP) when signing the Service Level Agreement (SLA). 

In reality, it is more flexible if  the THD for different applications varies. For example, 

Video conference and Internet telephony applications may require lower packet loss 

threshold than Internet gaming. Also, as the network state varies, the fixed THD may 

not be suitable for the network state throughout the duration of the RTP session. This 

may cause oscillations or network instability. In the future, the algorithm should be 

able to dynamically assign THD during the lifetime of the real-time multimedia 

application.

6 9
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To dynamically calculate the THD, we consider using the exponential weighted 

average function to estimate the packet loss carried in the next RR. The THD that is 

going to be used when the next RR arrives is derived from the estimated packet loss. 

The THD can be changed within a range, e.g., a range 0.1 < THD < 0.2 is for an 

Internet telephony application (Here we set the lower bound to 0.1 to avoid the 

network instability and set the upper bound to 0.2 as this is a voice quality threshold 

that human beings can tolerate). In this way, the THD can reflect the recent network 

state. Moreover, we will put more weight on the current packet loss so that the THD 

reflects the current network state closely.

Second, we have considered only one receiver in the simulation. If there are several 

receivers with heterogeneous capabilities in the same RTP session, e.g., one is 

connected to the network through a modem and another through the high speed link, 

we need a mechanism to calculate the average packet loss of each class and use this 

average to calculate the user utility of the class.

Third, from the user’s perspective, the user perceived quality of the real-time 

multimedia application is not the same as the quality measured in packet loss. In fact, 

the principle of diminishing returns is applicable in this case. For example, when the 

quality of transmission summarized in the RRs shows there is a slight quality increase 

from the minimum quality, the user perceives a proportional utility for this 

improvement in quality. Further improvement in quality (measured by decrease in 

packet loss) has less effect on the user’s perceived quality. The relationship between 

the quality summarized in the RRs and the quality perceived by the user can be 

divided into three regions:

1. Region 1 (Linear Region): In this region, improvement in quality is proportional to 

user’s perceived quality.

2. Region 2: This is the region for diminishing returns, i.e. improvement in quality

7 0
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(measured by decrease in packet loss) has less effect on the user’s perceived 

quality.

3. Region 3: whatever increase in quality is not perceived by the user.

So, future work involves adjusting the quality component of the utility calculation to

include another function, e.g. the hyperbolic tangent function Tanh(Px), where P is a 

constant and x is [(q-MIN_Q)/THD]. Figure 7.1 shows the plot of this function with P 

= 3 and -1 < [(q-MIN_Q)/THD] < 1. Assume x = [(q-MIN_Q)/THD] and y = user’s 

perceived quality.

Let us only consider the part with 0 < x < 1.

a. When 0 < x < 0.3, there is a linear increase for y (0 < y < 0.74). This part

corresponds to region 1.

b. When 0.3 < x < 1, y has a smooth increase from 0.74 to 1 and this part 

corresponds region 2.

c. When x approaches 1, y approaches the user’s perceived normalized quality 1, 

and this part corresponds to region 3.

0.2

-OS

-G.-0

Figure 7.1 Tanh(px), where P=3, x = [(q-MIN_Q)/THD], y=user’s perceived quality
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Appendix A: Terminologies
Name Definition
Bandwidth Link transmission rate (bits/second).
Committed 
Information rate 
(CIR)

The average rate in bits per second at which the network agrees to 
accept data from a client. Data that is sent at a rate excess the CIR 
can be shaped or dropped if the network is congested.

DiffServ class A service class that provides identical QoS for an aggregation of 
data flows belonging to this class.

DiffServ (DS) 
domain

“A contiguous set of nodes which operate with a common set of 
service provisioning policies and PHB definitions” [BBC98b]

DS behavior 
aggregate

An aggregation of data flow which have the DS field assigned and 
should be treated identically within a DS domain.

DS core router A DS-compliant node that can perform DS core function to 
forward the packets.

DS edge router “A DS-compliant node that connects one DS domain to a node 
either in another DS domain or in a domain that is not DS-capable” 
[BBC98b]

End-to-end delay 
(Delay)

The delay from source to destination including nodal processing 
delay, queuing delay, transmission delay, and propagation delay 
[KR03]

Flow A flow is a sequence of packets with the same source and 
destination IP addresses, source and destination port numbers, and 
protocol ID.

Packet jitter (Jitter) Variation of delays -  the time from when a packet is generated at 
the source until it is received at the receiver can fluctuate from 
packet to packet [KR03],

Per-Hop Behavior 
(PHB)

“A description of the externally observable forwarding behavior 
applied at a DS-compliant node to a DS behavior aggregate.” 
[BB98b]

RTP Session “The association among a set of participants communicating with 
RTP. For each participant, the session is defined by the destination 
transport address (network address and port number). In the case 
of IP multicast, the destination transport address pair may be 
common for all participants.” [SC03]

Service Level 
Agreement (SLA)

“SLA is a service contract between a customer and a service 
provider that specifies a forwarding service a customer should 
receive.” [BB98b]

Throughput The amount of data that can be sent from one location to another in 
a specific amount of time( Kbps, Mbps, or Gbps)

Traffic An agreement specifying classifier rules, corresponding traffic
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Conditioning 
Agreement (TCA)

profiles (a description of the temporal properties of a traffic stream 
such as rate and burst size), and conditioning rules (metering, 
marking, shaping, and policing).

User utility A function of quality, price, and the weight reflecting the relative 
sensitivity to quality and price. It is used to control the quality and 
price tradeoff.
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Appendix B: Abbreviations
Abbreviation Full name

ACSA Adaptive Class Switching Algorithm

AF Assured Forwarding

ATM Asynchronous Transfer Mode

BE Best-effort

CIR Committed Information Rate

CNAME Canonical names

CR DiffServ core router

CSA Class Switching Algorithm

currClass The class that our real-time multimedia data flow is running in

currPktLoss; The current packet loss experienced by the real-time multimedia 

flow running in class i

DCS Dynamic Class Selection

DiffServ Differentiated Services

DS DiffServ

DSCP DiffServ CodePoint

EF Expedited Forwarding

ER DiffServ edge router

IntServ Integrated Services

ISP Internet Service Provider

MAX_P The price paid for the highest class AF4 which is the highest price

maxU Maximum utility

M I N Q The minimum quality that a user is willing to tolerate and willing 

to pay for (MIN Q = 1 -  THD)

MRED Multi-level RED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



NUMCLASS Number of classes = 5

NS Network Simulator

PHB Per-Hop Behavior

Pi The price paid for class i

PT Packet Type

qi The QoS received by the receiver in class i

QoS Quality of Services

RC Reception Report Count

RED Random Early Detection

RR Receiver Report

RSVP Resource ReSerVation Protocol

RTCP Real Time Control Protocol

RTP Real-time Transport Protocol

RTSP Real-time Streaming Protocol

SDES Source description

SLA Service Level Agreement

SR Sender Report

SSRC Synchronization source identifier

switchClass the class with the maxU

TCA Traffic Conditioning Agreement

THD Packet loss threshold

ToS Type of Service

U User utility

UDP User Datagram Protocol

W The weight of the quality
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