
Research Article
Towards Internet QoS Provisioning Based on
Generic Distributed QoS Adaptive Routing Engine

Amira Y. Haikal, M. Badawy, and Hesham A. Ali

Department of Computer Engineering & Control Systems, Mansoura University, Mansoura 35516, Egypt

Correspondence should be addressed to M. Badawy; badawy mm@hotmail.com

Received 11 April 2014; Accepted 9 July 2014; Published 17 September 2014

Academic Editor: Jingjing Zhou

Copyright © 2014 Amira Y. Haikal et al.This is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Increasing efficiency and quality demands of modern Internet technologies drive today’s network engineers to seek to provide
quality of service (QoS). Internet QoS provisioning gives rise to several challenging issues. This paper introduces a generic
distributed QoS adaptive routing engine (DQARE) architecture based on OSPFxQoS.The innovation of the proposed work in this
paper is its undependability on the used QoS architectures and, moreover, splitting of the control strategy from data forwarding
mechanisms, so we guarantee a set of absolute stable mechanisms on top of which Internet QoS can be built. DQARE architecture
is furnished with three relevant traffic control schemes, namely, service differentiation, QoS routing, and traffic engineering.
The main objective of this paper is to (i) provide a general configuration guideline for service differentiation, (ii) formalize the
theoretical properties of different QoS routing algorithms and then introduce aQoS routing algorithm (QOPRA) based on dynamic
programming technique, and (iii) propose QoS multipath forwarding (QMPF) model for paths diversity exploitation. NS2-based
simulations proved the DQARE superiority in terms of delay, packet delivery ratio, throughput, and control overhead. Moreover,
extensive simulations are used to compare the proposed QOPRA algorithm and QMPF model with their counterparts in the
literature.

1. Introduction

Increasing steadily gaining popularity of mobile phones,
VoIP, IPTV, cloud computing, as well as sensor networks
that interoperate with Internet creates a large demand for
QoS support for future Internet applications [1]. The main
motivation behind the design of the next generation Internet
is convergence, that is to say, making the Internet the
common carrier for all kinds of services. The Internet is
destined to become the ubiquitous global communication
infrastructure [2].

In the beginning, the Internet used the public switched
telephone network (PSTN) telecommunications (TelCo)
infrastructure.Themajor interest was on “where issue” which
means where packets should deliver. Now the TelCo industry
has started to use the Internet infrastructure as a backbone,
and with the advent of multimedia applications people
became aware of the “how will issue” (or, “quality of service

(QoS)”). Generally, QoS can be defined as the ability to create
various traffic management mechanisms in the network to
differentiate between different classes of services and to pro-
vide some level of assurance and performance optimization
that can affect user perception [3]. QoS has become one of the
most important issues in the next generation network (NGN)
[4].

The Internet exists in order to transfer information
from source nodes to destination nodes. Simultaneously,
diversity of Internet services has become very competitive
and end users are demanding very high quality services from
their service providers. Accordingly, to accommodate service
quality, Internet service providers (ISPs) have to provide
interconnections more efficiently. Thus, one of the key issues
in such a converged network is routing.

Routing is the process performed by routers to select the
best path from the source node to a destination node in a
network. The Internet traffic volume continues to grow at

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 694847, 29 pages
http://dx.doi.org/10.1155/2014/694847

2 The Scientific World Journal

a massive rate; there may be a time when networks start to
be congested on a regular basis. This situation has been the
major force for innovation and development of different QoS
routing solutions. Future Internet will embrace QoS routing
as a basic functionality for QoS provisioning.

QoS-effective routing scheme can be efficiently designed
to allocate resources in the network, allowing user constraints
to be met and maximizing operator benefits, taking into con-
sideration properties of the underlying network. In general,
routing involves two entities, namely, the routing protocol
and the routing algorithm. Although there has been histori-
cally close tie between both entities, it is beneficial to decouple
them. The routing protocol has the task of dynamically
identifying and communicating topological information [5].
Although proposals for a QoS routing protocol for Internet
exist, still there is no Internet QoS routing protocol in the
Internet. A critical basis for routing is routing computation
algorithm that calculates the shortest path (SP) at each router
for every known destination based on current topological
information.

Open Shortest Path First (OSPF) protocol [6] is perhaps
the most famous link-state routing extensively deployed
throughout the last decade. OSPF provides best-effort Inter-
net routing relying on a single arbitrary metric for path
computation. OSPF does not guarantee optimal network
utilization of available network resources due to a single
path/single metric routing, which may cause partial conges-
tion of the network.

The notion of QoS is a guarantee by the network to satisfy
a set of predetermined service performance constraints for
the user in terms of the end-to-end delay statistics, available
bandwidth, probability of packet loss, jitter, and so on. QoS-
based routing must extend the current routing paradigm
in four dimensions. First, routers need information about
available network resources. Second, we calculate optimal
paths that fulfill a set of constraints. Third, opportunistic
routing must shift traffic from one path to another as soon
as a “better” path is found. Fourth, optimal path forwarding
algorithms must support multipath routing [7].

QoS extensions to OSPF (OSPFxQoS or QOSPF) [8]
provide comprehensive mechanisms to support QoS. But it
poses the following limitations.

(i) OSPFxQoS used per-flow reservation via resource
reservation protocol (RVSP) [9]. Resource reserva-
tion is not an appropriate method as overheads for
setting up a reservation are simply too high.

(ii) OSPFxQoS considered limited QoS constraints in the
routing process. OSPFxQoS considered only band-
width as ametric. It did not fully capture the complete
range of potential QoS requirements.

(iii) OSPFxQoS used precomputation routing algorithm
that amortized the computational cost over multiple
requests, but each computation instance is usually
more expensive than in the on-demand case, as paths
are computed to all destinations and for all possible
bandwidth requests. Moreover, the accuracy of the
selected paths may be lower.

(iv) OSPFxQoS gets feasible path (not the optimal
one) with minimum number of hops and supports
requested bandwidth.

(v) The major shortcoming of OSPF and OSPFxQoS is
lack of self-optimization. The self-adaptation mech-
anism is static. Routers disseminate information only
when topology changes.

(vi) OSPFxQoS is unable to readjust forwarding paths in
order to lessen the impact of congestions or load-
balance traffic to optimize the performance of the
network.

Although the literature is plentiful of numerous QoS
architecture, routing plays essential role in QoS provisioning.
The main intention of this paper is to describe QoS-based
routing issues and identify the basic requirements of QoS
intradomain routing. This paper introduces a general for-
mulation that combines framework and approaches for QoS
provisioning based on the knowledge necessary of the service
with minimal impact to routing infrastructure established
upon OSPFxQoS routing engine architecture. This paper
presents the following theoretical and practical contributions.

Theoretical contributions include the following.
(i) First, exploring through discussion that regardless of

QoS architecture, performance optimization inside
autonomous systems (AS) is an important building
block in the QoS provisioning.

(ii) Second, exploring that performance optimization
can be achieved via proposing a generic distributed
QoS adaptive routing engine (DQARE) architecture
to overcome OSPFxQoS limitations. DQARE is a
distributed software routing engine anticipated to
exploit the full advantage of distributed hardware
and improve scalability, overall performance, and
resiliency. DQARE architecture is supplied with three
unique features, namely, service differentiation, QoS
routing, and traffic engineering (TE).

(iii) Third, we address factors that affect perceived QoS,
study Internet applications and recognize their QoS
requirements, and organize applications into classes.
Then, we introduce a general guideline for marking
packets with a distinct code in order to differentiate
between different types of services. Consequently, no
resource reservation is required.

Practical contributions include the following.
(i) First, developing an efficient hybrid QoS path com-

putation scheme which compared with state-of-art
QoS routing schemes is unique in providing minimal
complexity and low error decision rate. Our proposed
routing scheme assumes that the true state of the
network is available to every node. The computa-
tion scheme involves combining precomputation and
on-demand multiconstrained routing algorithms to
retrieve multiple paths for a QoS request.

(ii) Second, we introduce a QoS multipath forwarding
(QMPF) model. Multipath forwarding is a well-
known approach to intradomain TE used to exploit

The Scientific World Journal 3

path diversity provided by the proposed routing algo-
rithms and to provide an autonomic congestionman-
agement mechanism. QoS provisioning while load
balancing is still a challenge. From our knowledge,
no researches had been devoted to such area. Several
problems such as supporting per class delay guaran-
tees, packet reordering delay, and protection among
different service classes are yet to be addressed.

The rest of this paper is organized as follows. Section 2
provides a general overview and discussion for QoS architec-
tures. Section 3 explores how to achieve Internet QoS pro-
visioning regardless of QoS architectures. Section 4 surveys
related work. Section 5 presents the proposed DQARE archi-
tecture. In Section 6, a general configuration guideline for
service differentiation in conjunction with Internet applica-
tion QoS requirements is presented. Section 7 introduces the
proposed routing framework and algorithms. The proposed
QMPF model with algorithms is introduced in Section 8.
In Section 9, we illustrate the applicability of the proposed
solutions and present the experimental results.

2. QoS Architectures

There are three types of QoS, namely, perceived, assessed, and
intrinsic QoS [10]. Perceived QoS (P-QoS) is a user-oriented
QoS defined as the quality perceived by the users which
depends on what the end points can do for the applications.
It is mainly concerned with the software application industry
not the network industry. Assessed QoS refers to the will of a
user to keep on using a specific service. It is related to P-QoS
and depends on marketing and commercial aspects.

Intrinsic QoS (I-QoS) is a network-oriented QoS con-
cerned with what the networks can do for the applications.
I-QoSmay be described in terms of objective parameters such
as delay, jitter, and loss. A key issue is how to provide efficient
and fair routing so as to provide overall accepting service
for most of the users. Most of QoS provision is offered in
terms of I-QoS. It is mainly a technical problem dealt with
by engineers, designers, and operators.

Supporting QoS in packet switching networks requires
specialized infrastructure to be designed and developed that
involves frameworks and new service models in addition
to the existing best-effort service and resource management
techniques that are based on the concept of dividing flows to
traffic classes that are served with various QoS levels. This
also requires traffic management schemes to be introduced,
such as signaling, resource reservation, marking, packet clas-
sification, admission control, traffic conditioning, queuing,
scheduling, and buffer management.

Two complementary basic approaches have been devised
to guarantee QoS in data networks. The first is reserva-
tion based (state-oriented) approaches in which network
resources are reserved in advance according to applica-
tion’s QoS request needs and subject to bandwidth manage-
ment policy. The second is prioritization-based (stateless)
approaches in which there is no resource reservation. Instead,

traffic is classified and network elements give preferen-
tial treatment to classifications identified as having more
demanding requirements.

Although the literature is plentiful of different QoS archi-
tecture, none of them become dominant or widely imple-
mented on the Internet. There are two well-known proposed
QoS architectures, namely, integrated service (IntSer) and
differentiated service (DiffSer). For a more comprehensive
discussion about different architecture, we refer the reader to
[11].

In early 1990s, the IETF standardized the service types
that build the first complete model of QoS assurance
IntSer framework [12]. IntSer framework was developed
based on certain key theoretical assumptions established
upon reservation-based approaches. For flow awareness and
achieving end-to-end real guarantees, IETF specialized a
signaling protocol called RSVP [9]. RSVP was used by
hosts to request specific QoS from the network without
any limitation on the number of classes of service. IntSer
established the foundation for QoS architecture and flow
awareness; however, it suffered from complexity and scala-
bility problems. IntSer cannot be ignored, regardless of these
drawbacks; its features allow assuring QoS for each flow.

Afterwards, some researchers followed the direction of
IntSer to solve its drawbacks and others favored to forego
a different direction. Connectionless approach [13] decided
to follow IntSer and mitigate the scalability problem via
automatic detection of QoS requirement on the fly rather
than using signaling protocol. It used traffic conditioners
that consist of a classifier, admission control, and scheduler.
However, automatic detection not always work probably
which affects the robustness of the architecture.

The DiffSer architecture [14, 15] was an alternative QoS
model developed by IETF to cope with the scalability
problem faced by IntSer. DiffSer deployed prioritization-
based approaches, abandoned flow level, and worked at class
level, where a class is an aggregate of many flows. DiffSer
aims to guarantee QoS per traffic class. DiffSer architecture
used resource allocation quite different from IntSer. DiffSer
approach used six bits in the Type of Service (TOS) field in the
IP packet header, which has been transformed into DiffSer
field (or code point) to encode the forwarding treatment
(technically called Forwarding Equivalence Class). DiffSer
was contemplated using limited classes of services (CoS) that
makes sense to add new complexity in small increments to
the existing best-effort service. A router can offer to packets
two aspects of preferential treatment which are expedited
forwarding (EF) and assured forwarding (AF) in addition to
unclassified service (i.e., best effort). DiffSer does not require
the soft-state concept and thus avoids session-level scalability
issue faced with RSVP.

Although DiffSer solved the scalability problem of IntSer,
it failed to provide end-to-end QoS provisioning [16], and
there is no performance guarantee. In reality, the DiffSer
has been deployed by some ISPs. Li and Mao proposed a
novel flow-based scheme [17] established upon DiffSer. Such
scheme ensured a constant proportion between the P-QoS
by flows in different classes, regardless of the current class
loads. The scheme is furnished with an estimator for the

4 The Scientific World Journal

number of active flows, a dynamic weighted fair queuing
(WFQ) scheduler, and a queue management mechanism.
Nevertheless, this architecture still has a limited number of
CoSs and complex operation.

Even if QoS is the subject of a great number of tutorials,
papers, patents, recommendations, and standards, there is
a question which still needs an answer: “does procuring
an oversupply bandwidth (overprovisioning) will solve all
QoS challenges?” Xiao [3] and Montanez [18] stated that
(i) there is no need for QoS mechanisms and all you need
to achieve QoS is sufficient capacity; (ii) overprovisioning
works satisfactorily and the service differentiation will not
be able to create perceivable differentiation either in normal
or abnormal conditions; (iii) best effort can provide good
enough performance for most applications in the developed
countries; (iv) it is commercially difficult to install QoS in a
network.

However, there are raised objections: (i) bandwidth
guarantee is indeed a key component for offering QoS.
But purchasing an oversupply of bandwidth will not solve
all service-quality challenges; bandwidth optimization and
possible future trends and requirements of new services must
be considered; (ii) if utilization is observed to be higher
than the acceptable threshold for a particular link type, so
it is easy to trivially add bandwidth/capacity to the network.
However, in large networks, where the utilization can be
further impacted by routing, adding bandwidth ismuchmore
complex than this simple single-link network, and (iii) lack of
differentiation among services leads to difficulty to sell QoS
which is the fundamental cause of the commercial challenges.

Actually, an important lesson is learned from the above
discussion. DiffSer traffic management is not the primary
way to enable QoS, introducing DiffSer traffic management
mechanisms alone cannot provide a satisfactory QoS solu-
tion, and too much complexity may have crept into the
network. DiffSer traffic management is good for creating
some service differentiation when there is congestion, but
how often real-world networks are like that is unverified. In
a more insistently QoS environments, service differentiation,
QoS routing, and optimization using traffic engineering (TE)
techniques have become the only viable alternative.

3. Proposed QoS Provisioning Methodology

The Internet today is going through new generations of
innovative and fast applications that need high performance
demands on the Internet infrastructure.Wójcik and Jajszczyk
[11] stated that progress in access network capacities is far
greater than in core networks and the bandwidth is always
consumed. There may be a time when networks start to
be congested on a regular basis and efficient and feasible
QoS provisioning methodology might then be needed. To
keep pace with the continuous demands, not only does the
bandwidth need to be increased, but also the routers that
power the Internet have to evolve architecturally and be
furnished by congestion management schemes.

“How QoS is possible in Internet, and how can it be
achieved in an efficient and reliable manner?”. At the core of

the answer, in a realistic sense, and to provide acceptable QoS
performance, performance optimization inside autonomous
systems is an important building block in the deployment
of QoS. The majority of QoS publications focused on QoS
architecture and traffic management schemes, although it
only affects the performance of specific link of routers. The
work presented in this paper takes a different approach.More
effective InternetQoS provisioning can be achieved, as shown
in Figure 1, via introducing a generic QoS routing engine
architecture furnished with three intertwined traffic control
schemes blocks that contribute to QoS provisioning.

The three-dimensional traffic control schemes contain
service differentiation, unicast intradomain QoS routing
algorithm, and traffic engineering (TE). These schemes must
work in tandem for providing efficient services. These traffic
control schemes can be used to reduce or prevent congestion
and introduce a bigger impact on QoS than traffic man-
agement schemes as they affect traffic performance network
wide. The coordination among these traffic control schemes
is significant and utilizing service differentiation will assist in
better perceived QoS.

Service Differentiation. ISPs are deploying more resources
to handle the emerging applications. In order to lessen the
amount of deployed network infrastructure and resources,
differentiation of ISP offering services is needed. Service
differentiation via setting the IP header TOS field must be
designated in order to give better service when it is available.
It is important to define a wide range of services, each with
its own requirements. Accordingly, service differentiation has
to enable deployment of scalable service discrimination in
the Internet without the need for per-flow state and signaling
protocols.

QoS Routing Algorithm. The problem of QoS routing has
been the center of attention in both academic and industrial
communities for some time. There is a need for additional
capabilities in the IP routing world and performance man-
agement tools to determine optimal paths that satisfy a
set of constraints. For QoS provisioning, the way of path
selection should also be QoS-aware which means identifying
an optimal route that meets multiple constraints which is
more complex than best-effort routing.

Traffic Engineering (TE). Enhancing the performance of QoS
routing at both traffic and resource levels is the major
objectives of QoS intradomain TE. TE is thoughtful as an
aspect of Internet network engineers. TE is the process of
optimizing the operational performance of networks flows
through better control, at both network flows and resource
levels. One of the major intradomain TE techniques is mul-
tipath forwarding (MPF) using traffic splitting that is routing
traffic in away that can effectivelymaximize utilization of net-
work resources, supplying path protection, reducing blocking
capabilities, minimizing delays, and increasing throughput.
Thus, TE regarding intradomain routing can be defined
as supplementary to the routing infrastructure and QoS
provisioning.

The Scientific World Journal 5

Routing
engine

architecture

Traffic
engineering

Service
differentiationQoS routing

Weight
optimization.

Path selection Splitting
criteria.

Services
categorization.

Packet
encoding.

Precomputed
routes.

On-demand
routes.

Figure 1: Internet QoS provisioning methodology.

4. Related Works

QoS-based routing has been recognized as a missing piece in
the evolution of QoS-based service offerings in the Internet.
Special attentionmust be given to new powerful architectures
for routers in order to fulfill the demanding critical role in
QoS provisioning. This section covers a literature review and
opens challenges for router architectures, service differen-
tiation, QoS routing algorithms, and multipath forwarding
mechanisms.

4.1. Router Architecture. The basic key functionalities in
an IP router can be categorized into three functions (or
planes): (i) route processing (how you direct bits), (ii) packet
forwarding (how you move bits), and (iii) management
services which includes management applications, protocol
policies, and QoS. Router architectures have experienced
three generations in terms of hardware and software [19, 20].

The first generation of IP router was built around conven-
tional computer architecture [21]. Unfortunately, this simple
architecture produced low performance as the three planes
competing for the same processing unit.

In the second generation IP routers, improvement was
introduced to increase the system throughput by distributing
the packet forwarding operations by using multiple pro-
cessors with on-demand lookup route caching. However,
the frequent changes in network topology in the core of
the Internet caused the cache entries to be invalidated
frequently, resulting in smaller hits [22].The third generation
of routers introduced a hardware-forwarding engine and
replaced shared bus by a high-speed crossbar switch with the
aim to achieve higher throughput [23]. This architecture is
still limited by the drawbacks of cache schemes.

Actually, structure of previously routers’ architecture has
an architectural limitation when it comes to meeting future
requirements. The network performance degrades as the
volume of traffic increases. These architectures relied on
shared resource for all access and transfers and there is
a centralized arbiter or scheduler responsible for granting
access to the resource. The modularity of the hardware and
the software is a key to the implementation of a modern
router.

For QoS provisioning, next generation routers (NGRs)
should be dependent upon fully distributed architectures in
which partitioning the functions physically, logically or even
both as clearly as possible to simplify system design and
testing and achieve throughput and robustness as well as
system availability. Distributed processing architecture is a
combination of all the techniques discussed above.

A distributed routing engine comprises the modules
running on different cards of a router. The main objec-
tive is to overcome the previous limitations of processing,
memory bandwidth, and bus bandwidth via distributing
overall processing and buffering capacity over the CPU and
network interfaces equipped with processing power and
buffer space. The functions of the forwarding engines are
integrated into the interface cards in the distributed mode.
Processing load gets distributed, ensuring faster and more
reliable communication.

Open Challenges. NGRs are fitting QoS requirements that lie
in the critical path of data flow. The software architecture
for next generation routers should therefore be much more
distributed in order to be scalable and to take full advantage
of the distributed hardware platform entailed by the switch
fabric.

6 The Scientific World Journal

4.2. ServiceDifferentiation. Internet architecture is character-
ized by fairness which means that all kinds of applications
are fairly shared network resources. Therefore, there is only
one forwarding treatment deployed that cannot bear QoS
oriented applications. QoS deployment needs a methodology
to classify and differentiate between different applications.
The Internet layer of TCP/IP stack on which routers operate
must be able to distinguish between different classes of
services.

Routers are able to distinguish between packets. The IP
protocol provides a facility for upper layer protocols to convey
hints to the Internet Layer about forwarding path behaviors.
This facility is first addressed by the TOS field in IP header
[24].

DiffSer standards [25] replaces the IP TOS field by 6-
bits code points (also called differentiated services code
point (DSCP)) and two bits currently unused to indicate the
forwarding equivalence class (FEC). The DSCP identifies a
specific traffic class and implies that all the packets identified
with the same DSCP should receive the same treatment.
Considerable debate took place on the allocation of these 6-
bits code points. Following RFC2474 [15] and RFC4594 [25]
general guidelines, the DSCP field can convey 64 distinct
code points divided into three pools: 32 DSCPs are dedicated
to standard recommended code points (Pool 1), 16 to be
reserved for experimental and local use (Pool 2), and the
other 16 (Pool 3) to be initially available for experimental and
local use but may devote again to standard actions if Pool 1 is
ever exhausted.

Open Challenges.DiffSer provided limited set of traffic classes
and therefore a risk is the aggregation of nonhomogeneous
traffic. Class based classification with a limited number of
classes does not guarantee that flows classified with a higher
priority will really observe a better quality of service than
lower priority ones, due to the fact that the distribution of
active flows in individual classes might be different. There is
a crucial need for scalable service differentiation guidelines.

4.3. QoS Routing Algorithms. QoS-aware routing algorithms
aim to find a path that obeys multiple constraints. Generally,
traditional routing paradigm can be extended to support
QoS by considering two important issues: first, choosing
and distributing relevant QoS measures and, second, how to
compute routes based on the information collected. Metric
selection is very important in the sense that “themetricsmust
represent the basic network properties of interest.”

In QoS arena, routing metrics can be broadly divided
into two classes. The first class is static (cumulative) metrics
which value does not change over time.These metrics can be
classified into (i) additive parameters (e.g., delay, hop count,
and jitter), where the cost of a path is the sumof the individual
link values along that path and (ii) multiplicative parameters
(e.g., packet loss) which can be approximately transformed
into additive by taking the logarithm of the multiplicative
measures on each link. The second class of routing metrics is
dynamic metrics (also referred to as a bottleneck or concave
or min/max metrics), where metric’s value changes over

Table 1: A comparison between OQRA and PQRA.

Point of view OQRA PQRA

Computation Every time a request
initiated.

Precomputes paths from
a source to all
destinations.

Scalability Limited. Large-scale networks.

Suitability When requests arise
infrequently.

When requests arise very
frequent.

Pros
Optimal routing
during congestion
state.

(i) Saves time.
(ii) Better scalability.
(iii) Improved load
balancing.

Cons Puts excessive time on
packet processing.

(i) Path oscillation.
(ii) Nonoptimal routing
during congestion.
(iii) Resources
consumption.
(iv) Complexity.

time with each request (e.g., bandwidth). Many researches
considered only two additive QoS constraints [26].

The constraints associated with dynamic parameters can
be handled by postprocessing which finds multiple paths from
source to destination that satisfy set of static constraints
and then select one path from these paths such that all
the other dynamic parameters are satisfied [27]. Otherwise,
preprocessing can be used for pruning from the graph all
the links that do not satisfy constraints and then search for a
feasible path [28]. In practice, the constraints on additiveQoS
metrics are more challenging, and, therefore, without loss of
generality, the QoS metrics are assumed to be additive [29].

QoS multiconstrained path selection with additive para-
meters is an NP-complete problem that cannot be exactly
solved in polynomial time [30]. However, Kuipers and
Mieghem showed that the “worst-case” behavior is very
unlikely to occur in practice and thus exact QoS routing
algorithms seem feasible [31].

QoS-aware routing algorithms in the literature can be
classified according to the path computation triggering crite-
ria into precomputationQoS routing algorithms (PQRA) and
on-demand computation QoS routing algorithm (OQRA).
A comparison between the two paradigms is conducted in
Table 1.

Most QoS routing algorithms presented in the literature
usedOQRA.OQRAmay cause an insufferable computational
overload in the high-speed next generation networks. OQRA
needs to be called each time a new demand needs to be
routed.

OQRA can be classified into four classes. The first class
is heuristic algorithms [26, 32–35], where QoS routing is
NP-complete; it demands heuristics in global optimization
that help decide which one of a set of possible solutions is
to be examined next. The second class is 𝜀-approximation
algorithms [36–38] which give good approximate solutions
to the problem which may not necessarily be exact. The third
class is the exact algorithms [39, 40], where exactness can
be reached by computing all possible paths between source

The Scientific World Journal 7

and destination where the exact path is guaranteed to be
found. The last class is metaheuristics which used meta-
heuristics, such as ant colonies [41] and genetic algorithms
[42].

TAMCRA [33] is a heuristic algorithm that is based on
three concepts: (i) a nonlinearmeasure of the path length, (ii)
a 𝑘-shortest path approach, and (ii) the principle of nondom-
inated paths. TAMCRA aims only at finding a feasible path
(not optimal). The major drawback is that if an intermediate
node found at sub-path better than the stored 𝑘 paths, it
replaces stored paths even it has much longer post-path to
destination. In other words, stored prepaths may misguide
the search towards the shortest path. TAMCRA has a worst-
case complexity of 𝑂(𝑘𝑁 log(𝑘𝑁) + 𝑘3𝑚𝑀) per request.

To overcome the TAMCRA drawbacks, Korkmaz and
Krunz [34] presented a heuristic algorithm called HMCOP,
which tried to find an optimal path within the constraints
by using the nonlinear path length function for feasibility.
HMCOP searched for the path that not only is feasible but
alsominimizes the value of a primaryQoS attribute. HMCOP
executed two modified versions of Dijkstra’s algorithm in
the backward and forward directions. In the backward
direction, HMCOP computed an estimate of how suitable the
remaining subpaths are. In the forward direction, HMCOP
used a modified version of Dijkstra’s algorithm. This version
heuristically determined complete path by concatenating
the postpath from source to intermediate nodes and the
estimated prepaths. HMCOP provided a preference rule for
choosing paths. The drawback of HMCOP is that postpath
may misguide the selection of prepaths. HMCOP had the
worst-case complexity of 𝑂(𝑁 log𝑁 +𝑚𝑀).

SAMCRA [39] is the exact successor of TAMCRA to
obtain multiconstraint optimal path. SAMCRAwas based on
four fundamental concepts: a nonlinear measure of the path
length, 𝑘-shortest path approach with attainable bound for
𝑘max, the principle of nondominated paths, and the concept of
lookahead to calculate attainable lower bounds and reducing
search efforts. SAMCRA is considered an effective algorithm;
however, the major drawback of SAMCRA resides in its
complexity which is 𝑂(𝑘𝑁 log(𝑘𝑁) + 𝑘2𝑚𝑀).

Retrieving multiple paths subject to multiple constraints
was addressed in [27]. The algorithm called 𝐴∗ Prune finds
not only one but also multiple shortest paths satisfying the
constraints listed in order of increasing length. 𝐴∗ Prune
algorithm may be considered similar to the SAMCRA algo-
rithm [39] except that it relied on linear path length. The
worst-case complexity of𝐴∗ Prune is𝑂(𝑁!(𝑚+ℎ+𝑁 log𝑁)),
where ℎ is the number of hops of the retrieved path.

To compute feasible paths, Bellabas et al. [35] pro-
posed two fast heuristic algorithms with less combinatorial
complexity. The first heuristic algorithm is the hop count
approach (HCA) that computes paths with the smallest hop
count. The second is called metric linearization approach
(MLA) that used a combination of QoS metrics. To store
multiple paths at each intermediate node, they proposed a
modification to Yen’s algorithm [43] which was generalized
by Lawler in [44]. HCAandMLA stop at the first feasible path
they find thus reducing their execution time. However, they
cannot obtain optimal paths.

Shin et al. proposed MPLMR [26] which is a heuristic
multiconstraint QoS routing scheme. MPLMR used the
same concepts as TAMCRA and HMCOP to store a limited
number of subpaths between the source node and each
intermediate node. MPLMR used an improved “lookahead”
method to estimate full path length. Sanguankotchakorn et al.
[45] proposed an algorithm (RMCOP) to find feasible path
that somewhat satisfies multiple constraints. They proposed
a relaxed lookahead algorithm. However, the computational
complexity of the proposed algorithm is large.

Contrarily, precomputation schemes use an offline pro-
cedure. The overall computational load of such scheme is
reduced, especially when the rate of QoS request arrivals is
much higher than that of significant change in the network
state. However, temporal conditions like congestion in the
network and routing between two subsequent updates makes
the routing decision be calculated based on inaccurate infor-
mation resulting in nonoptimal path selection.

QoS routing mechanisms and OSPF extensions [8]
focused on the algorithms used to compute QoS routes
and the necessary modification to OSPF to support QoS.
OSPFxQoS deployed a precomputing routing algorithm that
amortized the computational cost overmultiple requests with
the motivation to get a feasible path with minimum number
of hops (low resources) and support requested bandwidth
for all possible QoS requests. The presented algorithm has
a computational complexity compared with Bellman-Ford
algorithm [46] but with limited QoS constraints considera-
tion in the routing process.

An approach for pre-computation of multi-constrained
path (PMCP) was proposed in [47]. It computed a number
of QoS coefficients based on which linear QoS function was
computed and then constructed different shortest path trees
to compose the routing table. PMCP proposed algorithm has
a complexity of 𝑂(𝐵(𝑚 + 𝑛 log 𝑛 + 𝑛)). Jin [48] proposed
precomputation algorithm called limited selective flooding
(LFS) routing algorithm. LFS considered an MCP prob-
lem with imprecise additive link state information. Authors
in [49] presented 𝑂(𝐾𝑚 + 𝑛 log 𝑛) time 𝐾-approximation
precomputation algorithm. Afterwards, in [50], the authors
reduced the computational complexity.

Open Challenges. NP-completeness of the QoS routing prob-
lem leads to only few exact algorithms proposed in the
literature. The difficulty of QoS algorithm lies in its compu-
tational complexity and success rate. Designing QoS routing
algorithms with low complexity, high performance, and high
success rate is still an open issue.

4.4. Multipath Forwarding (MPF). Two major issues had
drawn attention in recent years regarding TE. The first
issue is to provide a TE mechanism to effectively develop
a routing optimization that enhances network service capa-
bility without causing network congestion. The second issue
is achieving resiliency via introducing a TE solution that
minimizes the impact of nodes and link failure [51].

The first and foremost question of providing conges-
tion control and QoS degradation mechanisms is “how to

8 The Scientific World Journal

hashing

MPF schemes

Static

Info-unaware

Round-robin

Weighted round
robin

Weighted
interleaved round

robin

Weighted fair
routing

Hash-based

Direct hashing

Table-based
hashing

Adaptive

Hash-based

Table-based
hashing with
reassignment.

Dynamic direct

Flowlet aware
routing engine

OP

E-DCLD

CMB

Flowlet-based
Flow-based

Flow-based

Packet-based

Splitting
granularity

Packet-based

Figure 2: LDM classification.

explicitly control traffic distribution inside an AS?”. At the
core of the answer lies intradomainTE. Extensive deployment
of intradomain routing protocols such as OSPF has drawn an
ever increasing attention to Internet TE in recent years.

The major TE technique is multipath forwarding (MPF),
also called multipath routing, using traffic splitting and path
protection.Multipath intradomain forwarding can be used to
handle traffic congestion inside a domain. Routers must be
equipped with multipath forwarding mechanism to perform
traffic forwarding. So, multipath load distribution is engi-
neered by two key capabilities: (i) control-plane extension:
deploying a routing algorithm to compute multiple paths
and (ii) data-plane extension: providing a load distribution
model to the forwarding process engineered by two key
functionalities, namely, traffic splitting and path selection.

Although, Internet topology involves path diversity, it is
underexploited, as 30–80 percent of the time an alternate path
with lower loss or a smaller delay exists and is never exploited
[52]. Fortz et al. reported that load balancing improves the
network service capability by 50%–110% compared to single
path routing [53–55]. MPF had attracted a large body of
literature. A number of load distribution models had been
proposed and studied. LDMs in the literature can be coarsely
categorized, as shown in Figure 2, into the following two
groups: static load distribution model (SLDM) and adaptive
load distribution model (ALDM).

Information less models use packet as the traffic unit.
It makes a raw decision on distributing traffic without

taking into account packet information [56–58]. Static hash-
based models choose the path in terms of flows instead of
packet-per-packet splitting. Such models process a flow as an
allocation unit that must be traversing the same path. Such
models calculate a hash over selected fields in the packet
header. There are a variety of hash-based models such as
direct hashing (DH), table-based hashing (TH) [59, 60], and
fast switching (FS) [61].

ALDMs take into considerations network conditions such
as average path delay, link utilization, packet interarrival time,
and capacity in path selection. Chim and Yeung [62] pro-
posed adaptive hash-based LDM named table-based hashing
with reassignment (THR) that helps to redistribute the traffic
load. THR improves the TH algorithm by combining actual
load sharing statistics and dynamically reassigns some active
flows (bin-to-path mapping) from the overutilized paths to
underutilized paths. However, out-of-order packets delivery
is still present.

Kandula et al. [63] proposed flowlet aware routing engine
(FLARE) that operated on flowlet. In order delivery of flows
can be achieved via assigning flows to any available path,
if the time between two successive TCP packets is larger
than the maximum delay difference between the parallel
paths. However, the common limitation lies in the estimation
process which may be inaccurate at high packet arrival rate
and this may yield load imbalance.

Tian et al. [64] provided network-wide load balancing
performance by introducing link-criticality-based ECMP

The Scientific World Journal 9

routing (LCER) algorithm. LCER selects path based on the
link’s average expected load, link capacity, and the path’s
length. LCER provides in-order packet delivery and the
lowest average end-to-end packet delays.

Y. Wang and Z. Wang [65] considered multipath routing
as an optimization problem (OP) with an objective function
that minimizes the congestion of the most utilized link in
the network. However, they did not consider the quality of
the selected paths. Banner and Orda [66] proved through
comprehensive simulations thatmultipath solutions obtained
by optimal congestion reduction schemes are fundamentally
more efficient than solutions obtained by heuristics. They
formulated MPR problem as an optimization problem of
minimizing network congestion. They established a polyno-
mial time algorithm that approximates the optimal solution
by a (small) constant approximation factor. However, this
method is not a direct solution of potential of QoS necessities.

MPF can provide a unique solution to congestion prob-
lems by utilizing the available resources in an adaptive way
to the dynamics of traffic demands. One way to prevent
congestion is to control the delay within the network. Thus,
network capacity and QoS provisioning need a new load
distribution model aiming to minimize the difference among
path delays, thereby reducing packet delay, jitter, and risk of
packet reordering without additional network overhead.

Motivated by the scarceness of solutions to efficiently
control packet delay for real-time traffic, Prabhavat et al.
developed enhanced delay controlled load distributionmodel
(EDCLD) [67]. EDCLD is an interesting packet-based delay-
controlled LDM developed to strike the lower delay and
packet ordering to utilize parallel paths for multimedia data
transmission and real time applications. Prabhavat et al. for-
mulated a delay-aimed problem model to figure the optimal
load ratio and its corresponding path. EDCLD used iterative
method to calculate optimal traffic-splitting vector so that
maximum path delay can beminimized.The trick of EDCLD
is to reduce the difference between path delays by using
adaptive load adaptation algorithms that gradually, according
to the number of paths, approach traffic-splitting vector
among the paths. EDCLDdecreased load assigned to the path
with the largest delay and increased load by the same amount
to the other path with the smallest delay. In the path selector,
they implemented the SRR load sharing algorithm [68].

Li et al. [69] proved that the optimization problem of
EDLCD is convex. They proposed a convex based method
(CBM) that defines the optimal load ratio in one shot rather
than gradually approaching algorithm used by EDLCD.
Their proposed scheme outperforms EDCLD specifically
with instability and large number of paths. Their proposed
scheme also relied on the SRR load sharing algorithm.

Packet-based scheduling can achieve very accurate split-
ting percentages and adds very little extra overhead.However,
it suffers from major problems which are packet reordering
and TCP throughput degradation.

The major drawback of static hashing is a load imbalance
problem due to an inability to deal with variation of the
flow size distribution. Thus, one major challenge of TE
is supplementing adaptive control capabilities that adapt
quickly to significant changes in a network’s state.

Majority of ALDMs is linked to TCP-traffic only and
focus on load balancing efficiency and packet order preser-
vation. These schemes are unsuitable for QoS oriented
applications as they cannot guarantee low delay and packet
ordering. In addition, Martin et al. [70] studied multistage
network architecture. They discover that all pure hash-
based algorithms have one serious problem, namely, traffic
polarization effect (TPE). Also, Shi et al. [71] proves that pure
hash-based algorithms cannot well balance load in the face of
the highly skewed flow-size distributions in the Internet.

On the other hand, EDCLD and CBM are considered
effective for real-time applications MPF. However, EDCLD
used a gradually approaching method that needs several
rounds, depending on the number of paths, to reach conver-
gence and cannot handle paths instability. CBM limitation
lies in solving a nonlinear optimization problem which can
incur a significant computational overhead when performed
on a per-packet basis.

Open Challenges.There is a crucial need for an effective MPF
scheme that optimizes the network, with the joint goals of
avoiding network congestion and ensuringQoS provisioning.

5. Proposed DQARE Architecture

The proposed DQARE architecture is based on extending
the current Internet routing model of the OSPFxQoS routing
engine to support strict QoS. DQARE architecture inherits
the cons of the OSPFxQoS routing engine architecture
explored in [8, 72] and nullifies the drawbacks of OSPFxQoS
architectures. It is worthy to divide the control plane func-
tionality amongmodules on different cards of router, namely,
control card and line cards, exploiting the power of next
generation routers to move some control functions to line
cards.

Basically, as Figure 3 depicts, the proposed software
architecture of a router is composed of three planes con-
nected by interfaces: (i) forwarding plane (or data plane):
the main task of this plane is to forward flows in a way
that prevents congestion. So, forwarding plane is supplied
with MPF model. (ii) Control plane hosts routing protocols
that are responsible for establishing routes within an AS,
routing table management, sending and receiving link state
updates and computing shortest paths. The control plane
computes forwarding information table (FIT) from one or
several routing tables that are used by forwarding plane. Some
of the functions of control plane are implemented on the
control card and others on the line cards. (iii) Management
plane handles network management applications, protocol
policies, and QoS. This plane performs congestion and path
management.

For QoS provisioning, the most significant parts in adop-
tion are relying on prioritization approach instead of reserv-
ing resources as in OSPFxQoS, the changes to the routing
algorithm in the control plane that computes diverse paths to
the forwarding plane subject to two additive constraints, the
implementation of load balancing, and protection algorithms
to the forwarding plane.

10 The Scientific World Journal

M
an

ag
em

en
t

pl
an

e
Resource/link manager

Path selection/congestion manager

Path
computation

Module

QoS
precomputation

algorithm

RTM module

Update manager

XLSDB FIT

C
on

tro
l p

la
ne

Control card

On-demand PCA OSPF QoS sub protocol Local interface monitor

FITsync
FIT

XLSDB

XLSDB sync

Fo
rw

ar
di

ng
 p

la
ne

Packet handling

Packet arrival
Classifier

Flow 1

Flow 1

Flow 2

Class 1 buffer

Input rate 𝜆
Quantum of service 𝜒

Class
selector

component

Traffic
splitting

component

C-PDP-DRR scheduler

Path
selection

component

Current queue size qp

Path 0

Path 1

Path 2

Line card 1

Line card 2

Line card 3

...

Class N buffer

Flow n

Line card n

Path set P

Path k − 2

Path k − 1

Figure 3: Proposed DQARE architecture.

The functional flow of the proposed framework is illus-
trated in the flowchart depicted in Figure 4. The functional
blocks of the proposed architecture are as follows.

Packet Handling. Packet handling involves the following
functions: IP Packet Validation: as a packet enters an ingress
port, the forwarding logic verifies all layer 3 information
(header length, packet length, protocol version, checksum,
etc.) andRoute Lookup andHeader Processing: the router then
performs on-demand path computation using the packet’s
destination address and QoS constraints to determine the

output of the egress port(s) and performs all IP forwarding
operations (packet lifetime control, header checksum, etc.).

Classifier. QoS applications operate on packet flows so the
routers must be able to classify individual traversing packets.
Actually, it is very difficult to guarantee the delay bound to
specific flows without flow isolation. DQARE architecture
relies on marking packets using DSCP bits to identify the
class of traffic. Flows are firstly grouped in traffic classes by
the classifier. Classification of traffic provides more equitable
management and more stability in the use of pure priorities.

The Scientific World Journal 11

Incoming notification

Notification

C
on

ge
sti

on
 n

ot
ifi

ca
tio

n

Ro
ut

in
g

up
da

te
s

No YesThreshold
value?

Pin/unpin paths
in FIT

Precomputation
routing algorithm

C
on

str
uc

t/u
pd

at
e

FIT

Incoming packet

Invalid IP
header validation Valid

Discard packet

End

Assign free buffer
header

Move packet to shared
memory

Packet classification

First packet of a flow
State

Belongs to flow

Yes NoQoS
routing

Invoke on-demand
PCA

Get path from FIT

C-PDR-DWRR scheduling

Move specified flow to
output interface queue and

free memory location

End

Figure 4: DQARE architecture functional flow.

We consider the objective of service differentiation to ensure
low packet delay for streaming applications. All packets in
the same class are treated equally by the C-PDR-DWWR
scheduler.

Path Computation Module. Assuming the router maintains
link state information of the entire domain, DQARE architec-
ture uses two types of routing algorithms, firstly PQRA imple-
mented in the control card. PQRA precomputes the routing
paths from a node to all destinations subject to two additive
metrics, prior to receiving the requests, and stores the QoS
information in its routing table.When receiving a connection
request with QoS requirements, OQRA implemented on line

cards computes a path from offline precomputed routing
table and finds an optimal or a feasible path for this request
if found. On-demand path computing can be running again
in the congestion state with benefit of ensuring a strict bound
on the computational load.

QoS Load Balancing Module. multipath Intra-domain for-
warding is used to handle traffic congestion inside a domain.
DQARE architecture is equipped with MPF mechanism
to perform traffic forwarding. The load balancing module
consists of combined proportional delay prioritization and
dynamic weighted round robin (C-PDR-DWWR scheduler)
and path selection component.

12 The Scientific World Journal

C-PDP-DWRR is work-conserving scheduler that works
in two phases. In the first phase, class based priority schedul-
ing is performed to select class to serve frommultiple classes.
Also, the first phase achieves proportional queuing delay dif-
ferentiation protection among various classes. Proportional
service differentiation, originally proposed by Dovrolis et al.
[73], is perhaps the best known effort to enhance class-based
services with relative guarantees.

Dovrolis et al. proposed proportional delay differentia-
tion (PDD). The network traffic is grouped into 𝑁 classes
of service which are ordered, such that class 𝑖 is better (or
at least no worse) than class 𝑖 − 1 for 1 < 𝑖 ≤ 𝑁, in terms
of queuing delays. 𝑑

𝑖
, 𝛿
𝑖
denote the average queuing delay

and delay differentiation parameter (DDP) value. The PDD
model aims to control the ratios of the average class queuing
delays based on the delay differentiation parameters (DDPs)
{𝛿
𝑖
: 𝑖 = 1, 2, . . . , 𝑁}. The PDD model requires that the ratio

of average delays between two classes 𝑖 and 𝑗 is fixed to the
ratio of the corresponding DDPs as follows:

𝑑
𝑖

𝑑
𝑗

=

𝛿
𝑖

𝛿
𝑗

. (1)

Higher classes provide better service, that is, lower queuing
delays, and so 𝛿

1
> 𝛿
2
> ⋅ ⋅ ⋅ > 𝛿

𝑁
> 0.

In the second phase, the traffic splitting component
defines the amount of traffic (𝜒) forwarded on the selected
path. Within the selected priority class, flows are scheduled
in DWRR manner [74]. DWRR, on the other hand, allows
higher priority queues to send a predetermined amount
of data during a service round. Each queue is configured
with a quantum of service (𝜒) and a deficit counter (DC).
The scheduler also has the task of path delay adaptation
by decreasing quantum of service (𝜒) on the path having
the largest estimated end-to-end delay and then increases
the quantum of service (𝜒) on the path having the smallest
estimated end-to-end delay by the same amount of the
reduced load.

Extended Link State Database (xLSDB). It consists of link state
information. This information includes both static (delay,
jitter, and loss rate) and dynamic metrics (current available
bandwidth) of the whole topology.

Path/Congestion Manager. It selects a path for a request with
particular QoS requirements and manages it once selected;
that is, it reacts to link or reservation failures. It finds
alternative paths by invokingOQRA again in the case that the
used path becomes unavailable. It invokes the traffic splitting
component to select a flow to be shifted during congestion.
This module also manages congestion handling actions when
a congestion notification delivered from designated router
(DR) or any link becomes congested and its associated queues
reach their threshold level.

Routing Table Manager (RTM) Module. The main task of
the RTM is to build FIT that stores, if existing, multiple
routes to the same destination from precomputation rout-
ing algorithms. It contains update manager module which
determines when to advertise local link state updates and

when to perform QoS path precomputation and control the
paths within routing table; that is, it activates paths that meet
the requirements and deactivate routes that currently does
not meet the requirements. It contains xLSDB that contains
information about the current state of the network.

Resource/Link Manager. Its main role is to manage individual
and bundled interfaces. It monitors the load on resources,
handles the up/down status, and receive notifications from
designated routers.

Local Interface Monitor in the control plane handles the
up/down status of each router interface.

As shown in Figure 5, DQARE architecture exploits
GANA [72] self-adaptation mechanism which is a typical
example of a protocol-intrinsic control loop. The OSPF
protocol acts as a virtual distributed decision element (DE)
scattered all over the domain. GANA provides different types
of basic network services such as autonomic routing and
advanced services such as QoS management.

DQARE architecture provides the self-adaptive control
loop to prevent instantaneous congestion, which involves
invalidating congested routes in the FIT, using other available
paths if they exist, precomputation of routes whenever a
threshold of updates is reached, a global resynchronization of
xLSDB, and recalculations of the routing tables. This scheme
seems to make a comprehensive overhead; however, global,
reactive response makes the convergence of the control loop
acceptable because each flooding message is sent only once
instead of by all interfaces, so it reduces the traffic in the
network and the proposed framework enables direct com-
munication among line cards belonging to the same OSPF
areawhichmakes improvement over traditional architectures
which yields that the reaction to failures is not a lengthy
process.

The autonomic management components involved in the
control loop are (i) QoS path selection and congestion man-
agement: responsible for sending and receiving notifications
to/from the designated router (DR), (ii) monitoring entity:
monitoring the local interfaces, links, and notifications. It can
be implemented via theHello protocol, (iii)QoS routing tables
execution: implemented via precomputation algorithm that
can be executed periodically or after receiving n-updates, and
(iv) managed entities which control loop effects. It consists
of FIT and extended LSDB (xLSDB) with a predefined set
of actions to be performed such as sanction and neutralizing
routes in FIT.

6. Service Differentiation Guidelines

QoS provisioning for various applications requires: (i) study-
ing Internet applications and recognizing their QoS require-
ments, (ii) organize applications into classes and (iii) differ-
entiate between different types of services bymarking packets
with a distinct code so that they receive certain kinds of
treatment from routers.

6.1. Internet TrafficClassification. Trafficflowing in a network
can be divided into two groups, network-oriented traffic and

The Scientific World Journal 13

QoS path selection
and

congestion management

Monitoring
sub-protocol

Resource
/

link monitor

QoS Routing Algorithm execution

Precomputation

On-demand

Managed entity

XLSDB FIT FST

Queues

Designated
router

Qos

∙ Hello process
∙ Adjacency

∙ Flooding
process

process

Figure 5: Self-adaptation mechanism.

user-oriented traffic [25]. The network-oriented traffic group
is divided into three service classes, namely, network control
function, OAM (operations, administration, and manage-
ment) for network configuration, andmanagement functions
and signaling to control applications or user endpoints.
User-oriented traffic can be broadly classified into three
categories: elastic applications (data-oriented), tolerant real-
time applications, and intolerant real-time applications.

Real-time applications as a class of applications need the
data in each packet by a certain time and, if the data has not
arrived by then, the data is essentially worthless, and elastic
application as a class of applications will always wait for data
to arrive. Elastic applications are applications that built on top
of TCP protocol. TCP is a reliable transfer protocol that uses
acknowledgements users working with applications based on
symbolic data that can tolerate significant delays and loss.
Such applications are considered non-real-time applications
(NRT) that do not have stringent timing requirements and do
not need any assurance from the network [75].

Data-oriented traffic can be further classified into (i) NRT
asymmetric (NRTA) in which the requests are considerably
using less resources than responses, such category can be
further classified into interactive class and bulk-transfer class.
Interactive class is suited for applications that use short
packets, such as Telnet, web browsing, and enhanced web
browsing. Bulk-transfer class is suited for store and forward
applications that uses long packets, such as SMTP and FTP,
and (ii) NRT symmetric (NRTS) in which requests and

responses use the same amount of resources such as Internet
chatting applications [76].

On the other hand, real-time applications (media-
oriented) inherently have more stringent QoS requirements
due to the nature of real-time transmissions. To achieve user
satisfaction, the transmission infrastructure should strongly
considers delay and jitter requirements to maintain system
timing and constant data rate. Real-time applications can
be divided into two broad categories: (i) tolerant real-time
asymmetric applications (TRTA) are real-time applications
that are very sensitive to delay bounds. Timeliness is very
important for these real-time applications.

These applications can tolerate moderate end-to-end
delay, so it is called soft real time. However, it requires
high throughput and very low error rate. Common TRTA
applications include thosewhich are conversational in nature,
such as multimedia conferencing that includes video confer-
encing, group of participants in teleconferencing audio, and
audiographics conferencing that enables participants to share
workspace and telephony service that involves videophone
conferencing and VOIP, and (ii) intolerant real-time asym-
metric applications (IRTA) demandmore stringentQoS from
the network. Such applications must have precise bandwidth,
delay, and jitter constraints, and if the timing constraints
are not met, such applications suffer from high performance
degradation so it is called hard real time. Common IRTS
applications are audio and video broadcasting, interactive
audio, and video on demand and streaming media.

14 The Scientific World Journal

TRTA and IRTS applications are built on top of UDP
protocol. UDP is unreliable protocol that does not have
acknowledgment or flow control. So, such applications need
more concern in QoS scope. QoS has three attributes to
measure the output performance of a process: timeliness,
precision, and accuracy. Timeliness measures the time taken
to produce the output of the process. Precision measures
the amount or quantity of the produced output. Accuracy
measures the correctness of the produced output.

6.2. DSCP Assignation. By following the classification pro-
posed in [25], some DSCP values may be dedicated to
administrative and control traffic. Per hop behaviors (PHB)
mapped by a codepoint with a larger numerical value
should receive better or equal forwarding treatment than
the one with the lowest numerical value. Respecting these
guidelines, DSCP assignation is reported in Table 2, together
with possible examples of traffic types and possible ranges
of QoS performance parameters. The selected path should
be calculated based on each application of QoS metric’s
requirement.

7. Routing Computation Framework

As reviewed in Section 4.3, the previously proposed algo-
rithms (OQRA and PQRA) suffer from excessive computa-
tional complexities or low performance.This section presents
a routing computation framework that proposes network
diversities, by applying PQRA and OQRA routing paradigms
into a real network, with low-computational complexity and
high routing performance. In that sense we use dynamic
programming (DP) technique. DP solves a sequence of
larger and larger instances, reusing the previously saved
solutions for the smaller instances, until a solution is obtained
for the given instance. This simple idea can sometimes
transform exponential-time algorithms into polynomial-
time algorithms. Unlike the majority of routing algorithms,
which assume an adjacency-list representation of the graph,
most of the algorithms which rely on DP use an adjacency
matrix representation. The adjacency matrix is a memory
efficient way of representing dense graphs while linked list is
more efficient for sparse graph [77].

The basic idea behind the proposed routing framework
addresses the following issues: firstly, how to find all precom-
puted pairs of the shortest paths with two additive constraints
and, secondly, how on-demand routing computation takes
place when new requests arrive. The main idea is explored
in two-phase framework.

In the first phase, QoS optimal paths precomputation
routing algorithm (QOPRA), recursively, computes all-pairs-
shortest paths in a graph of nodes, as presented in [78],
connected in the forward direction according to 𝑤

1
and in

the backward direction according to 𝑤
2
(Algorithm 1).

Each node precomputes the routing from itself into
a destination prior to receiving the requests and stores
this information in its FIT. The precomputation algorithm
overhead is shared between different requests. Then, an on-
demand routing algorithm (OQRA) (Algorithm 2) activates

Input:
𝐺

Output:
𝐷
𝑀
, 𝜋
𝑀
, 𝑖

(1) Let𝐷0 and 𝜋0 be [𝑀 ×𝑀]
(2)𝐷0 ← INF
(3) 𝜋0 ← 𝑁𝑖𝑙𝑙
(4) Initialize
(5) For 𝑥 = 1 to𝑁
(6) For 𝑦 = 1 to𝑁
(7) if (𝑥, 𝑦) ∈ 𝐸
(8) 𝑑

0
(𝑥, 𝑦) = 𝑤 (𝑥, 𝑦)

(9) 𝜋
0
(𝑥, 𝑦) = 𝑥

(10) Else
(11) 𝑑

0
(𝑥, 𝑦) = ∞

(12) 𝜋
0
(𝑥, 𝑦) = Nill

(13) 𝑑
0
(𝑥, 𝑥) = 0

(14) 𝜋
0
(𝑥, 𝑥) = Nill

(15) For 𝑝 = 1 to𝑀
(16) Let𝐷𝑝 = 𝑑𝑚

𝑥𝑦
be a new 𝑛 × 𝑛matrix

(17) For 𝑥 = 1 to𝑀
(18) For 𝑦 = 1 to𝑀
(19) 𝑑

𝑝

𝑥𝑦
= min(𝑑𝑝−1

𝑥𝑦
, 𝑑
𝑝−1

𝑥𝑝
+ 𝑑
𝑝−1

𝑝𝑦
)

(20) If (𝑑𝑝−1
𝑥𝑦
≤ 𝑑
𝑝−1

𝑥𝑝
+ 𝑑
𝑝−1

𝑝𝑦
)

(21) 𝜋
𝑝

𝑥𝑦
= (𝜋
𝑝−1

𝑥𝑦
)

(22) Else
(23) 𝜋

𝑝

𝑥𝑦
= (𝜋
𝑝−1

𝑝𝑦
)

Algorithm 1: QOPRA.

Input:
Source node 𝑥,𝐷𝑀, 𝜋𝑀, 𝑙

𝑎
, 𝑙
𝑏

Output:
𝛿
(𝑥,𝑦)

, path[], HC
Steps:
(1) For 𝑦 = 1 to𝑁
(2) If (𝑑𝑀

𝑥𝑦
/𝑙
𝑎
> 𝑑
𝑀

𝑦𝑥
/𝑙
𝑏
)

(3) 𝛿
(𝑥,𝑦)

= 𝑑
𝑀

𝑥𝑦
/𝑙
𝑎

(4) PrintPath(𝑥, 𝑦) → Path[]
(5) HC = path.length
(6) Else If (𝑑𝑀

𝑥𝑦
/𝑙
𝑎
< 𝑑
𝑀

𝑦𝑥
/𝑙
𝑏
)

(7) 𝛿
𝑥,𝑦
= 𝑑
𝑀

𝑦𝑥
/𝑙
𝑏

(8) PrintPath(𝑦, 𝑥) → Path[]
(9) HC = path.length
(10) Else
(11) PrintPath(𝑥, 𝑦) → Path1[]
(12) HC1 = path.length
(13) PrintPath(𝑦, 𝑥) → Path2[]
(14) HC2 = path.length
(15) HC = min(HC1, HC2)
(16) If (path1[].length < path2[].length)
(17) Path[] = path1[]
(18) Else
(19) Path[] = path2[]
(20) Return (𝛿

𝑥,𝑦
path[], HC)

Algorithm 2: OQRA.

The Scientific World Journal 15

Ta
bl
e
2:
D
SC

P
As

sig
na
tio

n
fo
rI
nt
er
ne
tt
ra
ffi
c.

Se
rv
ic
e

G
ro
up

Se
rv
ic
e

Ca
te
go
ry

M
aj
or

Se
rv
ic
e

cla
ss
es

Fl
ow

C/
Cs

Q
oS

M
et
ric

s
D
SC

P
Va

lu
e

Tr
affi

c
cla

ss
M
in
or

Se
rv
ic
e

cla
ss
es

Ti
m
eli
ne
ss

B.
W

Re
lia
bi
lit
y

RT
(s
ec
)

D
el
ay

(m
s)

Jit
te
r(
m
s)

Be
st
Eff

or
t

D
ef
au
lt

U
nc
la
ss
ifi
ed

U
U

U
U

U
00

00
00

CS
0-

D
ef
au
lt

Ev
er
yt
hi
ng

els
e

U
se
r

or
ie
nt
ed

D
at
ao

rie
nt
ed

Lo
w
pr
io
rit
y

Sy
m
m
et
ric

1s
ec

<
20
0

N
/A

El
as
tic

Ze
ro

Lo
ss

00
10
00

CS
1

In
te
rn
et
Ch

at

In
te
ra
ct
iv
e

(i)
sh
or
tl
iv
ed

(ii
)L

ow
La
te
nc
y

(ii
i)

As
ym

m
et
ric

2–
5

25
0–

40
0

N
/A

El
as
tic

Ze
ro

Lo
ss

01
00
10

01
01
00

01
01
10

A
F2

3
A
F2
2

A
F2
1

Te
ln
et

W
eb

Br
ow

sin
g

En
ha
nc
ed

W
eb

Bu
lk
Tr
an
sfe

r

(i)
lo
ng

-li
ve
d

(ii
)H

ig
h

Th
ro
ug

hp
ut

(ii
i)

As
ym

m
et
ric

2–
5

Lo
w
-M

ed
iu
m

N
/A

El
as
tic

Ze
ro

Lo
ss

00
10
10

00
110

0
00
11
10

A
F1
1

A
F1
2

A
F1
3

E-
M
ai
l

FT
P

Bi
lli
ng

tr
an
sfe

r

M
ed
ia
or
ie
nt
ed

To
le
ra
nt

Re
al
Ti
m
e

Sy
m
m
et
ric

M
ul
tim

ed
ia

C
on

fe
re
nc
in
g

(i)
in
te
ra
ct
iv
e

(ii
)g

ro
up

co
m
m
un

ic
at
io
n

(ii
i)
Ra

te
ad
ap
tiv

e

Ra
te
ad
ap
tiv

e
<
15
0

<
40

0
8k

bp
s–
1M

bp
s

Ve
ry

lo
w
lo
ss

10
01
10

10
01
00

10
00
10

A
F4

3
A
F4

2
A
F4

1

Au
di
o

Au
di
o
gr
ap
hi
cs

vi
de
o

Te
le
ph

on
y

Se
rv
ic
e

CB
R,

fix
ed

sm
al
lp

ac
ke
ts,

In
te
ra
ct
iv
ea

nd
fa
st
re
sp
on

se

<
15
0

<
10
0

<
40

0
8k

bp
s–
1M

bp
s

Ve
ry

lo
w
lo
ss

10
11
10

10
110

0
EF EF

VO
IP

Vi
de
op

ho
ny

In
to
le
ra
nt

Re
al
Ti
m
e

Sy
m
m
et
ric

Br
oa
dc
as
tin

g
(i)

In
el
as
tic

(ii
)C

BR
an
d

V
BR

2–
5

<
15
0

50
–1
00

56
K–

40
M

lo
w
lo
ss

01
10
10

01
110

0
A
F3
1

A
F3
2

Br
oa
dc
as
tV

id
eo

Br
oa
dc
as
tA

ud
io

St
re
am

in
g

(i)
El
as
tic

(ii
)V

ar
ia
bl
e

pa
ck
et
siz

e
2–
5

<
15
0

<
10
0

64
k–

60
M

lo
w
lo
ss

01
10
00

CS
3

St
re
am

in
g

m
ed
ia

In
te
ra
ct
iv
e

(i)
In
el
as
tic

(ii
)V

BR
2–
5

<
15
0

<
10
0

64
k–

60
M

lo
w
lo
ss

10
00

00
CS

4
Vo

D

N
et
w
or
k

or
ie
nt
ed

N
et
w
or
k

C
on

tro
l

Ro
ut
in
g
an
d

co
nt
ro
l

in
fo
rm

at
io
n

In
el
as
tic

-S
ho

rt
m
es
sa
ge
s

N
/A

1–
10
s

N
/A

El
as
tic

Ze
ro

Lo
ss

110
00

0
CS

6
Ro

ut
in
g

in
fo
rm

at
io
n

O
pe
ra
tio

n
an
d

M
an
ag
em

en
t

sig
na
lin

g
O
A
M

In
el
as
tic

-S
ho

rt
m
es
sa
ge
s

N
/A

50
–1
00

N
/A

El
as
tic

Ze
ro

Lo
ss

01
00

00
CS

2
O
A
M

Ap
pl
ic
at
io
n

C
on

tro
l

Si
gn

al
in
g

Se
rv
ic
eC

la
ss

In
el
as
tic

-S
ho

rt
m
es
sa
ge
s

N
/A

50
–1
00

N
/A

El
as
tic

Ze
ro

Lo
ss

10
10
00

CS
5

VO
IP

Si
gn

al
in
g

16 The Scientific World Journal

Prepath Postpath

Full path

Node Node

p

x y

w1

w1

w2

w2

w2
w
2

w
2

w
2

w1

w
1

w
1

w
1

Figure 6: Finding MCSP from source 𝑥 to destination 𝑦.

when there is an incoming request with QoS requirements
to find the path that satisfies QoS constraints from these
precomputed paths. Actually, proposed hybrid form can
provide enough information to support efficient admission
control, aswell as less on-line computation overhead andhigh
success rate.

7.1. Related Notations and Problem Analysis. For QoS assur-
ance, we have to study all the subpaths between every pair of
vertices in the graph instead of working with a single source
to obtain more visibility and accurate path computation.
However, this can be solved by repeating single source
algorithm once for each vertex in the graph, but it requires
more computations and incorporates more complexity.

Undirected graphs can be transformed into directed
graphs, by replacing the undirected link with two directed
links each assigned one weight. Using two generic nodes,
labeled as nodes 𝑥 and 𝑦, in a network of𝑁 nodes. Notations
are as follows. Let 𝑑𝑝

𝑥𝑦
denote the length of the shortest path

from vertex 𝑥 to vertex 𝑦, where only the first 𝑝 vertices are
allowed to be intermediate vertices. If no such path exists,
then let 𝑑𝑝

𝑥𝑦
= ∞. From this definition of 𝑑𝑝

𝑥𝑦
it follows that

𝑑
0

𝑥𝑦
denotes the length of the shortest path from 𝑥 to 𝑦 that

uses no intermediate vertices (i.e., directly connected). So,
𝑑
0

𝑥𝑦
= ∞ if the nodes are not directly connected; otherwise,

𝑑
0

𝑥𝑦
has a finite value and 𝑑0

𝑥𝑥
= 0 for all vertices 𝑥. We have to

rely on intermediate nodes and, accordingly, consider a node
labeled 𝑝 as intermediate between node 𝑥 and node 𝑦.

As presented in Figure 6, for finding multi-dimensional
shortest path from node 𝑥 to 𝑦 assume that we know: (i) a
shortest path from vertex 𝑥 to vertex 𝑦 that allows 𝑝 vertices
as intermediate vertices according to weight (𝑤

1
) denoted

as 𝑑𝑝,𝑤1
𝑥𝑦

, and (ii) a shortest path from vertex 𝑦 to vertex 𝑥
that allows 𝑝 vertices as intermediate vertices according to
weight (𝑤

2
) denoted as 𝑑𝑝,𝑤2

𝑦𝑥
. The two terms in the minimum

operator (2) identify that either node 𝑝 is on the shortest path
from nodes 𝑥 to 𝑦 or not:

𝑑
𝑝

𝑥𝑦
= min {𝑑𝑝−1

𝑥𝑝
+ 𝑑
𝑝−1

𝑝𝑦
, 𝑑
𝑝−1

𝑥𝑦
} ,

𝑑
𝑝

𝑦𝑥
= min {𝑑𝑝−1

𝑦𝑝
+ 𝑑
𝑝−1

𝑝𝑥
, 𝑑
𝑝−1

𝑦𝑥
} .

(2)

Furthermore, 𝑑𝑚
𝑥𝑦

and 𝑑𝑚
𝑦𝑥

represent the length of the shortest
path from𝑥 to𝑦 in the last iteration according toweights (𝑤

1
)

and (𝑤
2
), respectively. Ultimately, we wish to determine 𝐷𝑚,

the matrix of the shortest path lengths 𝑑𝑚
𝑥𝑦
. The shortest path

algorithm starts with𝐷0 and calculates𝐷1 from𝐷0 and then
𝐷
2 from 𝐷1. This process is repeated until 𝐷𝑚 (the shortest

path matrix) is calculated from𝐷𝑚−1 using formula (2).
Formula (2) computes only one path between the nodes.

It is beneficial to know the second or third shortest paths
between two nodes. In order to compute 𝑘-shortest path,
we have to execute a sequence of the arithmetic operations,
namely, addition and minimization presented in [79]. Path
lengths are now represented by a 𝑘-dimensional vector, 𝑑

𝑖
∈

𝑅
𝑘.
Let 𝑎 = [𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑘
] and 𝑏 = [𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑘
] be

members of 𝑅𝑘. Generalized minimization denoted by + and
generalized addition denoted by × are defined as follows:

𝑎 + 𝑏 = min
𝑘

{𝑎
𝑖
, 𝑏
𝑖
| 𝑖 = 1, 2, 3, . . . , 𝑘} ,

𝑎 × 𝑏 = min
𝑘

{𝑎
𝑖
+ 𝑏
𝑖
| 𝑖 = 1, 2, 3, . . . , 𝑘} .

(3)

To retrieve multiple paths, utilizing (3) and (2) can be
replaced by the following equation:

𝑑
𝑝

𝑥𝑝
= 𝑑
𝑝

𝑥𝑝
× 𝑑
𝑝

𝑥𝑦
+ 𝑑
𝑝−1

𝑥𝑦
. (4)

Theproblem is to obtain path(s) froma source 𝑠 to destination
𝑑 on 𝐺 that satisfies multiple QoS constraints 𝐿

𝑖
, where

𝑖 = 1, 2, . . . , 𝑚. QoS routing problem can have different
definitions in the literature as follows.

Definition 1. Inmulticonstrained feasible path (MCFP) prob-
lem, find a feasible path (𝑃) from 𝑠 to 𝑑 such that

𝑤
𝑖
(𝑃) = ∑

(𝑥,𝑦)∈𝑃

𝑤
𝑖
(𝑥, 𝑦) ≤ 𝐿

𝑖
. (5)

Definition 2. In multiconstrained optimal path (MC (O) P)
problem, find all feasible paths from 𝑠 to𝑑 satisfying (2) and in
additionminimize some length function 𝑙(𝑝) such that 𝑙(𝑝) ≤
𝑙(𝑝
◼
), for all feasible paths 𝑝◼ between 𝑠 and 𝑑 that satisfy

MCFP.

Definition 3. In multiple-constrained shortest path (MCSP)
problem, find optimal constrained shortest path (CSP) from
𝑠 to 𝑑 that obeys constraints and has the smallest hop count.

Definition 4. In 𝐾-multiple constrained shortest path
(KMCSP) problem, find𝐾 feasible constrained shortest path
from 𝑠 to 𝑑 subject to multiple constraints, and list them in
order of increasing length, where𝐾 is the number of paths.

Definitions 2 and 4 need path length 𝑙(𝑃) to be able to
compare paths. The first choice was a linear path length; Jaffe
proposed to use the next definition [32]:

𝑙 (𝑃) =

𝑚

∑

𝑖=1

𝑑
𝑖
𝑤
𝑖
(𝑃) where 𝑑

𝑖
> 0. (6)

The main advantage of linear path length algorithms is that
by replacing each link vector via (6) by a single parameter,
Dijkstra’s algorithm can be deployed and so it is easy to

The Scientific World Journal 17

w2(P)

L2

L1 w1(P)

(a)

w2(P)

L2

L1 w1(P)

(b)

Figure 7: Using a linear path length, searching for a solution starts from origin until it hits a point: (a) algorithm succeeds to obtain a solution.
(b) The algorithm fails as it finds solution outside constrained area.

develop a polynomial-time algorithm that minimizes 𝑙(𝑃).
Unfortunately, their major drawback, as Figure 7 depicts, is
that (i) the shortest path returned by Dijkstra’s algorithm
is the first solution intersected by a set of parallel lines
whichmay be infeasible (i.e., path outside the feasible region)
and (ii) the area scanned outside the constrained area is
considered large. Thus, Dijkstra’s algorithm will not always
work satisfactorily.

To overcome drawbacks of relying on linear path length,
VanMieghem andKuipers noticed that the area scanned out-
side the constraint area can be further reduced if the straight
equilength lines are replaced by curved equilength lines that
more closely approach the boundary of the constraint area
[39]. Therefore, they recommended the deployment of non-
linear representation of path length. Normalized nonlinear
cost function for any path from the source to the destination
is given as follows:

𝑙 (𝑝) = (

𝑤
1
(𝑝)

𝑙
1

)

𝑞

+ (

𝑤
2
(𝑝)

𝑙
2

)

𝑞

+ ⋅ ⋅ ⋅ + (

𝑤
𝐾
(𝑝)

𝑙
𝑚

)

𝑞

,

(7)

where 𝑞 ≥ 1.
As Figure 8 depicts, feasible region can be scanned

precisely. As 𝑞 increases, the likelihood of finding a feasible
path also increases. Therefore, to increase the probability of
finding a feasible path, set 𝑞 to∞ and use the following cost
function for a path [34]:

𝑙 (𝑝) = max{
𝑤
1
(𝑝)

𝑙
1

,

𝑤
2
(𝑝)

𝑙
2

, . . . ,

𝑤
𝐾
(𝑝)

𝑙
𝑚

} . (8)

The length function (7) considers the value of themost critical
constraint of a path regarding the end-to-end requirements.
Nonlinear length algorithms are likely to outperform linear
length algorithms.

Figure 8: Using a nonlinear path length.

Thus, the shortest path from vertex 𝑥 to vertex 𝑦 accord-
ing to weight (𝑤

1
) and weight (𝑤

2
) can be given as follows:

𝛿 (𝑥, 𝑦) = max(
𝑑
𝑚

𝑥𝑦

𝑙
𝑎

,

𝑑
𝑚

𝑦𝑥

𝑙
𝑏

) . (9)

7.2.Metacode. Metacode ofQOPRA starts with initialization.
Themodule INITIALIZE initializes the necessary parameters
for the main algorithm (Algorithm 1). Determine the matrix
𝐷
0 whose 𝑥𝑦th elements equal the length of the shortest arc

according to 𝑤
1
from vertex 𝑥 to vertex 𝑦, if any. The 𝑦𝑥th

element equals the length of the shortest arc from vertex 𝑥 to
vertex 𝑦 according to 𝑤

2
. If no such arc exists, let 𝑑0

𝑥𝑦
= ∞.

Let 𝑑0
𝑥𝑥
= 0. The actual arcs that comprise each shortest

path are also recorded in the 𝜋matrix from which we obtain
tentative along the shortest paths. The INITIALIZE module
sets 𝜋 matrix as follows: if there is no direct link between

18 The Scientific World Journal

Input:
𝑖, 𝑗, 𝜋
𝑚
, 𝑃𝑎𝑡ℎ𝑉𝑒𝑐𝑡𝑜𝑟

Output:
𝑖, 𝑝, 𝜋

𝑚
, 𝑃𝑎𝑡ℎ𝑉𝑒𝑐𝑡𝑜𝑟

Steps:
(1) 𝑝 = 𝜋𝑀

𝑥𝑦

(2) if (𝑝 = 𝑥)
(3) Return 𝑃𝑎𝑡ℎ𝑉𝑒𝑐𝑡𝑜𝑟
(4) Else
(5) PathVector.add(𝑘)
(6) Return PrintPath(𝑥, 𝑝, 𝜋𝑀, 𝑃𝑎𝑡ℎ𝑉𝑒𝑐𝑡𝑜𝑟)

Algorithm 3: PrintPath.

nodes 𝑥 and 𝑦, it sets 𝜋0(𝑥, 𝑦) to Nill. If there is direct link
from nodes 𝑥 to 𝑦, it sets 𝜋0(𝑥, 𝑦) to 𝑥 and sets 𝜋0(𝑥, 𝑥) to 𝑥.

QOPRA successively determines the elements of𝐷1 from
the elements of 𝐷0 and the elements of 𝐷2 from 𝐷1 until
obtaining𝐷𝑀 from𝐷𝑀−1 using the recursive formula (5). As
each element 𝐷𝑝

𝑥𝑦
is determined, record the corresponding

path through the computation of matrix 𝜋𝑝. We need only to
record one vertex for𝑃𝑝

𝑥𝑦
. If𝑃𝑝
𝑥𝑦
is known for all vertices 𝑥 and

𝑦, then all the vertices along the shortest path from 𝑥 to 𝑦 can
be found as follows: set 𝑃𝑝

𝑥𝑦
equal to 𝑥 for all 𝑦. Do this for all

vertices 𝑥.Then, as the algorithm is performed, whenever the
minimum on the left side of (9) is the first term, set 𝑃𝑝

𝑥𝑦
equal

to 𝑃𝑝𝑝𝑦. Otherwise, leave 𝑃𝑝
𝑥𝑦

unchanged.
Upon termination of the algorithm, the 𝑥𝑦th element of

matrix 𝐷𝑀 represents the length of the shortest path from
vertex 𝑥 to vertex 𝑦 according to 𝑤

1
and the 𝑦𝑥th element of

matrix 𝐷𝑀 represents the length of the shortest path from
vertex 𝑥 to vertex 𝑦 according to 𝑤

2
. Also the 𝜋𝑀 matrix

contains the next-to-last vertex in that path.
The module OQRA (Algorithm 2) calculates the shortest

path using nonlinear path length (4) from a source node 𝑥
to all nodes using matrix 𝐷𝑀 evaluated from the module
QOPRA. The shortest path from vertex 𝑥 to vertex 𝑦
according to weight (𝑤

1
) and weight (𝑤

2
) can be obtained

using (6).
OQRA gets the path that satisfies the length function (6)

according to constraints (𝑙
𝑎
, 𝑙
𝑏
) and prints the corresponding

path in a vector called Path[] and its hop count (HC) by
calling the PrintPath module. If there is more than one path
with the same length, it retrieves the one with the least hop
count by calling the PrintPath module which returns the
paths and the hop count HC1 corresponding to Path 1 and
HC2 corresponding to Path 1.

OQRA procedure obtains the shortest path 𝛿
(𝑥,𝑦)

and the
nodes on that path by calling the procedure OQRA and 𝜋𝑀
matrix. Obtaining the nodes on the shortest path can be
achieved by calling the module PrintPath (Algorithm 3).

We often wish to compute not only the shortest path
length, but also the vertices on the shortest path as well. The
module PrintPath returns the nodes on the best path by using
matrix 𝜋𝑀 evaluated from the module QOPRA. It gets the

path by making a recursion calling to itself until the full path
is obtained. It also returns the hop count of that path. It starts
with an empty vector called PathVector and checks the 𝜋𝑀

matrix for the path from 𝑥 to 𝑦 as follows: it sets 𝑝 = 𝜋𝑀
𝑥𝑦

and adds 𝑘 to the PathVector andmakes a recursive calling to
itself until it reaches the source 𝑥 in the 𝜋𝑀 matrix.

8. Proposed QMPF Model

To implement proportional differentiation, the majority of
related work proposed priority-based scheduling (PS) algo-
rithms. PS enforces proportional delay differentiation by
dynamically adjusting the priority of a given class as a
function of thewaiting time experienced by packets from that
class [80, 81]. Alternatively, rate-based schedulers provide
proportional differentiation by dynamically changing the ser-
vice rates allocated to classes [82]. Here, we provide a slightly
different approach. Instead of relying on actual waiting time
experienced by each packet, we deploy the proportional
model in the differentiation of average class queuing delay
to define class priority and investigate appropriate packet
scheduling mechanisms (Algorithm 4).

Average class queuing delay is determined by the arrival
rate of packets, the amount of traffic removed from the queue,
and other service classes (queues). We start by deriving the
average queuing delay for each class. The derivation draws
inspiration from [80–84]. In Figure 9, the concepts of arrival
curve, input curve, and output curve for class 𝑖 traffic are
depicted.

8.1. Average Queuing Delay per Class. Consider a discrete,
event-driven time model, where events are traffic arrivals
with the following notations:

(i) 𝑡(𝑛): the time of the 𝑛th event,
(ii) Δ𝑡(𝑛): the time elapsed between the 𝑛th and the (𝑛 +
1)th events,

(iii) 𝜆
𝑖
(𝑛): the class 𝑖 arrivals at 𝑛th event,

(iv) 𝜒
𝑖
(𝑛): the quantum allocated to class 𝑖 at the time of

the 𝑛th event.Thequantum is the amount of bytes that
class 𝑖 could transmit if it is selected for transmission;
otherwise, it is set to zero.

The arrival curve for class 𝑖 at the 𝑛th event, 𝐴
𝑖
(𝑛), is the

total traffic that has arrived to the transmission queue of class
𝑖 since the beginning of the current busy period; that is,

𝐴
𝑖 (
𝑛) =

𝑛

∑

𝑘=0

𝜆
𝑖 (
𝑘) . (10)

Assuming that queuing model is lossless and that there are
large enough buffers for packets that need to be queued and
hence no traffic is dropped, then the input curve, 𝑅in

𝑖
, is the

traffic that has been entered into the transmission queue at
the 𝑛th event that equals 𝐴

𝑖
(𝑛):

𝑅
in
𝑖
= 𝐴
𝑖
(𝑛) . (11)

The Scientific World Journal 19

Input:
Traffic Units

Output:
𝑃𝑎𝑡ℎ,𝜒

Steps
(1) Receive incoming packets.
(2) Classify incoming packets and enqueue them in appropriate class buffer using DSCP and 5-tuple
information.
(3) Compute queuing delay of each class using𝐷

𝑖
(𝑛) = 𝑡(𝑛) − 𝑡(sup(𝑘 < 𝑛:𝑅in

𝑖
≤ 𝑅

out
𝑖
))

(4) Compute average queuing delay of each class using 𝑑
𝑖
(𝑛) = (𝐷

𝑖
(𝑛) + 𝐵

𝑖
(𝑛))/𝜒

𝑖
(𝑛)

(5) Among all classes, select class 𝑗 with 𝑗 = max
𝑖
𝑑
𝑖
(𝑛)𝛿
𝑖
.

(6) For each path available for flow 𝑓 in class 𝑗 calculate each path delay using:
𝐷
𝑝
(𝜒) = ∑

𝑎∈𝑝
𝐷
𝑎
+ (1 − 𝜔)∑

𝑎∈𝑃
(𝜑(𝑙
𝑎
, 𝑐
𝑎
)/𝜇
𝑎
⋅ 𝜒) + 𝜔(𝑞

𝑝
/𝜇
𝑝
)

(7) Assign flow 𝑓 to the lowest delay path.
(8) If end-to-end delay observed is less than the required delay, and if the next higher
delay path can sustain the delay requirement of this flow, then it jumps to the higher delay path.
(9) Send flow to lowest delay path whenever it observes a violation of the delay requirement.

Algorithm 4: QMPF.

Arrival curve
Input curveRin

i

Rout
i

Ai

Bi(n)

Di(n)

t(n1) t(n2) t(n) Time

Output curve

Cl
as

s-
i

tr
affi

c

Figure 9: Concepts of arrival curve, input curve, and output curve
for class 𝑖 traffic.

The output curve is the traffic that has been transmitted since
the beginning of the current busy period; that is,

𝑅
out
𝑖
=

𝑛

∑

𝑘=0

𝜒
𝑖 (
𝑘) Δ𝑡 (𝑛) . (12)

For event 𝑛, the vertical distance between the input and
output curves denotes the class 𝑖 backlog 𝐵

𝑖
(𝑛) and the and

horizontal distance denotes class 𝑖 delay 𝐷
𝑖
(𝑛). For the 𝑛th

event, we have

𝐵
𝑖
(𝑛) =𝑅

in
𝑖
−𝑅

out
𝑖
,

𝐷
𝑖 (
𝑛) = 𝑡 (𝑛) − 𝑡 (sup {𝑘 < 𝑛 : 𝑅in

𝑖
≤ 𝑅

out
𝑖
}) .

(13)

The minimum average delay 𝑑
𝑖
(𝑛) for all the packets that

have already arrived to class 𝑖 can be calculated as

𝑑
𝑖
(𝑛) =

𝐷
𝑖
(𝑛) + 𝐵

𝑖
(𝑛)

𝜒
𝑖 (
𝑛)

. (14)

At time 𝑛, the scheduler calculates for all classes (for transmis-
sion), the minimum possible normalized average delay, then
selects the class with themaximumnormalized average delay.
That is, the order in which classes are selected for service is
determined by the C-PDR-DWWR scheduler according to
the following priority function:

𝑗 = max
𝑖

𝑑
𝑖
(𝑛) 𝛿
𝑖
. (15)

So, high priority queues are serviced first such that the
average delay experienced by packets in a delay class is
inversely proportional to the delay weight of the class.

Within a selected class, queues are serviced in DWRR
fashion. The main objective is to provide accurate control
over the amount of data (i.e., quantum of service (𝜒)) sent to
the path selected by path selection component.The quantum
of service (𝜒) is proportional to path bandwidth and output
buffer size. The quantum of service (𝜒) is calculated such
that maximum end-to-end delay can be minimized. The
deficit counter (DC) specifies the total number of bytes that
the queue is permitted to transmit. The DC of a queue is
incremented by a quantum (𝜒) each time the queue is visited
by the scheduler.

8.2. End-to-End Delay and Service Quantum Computation.
Nodes (vertices) will be labeled with the generic label V (V =
1, 2, . . . , 𝑉), links (edges) with label 𝑎 (𝑎 = 1, 2, . . . , 𝐴), and
flows within a service class with label 𝑓 (𝑓 = 1, 2, . . . , 𝐹).
The capacity of link 𝑎 will be denoted by 𝑐

𝑎
. Each flow 𝑓 is

characterized by the flow volume denoted by ℎ
𝑓
. For flow 𝑓

the total number of assigned paths is denoted by 𝑃
𝑓
and they

are labeled with 𝑝 from the first path to the total number of
paths; that is 𝑝 = 1, 2, . . . , 𝑃

𝑓
; this sequence is called the list

of candidate paths.
To tie it to generic flow 𝑓,we write the list of paths as

𝑃𝑓 = (𝑃𝑓1, 𝑃𝑓2, . . . , 𝑃𝑓𝑃𝑓). Flow volumes are realized by
means of flows assigned to paths on their routing lists. The

20 The Scientific World Journal

flow realizing flow 𝑓 on path 𝑝 is denoted by 𝜒𝑓𝑝 (𝑝 =
1, 2, . . . , 𝑃𝑑). Suppose that we denote the vector of flows
assigned to flow 𝑓 with 𝜒𝑓 = (𝑥𝑓1, 𝑥𝑓2, . . . , 𝑥𝑓𝑃𝑓) for path
indices 𝑝 = 1, 2, . . . , 𝑃𝑓; then we arrive at

𝜒𝑓1 + 𝜒𝑓2 + ⋅ ⋅ ⋅ + 𝜒𝑓𝑃𝑓 = ℎ𝑓. (16)

In summation notation, we can write this as

∑

𝑝

𝜒
𝑓𝑝
= ℎ
𝑓
𝑓 = 1, 2, 3, . . . 𝐹. (17)

In general, the vector of all flows (path-flow variables) will be
called flow allocation vector or simply flow vector, which can
be written as

𝜒 = (𝜒1, 𝜒2, . . . , 𝜒𝑓)

= (𝑥11, 𝑥12, . . . , 𝑥1𝑃1, 𝑥21, 𝑥22, . . . ,

𝑥2𝑃2, . . . , 𝑥𝑓1, 𝑥𝑓2, . . . , 𝑥𝑓𝑃𝑓)

= (𝑥𝑓𝑝 : 𝑑 = 1, 2, . . . , 𝑓; 𝑝 = 1, 2, . . . , 𝑃𝑓) .

(18)

Assume firstly that flow arrival follows the Poisson process
and that the flow size is exponentially distributed.The system
can be thought of as the famous𝑀/𝑀/1 queueing system in
which arrival rate 𝜆 and the service rate 𝜇 are the same. If the
average size of a flow assigned to a link is denoted by 𝜒 bits,
then the average service rate and arrival rate of the link are

𝜇
𝑎
=

𝑐
𝑎

𝜒

,

𝜆
𝑎
=

𝑙
𝑎

𝜒

.

(19)

Minimizing average path delay being weighted by its corre-
sponding traffic of all paths between source and destination
pairs is essential. Path delay is the time it takes a packet to
travel across the network from one end to the other end.

Efficient QoS LDM must provide well-tailored load bal-
ancing and preserve packet ordering. Well load balancing
can be achieved via assigning load on each path properly
with respect to path bandwidth and buffer size. The packet
ordering is likely to increase in a network with a large degree
of parallelism. Assigning packets to different paths which
have the same delay leads to increasing the probability of
packet ordering preserving.

Thus, minimizing average path delay is crucial and
involves minimizing link delay for each link that belongs to
the path. The link delay is composed of two components,
namely, propagation delay and queuing delay. Propagation
delay 𝐷

𝑎
is a fixed value, whereas, queuing delay (𝑄

𝑎
) varies

according to the input traffic rate (𝜆), the bandwidth capacity
of the path (𝜇

𝑝
), and the traffic splitting ratio (𝜒). Queuing

delay can be decreased using load balancing. Thus, we can
write

𝐷
𝑝
= ∑

𝑎∈𝑝

𝐷
𝑙
+ 𝑄
𝑝
,

𝑄
𝑝
= ∑

𝑎∈𝑝

𝑙
𝑎

𝑐
𝑎
− 𝑙
𝑎

.

(20)

At the link level, we should minimize average queuing link
delay. The average queuing link delay can be evaluated using
the following function (𝐹):

𝐹 =

𝑙
𝑎

𝑐
𝑎
− 𝑙
𝑎

, for 0 ≤
𝑙
𝑎

𝑐
𝑎

< 1. (21)

Function 𝐹 is a nonlinear convex function which is discon-
tinuous at 𝑙

𝑎
= 𝑐
𝑎
. The good news is that it is possible to

substitute convexmathematical programming problems with
their piecewise linear approximations problems. Function
𝐹 can be transformed into linear by using piecewise linear
approximation presented by Fortz et al. [53–55]. Fortz and
Throup proposed a six-segment piecewise linear cost func-
tion which is useful in tuning IGP metric that is where the
routing cost for each arc is an increasing convex function of
its utilization. Fortz andThroup function is given by

�̇� =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1 for 0 ≤
𝑙
𝑎

𝑐
𝑎

<

1

3

3 for 1
3

≤

𝑙
𝑎

𝑐
𝑎

<

2

3

10 for 2
3

≤

𝑙
𝑎

𝑐
𝑎

<

9

10

70 for 9
10

≤

𝑙
𝑎

𝑐
𝑎

< 1

500 for 1 ≤
𝑙
𝑎

𝑐
𝑎

<

11

10

5000 for 11
10

≤

𝑙
𝑎

𝑐
𝑎

< ∞.

(22)

The Fortz andThroup function is a piecewise linear envelope
of the load latency function, scaled by 𝑐.Thus, we can say that
𝑐
𝑎
⋅ 𝐹 ≈ �̇�. For the objective of minimizing weighted average

queuing path delay,

Minimize 𝐹 (𝑥) = ∑
𝑎∈𝑃

𝜑 (𝑙
𝑎
, 𝑐
𝑎
)

𝑐
𝑎

, (23)

where

𝑙
𝑎
= 𝜆
𝑎
⋅ 𝜒,

𝐶
𝑎
= 𝜇
𝑎
⋅ 𝜒.

(24)

Thus, we can write the end-to-end path delay considering
𝑀/𝑀/1 queuing system that can be formulated as follows:

𝐷
𝑝
(𝜒) = ∑

𝑎∈𝑝

𝐷
𝑎
+ ∑

𝑎∈𝑃

𝜑 (𝑙
𝑎
, 𝑐
𝑎
)

𝑐
𝑎

. (25)

Formula (25) is designed for Poisson traffic and is thus
likely not practical for a real network under different traffic
conditions. As in [67], with the assumption that input traffic is
a combination of Poisson traffic and unknown traffic, a third
term is added to formula (25). The third term evaluates the

The Scientific World Journal 21

waiting time of the current packet at an input queue. Formula
(25) becomes

𝐷
𝑝
(𝜒) = ∑

𝑎∈𝑝

𝐷
𝑎
+ (1 − 𝜔) ∑

𝑎∈𝑃

𝜑 (𝑙
𝑎
, 𝑐
𝑎
)

𝜇
𝑎
⋅ 𝜒

+ 𝜔

𝑞
𝑝

𝜇
𝑝

, (26)

where 𝜔 is weight factor that controls the weight between
theoretical queuing delay and instantaneous queuing delay.
𝑞
𝑝
is the current queuing size of the buffer of each path 𝑝.

The optimization problem can be formulated as follows:

Minimizemax
𝑝
𝑖
∈𝑃

𝐷
𝑝
(𝜒) (27)

subject to

∑

𝑝

𝜒
𝑓𝑝
= ℎ
𝑓
𝑓 = 1, 2, 3, . . . , 𝐹

∑

𝑝

𝑢
𝑓𝑝
= 𝐾
𝑓
𝑓 = 1, 2, 3, . . . , 𝐹

𝑥
𝑓𝑝
≤ 𝑢
𝑓𝑝
ℎ
𝑓
𝑓 = 1, 2, 3, . . . , 𝐹

(28)

constants:

𝛿
𝑒𝑓𝑝
{
=1 if link 𝑎 belongs to path 𝑝 realizing flow 𝑓
=0 Otherwise

ℎ
𝑓
: volume of flow 𝑓

𝐾
𝑓
: predetermined number of paths for flow 𝑓

variables:

𝜒
𝑓𝑝
: quantum of flow allocated on path 𝑝

𝑢
𝑓𝑝
: binary variable corresponding to the flow vari-

able 𝑓
𝑑𝑝
.

9. Performance Evaluation

Theaim of experiments presented in this section is to demon-
strate the effectiveness of proposed DQARE architecture and
prove that it is capable of overcoming OSPFxQoS limitations.
During the experiments, a number of simulations were
conducted using MATLAB and NS2 [85]. Firstly, OSPFxQoS
and DQARE behaviors are evaluated. Secondly, the proposed
routing algorithm and multipath forwarding model have to
be evaluated with their counterparts in the literature.

9.1. OSPFxQoS and DQARE Architectures Evaluation. OSPF
and DQARE behavior has been investigated for different
scenarios built under network simulation tool (NS2) envi-
ronment [85]. NS2 is a discrete event driven simulator which
means that it starts packet sending at the designated time
and stops also at a determined time. In this experiment, the
OSPFxQoS environment has been firstly implemented.Then,
we modify OSPFxQoS operation with our proposed priority
treatment, QoS routing, and forwarding mechanisms. We
created network topology with Gt/itm tool that exists in NS2
simulator.We have taken networks of 10, 25, 50, 100, 150, 200,
and 250 nodes and simulation time = 300 sec in our scenario
files. OSPF costs of the links are assigned randomly according

Table 3: Simulation parameters.

Parameter Value
Number of nodes 10–250
Routing protocol OSPFxQoS
Simulation time 300 Sec
Packet size 50–100 byte
Traffic flow TCP—UDP
Session arrival rate 0.02ms
Traffic sources CBR

to the guideline given in [5]. Also, each link delay is created
randomly.

We generate cross traffic in all scenarios to account for
the network traffic flowing through nodes. This cross traffic
is generated as follows: source and destination nodes are
randomly chosen. Then each source and destination pair
exchange traffic, which follows a Poisson distribution. The
elastic traffic and real-time traffic are created and deliv-
ered via this test network. As shown in Table 3, different
parameters are settled; for example, TCP and UDP traffic are
considered and, in all simulations, constant bit rate (CBR) is
applied with intervals 0.02ms.

9.1.1. Performance Metrics. For performance comparison
between DQARE and OSPFxQoS, we choose five key perfor-
mance metrics, namely, the average end-to-end delay, packet
delivery ratio, throughput, and control overhead.

Average End-to-EndDelay of Data Packets (AD).Average time
taken by a data packet to arrive at the destination include
delays due to route acquisition, reservations, buffering and
processing at intermediate nodes, and retransmission delays
at the MAC layer. AD can be expressed mathematically as

AD =
𝑁

∑

𝑖=1

𝑇
𝑟

𝑖
− 𝑇
𝑠

𝑖

𝑁

, (29)

where 𝑇𝑟
𝑖
is receiving time of packet 𝑖, 𝑇𝑟

𝑖
is sending time of

packet 𝑖, and𝑁 is the number of connections.

Throughput (T). The average of successful message delivery
over a communication channel. It can be expressed mathe-
matically as

𝑇 =

𝑁
𝐷
∗ 𝑆

TS
𝑏

𝑠

, (30)

where𝑁
𝐷
is the number of delivered packets, 𝑆 is packet size,

and TS is the simulation time.

Packet Delivery Ratio (PDR). It is the ratio of number of data
packets successfully received by hosts to the total number of
data packets sent:

PDR = ∑Number of packets recieved
∑Number of packets sent

. (31)

Control overhead is the ratio of total number of routing
control packets sent to describe the changes in the dynamic

22 The Scientific World Journal

0
12
13
14
15
16
17
18
19
20

Av
er

ag
e n

et
w

or
k

de
lay

 (s
)

10 25 50 100 150 200 250

Number of nodes/networks

OSPFxQoS
DQARE

Figure 10: Average delay/network versus number of nodes.

topology to the total number of data packets delivered
successfully:

Control overhead =
∑Routing control Packets
∑Data Packets recieved

. (32)

9.1.2. Results

(1) Varying Number of Nodes. In the first experiment, we
measure the performance of OSPFxQoS and DQARE by
varying the number of nodes as 10, 25, 50, 100, 150, 200,
and 250. Figure 10 depicts the performance comparison of
end-to-end average delay in the network. DQARE almost
outperforms OSPFxQoS. This is because OSPFxQoS used
RVSP, while DQARE used priority treatment, classification,
and scheduling. Actually, improvement in average end–to-
end delay in DQARE results from the MPF model which
makes use of multiple paths.

The difference of throughput between OSPF and
DQARE environments, depicted in Figure 11, is quite
obvious. OSPFxQoS gives single shortest paths based upon
precomputation routing scheme. Retrieved paths may
have common segments that become bottlenecked. When
congestion occurs, OSPFxQoS cannot shift traffic to better
alternative paths to mitigate congestion. On the other
hand, DQARE architecture is supplied with QMPF model
and path/congestion manger. Multiple paths exploitation
is crucial for circumventing congestions scenarios. Also,
if congestion occurs, path/congestion manager transfers
quickly traffic flow from congested paths to another better
path without severe loss of traffic.

Figure 12 shows the packet delivery ratio of OSPFxQoS
and DQARE with different network topologies. We can
find that as the number of nodes/network increases packet
delivery fraction in case of DQARE outperforms OSPFxQoS.
This is because OSPFxQoS lacks self-adaptation mecha-
nism. Routers disseminate information only when topology
changes. OSPFxQoS is unable to readjust forwarding paths
in order to lessen the impact of failures. Also, OSPFxQoS is
unable to load-balance traffic to optimize the performance of
the network. On the other hand, DQARE uses an adaptive
route mechanism implemented via path/congestionmanager
and QoS load balancing module. Thus, DQARE significantly
enhances the usage of network capacity.

10 25 50 100 150 200 250
3550
3600
3650
3700
3750
3800
3850
3900

Number of nodes/networks

Th
ro

ug
hp

ut
/n

et
w

or
k

OSPFxQoS
DQARE

(b
its

/s
)

Figure 11: Average throughput/network versus number of nodes.

85

90

95

100

Pa
ck

et
 d

el
iv

er
y

0 10 25 50 100 150 200 250

Number of nodes/networks
ra

tio
/n

et
w

or
k

OSPFxQoS
DQARE

Figure 12: Packet delivery ratio/network versus number of nodes.

Figure 13 shows the performance comparison of routing
overhead per network, and under this condition DQARE
continues to outperform OSPFxQoS. Routing overhead in
OSPFxQoS grows rapidly with the changes in the network
topology; this is because OSPFxQoS deployed a precomputa-
tion routing algorithm routing that suffers from nonoptimal
routing during congestion. OSPFxQoS needs to quickly
initiate a new route discovery process when a link fails
and therefore needs to consume a large amount of routing
overhead. Our proposed routing algorithm retrieves multiple
paths from a source to destinations and thus has the ability
to use these multiple paths, so the overhead is smaller than
OSPFxQoS.

(2) Varying Packet Arrival Rate. Figures 14, 15, 16, and 17
depict the behavior of both OSPFxQoS and DQARE for a
network topology of 100 nodes. At each node the packet
arrival rates are changed. Packet arrival rates are 50, 100,
150, 200, and 250 packet/sec. Figure 14 depicts that DQARE
outperforms OSPFxQoS in providing lower delay with the
increasing arrival rate. The average throughput and delivery
ratio gap between DQARE and OSPFxQoS increase along
with arrival rate. Figure 17 depicts the control overhead of
DQARE architecture considered to be acceptable with the
increasing in arrival rate.

9.2. Routing Algorithm Evaluation. Our first simulation is
to show the intensity of the proposed routing algorithm by
comparing the results with heuristics and exact algorithms in

The Scientific World Journal 23

50 100 150 200 250

0.186
0.188
0.19
0.192
0.194
0.196
0.198
0.2

0.202
0.204

Number of nodes/networks

ov
er

he
ad

/n
et

w
or

k

OSPFxQoS
DQARE

Ro
ut

in
g

Figure 13: Control overhead/network versus number of nodes.

15

15.5

16

16.5

17

17.5

18

Av
er

ag
e d

el
ay

/n
et

w
or

k
(s

)

50 100 150 200 250

Number of packets/s

OSPFxQoS
DQARE

Figure 14: Average delay versus arrival rate.

3750

3800

3850

3900

3950

4000

Av
er

ag
e t

hr
ou

gh
pu

t
(b

its
/s

)

50 100 150 200 250

Number of packets/s

OSPFxQoS
DQARE

Figure 15: Throughput versus arrival rate.

88
90
92
94
96
98
100
102
104

Pa
ck

et
 d

el
iv

er
y

ra
tio

50 100 150 200 250

Number of packets/s

OSPFxQoS
DQARE

Figure 16: Packet delivery ratio versus arrival rate.

0.186
0.188
0.19
0.192
0.194
0.196
0.198
0.2

0.202
0.204

C
on

tro
l o

ve
rh

ea
d

50 100 150 200 250

Number of packets/s

OSPFxQoS
DQARE

Figure 17: Control overhead versus arrival rate.

the literature. The proposed QoS routing algorithm is com-
paredwith RMCOP,HMCOP, SMACRA,HCA, andMPLMR
algorithms coded in MATLAB 2012 and implemented on
an Intel Core i3, 2.5 GHz CPU with 3GB RAM running on
Windows 7 professional.

9.2.1. Network Topology. Network topologies used for sim-
ulations are randomly generated based on Waxman’s model
[86] with 50, 100, 200, 300, and 500 nodes. Waxman graph
is considered counterpart to realistic telecommunication
networks. In that sense, the location of nodes is randomly
generated within the area of the graph. The probability of the
existence of a link between nodes 𝑥 and 𝑦 is related to some
function of the distance between these nodes. Formally, in
Waxman graphs the probability (𝑝

𝑥𝑦
) that two nodes 𝑥 and 𝑦

are connected equals𝑓(⃗𝑟
𝑥
− ⃗𝑟
𝑦
), where ⃗𝑟

𝑥
and ⃗𝑟
𝑦
represent the

position of node 𝑥 and node 𝑦, respectively. So the farther the
distance between two nodes, the smaller the need for a direct
link between them. The probability function of Waxman’s
model is as follows:

𝑝
𝑥𝑦
= 𝛼 ⋅ exp[

−𝛿 (𝑥, 𝑦)

𝛽𝐿

] , (33)

where 𝛼 represents the maximum link probability, 𝛽 rep-
resents the parameter to control the link length, 𝐿 is the
maximum distance between two nodes in the graph, and
𝛿(𝑥, 𝑦) is the distance between 𝑥 and 𝑦. In experiments, we
set 𝛼 = 0.8 and 𝛽 = 0.9.

9.2.2. Performance Metrics. We contrast the performance
of various path selection algorithms using complexity and
success rate (SR). Low complexity is the main goal of multi-
constrained QoS routing schemes. A significant performance
measure for the complexity of routing algorithms is time
complexity in terms of execution time (ET). SR is the fraction
of connection requests for which a feasible path is found.
During all simulations, the success rate and execution time
were stored.

9.2.3. Simulation Model and Performance Measures. After
generating graphs, we associate two randomly generated
additive weights with each link (𝑖, 𝑗). These weights are

24 The Scientific World Journal

Table 4: Ranges and correlations of link weights.

No correlation Negative correlation

𝑤
1
(𝑖, 𝑗) ∼ unifrom[1, 100]

𝑤
2
(𝑖, 𝑗) ∼ unifrom[1, 200]

𝑤
1
(𝑖, 𝑗) ∼ unifrom[1, 50]

𝑤
2
(𝑖, 𝑗) ∼ unifrom [100, 200]

𝑤
1
(𝑖, 𝑗) ∼ unifrom[50, 100]

𝑤
2
(𝑖, 𝑗) ∼ unifrom [1, 100]

50 100 200 300 400 500
0

5

10

15

Number of nodes

Ex
ec

ut
io

n
tim

e

QOPRA
HMCOP
MPLMR

HCA
SAMCRA
RMCOP

Figure 18: ET using uncorrelated link weights.

selected from uniform distribution sets. These weights are
assigned, as depicted in Table 4, according to two types
of correlation between them. No correlation assumes that
both weights are independently selected from one set. While
negative correlation assumes that one of the weights is
selected from a set with smallmean, the other is selected from
another set with large mean.

In each run, source and destination nodes and QoS
requirements of a request are randomly generated.The results
reported in the subsequent sections are averaged over several
runs. In each run, 10 random graphs are generated. For each
random graph, ten independent link weights are generated
using different random seeds. Each graph is subjected to 10
requests with different QoS constraints. There are about 1000
to 3000 connection requests that are generated for graphs
with 50, 100, 200, 300, 400, and 500 nodes, respectively.

9.2.4. Results. Using extensive simulations on the Waxman
random graph with uncorrelated link weights, Figures 18
and 19 show that under the same level of computational
complexity proposed algorithms (QOPRA) outperforms its
contenders in its success rate and computational complexity.

If the primary cost of HMCOP is not available it finds
only a feasible path and postpath which may misguide
the selection of prepath. The performance of HMCOP in
finding feasible paths can be improved by using the 𝑘-
shortest path algorithm and by eliminating dominated paths.
SAMCRA worst case complexity grows exponentially and
it may be subject to some error decision rate. The absolute
complexity of HCA is greater than SAMCRA complexity.

50 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Su
cc

es
s r

at
e

Number of nodes

QOPRA
HMCOP MPLMR
HCA

SAMCRARMCOP

Figure 19: SR using uncorrelated link weights.

0
2
4
6
8
10
12
14
16
18
20

QOPRA

HMCOP
MPLMR

HCA
SAMCRA
RMCOP

Ex
ec

ut
io

n
tim

e

50 100 200 300 400 500

Number of nodes

Figure 20: ET using negative correlated link weights.

Execution time
50 100 200 300 400 500

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Su
cc

es
s r

at
e

QOPRA
HMCOP
MPLMR

HCA
SAMCRA

RMCOP

Figure 21: SR using negative correlated link weights.

HCA stops at the first feasible path it finds, so it has low
execution time. RMCOP algorithm suffers from high com-
plexity. MPLMR time complexity is comparable to HMCOP.
However, MPLMR has a higher success rate than HMCOP.

As Figures 20 and 21 depict, using negatively correlated
link weights, QOPRA still outperforms other algorithms.
Negatively correlated link weights result in more paths in
the network for which 𝑤

1
(𝑃) ≫ 𝑤

2
(𝑃) and vice versa. This

situation degrades the performance of MPLMR and HLA.
Also, in such case algorithms such as SAMCRA incur a large

The Scientific World Journal 25

Subnet
0

Subnet
1

Router 1

Router 3 Router 4

Router 5 Router 6
Router 7

Router 8 Router 9

Router 10

Router 2
20,10ms

20,10ms

20,10ms

20,10ms

10,15ms

10

10,10ms

10,10ms

5,10ms 5,10ms

5,10ms

5,5ms

5,5ms

,5ms

Figure 22: Simulated network topology.

Aggregated traffic
with arrival rate 𝜆 Traffic units

For path 𝜌

𝜇1

𝜇2

𝜇k

Input
queues

Forwarding
processors

Path 2

Path 1

Multiple
outgoing paths

Traffic
splitting

component

Path
selection

component
...

...

Path k

traffic rate is 𝜆𝜌 ≤ 𝜆

Figure 23: Data-plane extensions for MPF.

execution time with the increase in node number. However,
SAMCRA achieves a higher success rate because it used path
dominance and look-ahead techniques.

9.3. MPF Algorithm Evaluation. In this section, extensive
network simulations are conducted to evaluate the perfor-
mance of multipath forwarding mechanisms. We analyze the
performance of proposed QMPF. FLARE, EDCLD, and CBM
models are used for comparisons.

9.3.1. Performance Metrics. Simulation-based verifications
are presented in terms of (i) end-to-end delay which can be
defined as the sum of propagation delay and queuing delay
as defined in (26), (ii) Jitter, variation of end-to-end packet
delay, and (iii) total packet delay which is the sum of end-to-
end delay and packet reordering recovery delay.

9.3.2. Simulation Method. Our simulations are based on NS2
[85]. Figure 22 shows the network topology adopted for the
simulations. Each link is assigned with bandwidth and fixed
propagation delay. The buffer size of router is set to 220

packets. TCP traffic and UDP traffic are generated from
two subnets, 0 and 1, destined for node 10. Each subnet
represented 50 traffic-generating hosts.

Each router is supplied with multiple paths to node 10.
MPFmechanism is conducted under the environment shown
in Figure 23.The input traffic to each node from 1 to 10 will be
split into available paths. Load condition varies from low to
high. The mean service time is inversely proportional to the
bandwidth capacity (1/𝜇).The parameter 𝜆 is proportional to
the total bandwidth of the paths.Themean packet arrival rate
is chosen such that the ratio of the mean offered load to the
mean service rate 𝜆/𝜇 varies from 0.1 to 0.9 with a step size of
0.1. Parameter 𝜔 in (23) is chosen to be 0.5.

9.3.3. Simulation Results. Figure 24 compares the mean of
end-to end delay achieved by various LDMs. As the ratio of
input rate to output rate (i.e., 𝜆/𝜇) increased, the mean value
of total packet delay rises as well. For low to medium load
QMPF achieves the least end-to-end delay. When the traffic
load becomes heavier, the performance of QMPF degrades
due to classification and scheduling overhead. Figure 24 also
shows that CBM and EDCLD achieve near results. However,

26 The Scientific World Journal

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.5

2

2.5

3

3.5

4

4.5

5

Offered load to service rate

QMPF
FLARE

En
d-

to
-e

nd
 d

el
ay

EDCLD
CBM

Figure 24: End-to-end packet delay.

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

C.
V

 o
f e

nd
-to

-e
nd

 d
el

ay

EDCLD
CBM

QMPF
FLARE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Offered load to service rate

(ji
tte

r)

Figure 25: Coefficient variation of end-to-end packet delay.

CBM has a smaller end-to-end delay. FLARE achieves the
largest end-to-end delay due to load imbalance, especially at
the high packet arrival rate.

Packet delay variation is depicted in Figure 25. The
relationship between coefficient variation (CV) of end-to-
end packet delay and the ratio of offered load to service
rate is constructed. A large CV indicates a high risk of
packet reordering. In light loadQMPF achieves the least delay
variation. As the ratio of input rate to output rate increases,
CBM and EDCLD outperform QMPF.

The total packet delay is an important indicator for QoS-
oriented application. QMPF, CBM, and E-DCLD aim to
decrease end-to-end delay and packet reordering delay and
can thus efficiently reduce the total packet delay. Figure 26
indicates that when the ratio (𝜆/𝜇) is larger than 0.6, the
total packet delay counted by QMPF is slightly larger than
E-DCLD and CBM.

10. Conclusion

QoS routing plays an important role in QoS provisioning.
This paper introduced a generic distributed QoS adaptive
routing engine (DQARE) architecture based on OSPFxQoS.
DQARE architecture is furnished with three relevant traffic
control schemes that shape the design of a QoS solu-
tion, namely, service differentiation, QoS routing, and QoS
intradomain traffic engineering (TE).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

Offered load to service rate

To
ta

l p
ac

ke
t d

el
ay

EDCLD
CBM

QMPF
FLARE

Figure 26: Total packet delay.

Accordingly, this paper provided a general configuration
guideline for service differentiation. Also, this paper intro-
duced a QoS routing algorithm (QOPRA), based on dynamic
programming technique. QOPRA attempts to obtain the
optimal multiple paths in terms of two additive metrics.
This objective is proved in the proposed work with minimal
complexity and low error decision rate. This paper also pro-
posed a new effective QoS load distribution model (QMPF).
QMPF aimed to efficiently utilizemultiple available paths and
minimize the difference among end-to-end delays, jitter, and
packet reordering. NS2-based simulations proved DQARE
superiority over OSPFxQoS.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] Z. L. Sun, “IP networking and future evolution,” inNetwork Per-
formance Engineering, pp. 951–978, Springer, Berlin, Germany,
2011.

[2] D. Qiu, “On the QoS of IPTV and its effects on home networks,”
International Journal of Digital Multimedia Broadcasting, vol.
2010, Article ID 253495, 5 pages, 2010.

[3] X. Xiao, Technical, Commercial and Regulatory Challenges of
QoS : An Internet ServiceModel Perspective, Morgan Kaufmann,
San Francisco, Calif, USA, 2008.

[4] J. Baraković, H. Bajrić, M. Kos, S. Baraković, and A. Husić, “Pri-
oritizing signaling information transmission in next generation
networks,” Journal of Computer Networks and Communications,
vol. 2011, Article ID 470264, 10 pages, 2011.

[5] Cisco System, “Routing basics,” in Internetworking Technology,
chapter 5, 4th edition, 2003.

[6] J. Moy, “OSPF version 2,” Internet Request for Comments RFC
1247, 1991.

[7] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick, “A
framework for QoS—based routing in the internet,” IETF RFC
2386, 1998.

[8] G. Apostolopoulos, D. Williams, S. Kamat, R. Guerin, A.
Orda, and T. Przygienda, “QoS routing mechanisms and OSPF
extensions,” RFC 2676, 1999.

The Scientific World Journal 27

[9] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin,
“Resource ReSerVation protocol (RSVP)—version 1 functional
specification,” IETF RFC 2205, 1997.

[10] W. C. Hardy, QoS Measurement and Evaluation of Telecommu-
nications Quality of Service, JohnWiley & Sons, Chichester, UK,
2001.

[11] R. Wójcik and A. Jajszczyk, “Flow oriented approaches to QoS
assurance,” ACM Computing Surveys, vol. 44, no. 1, article 5,
2012.

[12] R. Braden, D. Clark, and S. Shenker, “Integrated services in
the Internet architecture: an overview,” Request for Comments
(Informational) RFC 1633, Internet Engineering Task Force,
June 1994.

[13] B. Nandy, N. Seddigh, A. Chapman, and J. H. Salim, “A
connectionless approach to providing QoS in IP networks,” in
Proceedings of the 8th IFIP Conference on High Performance
Networking (HPN '98), 1998.

[14] S. Blake,D. Black,M.Carlson, E.Davies, Z.Wang, andW.Weiss,
“An architecture for differentiated services,” IETF RFC 2475,
1998.

[15] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the
differentiated services field (DS field) in the IPv4 and IPv6
headers,” Request for Comments 2474, Internet Engineering
Task Force, 1998.

[16] S. Giordano, S. Salsano, S. van den Berghe, G. Ventre, and D.
Giannakopoulos, “Advances QoS provisioning in IP networks:
the European premium IP projects,” IEEE Communications
Magazine, vol. 41, no. 1, pp. 30–36, 2003.

[17] J. Li and C. Mao, “Providing flow-based proportional differen-
tiated services in class-based DiffServ routers,” IEE Proceedings:
Communications, vol. 151, no. 1, pp. 82–88, 2004.

[18] M. Montanez, “Deploying QoS in the enterprise,” Packet-Cisco
System Users Magazine, vol. 14, no. 4, pp. 30–34, 2002.

[19] K. Nguyen and B. Jaumard, “Routing engine architecture
for next generation routers: evolutional trends,” International
Journal of Network Protocols and Algorithms, vol. 1, no. 1, pp.
62–85, 2009.

[20] H. J. Chao, “Next generation routers,” Proceedings of the IEEE,
vol. 90, no. 9, pp. 1518–1558, 2002.

[21] I. Marsic, Computer Networks Performance and Quality of
Service, 2013, http://www.ece.rutgers.edu/∼marsic/books/CN/
book-CN marsic.pdf.

[22] S. Asthana, C. Delph, H. V. Jagadish, and P. Krzyzanowski,
“Towards a gigabit IP router,” Journal of High Speed Networks,
vol. 1, no. 4, pp. 281–288, 1992.

[23] C. Partridge, P. P. Carvey, E. Burgess et al., “A 50-Gb/s IP router,”
IEEE/ACM Transactions on Networking, vol. 6, no. 3, pp. 237–
248, 1998.

[24] P. Almquist, “Type of Service in the Internet Protocol Suite,”
1992.

[25] J. Babiarz and F. Baker, “Configuration Guidelines for DiffServ
Service Classes,” RFC 4594, 2006.

[26] D. Shin, E. K. P. Chong, and H. J. Siegel, “Multi-postpath-based
lookaheadmulticonstraint QoS routing,” Journal of the Franklin
Institute, vol. 349, no. 3, pp. 1106–1124, 2012.

[27] G. Liu and K. G. Ramakrishnan, “A∗prune: an algorithm for
finding K shortest paths subject to multiple constraints,” in
Proceedings of the IEEE INFOCOM, Anchorage, Alaska, April
2001.

[28] C. Casetti, R. lo Cigno, M. Mellia, and M. Munafò, “A new class
of QoS routing strategies based on network graph reduction,” in

Proceedings of the Annual Joint Conference of the IEEEComputer
and Communications Societies (INFOCOM ’02), vol. 2, pp. 715–
722, June 2002.

[29] Z. Yu, F. Ma, J. Liu, B. Hu, and Z. Zhang, “An efficient
approximate algorithm for disjoint QoS routing,”Mathematical
Problems in Engineering, vol. 2013, Article ID 489149, 9 pages,
2013.

[30] Z. Wang and J. Crowcroft, “Quality-of-service routing for
supporting multimedia applications,” IEEE Journal on Selected
Areas in Communications, vol. 14, no. 7, pp. 1228–1234, 1996.

[31] F. A. Kuipers and P. van Mieghem, “The impact of correlated
link weights on QoS routing,” in Proceedings of the 22nd Annual
Joint Conference on the IEEE Computer and Communications
Societies (INFOCOM ’03), pp. 1425–1434, San Francisco, Calif,
USA, April 2003.

[32] J. M. Jaffe, “Algorithms for finding paths with multiple con-
straints,” Networks, vol. 14, no. 1, pp. 95–116, 1984.

[33] H. deNeve and P. vanMieghem, “TAMCRA: a tunable accuracy
multiple constraints routing algorithm,”Computer Communica-
tions, vol. 23, no. 7, pp. 667–679, 2000.

[34] T. Korkmaz andM.M. Krunz, “Routingmultimedia traffic with
QoS guarantees,” IEEE Transactions onMultimedia, vol. 5, no. 3,
pp. 429–443, 2003.

[35] A. Bellabas, S. Lahoud, and M. Molnár, “Performance evalua-
tion of efficient solutions for the QoS unicast routing,” Journal
of Networks, vol. 7, no. 1, pp. 73–80, 2012.

[36] G. Xue, A. Sen, and R. Banka, “Routing withmany additive QoS
constraints,” in Proceedings of the IEEE International Conference
on Communications (ICC ’03), pp. 223–227, Anchorage, Alaska,
USA, May 2003.

[37] G. Xue and S. K.Makki, “MulticonstrainedQoS routing: a norm
approach,” IEEE Transactions on Computers, vol. 56, no. 6, pp.
859–863, 2007.

[38] G. Xue, W. Zhang, J. Tang, and K. Thulasiraman, “Polynomial
time approximation algorithms for multi-constrained QoS
routing,” IEEE/ACM Transactions on Networking, vol. 16, no. 3,
pp. 656–669, 2008.

[39] P. Van Mieghem and F. A. Kuipers, “Concepts of exact QoS
routing algorithms,” IEEE/ACM Transactions on Networking,
vol. 12, no. 5, pp. 851–864, 2004.

[40] Y. Li, J.Harms, andR.Holte, “Fast exactmulticonstraint shortest
path algorithms,” in Proceedings of the IEEE International
Conference on Communications (ICC ’07), pp. 123–130, June
2007.

[41] L. Sun, L.Wang, andR.Wang, “Ant colony algorithm for solving
QoS routing problem,” Wuhan University Journal of Natural
Sciences, vol. 9, no. 4, pp. 449–453, 2004.

[42] Y. H. S. Wan, Y. Hao, and Y. Yang, “Approach for multiple con-
straints based Qos routing problem of network,” in Proceedings
of the 9th International Conference on Hybrid Intelligent Systems
(HIS ’09), vol. 2, pp. 66–69, IEEE, Shenyang, China, August
2009.

[43] J. Y. Yen, “Finding the 𝐾 shortest loopless paths in a network,”
Management Science, vol. 17, pp. 712–716, 1970/7119.

[44] E. L. Lawler, “A procedure for computing the K best solutions
to discrete optimization problems and its application to the
shortest path problem,” Management Science, vol. 18, pp. 401–
405, 1972.

[45] T. Sanguankotchakorn, S. Maneepong, and N. Sugino, “A
relaxingmulti-constraint routing algorithmby consideringQoS
metrics priority for wired network,” in Proceedings of the 5th

28 The Scientific World Journal

International Conference on Ubiquitous and Future Networks
(ICUFN '13), pp. 738–743, Da Nang, Vietnam, July 2013.

[46] R. Bellman, “On a routing problem,” Quarterly of Applied
Mathematics, vol. 16, no. 1, pp. 87–90, 1958.

[47] G. Xue, A. Sen, W. Zhang, J. Tang, and K. Thulasiraman,
“Finding a path subject to many additive QoS constraints,”
IEEE/ACM Transactions on Networking, vol. 15, no. 1, pp. 201–
211, 2007.

[48] X. Jin, “Routing for multi-constrained path problem with
imprecise additive link state information,” in Proceedings of the
International Conference on Computer Application and System
Modeling (ICCASM '10), vol. 3, pp. 472–475, Taiyuan, China,
October 2010.

[49] J. Huang, X. Huang, and Y. Ma, “Routing with multiple quality-
of-services constraints: an approximation perspective,” Journal
of Network and Computer Applications, vol. 35, no. 1, pp. 469–
479, 2012.

[50] R. Hou, K. Luib, K. Leung, and F. Baker, “Performance analysis
of quantization-based approximation algorithms for precom-
puting the supported QoS,” Journal of Network and Computer
Applications, vol. 40, pp. 244–254, 2014.

[51] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview
of routing optimization for internet traffic engineering,” IEEE
Communications Surveys and Tutorials, vol. 10, no. 1, pp. 33–56,
2008.

[52] S. Savage, A. Collins, E.Hoffman, J. Snell, andT.Anderson, “The
end-to-end effects of Internet path selection,” in Proceedings of
the ACMSIGCOMM, August 1999.

[53] B. Fortz and M. Thorup, “Internet traffic engineering by opti-
mising OSPF weights,” in Proceedings of the 19th Annual Joint
Conference of the IEEE Computer and Communications Societies
(INFOCOM '00), pp. 519–528, Tel Aviv, Israel, March 2000.

[54] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS weights in a
changing world,” IEEE Journal on Selected Areas in Communi-
cations, vol. 20, no. 4, pp. 756–767, 2002.

[55] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering
with traditional IP routing protocols,” IEEE Communications
Magazine, vol. 40, no. 10, pp. 118–124, 2002.

[56] A. K. Parekh and R. G. Gallager, “Generalized processor sharing
approach to flow control in integrated services networks: the
single-node case,” IEEE/ACM Transactions on Networking, vol.
1, no. 3, pp. 344–357, 1993.

[57] M. Lengyel, J. Sztrik, and C. S. Kim, “Simulation of differen-
tiated services in network simulator,” in Annales Universitatis
Scientiarium Budapestinensis de Rolando Eötvös Nominatae,
Sectio Computatorica, 2003.

[58] K. C. Leung and V. O. K. Li, “Generalized load sharing for
packet-switching networks I: theory and packet-based algo-
rithm,” IEEE Transactions on Parallel and Distributed Systems,
vol. 17, no. 7, pp. 694–702, 2006.

[59] D. Thaler and C. Hopps, “Multipath issues in unicast and
multicast next-hop selection,” RFC 2991, 2000.

[60] C. Hopps, “Analysis of an equal-cost multi-path algorithm,”
RFC 2992, 2000.

[61] A. Zinin, Cisco IP Routing, Packet Forwarding and Intradomain
Routing Protocols, Addison-Wesley, Reading, Mass, USA, 2002.

[62] T. W. Chim and K. L. Yeung, “Traffic distribution over equal-
cost-multi-paths,” in Proceedings of the IEEE International
Conference on Communications, vol. 2, pp. 1207–1211, June 2004.

[63] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic
load balancing without packet reordering,” ACM SIGCOMM
Computer Communication Review, vol. 37, no. 2, pp. 53–62, 2007.

[64] M. Tian, J. Lan, X. Zhu, and J. Huang, “A routing optimization
algorithm of equal-cost-multi-paths based on link criticality,” in
Proceedings of the IEEE International Conference on Advanced
Computer Control (ICACC ’10), pp. 203–207, March 2010.

[65] Y. Wang and Z. Wang, “Explicit routing algorithms for internet
traffic engineering,” in Proceedings of the 8th International
Conference on Computer Communications and Networks (ICCN
’99), pp. 582–588, IEEE, Boston, Mass, USA, October 1999.

[66] R. Banner and A. Orda, “Multipath routing algorithms for con-
gestion minimization,” IEEE/ACM Transactions on Networking,
vol. 15, no. 2, pp. 413–424, 2007.

[67] S. Prabhavat, H. Nishiyama, N. Ansari, and N. Kato, “Effective
delay-controlled load distribution over multipath networks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 22,
no. 10, pp. 1730–1741, 2011.

[68] H. Adiseshu, G. Parulkar, and G. Varghese, “A reliable and
scalable striping protocol,” ACM SIGCOMM Computer Com-
munication Review, vol. 26, no. 4, pp. 131–141, 1996.

[69] M. Li, H. Nishiyama, N. Kato, K. Mizutani, O. Akashi, and
A. Takahara, “On the fast-convergence of delay-based load
balancing over multipaths for dynamic traffic environments,”
in Proceedings of the International Conference on Wireless
Communications and Signal Processing (WCSP ’13), Hangzhou,
China, October 2013.

[70] R. Martin, M. Menth, and M. Hemmkeppler, “Accuracy and
dynamics of multi-stage load balancing for multipath Internet
routing,” in Proceedings of the IEEE International Conference on
Communications (ICC ’07), pp. 6311–6318, June 2007.

[71] W. Shi, M. H. MacGregor, and P. Gburzynski, “Load balancing
for parallel forwarding,” IEEE/ACM Transactions on Network-
ing, vol. 13, no. 4, pp. 790–801, 2005.

[72] G. Rétvári, F. Németh, R. Chaparadza, and R. Szabó, “OSPF for
implementing self-adaptive routing in autonomic networks: a
case study,” in Modelling Autonomic Communications Environ-
ments: Proceedings of the Fourth IEEE International Workshop,
MACE 2009, Venice, Italy, October 26-27, 2009, vol. 5844 of
Lecture Notes in Computer Science, pp. 72–85, Springer, Berlin,
Germany, 2009.

[73] C. Dovrolis, D. Stiliadis, and P. Ramanathan, “Proportional
differentiated services: delay differentiation and packet schedul-
ing,” IEEE/ACM Transactions on Networking, vol. 10, no. 1, pp.
12–26, 2002.

[74] M. Shreedhar and G. Varghese, “Efficient fair queueing using
deficit round robin,” ACM SIGCOMM Computer Communica-
tion Review, vol. 25, no. 4, pp. 231–242, 1995.

[75] Y. Chen, T. Farley, and N. Ye, “QoS requirements of network
applications on the internet,” Information Knowledge Systems
Management, vol. 4, pp. 55–76, 2004.

[76] J. Postel, “Internet Protocol,” RFC 791 (Standard), Internet
Engineering Task Force, September 1981, updated by RFC 1349,
http://www.ietf.org/rfc/rfc791.txt.

[77] T. H. Cormen, C. E. Leiserson, and R. Rivest,An Introduction to
Algorithms, MIT Press, Boston, Mass, USA, 2009.

[78] R. W. Floyd, “Algorithm 97: shortest path,” Communications of
the ACM, vol. 5, no. 6, p. 345, 1962.

[79] K. A. Rink, E. Y. Rodin, and V. Sundarapandian, “A simplifica-
tion of the double-sweep algorithm to solve the k-shortest path
problem,” Applied Mathematics Letters, vol. 13, no. 8, pp. 77–85,
2000.

[80] H. Saito, C. Lukovszki, and I.Moldován, “Local optimal propor-
tional differentiated services scheduler for relative differentiated

The Scientific World Journal 29

services,” in Proceedings of the 9th International Conference
on Computer Communications and Networks (ICCCN ’00), pp.
554–550, Las Vegas, Nev, USA, 2000.

[81] T. Nandagopal, N. Venkitaraman, R. Sivakumar, and V. Bargha-
van, “Delay differentiation and adaptation in core stateless
networks,” in Proceedings of the 9th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM
’00), pp. 421–430, Tel-Aviv, Israel, April 2000.

[82] Y. Moret and S. Fdida, “A proportional queue control mecha-
nism to provide differentiated services,” in Proceedings of the
13th International Symposium On Computer and Information
Sciences (ISCIS ’98), pp. 17–24, Belek, Turkey, October 1998.

[83] N. Christin, J. Liebeherr, and T. Abdelzaher, “Enhancing class-
based service architectures with adaptive rate allocation and
dropping mechanisms,” IEEE/ACM Transactions on Network-
ing, vol. 15, no. 3, pp. 669–682, 2007.

[84] R. L. Cruz, “A calculus for network delay. I. Network elements
in isolation,” IEEE Transactions on Information Theory, vol. 37,
no. 1, pp. 114–131, 1991.

[85] Network Simulator NS2, http://www.isi.edu/nsnam/ns/.
[86] B. M. Waxman, “Routing of multipoint connections,” IEEE

Journal on Selected Areas in Communications, vol. 6, no. 9, pp.
1617–1622, 1988.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

