
Aalto University

School of Science

Master’s Programme in Security and Cloud Computing

Sepehr Javid

Segment Routing based Traffic Engineering

A QoS adaptive rerouting using segment routing
approach based on IPv6 to mitigate network
congestion

Master’s Thesis
Espoo, July 7, 2023

Supervisors: Professor Antti Ylä-Jääski, Aalto University
Professor Dejan Manojlo Kostic, KTH Royal Institute of
Technology

Advisor: Miika Komu Ph.D., Ericsson Finland
Mariano Scazzariello Ph.D., KTH Royal Institute of
Technology

Aalto University
School of Science
Master’s Programme in Security and Cloud Computing

ABSTRACT OF
MASTER’S THESIS

Author: Sepehr Javid

Title:
Segment Routing based Traffic Engineering A QoS adaptive rerouting using
segment routing approach based on IPv6 to mitigate network congestion

Date: July 7, 2023 Pages: 77

Major: Security and Cloud Computing Code: SCI3113

Supervisors: Professor Antti Ylä-Jääski
Professor Dejan Manojlo Kostic, KTH Royal Institute of
Technology

Advisor: Miika Komu Ph.D., Ericsson Finland
Mariano Scazzariello Ph.D., KTH Royal Institute of
Technology

In modern networks, the increasing volume of network traffic and the diverse
range of services with varying requirements necessitate the implementation of
more advanced routing decisions and traffic engineering. This academic study
proposes a QoS adaptive mechanism called ”Sepitto”, which utilizes Segment
routing protocols, specifically SRv6, to address network-traffic control and
congestion avoidance. Sepitto leverages data-plane traffic to convey Linux Qdisc
statistics, such as queue size, packet drops, and buffer occupancy, in each Linux-
based virtual router. By incorporating this information, edge routers become
aware of the current network status, enabling them to make informed decisions
regarding traffic paths based on QoS classes. SRv6 is employed to direct
traffic along desired paths, avoiding congested links and minimizing queuing
delays and overall latency. Moreover, Sepitto offers network administrators an
interface to customize decision-making processes based on their policies, assigning
costs to network graph edges by associating the provided statistics to a certain
cost. To incorporate these costs, the implementation employs the Dijkstra
algorithm to determine the path with the lowest cost. Performance analysis of
Sepitto reveals minimal overhead compared to traditional routing methods, while
effectively mitigating network congestion. The results demonstrate that Sepitto
reduces traffic round-trip time during congestion while maintaining differentiated
treatment for various QoS classes.

Keywords: Segment Routing with IPv6, Quality of Service, Congestion,
Extended Berkeley Packet Filter

Language: English

2

This work is licensed under a Creative Commons
“Attribution 4.0 International” license.

3

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Acknowledgements

First and foremost, I am immensely grateful to Erasmus Mundus for affording
me a remarkable opportunity to pursue my studies in the SECCLO program,
enabling me to expand my expertise in Security and Cloud Computing.
Furthermore, I would like to express my sincere appreciation for the
generous scholarship bestowed upon me by Erasmus Mundus, which not
only supported my academic journey but also facilitated its progression.
Moreover, I express my gratitude to Ericsson Finland for granting me the
opportunity to undertake this research and for providing the necessary
resources for the completion of this thesis. In particular, I extend my
sincere appreciation to Miika Komu for his invaluable guidance throughout
the entire thesis process. I would also like to thank Joel Halpern, Tomas
Tyni, and Mats Forsman for their invaluable assistance in elaborating on the
intricacies of the subject matter, as well as for offering me invaluable technical
recommendations. Furthermore, I would like to acknowledge the supervision
and guidance extended by Mariano Scazzariello, Antti Ylä-Jääski, and Dejan
Manojlo Kostic during the course of this research.

Espoo, July 7, 2023

Sepehr Javid

4

List of acronyms and abbreviations

ACK TCP Acknowledgement
AI Artificial Intelligence
AQM Active Queue Management
AQM-PI Active Queue Management with Proportional Integral

controller
AR Augmented Reality

BPF Berkeley Packet Filter

CE Congestion Experienced

DA Destination Address
DCTCP Data Center TCP
DDOS Distributed Denial of Service
DiffServ Differentiated Services
DoS Denial of Service
DSCP Differentiated Services Code Point

eBPF Extended Berkeley Packet Filter
ECMP Equal Cost Multi-Path
ECN Explicit Congestion Notification
ECT ECN-Capable Transport

HMAC Hashed Message Authentication Code

ICMP Internet Control Message Protocol
INT IN band Telemetry
IoT Internet of Things

JIT just-in-time

MPLS Multiprotocol Label Switching
MTU Maximum Transmission Unit

NIC Network Interface Card

Qdisc Queuing Discipline

5

QoS Quality of Service

RED Random Early Detection
RTT Round Trip Time

SID Segment ID
SR Segment Routing
SRH Segment Routing Header
SRv6 Segment Routing with IPv6
STCP Scalable TCP

TBF Token Buffer Filter
TCP Transmission Control Protocol
TLV Type Length Value
TOS Type of Service
TPC TCP Path Changer

VR Virtual Reality

XDP Xpress DataPath

6

Contents

1 Introduction 10
1.1 Background . 10
1.2 Problem . 11

1.2.1 Original problem and definition 12
1.2.2 Scientific and engineering issues 12

1.3 Purpose . 12
1.3.1 Sustainability . 13
1.3.2 Ethical Considerations 13

1.4 Goals . 14
1.5 Delimitations . 14
1.6 Structure of the thesis . 15

2 Background 16
2.1 Segment Routing (SR) . 16
2.2 Segment Routing with IPv6 (SRv6) 19

2.2.1 Segment Routing Header (SRH) 19
2.2.2 SRv6 Segments . 21
2.2.3 Processing SRH . 21

2.3 Quality of Service (QoS) . 24
2.3.1 Differentiated Services (DiffServ) 25
2.3.2 IPv6 Packet Marking 25

2.4 Network Congestion . 26
2.4.1 Explicit Congestion Notification (ECN) 27
2.4.2 Random Early Detection (RED) 28

2.5 Extended Berkeley Packet Filter (eBPF) 29
2.5.1 eBPF Execution . 30
2.5.2 BPF Maps . 30
2.5.3 BPF Helpers . 30

2.6 Linux Networking . 31
2.6.1 Xpress DataPath (XDP) 31

7

2.6.2 Traffic Control . 32
2.6.3 Kprobes . 33

2.7 BPF Additions to Linux SRv6 34
2.8 Related Work . 36

2.8.1 Congestion Prevention Local Rerouting 36
2.8.2 QoS Adaptive Congestion Control 36
2.8.3 Multi-path TCP with SRv6 37

3 Methods 38
3.1 Research Process . 38
3.2 Experimental design/Planned Measurements 39
3.3 Congestion Detection . 41

3.3.1 Intermediate Router Congestion Detection 41
3.3.2 Ingress Router Congestion Detection 42
3.3.3 Detection Method Comparison 43

3.4 Congestion Control . 43
3.5 Path Selection Issue . 44
3.6 Sepitto Method . 45

4 Implementation 46
4.1 eBPF Hook . 47
4.2 Intermediate Router . 47
4.3 Edge Router . 49

4.3.1 Parsing Statistics . 50
4.3.2 Steering Ingress Traffic 50
4.3.3 Routing Agent . 50
4.3.4 A Sample Cost Map 53

5 Results and Analysis 55
5.1 Baseline . 55
5.2 Queue Length Analysis . 56

5.2.1 Single Congestion . 56
5.2.2 Double Congestion . 57

5.3 RTT Analysis . 59
5.3.1 Single Congestion Sepitto 59
5.3.2 Double Congestion Sepitto 61
5.3.3 Double Congestion Sepitto with TCP 64
5.3.4 Single Congestion Traditional 67
5.3.5 RTT overhead . 67

8

6 Conclusions and Future work 69
6.1 Conclusions . 69
6.2 Limitations . 70
6.3 Future work . 70
6.4 Reflections . 72

9

Chapter 1

Introduction

In today’s highly interconnected world, and the rapid advancement of cloud
services, network devices are experiencing an unprecedented high volume of
traffic, traveling through the network. This raises the need for enhancement
of resource utilization as well as more complex traffic handling in the network
devices to handle high volume traffic [1].

On the other hand, in the 5G and cloud era, various new services have
been introduced on both consumer side and vertical sectors. Such services
include online gaming, Augmented Reality (AR), Virtual Reality (VR), and
Internet of Things (IoT) [1, 2]. Due to the differences in service requirements
such as latency, and bandwidth in such applications, it has become essential
for networks to handle various traffic types differently, and corresponding to
their service requirements.

Generally, the IP networks are the backbone of the inter-connectivity of
the services. However, traditional IP networks forward the packets based on
the shortest path and therefore do not adopt many path calculations and
forwarding policies [1]. As a result, it is difficult to fulfill the requirements
of each service with the traditional forwarding mechanism. Therefore, traffic
engineering methods should be adopted to provide forwarding policies and
fulfill service specific requirements.

1.1 Background

In order to differentiate the packets based on their services, and fulfill the
service based requirements, Quality of Service (QoS) has been introduced.
Utilizing QoS can help network routers gain information about the service
a certain packet belongs to, and the requirements of that service such
as bandwidth, or latency. Additionally, QoS can be used to prioritize

10

CHAPTER 1. INTRODUCTION 11

some packets over others. For example, time-sensitive traffic such as video
streaming packets should be prioritized to web packets due to their time
sensitivity characteristics. [3]

As previously mentioned, the core IP network selects the shortest path to
forward the packet through and lacks forwarding policies based on the packet
requirements. As a result, new protocols such as Segment Routing (SR), have
been proposed to provide traffic engineering in IP networks. SR provides
flexibility with forwarding path selection. It can provide path decisions based
on different metrics such as, latency, shortest path, and congestion. This
means that the SR protocol can provide the entire path on the source node
and based on the service requirements.

On the other hand, with the increased volume of network traffic, network
routers are likely to encounter congestion while forwarding the traffic.
Congestion causes the routers to drop the further received packets, and adds
queuing delay. Queuing delay is defined as the time a packet has to wait
in the router’s queue in order to be transmitted to the link. Once a router
receives a higher volume of traffic than it can handle, it queues the packets in
order to avoid packet loss. However, placing too many packets in the queue
causes excessive queuing delay. [4]

1.2 Problem

Different approaches have been adopted to mitigate the network congestion
and network latency problems. K. Ramakrishnan et al., first proposes
Explicit Congestion Notification (ECN) addition to IP which provides the
routers the capability to notify the endpoints of any network congestion [5].
However, based on the proposed method, it takes 1 RTT to establish a lower
transition rate by the endpoints in order to mitigate the congestion. During
this time the number of dropped packets may have increased which enforces
the source to retransmit the lost data.

From a different perspective, ECN involves the endpoints into the
congestion mitigation. The reason is that due to the shortest path selection of
the routers, they continue choosing the same path even during the congestion.
Therefore, the routers cannot mitigate the congestion on their own. However,
with the advent of the SR protocol, routers can steer the traffic based on
various parameters. SR can enhance link utilization as it can maintain the
transition rate at the source endpoint, while redirecting the traffic away from
the congested link.

On the other hand, in the case of a congestion, the packets are dropped
regardless of their QoS class and guaranteed service requirements. As

CHAPTER 1. INTRODUCTION 12

a result, the source is forced to retransmit the packet which in time-
sensitive applications, is not affordable. Hence, the dropping mechanism
for congestion mitigation should also appeal to the QoS requirements rather
than simply drop the packet.

1.2.1 Original problem and definition

This study focuses on addressing the problem of congestion control in
intermediate routers by utilizing the traffic engineering capabilities of SR
protocols. The objective is to prevent congested routers by enabling the
ingress node of the SR domain to reroute traffic. This approach should also
be QoS adaptive to ensure that guaranteed service levels are maintained while
mitigating the congestion. A comparative analysis is conducted between
the newly adopted approach and traditional routing methods to analyze the
added overhead. The study aims to determine whether the newly adopted
approach can effectively mitigate congestion while maintaining guaranteed
service quality across different QoS levels.

1.2.2 Scientific and engineering issues

This work encompasses three primary components: Congestion detection,
traffic rerouting based on Segment Routing with IPv6 (SRv6), and QoS. From
the congestion detection perspective, the ingress router of the SR domain
must detect congestion on any node in the domain. The congestion detection
can be based on various information such as, queuing delay, queue occupancy,
etc.

Considering the rerouting mechanism, this work adopts SRv6 to redirect
the traffic from the congested node. In order to achieve this, the ingress
router must have a topology stored and should be aware of the alternative
paths to the SR domain’s egress node.

Lastly, the rerouting mechanism must maintain the guaranteed QoS
service level. This requires the ingress router to obtain the traffic class of the
packet and make the rerouting decision accordingly.

1.3 Purpose

This thesis aims to provide a new mechanism to maintain the guaranteed
service quality during network congestion. This mechanism must provide
special treatment for the higher traffic class such as time sensitive
applications in order to avoid packet loss. On the other hand, the mechanism

CHAPTER 1. INTRODUCTION 13

can drop the lower priority traffic or reconsider the traffic path in order to
mitigate the ongoing network congestion. This method can help improve
the overall quality of service. In addition, the proposed approach can
enhance resource utilization as the packets with higher QoS classes are not
dropped. Hence, the allocated resource for the transmission of such packets is
effectively utilized, mitigating any potential waste. Such mechanism can be
employed in time sensitive applications such as voice call to ensure precedence
of the real-time application traffic over low priority application traffic such
as web traffic.

1.3.1 Sustainability

Considering sustainability aspects, an effective congestion control mechanism
can contribute to improved resource utilization by minimizing packet drops
and adapting to varying levels of network congestion. By optimizing resource
allocation, such a mechanism can enhance the energy efficiency of routers,
leading to reduced CPU and power consumption. Moreover, the mitigation
of congestion can have a positive impact on user experience, particularly
in real-time applications that heavily rely on low latency. Minimizing
queuing delay and, consequently, reducing latency for real-time traffic during
congestion can significantly enhance user experience in these applications.
By addressing these sustainability considerations, the proposed congestion
control mechanism can offer benefits such as enhanced resource utilization,
improved energy efficiency, and superior user experience in latency-sensitive
applications.

1.3.2 Ethical Considerations

The proposed method in this research incorporates the piggybacking of
supplementary data onto user packets, without modifying or analyzing
the actual contents of the user data. Consequently, even if a router is
compromised, the attacker is unable to access the underlying user data,
ensuring the preservation of user privacy. Moreover, this mechanism operates
without necessitating any additional actions from the user’s end, thereby
avoiding the access of user host information. Lastly, despite the contrasting
treatment given to high priority and low priority traffic within the proposed
mechanism, the protocol ensures that low priority packets are not deprived
of service or denied completely.

CHAPTER 1. INTRODUCTION 14

1.4 Goals

The goal of this work is to provide a network congestion control mechanism
based on SRv6 in order to reduce the packet loss in the router during a
network congestion and maintain the guaranteed service requirements. This
has been divided into the following three sub-goals:

1. Predict a congestion occurrence in the topology;

2. Notify the ingress router about the congested link;

3. Alter the traffic path using SRv6 to redirect the traffic away from the
congested link;

4. Provide specific treatment based on the traffic’s QoS class.

The objective of this study is to design and implement a QoS adaptive
congestion control method that leverages the capabilities offered by SRv6.
Furthermore, this research presents an analysis of packet Round Trip Time
(RTT) and queue length in routers during congestion, providing valuable
insights into their performance. Additionally, a comparative analysis of
RTT experienced by low and high-priority traffic is conducted to evaluate
the effectiveness of the newly devised method in treating different types
of traffic. Finally, this study examines the RTT comparison between the
proposed method and conventional routing methods, thereby assessing its
performance against established approaches.

1.5 Delimitations

This thesis primarily focuses on exploring the benefits of QoS adaptive
rerouting methods using SRv6, with limited emphasis on the investigation
of congestion detection techniques and various QoS methods in IPv6.
Consequently, congestion detection relies solely on queue occupancy and
queue length, while QoS relies exclusively on traffic classes without delving
into specific traffic requirements.

Furthermore, this study does not prioritize the maintenance of topology
information. Instead, the topology is hard-coded into the routers to ensure
that all routers possess awareness of the network’s topology. Additionally,
topology updates are not a central aspect of this work. Consequently, in the
event of a router failure within the network, this research does not provide
any error recovery mechanism.

CHAPTER 1. INTRODUCTION 15

1.6 Structure of the thesis

Chapter 2 offers a comprehensive overview of the essential background
information concerning SRv6, QoS, and other tools employed in this study.
It also includes a review of related works in the field. In Chapter 3, the
research methodology and methods utilized to address the problem at hand
are presented, along with an assessment of the advantages and disadvantages
associated with each approach. Chapter 4 provides a detailed account of the
implementation process of the chosen method, including the resolution of any
implementation-related challenges encountered. Moving forward, Chapter 5
focuses on the test results obtained and conducts a thorough analysis of these
findings. Finally, the study concludes with Chapter 6, summarizing the key
outcomes and implications of the research.

Chapter 2

Background

In this chapter, we begin by offering introductory details about SR and SRv6,
followed by an illustrative example to enhance understanding. Next, we
explore the concept of QoS and provide a comprehensive definition of network
congestion. Subsequently, we present extensive information on Extended
Berkeley Packet Filter (eBPF), and then dive into the eBPF hooks present
in the Linux network stack. Furthermore, we introduce a study that explores
the integration of SRv6 and Berkeley Packet Filter (BPF). Lastly, the chapter
concludes by providing an overview of the related work to this thesis.

2.1 Segment Routing (SR)

SR is a traffic engineering technology that simplifies network routing and
provides traffic engineering capabilities through a flexible and scalable
architecture. It allows network administrators to define paths for traffic flows
through the network by using a source routing paradigm. In other words,
rather than relying on intermediate routers to make forwarding decisions
based on their own knowledge of the network topology, the path for a packet
is determined by the source node by encoding the path into the packet
header. This way, the packets traverse the intermediate routers according
to the encoded path and requires no other signaling protocol. This results in
a more simplified control plane [6].

SR comprises a key concept, namely, SR domain. The SR domain refers
to a set of interconnected nodes that are equipped with the SR protocol
within a specific networking area. Each SR domain can have one or multiple
ingress and egress nodes where the ingress nodes determine the path and
encode it into the packet.

Each path is represented as a sequence of segments, where a segment is

16

CHAPTER 2. BACKGROUND 17

defined as a specific instruction. The range of instructions supported by SR
can vary from basic topological instructions, such as directing packets along
a specific link, to more intricate behavior that can be customized by the
network administrator. The segments are represented as an Multiprotocol
Label Switching (MPLS) label, or an IPv6 address in SRv6. A pointer is also
adopted to specify the current active segment in the segment list. The source
node inserts these segments into the packet header, in the desired order, to
define the path that the packet should follow through the network. Such
paths can be selected based on any arbitrary criteria and don’t necessarily
have to be the shortest. Since the packet state is included within each packet,
the intermediate SR routers can be stateless. [7]

In terms of scope, there are two types of segments, namely, global and
local segments. Global segments are known within the SR domain and
are distributed to other nodes in the domain. Local segments however are
meaningful within single node and are exclusive. Therefore they are not
propagated through the domain. Such segments are mostly used to steer a
packet within the node such as directing a packet to a specific interface or
executing a network function, such as firewalling, and DPI locally [6].

Figure 2.1: A simple SR example with equal cost links.

Figure 2.1 illustrates a simple SR domain with an example packet steered

CHAPTER 2. BACKGROUND 18

through the intermediate routers. R1 and R7 are the ingress and egress
routers respectively. For simplicity, we assume that all links within the
provided topology have the same cost.

Initially we can observe that the traversed path is not the shortest path
available from the ingress to the egress node. Taking a closer look, in step
1, the ingress router instructs the packet to be delivered to a node with
1002 Segment ID (SID). This type of segment is called a Node Segment.
A node segment represents a specific node to steer the traffic into. These
segments are considered global and therefore are propagated throughout the
domain [7]. The adopted SR action to reach a certain node is to select the
shortest path link to the specified node. In addition, in case of multiple paths
with the same cost, Equal Cost Multi-Path (ECMP) is adopted to reach the
destination which can help balance the load across the network and improve
performance. Node segments are considered to be of a specific type of Prefix
Segments. Prefix segments are global segments that are used to steer packets
toward a specific destination prefix with the same required action as node
segments.

Based on the aforementioned characteristics, R1 sends the packet to the
node holding 1002 SID via the shortest path as the first step. Upon the packet
reception by R2, and based on the segment pointer, R2 identifies that the
active segment matches its own node SID. Consequently, R2 changes the
segment pointer to point to the next segment. Analyzing the next segment,
R2 understands that it points to a local SID representing a specific service
function to be executed. Such segments are entitled as Service Segments.
Service segments describe a specific service on a node in the domain. The
services can include various processing of the traffic such as firewalling or
DPI [6]. Such capability is called Network Programming which provides
application-specific traffic engineering, and can include functionality beyond
the simple packet forwarding [7].

Subsequent to the FW function execution, in step 2, R2 moves the
segment pointer to the next segment and invokes the corresponding SR
actions. Pointing to segment 1005, R2 has two alternate paths to forward
the packet to R5. Due to the equal costs of both paths, ECMP awareness,
and semantic actions for node segments, the traffic is balanced between the
two alternative paths, one passing through R4 and the other through R3.
R5 analyzes the active segment and executes the network function DPI.

After the R5 function execution, in step 3, the next segment provides the
instruction to send the packet via a specified link. This segment is called an
Adjacency Segment. Adjacency segments are segments that help steer packets
towards an adjacent network node through a specific link. The combination
of adjacency and prefix segment can represent any path in the SR domain [8],

CHAPTER 2. BACKGROUND 19

for example, such segments can be used to prioritize low latency links over
shortest paths. In step 3 of the example, the packet in this example was
instructed to select the specified edge and avoid the shortest path to the
egress node and traverses an alternative path. Ultimately, the packet is
forwarded to the egress node with SID 1007 via R6. Upon packet reception
in R7, it removes the segment lists from the packet and forwards it out of
the SR domain.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Next Header Hdr Ext Len Routing Type Segments Left

Last Entry Flags Tag

Segment List[0] (128-bit IPv6 address)

...

Segment List[n] (128-bit IPv6 address)

Optional Type Length Value objects (variable)

Figure 2.2: Segment Routing Header

2.2 Segment Routing with IPv6 (SRv6)

SRv6 is an SR protocol based on the IPv6 forwarding plane. In SRv6, the
segments are encoded in a header called Segment Routing Header (SRH).
In the following section we will take a closer look at the SRH and the fields
involved.

2.2.1 Segment Routing Header (SRH)

Figure 2.2 depicts the structure of the SRH and the included fields. It is
worth mentioning that although SRH relies on the IPv6 header, it is not
included as a component of the IPv6 header itself. Rather, SRH comes after
the IPv6 header and its presence is determined by the Next Header field in

CHAPTER 2. BACKGROUND 20

the IPv6 header. When the Next Header is set to 43, it indicates the existence
of a routing header, specifically an SRH, following the IPv6 header.

Starting with the segment list we will take a closer look at the fields of
the SRH. The segments are stored in the segment list in the reverse order;
i,e, the last segment is placed at the zero index of the list. It is notable that
the maximum number of 128 segments can be inserted in the list. The Next
Header field point to the header subsequent to the SRH. This field is followed
by the Hdr Ext Len which provides the length of the segment list and the
optional Type Length Values (TLVs). The Routing Type is always set to 4.
In order to indicate the number of remaining segments, the Segments Left
field in the SRH is utilized. This field is an index pointing to the current
segment in the list. Moreover, the Last Entry field helps identify the first
segment in the list considering that the last segment to be executed is located
at index zero. Regarding the Flags, a single flag called H-flag is utilized to
specify the presence of an Hashed Message Authentication Code (HMAC)
TLV. In addition, an HMAC is used to verify the authenticity and integrity
of a message. It can provide protection against tampering, forgery, and replay
attacks. It can also be used as a defense mechanism against Denial of Service
(DoS) attacks where a forged SRH can cause oscillation between two routers.
As a result, the HMAC is added to the SRH as a TLV to prevent the forgery
of the SRH. The Tag can be used to classify the packets with the same
properties. As the most significant part of the SRH, the segments are stored
in a form of 128-bit IPv6 addresses, and the structure of these addresses will
be further discussed in section 2.2.2. Ultimately the SRH contains TLVs at
the bottom of the header which can be used to include additional data in
the header in the form of 3-tuples. The Type refers to a unique TLV type
using an identifier and the Length provides the size of the Value in the unit
of bytes. Three important pre-defined TLVs are as follows:

• HMAC TLV: Used to store the calculated HMAC in the SRH. It
is notable that upon storing the HMAC, the H-flag must be set to
represent the existence of HMAC in the TLVs.

• PAD0 TLV: A one-byte padding.

• PADN TLV: A padding of length 2 to 7 bytes.

Due to the 8-byte length of the Hdr Ext Len the size of the SRH must be
a multiple of 8. Therefore, the PAD0 and PADN TLVs are inserted at the
end to ensure the fulfilment of the multiple of 8 condition. [7]

CHAPTER 2. BACKGROUND 21

2.2.2 SRv6 Segments

As previously mentioned, each segment of the SRv6 consists of an IPv6
address which is called an SRv6 SID. In order to add the network
programming capability to the SRv6, each SID consists of two sections;
Locator, and Function. The locator is the N most significant bits of the
SID which represent a node. The function is the 128 − N least significant
bits of the SID which indicate a function on the node. [7]

Figure 2.3: An SRv6 SID example [9].

Figure 2.3 provides an instance of SID where N is considered to be 64.
This means that there are 64 bits representing a unique node in the SRv6
domain, and 64 bits to represent a unique function within each node. With
the assumption that the used prefix in this example for the SRv6 domain is
2001::/48, the number of nodes in the domain can be 264−48 = 216 = 65, 536.
The number of available functions on each node however can be 264. [9]

2.2.3 Processing SRH

In order to gain a better comprehension of SRv6, we will have a closer look
into how an SRv6 router processes an IPv6 packet with an SRH. There can be
three types of nodes involved in processing an SRv6 packet and its SRH [7]:

• Source SR Node: The source node, or ingress node, is responsible for
inserting the SRH in to the IPv6 packet.

• Transit Node: A transit node is a node whose SID does not match the
Destination Address (DA) of the IPv6 packet and is responsible for
forwarding the packet.

• SR Segment Endpoint Node: A node with an SID corresponding to the
packet’s DA.

To enhance our comprehension of the aforementioned concepts, we will
examine the instance depicted in Figure 2.4. Within this scenario, R2 and
R5 are allocated a Node prefix of fd00:2::/64 and fd00:5::/64, respectively,

CHAPTER 2. BACKGROUND 22

representing the SID for all the functions performed by each of these routers.
The packet in this example is directed to traverse R2, then R5, and ultimately
exit the SRv6 domain through R6, while having triggered the FW function
on both R2 and R5.

Figure 2.4: An SRv6 example with equal cost links.

In the first step, the SR Source Node (R1) augments the IPv6 header of
the packet by appending an SRH, thereby encapsulating the packet with the
specified path. At this point, the active segment is identified as fd00:2::200.
Since there are a total of three segments, the Segments Left field is assigned
a value of 2. Additionally, R1 sets the DA of the IPv6 header to match the
active segment, fd00:2::200. Consequently, R1 transmits the packet based on
the newly configured DA and by utilizing its IPv6 routing table and regular
hop-based IPv6 routing.

CHAPTER 2. BACKGROUND 23

During Step 2, upon receiving the packet, R2 initially treats it as an
ordinary IPv6 packet, examining the DA. Upon determining that the DA
corresponds to an IPv6 address within its own Node prefix, R2 proceeds to
execute the relevant function associated with the SID, i.e., the FW function.
As the DA matches the Node prefix of R2, R2 is considered as an SR Segment
Endpoint Node in this case.

After completing the function, R2 proceeds to processing the SRH and
reduces the value of the Segments Left field by one, indicating a transition to
the next segment. Additionally, R2 replaces the DA in the IPv6 header with
the new active segment, fd00:5::200. Upon updating the DA, R2 forwards
the packet according to the new DA. It is important to note that as the
packet progresses to the subsequent segment, the previous segments remain
intact within the SRH throughout the entire SRv6 process, until the packet
is decapsulated, and the SRH is removed from the packet.

In accordance with the previously elucidated ECMP mechanism and
owing to the indistinguishable costs associated with the two alternative paths
leading to R5 from R2, the packets undergo load balancing between these
two routes. Following step 2 and upon receiving the packet by both R4 or
R3, they examine the DA and recognize that it does not correspond to any
local address or prefix of their own. Consequently, these nodes abstain from
inspecting the SRH of the packets and continue forwarding them with the
existing DA using regular IPv6 hop-based routing, which is fd00:5::200. Such
nodes are categorized as Transit Nodes. A node is classified as a Transit Node
if its SID or physical address fails to match the DA.

Upon the packet’s arrival at R5, following either of the alternative
paths, R5 detects a match between its Node Prefix and the DA of the
received packet. Consequently, R5 triggers the local FW function and upon
its completion, R5 substitutes the DA in the IPv6 header with the next
segment, 2001:192:168:56:6. The packet is then forwarded accordingly to
R6. Furthermore, R5 decreases the value of the Segments Left field by one,
resulting in the Segments Left becoming zero. It is notable that R5 is also
considered as an SR Segment Endpoint Node.

In step 3, upon receiving the packet, R6 identifies a match between the
DA and the physical address of its ens6 interface. Recognizing the presence
of a SRH following the IPv6 header, indicated by the Next Header field
of the IPv6 header, R6 initiates the processing of the SRH. By inspecting
the Segments Left field within the SRH, R6 ascertains that the packet
has exhausted all its segments, as denoted by the zero value of the field.
Consequently, R6 decapsulates the packet by removing the SRH from it.
Subsequently, R6 proceeds to forward the packet to the egress network. R6
is also considered as an SR Segment Endpoint Node.

CHAPTER 2. BACKGROUND 24

There are various types of endpoint instruction available in the Linux
kernel. The default endpoint behavior is provided in listing 2.1. Within this
function, the node is responsible for checking whether any further segments
remain for the packet to traverse. If additional segments are present, the
router replaces the DA with the SID of the subsequent segment and forwards
the packet accordingly. If no more segments are present, the SRH is removed,
and the packet is treated as a conventional IPv6 packet. [10]

Listing 2.1: Default endpoint function (End)

i f (DA == l o c a l SID) {
i f (Segments Le f t > 1) {

Decreament Segments Le f t
DA = Segment L i s t [Segments Le f t]
Forward the packet based on the updated DA

} e l s e {
Decapsulate the SRH from the IPv6 packet
Forward the packet as a r e gua l r IPv6 packet

}
}

2.3 Quality of Service (QoS)

QoS is a term used to describe the ability of a computer network to deliver
data with a guaranteed level of service. In essence, it refers to the ability
of a network to prioritize certain types of data over others in order to
ensure that they are delivered in a timely and reliable manner [11]. The
need for QoS has become increasingly important as networks have become
more complex and diverse, and as the types of data that are transmitted
over a shared medium have become more varied. With the rise of real-time
applications such as voice and video conferencing, as well as the increasing
importance of data-intensive applications such as cloud computing and big
data analytics, the ability to ensure that data is delivered with a guaranteed
level of service has become essential. QoS is used to ensure that critical
applications such as voice and video conferencing are given priority over less
important applications such as email and web browsing. There are a variety
of different techniques and technologies that can be used to implement QoS
in a network. These include packet classification and marking, traffic shaping
and policing, and congestion control [12]. Each of these techniques is designed
to ensure that data is delivered with the appropriate level of service, based
on its importance and the network’s available resources.

CHAPTER 2. BACKGROUND 25

2.3.1 Differentiated Services (DiffServ)

Differentiated Services (DiffServ) is a QoS mechanism used to classify and
prioritize traffic flows on IP networks. The goal of DiffServ is to provide a
scalable and efficient way to differentiate and manage traffic flows according
to their importance or priority level. It assigns a Differentiated Services Code
Point (DSCP) value to each packet header, indicating the packet’s priority
level. Routers and switches along the network path use the DSCP value to
make forwarding decisions and prioritize traffic accordingly. [13]

DiffServ provides a flexible QoS mechanism, allowing network adminis-
trators to define different service levels for different types of traffic. For
example, video and voice traffic can be given a higher priority than email
and web browsing traffic to ensure smoother and more reliable delivery of
time-sensitive data.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

Figure 2.5: IPv6 datagram header

2.3.2 IPv6 Packet Marking

In order to provide information on the class a certain packet belongs to, the
class should be marked within the IP header of the packet. In the IPv4
header, the Type of Service (TOS) field was adopted to mark the packet.
However, in the IPv6 header, the Traffic Class field is utilized to classify
the traffic. Figure 2.5 demonstrates the IPv6 header and its 8-bit Traffic

CHAPTER 2. BACKGROUND 26

Class field. The first 6 bits of this field represent the DSCP class the packet
belongs to, and the subsequent 2 bits identify the ECN [14]. ECN flag will
be explained in more details in Section 2.4.1.

Another field within the IPv6 header that provides efficient packet
marking is Flow Label [12]. RFC3697 specifies Flow Label as a 20-bit field
that is used by the source to label the packets belonging to a certain flow.
The Flow Label is set to zero if the packet does not correspond to a flow. [15]

Mohammad Aazam et al., suggest an end-to-end QoS mechanism utilizing
the Traffic Class and Flow Label fields in the IPv6 packet header. In this
method, each mutation of Traffic Class is mapped to a 6-bit mutation of
the Flow Label, excluding 2-bit ECN from the Flow Label. The traffic
requirements such as, bandwidth, delay, and packet loss can be derived from
the 6-bit Flow Label value. [14]

2.4 Network Congestion

Network congestion is a critical issue in modern computer networks that can
significantly impact network performance and user experience. Congestion
occurs when the amount of traffic on a network exceeds its available capacity,
causing delays, packet loss, and reduced throughput.

The problem of network congestion has been studied extensively in the
field of computer networking. Early work focused on developing congestion
control algorithms for the Transmission Control Protocol (TCP) protocol,
which is the dominant protocol used for data transmission in the Internet.
These algorithms, such as Reno and New Reno, use a feedback mechanism
to detect and respond to congestion in case of a packet loss, reducing the
transmission rate of TCP flows to avoid overloading the network. However,
such algorithms treat the intermediate network as a black box and cannot
help time sensitive applications. [5] Investigating time-sensitive networks and
congestion control mechanisms within such protocols exceeds the scope of this
thesis. [16]

As network speeds have increased, new congestion control algorithms
have been developed to better handle high-speed networks and complex
network topologies. For example, the Scalable TCP (STCP) protocol uses
a hierarchical approach to congestion control, allowing flows to compete for
bandwidth at different levels of the network topology. Other protocols, such
as the Data Center TCP (DCTCP) protocol and ECN, use more sophisticated
techniques to detect and respond to congestion, such as monitoring packet
loss rates and adapting transmission rates in real-time. For example, DCTCP
adopts an algorithm that estimates the number of bytes that experienced

CHAPTER 2. BACKGROUND 27

congestion and computes a congestion level [17].
In addition to congestion control algorithms, researchers have also

explored the use of proactive techniques to prevent congestion from occurring
in the first place. Active Queue Management (AQM) algorithms, such
as Random Early Detection (RED) and Active Queue Management with
Proportional Integral controller (AQM-PI), monitor the size of network
queues and proactively drop packets to prevent congestion from building
up. [18]

More recently, there has been growing interest in using machine
learning and artificial intelligence techniques to manage network congestion.
These approaches use historical network performance data and real-time
monitoring to predict and prevent congestion before it occurs, improving
network performance and reducing the need for reactive congestion control
measures. [19]

2.4.1 Explicit Congestion Notification (ECN)

ECN is a congestion control mechanism used in the IP and TCP to improve
network performance by reducing packet loss. ECN allows the routers to
signal congestion by setting a bit in the IP header of packets. This bit,
called the ECN field, is used to inform endpoints of congestion, allowing
them to reduce their transmission rate before packet loss occurs.

The use of ECN was first proposed in 1999 by K. K. Ramakrishnan
and Sally Floyd with the goal of reducing packet loss and improving
network performance. ECN works by allowing routers to set the Congestion
Experienced (CE) flag in the IP header of packets to indicate congestion and
notify the endpoints.

ECN can be used in conjunction with other congestion control
mechanisms, such as TCP and QUIC. ECN allows TCP and QUIC endpoints
to signal congestion, with the goal of reducing packet loss and improving
network performance. [5, 20, 21] However, due to security reasons, TCP SYN
and SYN-ACK packets do not use ECN [22].

In order to benefit from the ECN advantages, the endpoints initially
need to verify that the environment is ECN-capable [22]. To that end, a
single ECN-Capable Transport (ECT) bit is designated to indicate the ECN-
capability of the endpoints. The ECT bit can indicate that the routers can
mark the packet with CE bit. Even if one router is ECN-capable, the bit
will be set. Therefore, once the ECT bit is set by the a router, it does
not have to be set again by other ECN-capable routers on the rest of the
path. The CE bit shows that the packet experienced congestion. In the case
of TCP, once the receiver endpoint receives a packet with the CE bit set,

CHAPTER 2. BACKGROUND 28

it will send an TCP Acknowledgement (ACK) with the ECN-Echo bit set,
in order to notify the sender of the experienced congestion. Subsequently,
the sender will respond with a CWR flag which means that the congestion
window was reduced. The reduction of congestion window indicates that
the transmission rate was reduced by the sender in order to adapt to the
congested environment. [5] Figure 2.6 demonstrates the explained actions
against congestion occurrence on the network.

Figure 2.6: ECN action diagram during congestion.

2.4.2 Random Early Detection (RED)

RED is an AQM technique used to prevent network congestion by discarding
packets before the queue becomes full. RED operates by monitoring the
length of a queue and randomly dropping packets before the queue exceeds
a certain threshold. By discarding packets before the queue becomes full,
RED helps prevent congestion and ensures that network traffic is distributed
fairly. [23]

RED works by monitoring the length of a queue and randomly dropping
packets when the queue exceeds a certain threshold. The threshold is
determined by two parameters, the minimum threshold and the maximum
threshold. When the queue length is below the minimum threshold,

CHAPTER 2. BACKGROUND 29

no packets are dropped. When the queue length exceeds the maximum
threshold, packets are dropped with a probability of one. When the queue
length is between the minimum and maximum thresholds, packets are
dropped randomly with a probability that increases as the queue length
approaches the maximum threshold. By dropping packets randomly, RED
ensures that all flows are treated fairly and that no single flow is able to
monopolize the queue. [18]

RED can be used in combination with ECN in order to avoid congestion.
In such scenario, instead of dropping packets, the RED algorithm sets the CE
flag in order to notify the endpoints of congestion. This mechanism can help
avoid the delay raised from the retransmision of the dropped packet. [5, 20]

2.5 Extended Berkeley Packet Filter (eBPF)

eBPF is a powerful technology that originally was developed as a packet
filtering tool for the Linux kernel, but eBPF has evolved into a general-
purpose programmable interface that can be used for a wide range of tasks,
including performance monitoring, security analysis, and application tracing.

The origins of eBPF traces back to the BPF, which was developed in
the 1990s as a way to filter packets within the kernel of the BSD operating
system. BPF used a simple bytecode language to specify packet filtering
rules, and its design was based on the concept of a virtual machine that
executed these rules in a sandboxed environment.

In 2014, eBPF was introduced as an extension to BPF that added
new features such as support for dynamically loaded code and user-defined
functions. This made it possible to use eBPF not just for packet filtering,
but also for a wide range of other tasks, including performance monitoring,
security analysis, and application tracing.

One of the key benefits of eBPF is its ability to perform these tasks with
minimal overhead. Because eBPF code is executed within the kernel itself,
it can access and modify kernel data structures directly, without the need
for expensive context switches between kernel and userspace. This makes
eBPF an ideal tool for monitoring and analyzing system performance, as it
can provide detailed insights into the behavior of the operating system and
the underlying hardware with minimal impact on system performance. [24]

Another benefit of eBPF is its flexibility. Because eBPF code is
programmable, it can be used to implement a wide range of functionality
beyond packet filtering, including custom tracing and monitoring tools,
security analysis tools, and even custom network protocols. This has made
eBPF an increasingly popular tool in the fields of cloud computing and

CHAPTER 2. BACKGROUND 30

network virtualization, where it is used to implement complex network
policies and manage virtualized infrastructure. eBPF can provide a wide
range of networking capabilities such as packet monitoring, manipulation,
and dropping. An eBPF program can be attached to the Linux networking
path through different hooks such as Xpress DataPath (XDP), Traffic
Control, and Linux Kprobes [7]. Section 2.6 provides details on the Linux
networking datapath and its hooks.

2.5.1 eBPF Execution

The execution of eBPF code is based on a just-in-time (JIT) compilation
model. When eBPF code is loaded into the kernel, it is first verified for safety,
including checking for buffer overflows and other security vulnerabilities.
Once the code is deemed safe, it is compiled in the Linux kernel into machine,
code and loaded into a program-specific memory region in the kernel. [25, 26]

When an event occurs that triggers the execution of the eBPF code, such
as the arrival of a network packet or the completion of a system call, the
kernel passes control to the eBPF program. The program is executed within
the kernel itself, using the JIT-compiled machine code. During execution,
the eBPF program can access and modify kernel data structures, including
network buffers, system call arguments, and process information.

2.5.2 BPF Maps

To facilitate data sharing between BPF programs and userspace, the Linux
kernel has introduced a generic storage mechanism known as Maps. BPF
maps are available in several types, including Hash Maps, Arrays, and more.
Userspace can access this data storage through the BPF syscall, which
enables the lookup, update, and insertion of elements. [27]

2.5.3 BPF Helpers

To enable BPF programs to interact with the system, the Linux kernel
has introduced a set of whitelisted helper functions. These functions assist
programs in performing operations like network packet manipulation, BPF
map interaction, and more. As each type of BPF program and its context
differ, every program can access only a subset of all available helpers, with
each helper accepting up to five parameters. Two primary helpers utilized
in packet manipulation are bpf skb store bytes and bpf skb load bytes, which
respectively enable writing to and reading from the packet. [28]

CHAPTER 2. BACKGROUND 31

2.6 Linux Networking

Linux networking stack is an essential part of the Linux operating system,
which provides a robust and flexible platform for network communication. It
is designed to provide a high level of performance, scalability, and reliability.
The Linux networking stack is organized in a layered architecture, which
allows for modularity and flexibility. In this section we will cover two
key elements of the Linux networking datapath; XDP, and Traffic Control.
Subsequently we will cover the involved Kprobes in the Linux networking.

2.6.1 Xpress DataPath (XDP)

XDP is a framework in the Linux kernel that enables efficient and high-speed
packet processing using eBPF applications. XDP provides a programmable
data path that allows custom logic to be executed directly on incoming
packets instantly, subsequent to packet reception by the Network Interface
Card (NIC), and before entering the kernel networking stack layers. This
results in extremely low latency and high throughput packet processing
capability. XDP can be adopted in many applications such as Distributed
Denial of Service (DDOS) attack mitigation, load balancing, and network
analytic [29–31]. An eBPF program hooked to XDP can return four different
value suggesting various actions on the packet subsequent to the program
execution [32]:

• XDP PASS: Passes the packet to the next stack normally.

• XDP DROP: Instructs to drop the packet before entering the Linux
networking stack. It should be noted that dropping at this stage
provides more efficiency due to taking place prior to buffer allocation
for the packet.

• XDP TX: Forward the packet out of the interface on which the packet
was received.

• XDP REDIRECT: Redirect the packet to a specified interface,
bypassing the Linux networking stack.

It is worth noting that XDP is limited to use in the ingress data path.
Listing 2.2 illustrates an example of an eBPF program attached to XDP,
which drops IPv6 packets with traffic class zero.

CHAPTER 2. BACKGROUND 32

Listing 2.2: eBPF program example attached to the XDP hook.

i n t xdp drop (s t ruc t xdp md ∗ ctx) {
void ∗data end = (void ∗) (long) ctx−>data end ;
s t ruc t ethhdr ∗ eth = (s t ruc t ethhdr ∗) (long) ctx−>data ;

i f (eth + 1 > (s t ruc t ethhdr ∗) data end)
return XDPDROP;

i f (eth−>h proto != htons (ETH P IPV6))
return XDP PASS;

s t ruc t ipv6hdr ∗ ipv6 = (s t ruc t ipv6hdr ∗)
(eth + 1) ;

i f (ipv6 + 1 > (s t ruc t ipv6hdr ∗) data end)
return XDPDROP;

return ipv6−>p r i o r i t y == 0 ? XDPDROP : XDP PASS;
}

2.6.2 Traffic Control

Traffic Control is a subsystem that allows for fine-grained control over how
network traffic is transmitted, queued, shaped, and prioritized. It can be used
to apply a variety of network policies to control bandwidth, delay, packet loss,
and other network characteristics. Traffic Control works by attaching traffic
control filters and actions to network interfaces and traffic classes. Filters
allow for the selection of packets based on a variety of criteria, such as IP
addresses, ports, protocols, or traffic marks. Actions can then be applied to
the selected packets, such as queuing, shaping, policing, or dropping. eBPF
programs can be attached to Traffic Control filters and actions, allowing
for more advanced packet processing and policy enforcement. Listing 2.3
provides an example eBPF program attached to Traffic Control that drops
IPv6 packets.

Listing 2.3: eBPF program attached to Traffic Control.

i n t t c drop (s t ruc t xdp md ∗ ctx) {
void ∗data = (void ∗) (long) skb−>data ;

CHAPTER 2. BACKGROUND 33

void ∗data end = (void ∗) (long) skb−>data end ;

s t ruc t ethhdr ∗ eth = data ;
i f (eth + 1 > (s t ruc t ethhdr ∗) data end)

return TC ACT OK;

i f (eth−>h proto != htons (ETH P IPV6))
return TC ACT OK;

return TC ACT SHOT;
}

Moreover, one of the major parts of Traffic Control is Queuing Disciplines
(Qdiscs). Qdisc is a data structure that represents a network packet scheduler
for a specific network interface. A Qdisc defines the rules for how packets
are queued and dequeued on the interface, and can be used to implement
a variety of network policies, such as traffic shaping, prioritization, and
congestion control. There are several types of Qdisc in the Linux kernel,
each with its own characteristics and use cases. For example, the pfifo fast
Qdisc implements a simple FIFO (first in, first out) queuing discipline with
three priority bands, while the htb Qdisc implements a hierarchical token
bucket algorithm for bandwidth allocation and traffic shaping. [33]

2.6.3 Kprobes

In the Linux kernel, Kprobes are a dynamic tracing mechanism that allows
developers and system administrators to intercept and modify the execution
of kernel code at runtime, without requiring recompilation or rebooting
the system. Kprobes can be used to diagnose and debug kernel code, to
collect performance metrics, or to implement custom instrumentation and
monitoring. [34]

Kprobes work by inserting a breakpoint (a probe) at a specific instruction
location in the kernel code, and executing a custom probe function when
the breakpoint is hit. The probe function can inspect and modify the kernel
state, and can optionally resume the original execution of the code or replace
it with a different function.

Kprobes are a powerful and flexible tool for kernel tracing and
instrumentation, and are widely used in Linux-based development, testing,
and production environments. Kprobes can be used in conjunction with
other Linux tracing and profiling mechanisms, such as eBPF, to provide a
comprehensive view of the kernel behavior and performance. [35]

CHAPTER 2. BACKGROUND 34

In the Linux networking datapath, Kprobes specify a breakpoint
subsequent to the execution of networking functions such as dev queue xmit,
ip rcv, etc. As a result, an eBPF program attached to a Kprobes will be
triggered after the execution of the corresponding function, and will be passed
the network function arguments. [35] Listing 2.4 provides an eBPF program
example attached to the dev queue xmit Kprobe that prints the source IP
address of each transmitting packet.

Listing 2.4: Example eBPF code attached to the dev queue xmit Kprobe.

i n t t ransmit (s t ruc t p t r e g s ∗ ctx ,
s t ruc t s k bu f f ∗ skb) {

u32 s r c ;
s t ruc t iphdr ∗ ip = (s t ruc t iphdr ∗) (skb−>data +

s i z e o f (s t ruc t ethhdr)) ;
s r c = ip−>saddr ;
b p f t r a c e p r i n t k (Source Address : ”%d\\n” , s r c) ;
return 0 ;

}

2.7 BPF Additions to Linux SRv6

In [7], Xhonneux et al., have extended the Linux network stack with SRv6
programmability. Their contribution involves the development of a novel
eBPF program type that enables increased flexibility in SRv6 functions
within Linux routers. Specifically, the authors have implemented the
LWT SEG6LOCAL program type to leverage BPF’s capabilities and enable
various operations on packet information, including the SRH. Nonetheless,
the BPF kernel’s constraints in packet operations remain applicable, such as:

• The BPF program has read-only access to non-sensitive packet fields;

• The packet’s fields are only available through provided helpers to ensure
packet’s integrity;

• In case of a corruption in the packet’s integrity caused by a BPF
program, the packet must be dropped.

To enhance the flexibility of SRv6 functions and broaden the scope
of possible packet operations, Mathieu Xhonneux et al., expand the

CHAPTER 2. BACKGROUND 35

functionality of these programs through the provision of supplementary BPF
helpers within the BPF program type [7]. These helpers facilitate the
following capabilities:

• Write to non-sensitive packet fields;

• Add, modify, or remove TLVs in the packet’s SRH;

• Perform any of the pre-defined SRv6 functions such as, END.DT6,
END.B6, etc, in the program [36].

There are three helpers introduced by Xhonneux et al., ; bpf lwt seg6 store bytes,
bpf lwt seg6 adjust srh, bpf lwt seg6 action, and bpf lwt push encap. It is
notable that all these functions take a pointer to packet called skb as a
parameter [28].

The bpf lwt seg6 store bytes function enables the indirect modification
of packets, which is necessary in certain use-cases that involve editing the
SRH. This function is required because BPF programs are restricted from
directly modifying packets. However, certain field modifications can produce
erroneous values and lead to invalid SRHs. Therefore, this function restricts
the modifiable fields to flags, tags, and potential TLVs.

The bpf lwt seg6 adjust srh function is designed to expand or reduce the
bottom of the SRH, which can assist in the addition or removal of TLVs.
This feature is particularly valuable because bpf lwt seg6 store bytes is only
suitable for modifying fields. The bpf lwt seg6 adjust srh function accepts
two main parameters: the first parameter specifies an offset from which the
SRH should grow or shrink, and the second parameter indicates the number
of bytes to allocate or remove from the offset. Importantly, a negative value
in the second parameter indicates a reduction in the size of the SRH.

The bpf lwt seg6 action function was introduced in [7] to enable
the invocation of seg6local generic functions, including END.X, END.T,
END.DT6, and others, within a BPF program. This helper function can
be employed multiple times within a single BPF program execution. There
are two main parameters used in the bpf lwt seg6 action function. The first
parameter specifies which function to execute, while the second parameter
serves as the parameter for the generic function as each generic function
requires exactly one parameter for its call [28].

Lastly, the bpf lwt push encap function can be utilized to insert an SRH
dynamically into an IPv6 packet or encapsulate a packet with an IPv6 header
that includes an SRH. To achieve this, the function requires a pointer to the
targeted header that will undergo encapsulation as its parameter.

CHAPTER 2. BACKGROUND 36

2.8 Related Work

This section will undertake an examination of the previous research
conducted in this domain and deliberate on the deficiencies in the body of
the related work. The selection criteria for the relevant literature focused on
works that explore the utilization of SRv6 based or QoS adaptive rerouting
to mitigate congestion.

2.8.1 Congestion Prevention Local Rerouting

Polverini et al., propose an SRv6 based solution for tackling network
congestion, wherein local rerouting decisions are made based on the current
state of the SRv6 domain obtained via IN band Telemetry (INT). [37] Their
approach involves instructing the ingress routers to choose routes with the
capacity to deliver the incoming packets using their proposed algorithm
which utilizes the INT obtained information. However, this algorithm does
not consider QoS parameters, implying that packets are treated uniformly,
irrespective of their QoS class or service level. This may lead to the selection
of a path with minimal congestion but with high latency for time-sensitive
traffic, which means that this approach cannot accommodate different service
levels. On the other hand, the local rerouting mechanism proves to exhibit an
enhanced network performance concerning the router buffer occupation and
consequently the latency. Hence, the proposed method can reduce queuing
delay of the packet and increase the overall quality of service.

2.8.2 QoS Adaptive Congestion Control

In consideration of QoS in the network congestion control, Obaidur Rahman
et al., proposed a congestion control mechanism for wireless sensor networks,
wherein two primary QoS categories, namely real-time and non-real-time,
are employed. [38] The approach prioritizes real-time applications upon
detection of congestion, and performs local re-routing. Additionally, Obaidur
Rahman et al., utilize congestion notification flag to alert other nodes of
the congestion, thereby preventing additional traffic from being sent to
the congested node. However, this method’s limitation of classifying QoS
into just two categories may restrict the types of applications and the
corresponding guaranteed service levels. Furthermore, the local rerouting
decision provided may not be applicable to non-wireless sensor networks
since it is unaware of the entire network’s status. Lastly, this method does
not adopt the SRv6 traffic engineering capabilities to perform rerouting.

CHAPTER 2. BACKGROUND 37

2.8.3 Multi-path TCP with SRv6

From an academic standpoint, Mathieu Jadin et al., introduced a novel
variation of TCP in their research, focusing on the application of SRv6
in the transport layer. Their study explores the utilization of SRv6’s
traffic engineering capabilities to direct TCP connection traffic along fully
functional paths, allowing for diverse routing options towards the destination.
To achieve this, they employed eBPF to embed the SRH containing the SRv6
path into TCP packets within a Linux environment. The proposed method,
referred to as TCP Path Changer (TPC), effectively detects link failures and
reroutes traffic as necessary. [39]

However, similar to ECN, TPC operates at a higher layer and lacks control
over the flow of other network traffic. Consequently, if a low delay path
exists between two endpoints, all instances of TPC will converge on that link,
causing congestion due to their unawareness of simultaneous connections.
Moreover, TPC does not provide QoS support, treating all traffic classes
equally.

Chapter 3

Methods

In this chapter we discuss the steps involved in this research, the adopted test
environment, and various methods to address the network congestion using
an adaptive approach to manage QoS. Ultimately, the chapter introduces the
final adopted mechanism named ”Sepitto”.

3.1 Research Process

In this section, we explain the different aspects of this work and the sequence
in which this work addresses them. The steps involved in the process of this
work are:

Step 1 analyze different methods of congestion detection and notification,

Step 2 experiment the analyzed methods using Linux routers to choose the
most viable,

Step 3 design the architecture of the implementation of the chosen method,

Step 4 implement and perform initial tests on the method in the testbed,

Step 5 experiment the method and monitor involved parameters,

Step 6 analyze and discuss the results.

Firstly, an analysis was conducted on RED AQM method. Furthermore,
the research involved examining different approaches to accessing queue
information on Linux systems, including queue length and drop count,
due to the utilization of Linux routers in the testbed. Additionally,
multiple congestion notification methods were explored to effectively
inform ingress routers of congestion within an SRv6 domain. These
methods were subsequently tested to demonstrate their effectiveness in

38

CHAPTER 3. METHODS 39

congestion detection. Following a thorough study of the advantages and
disadvantages of the examined methods, the final mechanism was determined.
Subsequently, the system was designed and implemented on Linux-based
routers. Comprehensive testing of the entire system was then carried out,
while closely monitoring essential parameters such as RTT and queue length.
Finally, the results obtained were discussed and analyzed to gain deeper
insights into the research findings.

3.2 Experimental design and

Planned Measurements

Figure 3.1 provides an illustration of the testbed employed. The testbed
consists of routers R1 and R4, which serve as the ingress and egress
routers and are referred to as edge routers, while R2 and R3 are considered
intermediate routers. Moreover, the figure includes the interface names for
each router. For instance, the ens6 interface of R2 is connected to ens5
interface of R4. All four routers are situated within a single SRv6 domain.
Each router is a Linux router running Ubuntu 20.04.1 LTS with a kernel
version of 5.4.0-149-generic. For the utilization of eBPF in the routers, bcc
0.12.0-2 was installed on each router. The operating system of the hosts
involved in the experiment matches that of the routers. All nodes, including
the hosts, are virtual machines hosted on the OpenStack platform. Each
machine is equipped with 4GB of RAM and 3 virtual CPUs. To establish
network connectivity, individual networks are assigned to each link between
the routers, with a subnet of 2001:192:168:AB::/64, where A and B denote
the connecting routers on either side of the edge, ordered by the router with
the lower number. For instance, the subnet assigned to the link connecting
R2 and R3 is 2001:192:168:23::/64. Host1 and Host2 are part of the subnets
2001:192:168:1::/64 and 2001:192:168:4::/64, respectively.

The experimentation procedure involved conducting tests using the ping
command, which utilizes the Internet Control Message Protocol (ICMP)
packets to measure latency. To simulate a congestion scenario, ICMP packets
were sent out at intervals of 10 milliseconds. Furthermore, Linux traffic
control was employed to reduce the bandwidth of the network interface
(ens6) on routers R2 and/or R3, intentionally creating a bottleneck where
congestion would occur. Thus, the queue length associated with ens6 on both
R2 and R3 became another crucial factor to analyze during the tests.

To induce a bottleneck, we adopted the Token Buffer Filter (TBF) Qdisc
in our experiment. The TBF Qdisc is a queuing discipline used in network

CHAPTER 3. METHODS 40

Figure 3.1: Test environment

traffic control. It employs a token bucket algorithm to regulate the rate
at which packets are transmitted. The token bucket algorithm maintains a
virtual bucket that holds a certain number of tokens. Each token corresponds
to a fixed amount of data or transmission capacity. At regular intervals,
tokens are added to the bucket at a predetermined rate, known as the token
arrival rate. When a packet needs to be transmitted, it must consume a
number of tokens equal to its size. If there are enough tokens available in the
bucket, the packet is allowed to be transmitted. However, if the bucket is
empty or does not have enough tokens, the packet is temporarily held back
until sufficient tokens accumulate. This token-based mechanism enforces a
rate limit on the outgoing traffic. TBF also prevents excessive bursts of traffic
that could overload the network or violate specified bandwidth constraints.
As a result, if the occupied queue size surpasses a certain threshold, TBF
drops the packets. [40, 41]

Primarily in order to induce congestion, we restricted the bandwidth to
80 kbits/s. We further adjusted the maximum duration for a packet to obtain
a token to 10 ms. This implies that each packet is granted a maximum of 10
ms to acquire the necessary tokens; otherwise, it will be discarded. Moreover,
we configured the Qdisc’s burst size to 65 kbits.

Furthermore, two types of traffic, namely high priority and low priority,
were transmitted through the network via two individual ping instances to
investigate the desired differentiated treatment between different QoS classes
during congestion. The chosen interval for each ping instance was carefully
determined. The interval needed to be high enough to induce congestion
when running two simultaneous pings, but not excessively high to cause
congestion by just running a single ping instance. Hence, the 10 millisecond

CHAPTER 3. METHODS 41

interval was adopted for the ping measurements.
To enhance the reliability of the results, each test was ran for a

duration of 50 seconds, with both QoS classes’ pings running simultaneously.
Additionally, the test was repeated 15 times to ensure robustness and provide
greater confidence in the obtained outcomes. Moreover, to mitigate potential
issues arising from the cloud environment and avoid interference from noisy
neighbors, the tests were conducted during off-peak hours (midnight) and on
weekends.

3.3 Congestion Detection

The primary focus of this section revolves around exploring diverse methods
for congestion detection, as well as notifying edge routers about the presence
of congestion in order to alleviate its impact. Additionally, the section
examines the advantages and disadvantages associated with each of the
approaches discussed.

The incidence of network congestion involves multiple factors, including
the quantity of packets present in the router queue, the occupied buffer size,
and the frequency of packet drops. These parameters are represented within
the Linux Kernel as a struct called gnet stats queue, and are unique to each
interface, accessible to both the user space and kernel. In the context of
an SRv6 domain, both intermediate and edge routers have the capability to
identify congestion within the domain.

3.3.1 Intermediate Router Congestion Detection

Each intermediate router can access its own interface statistics, enabling
direct monitoring of the relevant parameters and prompt detection of
congestion. The router can choose to collect statistics periodically or upon
packet transmission from a specific interface. To obtain statistics upon packet
transmission, an eBPF program must be attached to dev hard queue xmit
kprobe for execution. However, this can result in additional processing
overhead due to the extra procedures involved prior to transmission.
Furthermore, the effectiveness of this approach depends largely on the
method used to notify the ingress router of congestion.

To inform the edge routers of a congestion event, intermediate routers
have the option of transmitting separate packets to the edge routers or
piggybacking the notification onto user traffic passing through the network.
If separate packets are used, control message protocols such as ICMP can be
employed. However, this approach carries the risk of control messages being

CHAPTER 3. METHODS 42

dropped due to network congestion, delaying the activation of congestion
control mechanism. Additionally, it can exacerbate congestion by filling the
queues of intermediate routers, leading to unwanted queuing delays for user
packets.

Conversely, to piggyback the notification onto user traffic, the router can
utilize the TLVs available in SRH. Although this approach alleviates the
added queuing delay by avoiding separate notification packets, it still faces
the risk of dropped notifications. Moreover, adding the notification increases
the packet size, resulting in greater transmission delay for user packets. It
is important to note that relying on user traffic for congestion notification is
not a concern. The reason is that when the network experiences insufficient
traffic flow, it indicates that no additional actions are necessary to mitigate
congestion.

3.3.2 Ingress Router Congestion Detection

Alternatively, the ingress router can also detect congestion based on interface
statistics. However, this approach requires intermediate routers to transmit
the statistics to the edge routers. One possible way to achieve this is for the
intermediate routers to periodically send the statistics to the edge router,
which can result in additional traffic and exacerbate congestion. Another
method, referred to as INT, involves embedding the statistical information
onto user packets, and parsing the data at the edge routers. However, this
approach increases the size of packets and can lead to greater transmission
delays. TLVs can be utilized to include statistical information piggybacked
on the user packet.

One advantage of this approach is its ability to detect congestion instantly,
as congestion notification from congested intermediate routers to edge routers
is not necessary. Additionally, since statistical information is included in all
user traffic, packet drops do not impact the method’s effectiveness as there
is always at least one packet that reaches the edge router during congestion.
Thus, edge routers can still parse the statistics and implement congestion
control methods if necessary. Furthermore, the size of the added metadata
can be negligible if efficiently incorporated into the packet’s SRH.

A drawback of the INT-based approach lies in its dependence on
bidirectional traffic. Illustrated in Figure 3.1, if we consider the scenario
where unidirectional traffic travels from R1 to R4 through R2, R4 will
receive the statistical data embedded in the received packet by R2. However,
since there is no traffic in the opposite direction, R1 will never gather any
information about R2, resulting in the inability of R1 to detect congestion on
R2. As a consequence, R1 fails to divert traffic away from the congestion for

CHAPTER 3. METHODS 43

mitigation purposes. Nonetheless, given the prevalent bidirectional nature of
computer networks, this issue is largely resolved by itself. It is noteworthy
that the packets moving in opposite directions need not be relevant or part
of the same connection. Therefore, as long as there is at least one packet
traveling in each direction within a certain interval, the INT-based approach
can effectively deliver statistical information to all edge routers.

3.3.3 Detection Method Comparison

In general, the INT-based congestion detection approach offers greater
efficiency and less overhead compared to other methods. Although this
method relies on bidirectional user traffic to provide statistical information
at both ingress and egress routers, this does not pose a problem due
to the bidirectional nature of Internet traffic. Moreover, the added size
overhead on user packets does not significantly affect performance due to
the negligible ratio of the overhead to the transmission rate of modern NICs.
On the other hand, the use of Jumbograms in data centers minimizes the
added overhead problem. Jumbograms are larger-sized packets that exceed
the standard Maximum Transmission Unit (MTU) size, allowing for more
data to be transmitted per packet. When jumbograms are employed, the
additional overhead introduced by including extra information in the packet
header becomes less problematic. This is because the larger payload size of
jumbograms compensates for the increased header overhead. As a result, the
overall ratio of header overhead to payload decreases, minimizing the impact
on network efficiency.

An additional advantage of the INT method is that it is not dependent
on a separate congestion notification mechanisms, as congestion is detected
at the edge routers where the corresponding congestion control mechanism
should be applied. As a result, the delay between congestion detection
and the initiation of the appropriate congestion control is minimized.
Furthermore, this independence can mitigate the problem of dropped
congestion notifications that can occur with other methods discussed earlier.

3.4 Congestion Control

In the event of congestion, the edge routers must take action to reroute
traffic to avoid the congested links. This can be done using SRv6 protocol.
Due to the segment routing characteristics, the ingress routers can steer the
packet into a desired path. Consequently, they should maintain topology
information to be aware of various paths to the egress nodes. On the other

CHAPTER 3. METHODS 44

hand, based on the chosen method in Section 3.3, the ingress router will be
informed of the traffic level in each link of the network. With the help of
such data, the ingress router can choose the path with the least traffic level.

In situations where there is a significant increase in traffic volume, leading
to congestion in all intermediate routers, it becomes necessary to activate a
new congestion control mechanism within the domain. The purpose of this
mechanism is to selectively drop low priority packets, such as web traffic, at
the ingress routers. By doing so, the dropping mechanism aims to allocate
resources to prioritize high priority packets. The mechanism will continue to
operate until the traffic volume decreases to a specific threshold.

3.5 Path Selection Issue

As previously mentioned, the INT information is embedded in the header
of data-plane packets, allowing them to carry the information about the
routers they have traversed. Consequently, the edge routers may not receive
information about routers that are not part of the forwarding path. This
limitation can rise several challenges in the employed congestion control
method. For instance, consider Figure 3.1 where path A consists of routers
[R1, R2, R4], and path B consists of routers [R4, R3, R1]. In this
scenario asymmetric paths, incoming traffic from R1 follows path A, while
traffic from R4 takes path B. As a result, router R1 receives traffic from
path B and gathers information about the involved routers. However, to
monitor the congestion situation on path A, R1 requires statistics from R2.
Unfortunately, due to the aforementioned situation, R1 is not aware of R2
and, consequently, cannot detect congestion occurring on R2. This same
issue applies to R4’s attempts to detect congestion on R3.

In general, there are two approaches to address this issue. The first
approach involves rerouting using paths that traverse all intermediate routers
in order to gather their statistical information. However, this method is
considered naive due to its inherent drawbacks, including increased latency
and resource utilization that are unnecessary.

The second approach involves utilizing two types of paths: an active path
and a complement path. The active path is chosen by the edge routers based
on the aforementioned criteria, aiming for the least congested route. On the
other hand, the complement path covers all the intermediate nodes that are
not part of the active path. The ingress router directs high priority packets
through the active path, while low priority traffic is periodically directed to
the complement path every t milliseconds, with the rest of the low priority
traffic normally using the active path.

CHAPTER 3. METHODS 45

By implementing this solution, the additional latency is minimized, and
the necessary information can be collected to detect congestion at any link
in the network. Furthermore, this method ensures a high quality of service
for high priority packets, as they continue to be forwarded through a path
with minimal congestion.

3.6 Sepitto Method

Building upon the preceding sections in this chapter, the present study
introduces ”Sepitto”, a method that employs an INT-based congestion
detection approach. In this method, the edge routers gather information
pertaining to the intermediate routers, enabling them to select less congested
paths for data transmission. Sepitto also tackles the challenge highlighted
in Section 3.5 by selecting an active path and a complementary path.
Additionally, Sepitto incorporates a dropping mechanism to address scenarios
of severe congestion, wherein the network fails to effectively mitigate the
congestion. More details of the Sepitto method and its implementation is
provided in the next chapter.

Chapter 4

Implementation

The illustrated diagram in Figure 4.1 provides an overview of the architecture
implemented in Sepitto. Specifically, Figure 4.1a depicts the components
employed in edge routers, while Figure 4.1b showcases the components
engaged in intermediate routers. In this chapter, the eBPF program hooks
will be elaborated upon initially, followed by a thorough examination of the
functionality of both edge and intermediate routers. Lastly, a sample cost
mapping function will be presented, which serves the purpose of analyzing
the performance of Sepitto.

(a) Edge router (b) Intermediate router

Figure 4.1: Congestion control mechanism architecture

46

CHAPTER 4. IMPLEMENTATION 47

4.1 eBPF Hook

In this implementation, two types of eBPF programs, namely LWT IN and
LWT SEG6LOCAL, are utilized. Each of these program types is associated
with a specific entry in the routing table. Consequently, when a forwarded
packet matches with that particular entry, the corresponding eBPF program
is executed on the packet. The program itself possesses the capability to
determine whether the packet should be dropped or forwarded.

The TLV parser and reporter components are of type LWT SEG6LOCAL
programs, while the encapsulator is classified as an LWT IN program.
During initialization, the edge routers are instructed to add an entry to
their routing table, directing towards the egress network, and to attach
the encapsulator program to that entry. Furthermore, the edge routers are
configured to connect the TLV parser program to a routing entry, pointing
to an SID representing the TLV parser function. As mentioned in the
background, each SID consists of a Locator and a Function Identifier. In
this work we have assigned the Locator, which represents the Node Prefix
of each node, as fd00:x::/64 where x denotes the number associated with
the respective router. For example, R1 is assigned fd00:1::/64 as its Node
Prefix, and all R1’s SRv6 functions can obtain an IPv6 address under
that prefix as their SID. It is important to note that the designated Node
Prefix is independent from the node’s physical IPv6 addresses. In this
implementation, the function identifier for TLV parsers is designated as
101. For instance, the designated SID for the TLV parser running on R1
is fd00:1::101.

Lastly, the intermediate routers attach the TLV reporter program to
the routing table. The designated entry (SID) for the reporter program
is assigned a function identifier of 100. Therefore, based on the assigned
Node Prefix to each node, a reporter function running on R2 would have
fd00:2::100 as its associated SID.

4.2 Intermediate Router

The primary responsibility of each SRv6 capable intermediate router is to
incorporate interface statistics into data-plane packets. This objective is
accomplished through the utilization of two main components: the Reporting
Agent and the TLV reporter. The Reporting Agent is accountable for
collecting statistics from the interfaces of the router. Utilizing the Pyroute2
library, this component iterates through all the router’s interfaces at one-
millisecond intervals, extracting statistics such as backlog, queue length,

CHAPTER 4. IMPLEMENTATION 48

and packet drops. Once the reporting agent extracts this information, it
communicates the statistics to the TLV reporter eBPF program via an eBPF
map.

An alternative approach to embedding the statistics in the packets
would involve the eBPF program retrieving the statistics directly from
the interfaces. However, this method would incur additional processing
overhead for each packet which would increase the latency for the packet.
In contrast, by obtaining interface statistics using a user daemon, such
processing overhead can be avoided.

Once the eBPF program receives the statistics, its responsibility is to
incorporate this information into the forwarding packets. The program
achieves this by appending a TLV to the SRH of the packet. The structure of
the TLV that we have designed to embed various interface statistics in SRH is
depicted in Figure 4.2. The TLV type is consistently set to 6, indicating INT
data. The length field specifies the size of the value in bytes. The Segment
Index field indicates the index of the reporting router in the SRH’s segment
list. This field assists the parser in extracting the SID of the corresponding
TLV from the SRH, enabling the association of the TLV information with it.
The subsequent single byte is reserved for potential future use cases, followed
by the interface statistics that represent each interface of the reporting router.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type: 6 Length Segment Index Reserved

Interface Stat 1

...

Interface Stat n

Figure 4.2: Statistics TLV

Figure 4.3 illustrates a the Interface Stat structure that we have designed
to add to the TLV depicted in 4.2. The first field represents the index of
the interface being reported by the intermediate router. Qlen indicates the
number of packets observed in the queue. The High and Low fields indicate
the size of the occupied queue in bytes (backlog) and the number of packet
drops occurring within a one-millisecond interval.

To represent the backlog and packet drops within a two-byte field, the
router allocates the 7 most significant bits to denote the number of packet
drops. Consequently, the maximum value that can be reported for packet
drops is limited to 127. Therefore, if the number of drops within one
millisecond exceeds 127, the router will continue reporting 127 as the INT

CHAPTER 4. IMPLEMENTATION 49

data. The remaining 9 least significant bits are allocated to represent the
backlog, albeit limiting the backlog to 511 bytes may not be entirely realistic.
Hence, the backlog is divided by 128. Consequently, any backlog below 128
will be reported as zero, and the maximum value the router can report will
be 65408 bytes. This division is justified based on the reasoning that changes
below 128 bytes in the backlog may not have a significant impact since 128
bytes can barely account for an average size TCP packet. However, larger
backlog values can indicate congestion. Therefore, reporting higher values
for the backlog holds greater significance in determining network congestion.

The number of reported interfaces can be determined by utilizing the
length field, given the fixed size of each interface statistic. By applying the
formula (len − 2)/4, we can calculate the number of interfaces where len
denotes the length of the TLV. The subtraction by 2 bytes accounts for the
segment index and the reserved field, and the resulting value is divided by
the length of each interface statistic, which is 4 bytes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ifindex Qlen High Low

Figure 4.3: Interface Statistic Header

In accordance with the SRH rules discussed in Chapter 2, the length
of the SRH must be a multiple of 8. If the added TLV does not adhere
to this rule, padding will be necessary in the SRH, leading to performance
overhead. However, the design of the TLV fields in this mechanism mitigates
such overhead in 50% of cases. This is due to the fact that the statistic TLV
includes 4 bytes of metadata in addition to each interface statistic containing
4 bytes of data. Consequently, in scenarios where the number of interfaces is
odd, the size of the TLV will already be a multiple of 8. Hence, no padding
will be required in the SRH.

4.3 Edge Router

The SRv6 capable edge routers, e.g., ingress and egress routers, fulfill two
primary functions. Firstly, they are responsible for parsing the embedded
statistics upon receiving packets. Secondly, they steer the ingress packets
towards the least congested path. These capabilities are facilitated through
the utilization of two distinct eBPF programs, each interacting with the
Routing Agent. The Routing Agent is responsible for gathering the statistics
and making decisions regarding the traffic path.

CHAPTER 4. IMPLEMENTATION 50

4.3.1 Parsing Statistics

The extraction of information from the TLV of each packet is accomplished
by the parser eBPF program. When a packet is received, the eBPF TLV
parser retrieves the statistics contained within the TLV and communicates
the statistics to the Routing Agent via an eBPF map. Additionally, the
program is tasked with extracting the SID associated with the reported
Segment Index in the TLV from the SRH.

4.3.2 Steering Ingress Traffic

In order to include the appropriate path within the SRH for ingress traffic, an
eBPF program of LWT IN type has been implemented. The rationale behind
employing an eBPF program for this purpose is to enable dynamic traffic
steering into different paths, taking into account their QoS classification. In
contrast, utilizing a static seg6 Linux route for encapsulating traffic lacks the
capability to encapsulate it based on the QoS class. Furthermore, addressing
the issue discussed in Section 3.5, the eBPF encapsulator needs to possess
the ability to dynamically steer the packets into a different paths based on a
timer.

Figure 4.4 illustrates the operational sequence of the encapsulator
program. Initially, the program determines the priority of the packet. If
the packet belongs to the high priority class, it is enclosed within an SRH
pointing to the active path, which is the least congested route. Alternatively,
if the packet does not belong to the high priority class, the program checks
whether 100 milliseconds have elapsed since the last packet was sent via
the complementary path. If this condition is satisfied, the current packet is
encapsulated with the complementary path, and the timer is reset. However,
if the time condition is not met, the program proceeds to evaluate whether
the packet needs to be dropped or not. If the dropping mechanism is
activated, the current packet is discarded as further elaborated in Section
4.3.3. Conversely, if the dropping mechanism is not active, the packet is
forwarded through the active path.

4.3.3 Routing Agent

The routing agent assumes the responsibility of collecting the statistics from
all the nodes within the domain and determining the optimal path towards
the egress node. To accomplish this, the agent must store the statistics and
make the necessary recalculations when there are changes in the reported

CHAPTER 4. IMPLEMENTATION 51

Figure 4.4: Encapsulator program flow chart.

parameters. Figure 4.5 depicts the workflow of the agent program within
each one-millisecond interval.

Initially, the agent aims to identify the optimal path without considering
any congested links. It employs the Dijkstra algorithm to find the path with
the minimum cost, where the cost reflects the congestion level of each link.
At the beginning, the cost of all links is set to one, allowing the agent to

CHAPTER 4. IMPLEMENTATION 52

Figure 4.5: Routing Agent flow chart.

select the shortest path to the egress node as the initial path.
Subsequently, the agent proceeds with gathering the parsed statistics

reported by the intermediate routers to determine the congestion level of
the links. Within each interval, if the agent encounters new information
that differs from the previously collected statistics, it attempts to recalculate
the cost associated with the corresponding link. If the cost has changed,

CHAPTER 4. IMPLEMENTATION 53

the agent initiates a search for a new optimal path. If the newly calculated
optimal path differs from the previous one, the agent needs to determine
the complementary path and to inject both paths into the encapsulator
eBPF program in order to implement the path change. This process occurs
periodically at one-millisecond intervals.

The method of cost calculation can be approached in many different
ways and may differ based on the specific demands of the network. For
instance, when the objective is to minimize queuing delay, the cost should
predominantly consider the length of the queue. Given these variations,
this implementation offers an interface for specifying the policy for cost
calculation. Consequently, network administrators have the ability to adjust
the cost calculation function to suit their specific requirements. This
flexibility enables the integration of AI-based decision-making mechanisms,
enhancing the resilience of the cost calculation process and facilitating the
attainment of desired network objectives.

When congestion arises throughout the entire network topology and the
cost associated with the active path exceeds the specified dropping threshold,
the agent triggers the activation of the packet dropping mechanism within
the encapsulator. This threshold represents the maximum allowed cost for
the least congested path before the packet dropping mechanism is activated.
The dropping threshold can be configured by the network administrator and
must be determined based on the specific characteristics of the topology and
the network’s requirements. Once the dropping mechanism is enabled, the
encapsulator discards low-priority traffic, except under certain conditions
elaborated upon in Section 4.3.2.

4.3.4 A Sample Cost Map

This study utilizes and examines an illustrative cost map that aims to
minimize queuing delay in routers. Queuing delay is directly proportional
to the number of packets in the queue, so the objective of the cost map
is to assign higher costs as the queue size increases. Table 4.1 illustrates
different ranges of queue lengths and their corresponding costs. However,
this approach can lead to oscillations when the queue length decreases. For
instance, if the reported queue length is 11 and the ingress router attempts
to reroute to alleviate congestion, the queue size decreases until it reaches 9.
According to the provided mapping system, the ingress router interprets this
as no congestion, causing the active path to revert back and the previously
congested router to become congested again. As a result, the ingress router
deflects traffic once more, leading to a recurring cycle of oscillation. These
instantaneous switches impose additional overhead on the ingress router.

CHAPTER 4. IMPLEMENTATION 54

Table 4.1: Queue length range mapping to cost

Qlen Range Cost

[0, 10) 1

[10, 22) 2

[22, 36) 3

[36, 52) 4

[52, 70) 5

[70, 90) 6

[90,∞) 7

To address this issue, a key principle should be followed: the ingress router
should promptly deflect traffic away from the congested path but be hesitant
to revert the path when congestion is mitigated. Following this principle,
in the case of the cost mapping system used in this study, we only reduce
the cost of a link if the queue length is less than one-third of the range. For
example, if the queue length is 12 and the cost is 2, the cost will only be
reduced to 1 if the queue length falls below or equals 3. Consequently, after
reversion, it takes more time for the queue length to become congested again
and trigger another deflection by the ingress router. However, the one-third
regulation does not affect the cost increase.

In terms of the packet dropping mechanism, this cost map sets the
dropping threshold to 5. In the specific testing environment represented
in Figure 3.1, this threshold indicates that no queue length should exceed
52 given that 52 is the upper bound for cost 4 range. It implies that the
packet dropping mechanism should be activated when the observed queue
length on the activated path surpasses 36. This is due to the fact that in
this particular testbed, the shortest path to the egress node consists of two
edges. Consequently, in a non-congested scenario, the path cost is two. In
order for this path to reach a cost of five, the sum of the costs of both links
must be equivalent to five. Hence, the worst-case scenario arises when one
link remains congestion-free while the other link encounters a queue length
falling within the range corresponding to a cost of four.

Chapter 5

Results and Analysis

In this chapter, we present the findings and engage in a thorough discussion.
Firstly, we clarify the baselines, followed by an analysis of the queue length
observed in routers under various congestion scenarios. Subsequently, we
perform a comparative assessment of RTT experienced by low and high-
priority within the Sepitto method. Following that, we proceed to compare
the traffic RTT in Sepitto with that of hop-based routing, referred to as the
traditional method in this analysis. Lastly, we analyze the RTT overhead of
Sepitto in comparison to conventional methods.

5.1 Baseline

The traditional method, referred to as the baseline in this study, employs a
static hop-based routing approach where only a single path can be chosen
as the route to the egress network, i.e., the network of which Host2 is a
member. To prevent symmetric paths for the forward and return traffic, R1
is configured to forward packets to R2, and R2 sends the traffic to R4. The
return direction is from R4 via R3 to R1. The rationale for this path decision
is to maximize the utilization of the available link resources within the given
network topology. As the congestion scenarios focus on ens6 interface of R2
and R3 acting as unidirectional bottlenecks for the their outbound traffic,
only traffic originating from R1 experiences congestion and is queued in the
routers. Consequently, in a case where both ens6 interfaces of R2 and R3
serve as unidirectional bottlenecks, the queue length of R3 is not monitored
as is not traversed by the traffic sourced from Host1 with the destination of
Host2 in the traditional method. Therefore, only the measurement of the
queue length for ens6 of R2 in the traditional method would be relevant.

Furthermore, in RTT overhead measurements, we compare the Sepitto

55

CHAPTER 5. RESULTS AND ANALYSIS 56

method with both traditional routing and plain SRv6. In the plain SRv6
case, all traffic from R1 is encapsulated using the [R1, R2, R4] path, while
traffic from R4 is encapsulated using the [R4, R3, R1] path. Thus, the same
reasoning applied to traditional method in terms of single congestion and
dual congestion scenarios remains valid for the SRv6 method as well.

5.2 Queue Length Analysis

In this section, we investigate the queue length in routers R2 and R3, where
the queue length signifies the number of packets in the interface queue of
the routers. We begin by analyzing the queue length of R2 in a single
congestion scenario, where the bottleneck occurs at the ens6 interface of R2
while the ens6 interface of R3 operates normally. Subsequently, we examine
the double congestion scenario where both the ens6 interfaces of R2 and R3
act as bottlenecks, resulting in congestion in both routers. In this case, we
analyze the queue length of both R2 and R3. In both scenarios, we compare
the observed queue lengths with the baseline queue length.

5.2.1 Single Congestion

Figure 5.1 provides a visual representation of the comparison between the
queue length of R2 in a single congestion scenario over time. The traditional
method exhibits a continuous increase in queue length until it reaches the
predetermined burst size of 65 kbits, after which it stabilizes. In contrast, the
Sepitto approach shows fluctuations in the observed queue length, ranging
between 0 and 15 packets (please refer to Figure 5.2 for a more detailed
view). These fluctuations are a result of R1’s efforts to alleviate congestion.
Using the cost mapping outlined in Section 4.3.4, R1 determines that R2 is
congested when the queue length of R2 reaches 10 packets. Consequently,
R1 redirects the traffic to bypass R2 and instead pass through R3. This
redirection leads to a reduction in the queue length of R2 until it drops to
3 packets or lower, at which point R1 considers the congestion in R2 to be
resolved and switches the traffic back to flow through R2.

The reason for the path switch back to R2, even when there are still
packets in the queue, can be attributed to the applied cost mapping. As
mentioned earlier, the cost mapping method decreases a specific cost only if
the queue length falls below one-third of the range corresponding to the lower
cost. However, if the objective is to switch back to R2 only when the queue
is empty, it would be necessary to modify the cost mapping so that it reduces
the cost only when the queue length goes below the minimum threshold of

CHAPTER 5. RESULTS AND ANALYSIS 57

Figure 5.1: R2 queue length comparison in Sepitto vs. traditional, when R2
is congested (lower is better).

the lower cost.
It is worth noting that in scenarios where the costs of all paths to the

egress node are equal, the ingress router selects the first path on the list.
Consequently, when the cost mapping determines that the cost of the path
passing through R2 is equal to the one through R3, R1 chooses R2 since
it is the first option. This behavior accounts for the observed fluctuations
in Figure 5.1 and the subsequent switch back to R2 when the queue length
drops below 3 packets.

Figure 5.2 provides a more detailed depiction of the queue length of R2,
highlighting the instances when R1 initiated a path switch. It is evident
that R1 promptly responded to congestion in R2, with a delay of less than 2
milliseconds. This conclusion can be drawn by comparing the time at which
the queue length of R2 reaches 10 packets with the time of the subsequent
path switch.

5.2.2 Double Congestion

In the double congestion scenario, Figure 5.3 provides an overview of the
queue lengths of R2 and R3 in Sepitto, as well as the queue length of R2 in
traditional routing. It is clear that Sepitto effectively maintains the queue

CHAPTER 5. RESULTS AND ANALYSIS 58

Figure 5.2: Queue length of R2 over time annotated with R1 path switch
timestamps in the Sepitto method.

lengths below a specific threshold, while the traditional routing approach
experiences queue overflow, resulting in the dropping of additional incoming
packets.

Figure 5.4 offers a more detailed examination of the queue length
dynamics in the double congestion scenario. It is evident that the queue
length of R2 increases compared to the single congestion scenario due to
the presence of a bottleneck in R3. When the traffic from Host1 to Host2
is redirected towards R3, the queue length surpasses 10 packets in R3,
prompting R1 to switch the traffic back to R2 due to equal costs. Notably,
despite the decrease in the queue length of R2 when traffic flows through R3,
R2 does not have sufficient time to fully recover before the traffic is redirected
back to it. Consequently, the queue length in R2 further increases until it
surpasses the queue length in R3, resulting in another path redirection. This
pattern persists until the cumulative cost of the active path reaches 5, as
determined by the cost mapping function. At this point, R1 initiates the
packet dropping mechanism to discard low priority packets. As a result, a
distinct and sudden drop in both queue lengths is observed. This can be
witnessed between 3000 and 5000 milliseconds. The dropping mechanism
continues until the new cost falls below 5, explaining the subsequent increase

CHAPTER 5. RESULTS AND ANALYSIS 59

Figure 5.3: R2 and R3 queue length comparison in Sepitto vs. traditional,
when both are congested (lower is better).

observed after the sudden packet drop, such as the drops occurring after 4000
and 5000 milliseconds 5 for R2 and R3, respectively.

5.3 RTT Analysis

This section focuses on the analysis of RTT in the Sepitto method,
considering both single and double congestion scenarios, with the aim
of comparing the RTTs encountered by low and high-priority traffic.
Furthermore, the section presents a comparison between the RTTs observed
in the Sepitto method and the traditional method in the single congestion
scenario. Finally, Sepitto is compared with both baselines, SRv6 and
traditional routing, in a congestion-free scenario to assess the overhead
introduced by the Sepitto method.

5.3.1 Single Congestion Sepitto

Figure 5.5 presents a comparison of the RTTs experienced by high and low
priority traffic during congestion in R2. In the boxplot, the smallest and
largest values are represented by the vertical lines (whiskers) extending from

CHAPTER 5. RESULTS AND ANALYSIS 60

Figure 5.4: Queue length of R2 and R3 over time marked with R1 path
dropping activation timestamps in the Sepitto method.

the box. Any data beyond the whiskers is considered an outlier. The lower
boundary of the box represents the lower quartile (Q1). The lower quartile,
or the 25th percentile, represents the value below which 25% of the data
falls. On the other hand, the upper boundary of the box represents the
upper quartile (Q3). The upper quartile, or the 75th percentile, represents
the value below which 75% of the data falls. Additionally, the orange line
in the box represents the median of the data. Analyzing the orange lines of
the box plots, we observe that the high priority traffic exhibits lower RTT
by approximately 15 milliseconds compared to the low priority traffic. This
difference can be attributed to the routing of low priority traffic along the
complement path, which, in this particular scenario, is the congested path.
Consequently, as the low priority traffic traverses the congested path in 100
millisecond intervals, it experiences higher RTT compared to the high priority
traffic. This occurs while the high priority traffic is always guaranteed to
traverse through the least congested path.

Figure 5.6 displays a logarithmic histogram illustrating the RTTs of both
high and low priority traffic. Consistent with our previous observations, the
measurements reveals that the low priority traffic has a smaller number of
packets experiencing RTTs below 50 milliseconds. Conversely, there is a

CHAPTER 5. RESULTS AND ANALYSIS 61

Figure 5.5: Low and High priority RTT in single congestion scenario. The
boxplot represents a dataset including the average RTTs obtained from 15
test runs.

greater number of packets by roughly 400 packets in the higher RTT ranges
for the low priority traffic compared to the high priority traffic. This disparity
can be attributed to the routing of low priority traffic along the complement
path, as previously explained.

5.3.2 Double Congestion Sepitto

In the context of double congestion, Figure 5.7 presents a box plot depicting
the average RTTs observed across 15 test runs for both high and low-priority
traffic. It is notable that the small circles represented in the figure are outlier
data. Surprisingly, the low priority traffic exhibits considerably lower RTT
compared to the high priority traffic, contrary to our initial expectations.
To understand the underlying reasons for this disparity, further analysis is
required by examining the packet loss ratios and RTT histograms. Figure
5.8 displays a box plot illustrating the packet loss percentages observed over
15 test runs for both high and low priority traffic, which will provide insights
into the factors contributing to the observed difference in RTTs.

Based on the findings presented in Figure 5.8, it is evident that the
low priority traffic experiences a packet loss rate of approximately 65%,

CHAPTER 5. RESULTS AND ANALYSIS 62

(a) High Priority (b) Low Priority

Figure 5.6: Logarithmic histogram of Sepitto’s RTT in single congestion
scenario.

Figure 5.7: Low and High priority RTT in double congestion scenario. The
boxplot represents a dataset including the average RTTs obtained from 15
test runs.

while the packet loss for high priority traffic is less than 4%. The high

CHAPTER 5. RESULTS AND ANALYSIS 63

packet loss observed for low priority packets can be attributed to the
dropping mechanism activated in the double congestion scenario when the
congestion level passes the threshold, as per the expected behavior of
Sepitto. Consequently, low priority ICMP packets are dropped at R1,
preventing them from completing the RTT measurement. Thus, successful
RTT measurements for low priority traffic only occur when congestion is
mitigated, resulting in lower RTT compared to high priority traffic.

Figure 5.8: Low and High priority packet loss in double congestion scenario.

To gain further insights into the lower RTT of low priority packets, we
can refer to Figure 5.9, which presents a logarithmic histogram depicting the
RTTs experienced by both priority levels. It is evident from the histogram
that the total number of successfully delivered packets in the low priority
traffic is significantly lower compared to the high priority traffic. Moreover,
the measurements show that the number of packets experiencing RTTs below
600 milliseconds is roughly the same for both traffic priorities. However, for
higher RTTs, we observe a greater number of packets in the high-priority
traffic, indicating the absence of low priority packets during congestion
mitigation and their failure in RTT measurement due to being dropped,
while the high priority packets successfully traverse the congested topology.
However, this successful traversal comes at the cost of higher RTT for the
high priority traffic.

CHAPTER 5. RESULTS AND ANALYSIS 64

Based on this analysis, we can conclude that high priority traffic is
still given preferential treatment compared to low priority traffic within the
Sepitto method.

(a) High Priority (b) Low Priority

Figure 5.9: Logarithmic histogram of Sepitto’s RTT in double congestion
scenario.

5.3.3 Double Congestion Sepitto with TCP

To address the identified issue of false higher RTT in the high priority
traffic in Section 5.3.2, we conducted a test using the TCP protocol and the
ethr [42] tool ∗. The test setup for this experiment mirrored the topology
used in the ICMP test. Two instances of ethr were employed, each initiating
TCP connections and reporting the corresponding RTT simultaneously. One
instance represented the low priority traffic, while the other represented
the high priority traffic. However, due to ethr ’s requirement to complete
a TCP handshake before proceeding to the next connection initiation, the
network topology could not become congested. To overcome this limitation,
we transmitted low priority ICMP traffic with a one-millisecond interval
to induce network congestion. It is important to note that the analysis
in this test solely focused on the RTT associated with the TCP traffic at
both priority levels, within the same congested network topology, and while

∗The ethr version used was 1.0.0. It is notable that the type of service (TOS)
modification did not work properly in this tool so we hard-coded the field to the desired
value to modify the packets’ traffic class

CHAPTER 5. RESULTS AND ANALYSIS 65

running concurrently. Consequently, the RTT of the ICMP traffic was not
taken into account.

Figure 5.10: Low and High priority RTT in double congestion scenario in
Sepitto method using TCP. The boxplot represents a dataset including the
average RTTs obtained from 15 test runs.

Figure 5.10 shows a boxplot illustrating the average RTTs of 15 ethr test
runs. The results indicate that the low priority traffic exhibits significantly
higher RTT compared to the high priority traffic, in contrast to the conducted
ICMP test. This dissimilarity arises due to the behavior of TCP, where upon
sending a SYN packet, it awaits a SYN+ACK packet until a specific timeout
is reached. Consequently, under conditions of severe congestion, the initiation
of TCP connections for low-priority traffic experiences a notable increase in
RTT due to TCP SYN retransmission occurring because of packet drops
caused by the congestion control mechanism unlike ICMP which does not
attempt a retry in case of a packet drop.

Moreover, since the dropping mechanism is activated during severe
congestion and deactivated once congestion is alleviated, two scenarios can
occur. (i) The SYN packet may be dropped initially, but during subsequent
retries, the dropping mechanism becomes deactivated, allowing the SYN
packet to pass through. In this case, the connection initiation RTT increases
due to the retry, and this increased RTT is included in the measurements. (ii)

CHAPTER 5. RESULTS AND ANALYSIS 66

Both the initial SYN packet and subsequent retransmissions may be dropped
by the dropping mechanism until the TCP reaches its retransmission limit,
thereby terminating connection initiation. Consequently, in this scenario, no
RTT corresponding to the failed connection is recorded in the measurements.

Based on these two explained scenarios, it is evident that low priority
traffic experiences higher RTT compared to high priority packets.

Figure 5.11: Low and High priority packet loss in double congestion scenario
in Sepitto method using TCP.

Figure 5.11 showcases the packet loss observed in the TCP test using the
ethr tool for both high and low priority traffic levels in 15 test runs. The high
priority packets exhibited an almost negligible packet drop rate, whereas the
low priority packets experienced a 40% packet drop rate, consistent with the
results obtained from the ICMP test and aligned with our expectations.

However, it is important to note that the TCP test measured the number
of TCP connection initiations that did not succeed, rather than directly
measuring the number of dropped packets, as is the case in the ICMP test.
Consequently, the lower absolute value of the packet loss percentage in the
TCP test, compared to the ICMP test, can be attributed to this distinction
in measurement methodology.

CHAPTER 5. RESULTS AND ANALYSIS 67

5.3.4 Single Congestion Traditional

Figure 5.12 presents a box plot of the average RTTs for both low and high
priority levels across 15 test runs using ICMP. It is evident from the plot that
the experienced RTTs in the Sepitto method are marginally lower compared
to the traditional method. This difference can be attributed to the network-
level congestion control mechanism provided by Sepitto, which helps mitigate
congestion and reduce RTTs. In contrast, the traditional method lacks such
congestion control mechanisms, leading to significantly higher RTTs.

Figure 5.12: Low and High priority RTT in single congestion scenario in the
traditional method. The boxplot represents a dataset including the average
RTTs obtained from 15 test runs.

5.3.5 RTT overhead

In the final analysis using ICMP, we examine the RTT overhead associated
with three different methods: SRv6, traditional method, and Sepitto. Figure
5.13 presents the RTTs of these methods in a congestion-free scenario. The
figure displays a box plot of the average RTTs obtained from 15 test runs for
each method.

Upon closer examination, we observe that plain SRv6 exhibits a slightly
higher RTT compared to the other methods, although the difference is small.

CHAPTER 5. RESULTS AND ANALYSIS 68

Conversely, both the traditional method and Sepitto demonstrate negligible
differences in RTT. From these findings, we can infer that the RTT overhead
introduced by the Sepitto method is minimal when compared to the baseline
methods.

Figure 5.13: Overhead comparison between Sepitto, SRv6, and the
traditional method without congestion. The boxplot represents a dataset
including the average RTTs obtained from 15 test runs.

Chapter 6

Conclusions and Future work

In this chapter, we present the concluding remarks of this study, revolving
around the findings and analysis of the proposed method, ”Sepitto”.
We discuss the overall outcomes achieved in this thesis and highlight
the limitations observed in the obtained results. Furthermore, we offer
recommendations and considerations for future endeavors aimed at enhancing
this work.

6.1 Conclusions

In summary, this study presents Sepitto, a congestion control mechanism
operating at the network layer. Our contribution involves the design
of Sepitto, which incorporates three primary eBPF programs, namely
TLV reporter, TLV parser, and encapsulator, developed by this study.
By leveraging the data-plane traffic, Sepitto employs TLVs that carry
interface statistics, including the queue length of intermediate routers.
These TLVs serve the purpose of informing edge routers about the
network’s load. To minimize the size overhead, this study devised a
structure for the TLVs that are piggybacked on the data-plane packets.
Subsequently, the edge routers utilize the received statistics to make
informed path decisions, thereby avoiding congested links. Sepitto offers
an immediate and efficient response to network congestion compared to
transport layer congestion control mechanisms such as ECN, which are
limited to connection-based control and lack awareness of other network
traffic traversing the same network environment. Consequently, congestion
control decisions made at the network layer are more effective in managing
network-wide congestion. Moreover, Sepitto demonstrates QoS adaptivity,
addressing the lack of adaptive mechanisms in existing SRv6-specific

69

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 70

approaches [37]. The results indicate that Sepitto incurs minimal overhead
while effectively controlling congestion and lowering the traffic RTT during
congestion as well as providing differentiated service quality for different QoS
classes. Furthermore, Sepitto exhibits negligible response time in congestion
detection even in quite severe congestion scenarios.

6.2 Limitations

Based on the obtained results, certain issues exist within the Sepitto
mechanism. Firstly, the mechanism relies on a two-tiered QoS approach,
categorizing traffic as either high priority or low priority. However, this
classification overlooks the possibility of having multiple levels of priority.
Consequently, in scenarios where there is no low priority traffic but multiple
levels of high priority traffic, Sepitto tends to allow all high priority QoS
classes to pass through, thereby failing to assist in congestion mitigation.
Additionally, the constrained range of available QoS classes prevents the high
priority path from ever being selected as the alternative route. Consequently,
the problem explained in Section 3.5 will persist and continue to pose
challenges.

Moreover, the congestion detection process in Sepitto is based solely on
a simplistic cost mapping technique, resorting only to the queue length (i.e.,
the number of packets in the queue) as the sole criterion. However, other
telemetry parameters, such as packet drops and the size of the occupied queue
in bytes, are available as TLVs in the packet.

6.3 Future work

To address the limitations of Sepitto, several potential considerations can be
explored in future research. Firstly, the dropping mechanism can be enhanced
to facilitate congestion mitigation based on more priority levels, rather than
solely dropping low priority traffic. This can help mitigate congestion caused
by only high priority traffic. Additionally, improvements should be made to
the complement-path mechanism to ensure its functionality even when there
is no low priority traffic traversing the network. One suggestion would be
to allow sending high priority packets through the complement path under
exceptional circumstances where low priority traffic is not present in the
network after the 100 millisecond interval.

An additional aspect to consider in the complement-path mechanism is
the adjustment of the 100 millisecond interval during which the ingress router

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 71

diverts low priority packets to the complement path. Modifying this interval
can have an impact on the RTT experienced by low priority traffic and the
disparity between low and high priority traffic. Increasing the interval may
result in a longer congestion response time for ingress routers due to the
concern elucidated in Section 3.5. Conversely, reducing the interval would
increase the RTT of the low priority traffic. Consequently, it can be beneficial
to perform further studies on achieving the optimal value for the interval in
various use cases such as, video traffic, and real-time applications.

Moreover, instead of routing traffic into active and complement paths,
Sepitto can be enhanced to support individual paths for various QoS classes
with similar requirements. This approach would involve calculating each
path based on traffic demands and associated costs, thereby offering more
distinct levels of service for different classes.

Given the flexibility of Sepitto in defining a cost mapping function,
numerous improvements can be proposed, such as incorporating Artificial
Intelligence (AI) solutions to enhance path selection and congestion
mitigation. Alternative cost mapping methods utilizing additional
information, such as occupied queue size, and packet drops can also
contribute to a more comprehensive and informed congestion detection,
ultimately leading to a more effective mitigation mechanism for congestion.

Additionally, for a more comprehensive evaluation of Sepitto, it is worth
exploring the trade offs in altering certain decision or policy factors. One such
factor is the insertion of telemetry information at a reduced frequency, where
telemetry information is inserted every n packet instead of every packet.
This modification allows to asses how Sepitto would perform under such
conditions. In this analysis, it is crucial to measure the response time of the
ingress router in detecting congestion when telemetry information is inserted
less frequently. Additionally, it is necessary to examine the RTTs that
may arise due to the reduced frequency of telemetry information updates,
potentially leading to delays in congestion detection.

Finally, in accordance with the measurements presented in Section 5.3.5,
the analysis reveals that SRv6 exhibits a marginally higher RTT overhead
compared to Sepitto. However, it is important to note that Sepitto introduces
a range of eBPF programs and additional packet processing to the packet’s
datapath. Consequently, it is anticipated that Sepitto will demonstrate a
greater RTT overhead than SRv6, in contrast to the measurement results.
It is imperative to undertake further research to investigate the underlying
causes of this phenomenon and justify the observed behavior.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 72

6.4 Reflections

From a sustainability standpoint, and based on the obtained results,
the Sepitto method effectively reduces RTT for high-priority traffic while
maintaining a notably low packet loss rate. These characteristics can be
particularly advantageous for real-time applications, such as voice and video
calls, leading to an enhanced user experience. Moreover, by implementing
rerouting strategies, Sepitto effectively implements load balancing of traffic
flow across multiple paths, that can result in improved resource utilization,
optimization, and reduced energy consumption in the routers. Furthermore,
the packet-dropping mechanism employed by Sepitto takes place at the
ingress router, thereby minimizing network-resource wastage by preventing
packets from entering the network domain during congestion and consuming
resources only to be subsequently dropped at congested routers. This
approach can contribute to resource conservation and efficiency within the
network infrastructure.

Bibliography

[1] Z. Tan, Z. Huang, P. Ma, S. Lan, Y. Zhuang, Y. Jiang, and X. Liang, “A
low-latency and high-reliability slice for ip backbone network based on
srv6,” in Proceedings of the 12th International Conference on Computer
Engineering and Networks, Q. Liu, X. Liu, J. Cheng, T. Shen, and
Y. Tian, Eds. Singapore: Springer Nature Singapore, 2022, pp. 242–
253.

[2] Z. Salam, “Low latency, low loss, scalable throughput (l4s) protocol,”
2022.

[3] Z. Wang, Internet QoS: architectures and mechanisms for quality of
service. Morgan Kaufmann, 2001.

[4] R. Stanojevic, R. Shorten, and C. Kellett, “Adaptive tuning of drop-tail
buffers for reducing queueing delays,” IEEE Communications Letters,
vol. 10, no. 7, pp. 570–572, 2006.

[5] D. K. K. Ramakrishnan and S. Floyd, “A Proposal to add Explicit
Congestion Notification (ECN) to IP,” RFC 2481, Jan. 1999. [Online].
Available: https://www.rfc-editor.org/info/rfc2481

[6] Z. N. Abdullah, I. Ahmad, and I. Hussain, “Segment routing in software
defined networks: A survey,” IEEE Communications Surveys Tutorials,
vol. 21, no. 1, pp. 464–486, 2019.

[7] M. Xhonneux, O. Bonaventure, O. TILMANS, and D. BOL, “An
interface for programmable ipv6 segment routing network functions in
linux.”

[8] Cisco, “About segment routing,” Feb Accessed: 2023. [Online].
Available: https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/se
gment-routing/61x/b-segment-routing-cg-ncs5500/b-segment-routing
-cg-ncs5500 chapter 01.pdf

73

https://www.rfc-editor.org/info/rfc2481
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/segment-routing/61x/b-segment-routing-cg-ncs5500/b-segment-routing-cg-ncs5500_chapter_01.pdf
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/segment-routing/61x/b-segment-routing-cg-ncs5500/b-segment-routing-cg-ncs5500_chapter_01.pdf
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/segment-routing/61x/b-segment-routing-cg-ncs5500/b-segment-routing-cg-ncs5500_chapter_01.pdf

BIBLIOGRAPHY 74

[9] M. DiVincenzo. (2022) Srv6 with ipv6 for transport. [Online]. Available:
https://www.wwt.com/article/srv6-with-ipv6-for-transport

[10] J. Horn. (2019) Segment routing v6 technical review. [Online].
Available: https://www.segment-routing.net/images/201901-SRv6.pdf

[11] D. Crupnicoff, S. Das, and E. Zahavi, “Deploying quality of service and
congestion control in infiniband-based data center networks,” Mellanox
White Paper, Rev, vol. 1, 2005.

[12] C.-N. Lin, P.-C. Tseng, and W.-S. Hwang, “End-to-end qos
provisioning by flow label in ipv6,” in Proceedings of the 9th
Joint International Conference on Information Sciences (JCIS-
06). Atlantis Press, 2006/10, pp. 117–120. [Online]. Available:
https://doi.org/10.2991/jcis.2006.28

[13] T. Minagawa and T. Ikegami, “Double wfq qos scheduling based on flow
number in diffserve network,” in 2010 The 12th International Conference
on Advanced Communication Technology (ICACT), vol. 2, 2010, pp.
1365–1370.

[14] M. Aazam, A. M. Syed, and E.-N. Huh, “Redefining flow label in
ipv6 and mpls headers for end to end qos in virtual networking for
thin client,” in 2013 19th Asia-Pacific Conference on Communications
(APCC), 2013, pp. 585–590.

[15] B. E. Carpenter, D. S. E. Deering, J. Rajahalme, and A. Conta, “IPv6
Flow Label Specification,” RFC 3697, Mar. 2004. [Online]. Available:
https://www.rfc-editor.org/info/rfc3697

[16] N. Finn, “Introduction to time-sensitive networking,” IEEE Communi-
cations Standards Magazine, vol. 2, no. 2, pp. 22–28, 2018.

[17] S. Bensley, D. Thaler, P. Balasubramanian, L. Eggert, and
G. Judd, “Data Center TCP (DCTCP): TCP Congestion Control
for Data Centers,” RFC 8257, Oct. 2017. [Online]. Available:
https://www.rfc-editor.org/info/rfc8257

[18] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, 1993.

[19] T. Zhang and S. Mao, “Machine learning for end-to-end congestion
control,” IEEE Communications Magazine, vol. 58, no. 6, pp. 52–57,
2020.

https://www.wwt.com/article/srv6-with-ipv6-for-transport
https://www.segment-routing.net/images/201901-SRv6.pdf
https://doi.org/10.2991/jcis.2006.28
https://www.rfc-editor.org/info/rfc3697
https://www.rfc-editor.org/info/rfc8257

BIBLIOGRAPHY 75

[20] S. Floyd, D. K. K. Ramakrishnan, and D. L. Black, “The Addition of
Explicit Congestion Notification (ECN) to IP,” RFC 3168, Sep. 2001.
[Online]. Available: https://www.rfc-editor.org/info/rfc3168

[21] I. Johansson, “ECN support in QUIC,” Internet Engineering Task
Force, Internet-Draft draft-johansson-quic-ecn-03, May 2017, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/draft-j
ohansson-quic-ecn/03/

[22] A. Kuzmanovic, “The power of explicit congestion notification,”
SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, p. 61–72, aug 2005.
[Online]. Available: https://doi.org/10.1145/1090191.1080100

[23] S. Suresh and O. Gol, “Congestion management of self similar ip traffic
using probability based normal and exponential marking red,” in 2005
Asia-Pacific Conference on Communications, 2005, pp. 391–395.

[24] T. eBPF Project, “What is ebpf?” accessed 2023-03-01. [Online].
Available: https://ebpf.io/what-is-ebpf/#the-power-of-programmabili
ty

[25] The eBPF Community, “What is eBPF?” accessed 2023-03-01. [Online].
Available: https://ebpf.io/what-is-ebpf/#jit-compilation

[26] ——, “What is eBPF?” accessed 2023-03-01. [Online]. Available:
https://ebpf.io/what-is-ebpf/#verification

[27] The Linux Kernel Archives, “Bpf maps,” accessed 2023-04-03. [Online].
Available: https://docs.kernel.org/bpf/maps.html

[28] M. Kerrisk, “Bpf helpers,” accessed 2023-04-03. [Online]. Available:
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

[29] G. Bertin, “Xdp in practice: integrating xdp into our ddos mitigation
pipeline,” in Technical Conference on Linux Networking, Netdev, vol. 2.
The NetDev Society, 2017, pp. 1–5.

[30] M. Abranches, O. Michel, E. Keller, and S. Schmid, “Efficient network
monitoring applications in the kernel with ebpf and xdp,” in 2021 IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), 2021, pp. 28–34.

[31] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller, “The express data path: Fast

https://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/draft-johansson-quic-ecn/03/
https://datatracker.ietf.org/doc/draft-johansson-quic-ecn/03/
https://doi.org/10.1145/1090191.1080100
https://ebpf.io/what-is-ebpf/#the-power-of-programmability
https://ebpf.io/what-is-ebpf/#the-power-of-programmability
https://ebpf.io/what-is-ebpf/#jit-compilation
https://ebpf.io/what-is-ebpf/#verification
https://docs.kernel.org/bpf/maps.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

BIBLIOGRAPHY 76

programmable packet processing in the operating system kernel,” in
Proceedings of the 14th international conference on emerging networking
experiments and technologies, 2018, pp. 54–66.

[32] Tigeria, “ebpf xdp: The basics and a quick tutorial,” accessed
2023-03-01. [Online]. Available: https://www.tigera.io/learn/guides/e
bpf/ebpf-xdp/

[33] P. Sharma and S. N. Pradhan, “Priority based scheduling of multimedia
traffic on real time linux operating system,” in International Conference
on Computational Intelligence and Multimedia Applications (ICCIMA
2007), vol. 4, 2007, pp. 225–229.

[34] J. Sun, Z.-h. Li, X. Zhang, Q.-l. He, and H. Wang, “The study of data
collecting based on kprobe,” in 2011 Fourth International Symposium
on Computational Intelligence and Design, vol. 2, 2011, pp. 35–38.

[35] X. Dong and Z. Liu, “Multi-dimensional detection of linux network
congestion based on ebpf,” in 2022 14th International Conference on
Measuring Technology and Mechatronics Automation (ICMTMA), 2022,
pp. 925–930.

[36] C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, and Z. Li,
“Segment Routing over IPv6 (SRv6) Network Programming,” RFC
8986, Feb. 2021. [Online]. Available: https://www.rfc-editor.org/info/r
fc8986

[37] M. Polverini, D. Aureli, A. Cianfrani, F. G. Lavacca, and M. Listanti,
“Real time local re-routing to limit queuing delay exploiting srv6 and
extensible in-band processing,” in 2022 18th International Conference
on Network and Service Management (CNSM). IEEE, 2022, pp. 367–
371.

[38] M. O. Rahman, M. M. Monowar, and C. S. Hong, “A qos
adaptive congestion control in wireless sensor network,” in 2008
10th International Conference on Advanced Communication Technology,
vol. 2. IEEE, 2008, pp. 941–946.

[39] M. Jadin, Q. De Coninck, L. Navarre, M. Schapira, and O. Bonaventure,
“Leveraging ebpf to make tcp path-aware,” IEEE Transactions on
Network and Service Management, vol. 19, no. 3, pp. 2827–2838, 2022.

[40] R. Mahilda, Istikmal, and I. D. Irawati, “Tbf and sfq performance
analysis using aodv uu on wireless ad-hoc network implementation,” in

https://www.tigera.io/learn/guides/ebpf/ebpf-xdp/
https://www.tigera.io/learn/guides/ebpf/ebpf-xdp/
https://www.rfc-editor.org/info/rfc8986
https://www.rfc-editor.org/info/rfc8986

BIBLIOGRAPHY 77

2017 3rd International Conference on Wireless and Telematics (ICWT),
2017, pp. 123–128.

[41] M. A. Brown, “Traffic control howto,” Guide to IP Layer Network,
vol. 49, p. 36, 2006.

[42] Microsoft, “Ethr: A Network Performance Measurement Tool,” GitHub
repository, 2020, https://github.com/microsoft/ethr.

	Cover page
	Contents
	1 Introduction
	1.1 Background
	1.2 Problem
	1.2.1 Original problem and definition
	1.2.2 Scientific and engineering issues

	1.3 Purpose
	1.3.1 Sustainability
	1.3.2 Ethical Considerations

	1.4 Goals
	1.5 Delimitations
	1.6 Structure of the thesis

	2 Background
	2.1 Segment Routing (SR)
	2.2 Segment Routing with IPv6 (SRv6)
	2.2.1 Segment Routing Header (SRH)
	2.2.2 SRv6 Segments
	2.2.3 Processing SRH

	2.3 Quality of Service (QoS)
	2.3.1 Differentiated Services (DiffServ)
	2.3.2 IPv6 Packet Marking

	2.4 Network Congestion
	2.4.1 Explicit Congestion Notification (ECN)
	2.4.2 Random Early Detection (RED)

	2.5 Extended Berkeley Packet Filter (eBPF)
	2.5.1 eBPF Execution
	2.5.2 BPF Maps
	2.5.3 BPF Helpers

	2.6 Linux Networking
	2.6.1 Xpress DataPath (XDP)
	2.6.2 Traffic Control
	2.6.3 Kprobes

	2.7 BPF Additions to Linux SRv6
	2.8 Related Work
	2.8.1 Congestion Prevention Local Rerouting
	2.8.2 QoS Adaptive Congestion Control
	2.8.3 Multi-path TCP with SRv6

	3 Methods
	3.1 Research Process
	3.2 Experimental design/Planned Measurements
	3.3 Congestion Detection
	3.3.1 Intermediate Router Congestion Detection
	3.3.2 Ingress Router Congestion Detection
	3.3.3 Detection Method Comparison

	3.4 Congestion Control
	3.5 Path Selection Issue
	3.6 Sepitto Method

	4 Implementation
	4.1 eBPF Hook
	4.2 Intermediate Router
	4.3 Edge Router
	4.3.1 Parsing Statistics
	4.3.2 Steering Ingress Traffic
	4.3.3 Routing Agent
	4.3.4 A Sample Cost Map

	5 Results and Analysis
	5.1 Baseline
	5.2 Queue Length Analysis
	5.2.1 Single Congestion
	5.2.2 Double Congestion

	5.3 RTT Analysis
	5.3.1 Single Congestion Sepitto
	5.3.2 Double Congestion Sepitto
	5.3.3 Double Congestion Sepitto with TCP
	5.3.4 Single Congestion Traditional
	5.3.5 RTT overhead

	6 Conclusions and Future work
	6.1 Conclusions
	6.2 Limitations
	6.3 Future work
	6.4 Reflections

