73 research outputs found

    FIFO anomaly is unbounded

    Get PDF
    Virtual memory of computers is usually implemented by demand paging. For some page replacement algorithms the number of page faults may increase as the number of page frames increases. Belady, Nelson and Shedler constructed reference strings for which page replacement algorithm FIFO produces near twice more page faults in a larger memory than in a smaller one. They formulated the conjecture that 2 is a general bound. We prove that this ratio can be arbitrarily large

    Optimal Eviction Policies for Stochastic Address Traces

    Full text link
    The eviction problem for memory hierarchies is studied for the Hidden Markov Reference Model (HMRM) of the memory trace, showing how miss minimization can be naturally formulated in the optimal control setting. In addition to the traditional version assuming a buffer of fixed capacity, a relaxed version is also considered, in which buffer occupancy can vary and its average is constrained. Resorting to multiobjective optimization, viewing occupancy as a cost rather than as a constraint, the optimal eviction policy is obtained by composing solutions for the individual addressable items. This approach is then specialized to the Least Recently Used Stack Model (LRUSM), a type of HMRM often considered for traces, which includes V-1 parameters, where V is the size of the virtual space. A gain optimal policy for any target average occupancy is obtained which (i) is computable in time O(V) from the model parameters, (ii) is optimal also for the fixed capacity case, and (iii) is characterized in terms of priorities, with the name of Least Profit Rate (LPR) policy. An O(log C) upper bound (being C the buffer capacity) is derived for the ratio between the expected miss rate of LPR and that of OPT, the optimal off-line policy; the upper bound is tightened to O(1), under reasonable constraints on the LRUSM parameters. Using the stack-distance framework, an algorithm is developed to compute the number of misses incurred by LPR on a given input trace, simultaneously for all buffer capacities, in time O(log V) per access. Finally, some results are provided for miss minimization over a finite horizon and over an infinite horizon under bias optimality, a criterion more stringent than gain optimality.Comment: 37 pages, 3 figure

    Two-Level Replacement Decisions in Paging Stores

    Full text link

    Optimization inWeb Caching: Cache Management, Capacity Planning, and Content Naming

    Full text link
    Caching is fundamental to performance in distributed information retrieval systems such as the World Wide Web. This thesis introduces novel techniques for optimizing performance and cost-effectiveness in Web cache hierarchies. When requests are served by nearby caches rather than distant servers, server loads and network traffic decrease and transactions are faster. Cache system design and management, however, face extraordinary challenges in loosely-organized environments like the Web, where the many components involved in content creation, transport, and consumption are owned and administered by different entities. Such environments call for decentralized algorithms in which stakeholders act on local information and private preferences. In this thesis I consider problems of optimally designing new Web cache hierarchies and optimizing existing ones. The methods I introduce span the Web from point of content creation to point of consumption: I quantify the impact of content-naming practices on cache performance; present techniques for variable-quality-of-service cache management; describe how a decentralized algorithm can compute economically-optimal cache sizes in a branching two-level cache hierarchy; and introduce a new protocol extension that eliminates redundant data transfers and allows “dynamic” content to be cached consistently. To evaluate several of my new methods, I conducted trace-driven simulations on an unprecedented scale. This in turn required novel workload measurement methods and efficient new characterization and simulation techniques. The performance benefits of my proposed protocol extension are evaluated using two extraordinarily large and detailed workload traces collected in a traditional corporate network environment and an unconventional thin-client system. My empirical research follows a simple but powerful paradigm: measure on a large scale an important production environment’s exogenous workload; identify performance bounds inherent in the workload, independent of the system currently serving it; identify gaps between actual and potential performance in the environment under study; and finally devise ways to close these gaps through component modifications or through improved inter-component integration. This approach may be applicable to a wide range of Web services as they mature.Ph.D.Computer Science and EngineeringUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/90029/1/kelly-optimization_web_caching.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/90029/2/kelly-optimization_web_caching.ps.bz

    C-MOS array design techniques: SUMC multiprocessor system study

    Get PDF
    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units

    Impact of DM-LRU on WCET: A Static Analysis Approach

    Get PDF
    Cache memories in modern embedded processors are known to improve average memory access performance. Unfortunately, they are also known to represent a major source of unpredictability for hard real-time workload. One of the main limitations of typical caches is that content selection and replacement is entirely performed in hardware. As such, it is hard to control the cache behavior in software to favor caching of blocks that are known to have an impact on an application\u27s worst-case execution time (WCET). In this paper, we consider a cache replacement policy, namely DM-LRU, that allows system designers to prioritize caching of memory blocks that are known to have an important impact on an application\u27s WCET. Considering a single-core, single-level cache hierarchy, we describe an abstract interpretation-based timing analysis for DM-LRU. We implement the proposed analysis in a self-contained toolkit and study its qualitative properties on a set of representative benchmarks. Apart from being useful to compute the WCET when DM-LRU or similar policies are used, the proposed analysis can allow designers to perform WCET impact-aware selection of content to be retained in cache
    • …
    corecore