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Abstract

Improving Virtual Memory Performance in Virtualized

Environments

Yashwant Marathe, M.S.E.

The University of Texas at Austin, 2018

Supervisor: Lizy K. John

Virtual Memory is a major system performance bottleneck in virtualized en-

vironments. In addition to expensive address translations, frequent virtual

machine context switches are common in virtualized environments, resulting

in increased TLB miss rates, subsequent expensive page walks and data cache

contention due to incoming page table entries evicting useful data. Orthog-

onally, translation coherence, which is currently an expensive operation im-

plemented in software, can consume up to 50% of the runtime of an applica-

tion executing on the guest. To improve the performance of virtual memory

in virtualized environments, two solutions have been proposed in this thesis -

namely, (1) Context Switch Aware Large TLB (CSALT), an architecture which

addresses the problem of increased TLB miss rates and their adverse impact

on data caches. CSALT copes with the increased demand of context switches

by storing a large number TLB entries. It mitigates data cache contention by
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employing a novel TLB-aware cache partitioning scheme. On 8-core systems

that switch between two virtual machine contexts executing multi-threaded

workloads, CSALT achieves an average performance improvement of 85% over

a baseline with conventional L1-L2 TLBs and 25% over a baseline which has a

large L3 TLB (2) Translation Coherence using Addressable TLBs (TCAT), a

hardware translation coherence scheme which eliminates almost all of the over-

heads associated with address translation coherence. TCAT overlays transla-

tion coherence atop cache coherence to accurately identify slave cores. It then

leverages the addressable Part-Of-Memory TLB (POM-TLB) to eliminate ex-

pensive Inter Processor Interrupts (IPI) and achieve precise invalidations on

the slave core. On 8-core systems with one virtual machine context executing

multi-threaded workloads, TCAT achieves an average performance improve-

ment of 13% over the kvmtlb baseline.
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Chapter 1

Introduction

1.1 Address Translation and Context Switching

Computing in virtualized cloud environments [1–5] has become a com-

mon practice for many businesses in order to reduce capital expenditures.

Many hosting companies have found that the utilization of their servers is low

(see [6] for example). In order to keep the machine utilization high, the host-

ing companies that maintain the host hardware typically attempt to keep just

enough machines to serve the computing load, and allowing multiple virtual

machines to coexist on same physical hardware [7–9]. High CPU utilization

has been observed in many virtualized workloads [10–12].

The aforementioned trend means that the host machines are constantly

occupied by applications from different businesses, and frequently, different

contexts are executed on the same machine. Although it is ideal for achieving

high utilization, the performance of guest applications suffer from frequent

context switching. The memory subsystem has to maintain consistency across

the different contexts, and hence traditionally, processors used to flush caches

and TLBs. However, modern processors adopt a more efficient approach where

each entry contains Address Space Identifier (ASID)[13]. Tagging the entry
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with ASID eliminates the needs to flush the TLB upon a context switch, and

when the swapped-out context returns, some of its previously cached entries

will be present. Although these optimizations worked well with traditional

benchmarks where the working set, or memory footprint, was manageable

between context switches, this trend no longer holds for emerging workloads.

The memory footprint of emerging workloads is orders of magnitude larger

than traditional workloads, and hence the capacity requirement of TLBs as

well as data caches is much larger. This means the cache and TLB contents

of previous context will frequently be evicted from the capacity constrained

caches and TLBs since the applications need a larger amount of memory.

Although there is some prior work that optimizes context switches [14–16],

there is very little literature that is designed to handle the context switch

scenarios caused by huge footprints of emerging workloads that flood data

caches and TLBs.

Orthogonally, the performance overhead of address translation in virtu-

alized systems is considerable as many TLB misses incur a full 2-dimensional

page walk. The page walk in virtualized system begins with guest virtual ad-

dress (gVA) when an application makes a memory request. However, since the

guest and host system keep their own page tables, the gVA has to be trans-

lated to host physical address (hPA). First, gVA has to be translated to guest

physical address (gPA), which is the host virtual address (hVA). This hVA is

finally translated to gPA. This involves walking down a 2-dimensional page

table. Current x86-64 employs a 4-level page table[17], so the 2-dimensional

2



page walk may require up to 24 accesses. Making the situation worse, emerg-

ing architectures [18] introduce a 5-level page table resulting in the page walk

operation to only get longer. Also, even though the L1-L2 TLBs are con-

stantly getting bigger, they are not large enough to handle the huge footprint

of emerging applications, and expensive page walks are becoming frequent.

Context switches in virtualized workloads are expensive. Since both

the guest and host processes share the hardware TLBs, context switches across

virtual machines can impact performance severely by evicting a large fraction

of the TLB entries held by processes executing on any one virtual machine.

Conventional page walkers as well as addressable large-capacity trans-

lation caches (such as Oracle SPARC TSB [19]) generate accesses that get

cached in the data caches. In fact, these translation schemes rely on successful

caching of translation (or intermediate page walk) entries in order to reduce

the cost of page walks. There has also been some recent work that attempts

to improve the address translation problem by implementing a very large L3

TLB that is a part of the addressable memory[20]. The advantage of this

scheme titled POM-TLB is that since the TLB is very large (several orders

of magnitude larger than conventional on-chip TLBs), it has room to hold

most required translations, and hence most page walks are eliminated. How-

ever, since the TLB request is serviced from the DRAM, the latency suffers.

The POM-TLB entries are cached in fast data caches to reduce the latency

problem, however, all of the aforementioned caching schemes suffer from the

problem of cache contention due to the additional load on data caches caused
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by the cached translation entries.

As L2 TLBmiss rates go up, proportionately, the number of translation-

related accesses also go up, resulting in congestion in the data caches. Since a

large number of TLB entries are stored in data caches, now the data traffic hit

rate is affected. When the cache congestion effects are added on top of cache

thrashing due to context switching, which is common in modern virtualized

systems, the amount of performance degradation is not negligible.

In this thesis, we present CSALT (read as "sea salt") which employs a

novel dynamic cache partitioning scheme to reduce the contention in caches

between data and TLB entries. CSALT employs a partitioning scheme based

on monitoring of data and TLB stack distances and marginal utility princi-

ples. We architect CSALT over a large L3 TLB which can practically hold

all the required TLB entries. However, CSALT can be easily architected atop

any other translation scheme. CSALT addresses increased cache congestion

when L3 TLB entries (or entries pertaining to translation in other translation

schemes) are allowed to be cached into L2 and L3 data caches by means of a

novel cache partitioning scheme that separates the TLB and data traffic. This

mechanism helps to withstand the increased memory pressure from emerg-

ing large footprint workloads especially in the virtualized context switching

scenarios.
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1.2 Translation Coherence

Beyond the problem of expensive address translations and TLB misses

due to context switching, translation coherence has become a major perfor-

mance sink in virtualized environments. Often, OSes perform modifications

to the virtual-to-physical address translations to increase performance. For

example, the OS may want to swap a page out to the disk or relocate a fre-

quently used page to a faster memory. In either case, the OS must invalidate a

virtual-to-physical address translation of the physical page being swapped out

or relocated. To maintain a consistent view of virtual memory across cores, the

OS must inform all the processors in a Chip Multi Processor (CMP) about this

invalidation. Modern systems utilize Inter Processor Interrupts (IPIs) for this

communication. The core which initiates the address translation modification,

called the initiator core, relays IPIs to cores which might potentially hold the

modified address translation in their private TLBs, called the slave cores. The

initiator core then enters a busy wait loop waiting for acknowledgement from

all the cores to ensure remote invalidation before proceeding further. Upon

receiving the IPIs, the slave cores jump to an interrupt handler and perform

invalidations in their own private TLBs. This process is called the TLB shoot-

down. There are several overheads involved in this process. First, processing

the IPIs involve expensive pipeline flushes and protection level switches. Sec-

ond, for the initiator core, remote invalidations pose a foreground overhead

because of the busy-wait loop. In native systems, we observe that the initiator

core spends thousands of CPU cycles waiting for acknowledgement from slave
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cores. In dedup benchmark from the PARSEC benchmark suite, we observe

upto 8us of delay on a state-of-the-art Intel Skylake system. Third, the list of

slave cores is approximated. The OS conservatively relays IPIs to cores which

may potentially contain the modified translation. The slave may not contain

the modified mapping due to reasons like TLB evictions[21][22].

In virtualized systems, TLB shootdowns occur between virtual pro-

cessors (vCPUs) instead of the physical cores. The overall process of a TLB

shootdown in virtualized environments looks very similar to native TLB shoot-

downs, albeit a few key differences. First, vCPUs generate virtual IPIs instead

of physical IPIs. These virtual IPIs are emulated by the underlying Virtual

Machine Manager (VMM), which performs the task of communicating to the

slave vCPU that a translation has been modified, either by relaying a physi-

cal IPI to the physical core running the target vCPU, or by setting a flag to

enforce coherence when target vCPU resume execution. TLB shootdowns in

virtualized environments suffer from the same set of problems as their native

counterparts: expensive pipeline flushes and protection level switches on the

physical core upon delivery of the physical IPI, approximation of the list of

slave vCPUs, and busy wait loop on the initiator vCPU. Interestingly, busy

wait on the initiator vCPU is exacerbated because the slave vCPU might po-

tentially get pre-empted while processing the virtual interrupt, delaying the

acknowledgement [23]. In addition, due to imprecision of invalidation, the

slave core must perform a TLB flush instead of an invalidation of a single

translation entry. Therefore, we observe an order of magnitude increase in the
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busy wait to 60us on the initiator in dedup on Intel Skylake machine with 8

cores running a single VM with 8 vCPUs. Virtualized systems also suffer from

the overhead of emulation of virtual interrupts.

TLB shootdowns in virtualized environments are woefully imprecise,

imposing additionally overheads on an already worse baseline. Current VMMs

do not track the guest virtual address. Since modern processors only permit

invalidations of individual TLB entries when the gVA is known, when the

VMM updates the nested page table, translation structures are completely

flushed [24]. Additionally, VMMs track address translations at VM-granularity

- VMMs track the subset of cores that a vCPU runs on, but do not track

the subset of cores that a process on a vCPU runs on. To make matters

worse, even the initiator vCPU can only approximate the list of slave vCPUs

which have potentially accessed the translation being modified. As a result,

in addition to the list of slave vCPUs approximated by the guest OS, the list

of slave cores is approximated by the VMM. Combined with the flushing of

translation structures upon a nested page table update, these approximations

result in translations pertaining to other processes that run on the target vCPU

being needlessly invalidated[24].

There have been various techniques proposed in both hardware and

software to eliminate these overheads. Software schemes like Lazy Translation

Coherence [25], ABIS[26] and hardware schemes like DIDI[21], UNITD[22] and

HATRIC [24] aim to reduce the number of IPIs or eliminate them altogether.

Hardware schemes allow precise identification of the slave cores and eliminate

7



busy waits on the initiator. However, some of these schemes are applicable

only to native environments. While HATRIC[24] does account for virtualized

environments, it suffers from two major drawbacks. First, HATRIC tags the

TLB entries with the physical address of the last-level PTE of the host page

table. As a result, it can only track changes to the host page table, and cannot

track changes to the guest page table. Also, since the TLB entries are tagged

with the physical address of the last-level PTE, it cannot track changes to

the intermediate host PTEs. Second, HATRIC does not solve the problem of

imprecision in virtualized environments. Even with HATRIC, when the VMM

updates the nested page table, translation structures are completely flushed.

In this thesis, we present TCAT (Translation Coherence using Address-

able TLBs), a hardware translation coherence scheme to reduce the cost of ad-

dress translation coherence. TCAT overlays translation coherence atop cache

coherence. It then leverages the addressable Part of Memory TLB (POM-

TLB) [27] to enable precise invalidations in virtualized environments. TCAT

tracks changes to guest page table by tying each guest page table translation

to a single address in POM-TLB. On a guest-page table updates, TCAT gen-

erates coherence messages for that POM-TLB address. When the other cores

see these coherence messages, they know which entry in their TLB needs to be

invalidated, because each guest page table translation is tied to a single address

in the POM-TLB. This allows precise invalidations on the slave vCPUs/cores.

This mechanism helps withstand the overheads of page-table modifications by

the guest OS.
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This thesis is structured as follows. Chapter 2 provides a brief back-

ground on address translation and translation coherence in both native and

virtualized environments. In Chapter 3, we motivate the need for our solu-

tions by demonstrating the overheads that exist in virtual memory in current

virtualized systems. In Chapter 4, we explore the existing solutions and their

drawbacks. In Chapters 5 and 6, we present our design and evaluate the

results. Chapter 7 concludes the thesis.
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Chapter 2

Virtual Memory in Virtualized Systems

2.1 Hardware Virtualization

Hardware virtualization is an abstraction of computing resources from

the software that uses those resources. In a traditional computing environ-

ment, the operating system or an application has direct access to the underly-

ing computing resources such as the processor, memory and storage. In order

to facilitate server consolidation, hardware virtualization installs a hypervisor

or virtual machine manager (VMM), which creates an abstraction layer be-

tween the software and the underlying computing resources. In the presence of

a hypervisor, software uses the virtual representations of underlying computing

resources such as virtual processors (vCPUs) or guest memory instead of using

those resources directly. Virtualized computing resources are provisioned into

isolated independent instances called virtual machines (VMs) where operating

systems and applications can be installed. The operating system running on

the VM along with its associated software is termed the guest, and the under-

lying hardware which provides the computing resources for the guest to run is

termed the host. Virtualized systems can host multiple VMs simultaneously,

but every VM is logically isolated from every other VM.

10



2.2 Address Translation

All modern computer systems provide an abstraction of main memory

known as Virtual Memory. This abstraction ensures efficient use of main mem-

ory, provides an uniform address space to all processes, and achieves memory

isolation between processes. In a system with virtual memory support, while

each byte on the main memory is addressable by a unique address called the

Physical Address (PA), a processor which intends to perform a memory access

generates a Virtual Address (VA). Before accessing memory, VA is converted

to PA in a process known as Address Translation. This process is performed

at the granularity of a fixed-size block, rather than the granularity of a single

virtual address. Virtual memory is partitioned into fixed-size blocks of P = 2p

bytes called Virtual Pages. Main memory, addressed by PA, is partitioned

into fixed-size blocks of the same size (P = 2p bytes) called Page Frames or

Physical Pages. Address translation maps a virtual page to a physical page,

and is achieved by means of a data structure stored in physical memory called

the Page Table that stores mappings of virtual pages to physical pages. A

page table is organized as an array of page table entries (PTEs). A PTE com-

prises of the VA-PA mapping, a valid bit indicating if the mapping is valid or

not, and metadata associated with the mapping. Metadata fields vary widely

across architectures. Each page in the virtual address space has a PTE at a

fixed offset in the page table. Therefore, given a VA, the address translation

hardware can index into the page table with an appropriate offset and obtain

the PA from the PTE. To reduce the memory requirements of a page table,

11



multi-level page tables are used in modern systems. In case of today’s x86-

64, a four-level page table is adopted. To obtain the VA-PA mapping, the

address translation hardware has to access all page table levels in a process

called the page table walk. Since address translation needs to be performed

on every memory access, it is critical to processor performance. Therefore, all

processors employ a Translation Lookaside Buffer (TLB), which caches VA-PA

mappings in an on-chip, content-addressable memory and eliminates the need

for a full page table walk in the common case.

2.2.1 Address Translation in Native Systems

The procedure to perform the full translation in a native setting as is

shown in Figure 2.1. The first few most significant bits (MSBs) of the VA are

used along with the CR3 register to index into the first level of the page table,

which is denoted as L4 in the figure. The entry at that index in L4 points to

the base of L3. The next few MSBs of the VA are used to index into L3, and

the entry at that index points to the base of L2. This process is continued

until the last level L1 yields the PA corresponding to the VA. Therefore, in

order to obtain a full translation, upto 4 memory accesses have to performed

with a four-level page table.

2.2.2 Address Translation in Virtualized Systems

With hardware virtualization, to fully virtualize memory, two levels of

address translation are used: (1) guest virtual address (gVA) to guest physical

12



L4 L3 L2 L1 PA VA 

PAGE TABLE WALK CR3 

Figure 2.1: Page table walk in Native Systems (1D-page walk)

address translation (gPA) via a per-process guest OS page table (gPT) (2)

guest physical address (gPA) to host physical address (hPA) via a per-VM

host page table (hPT). Address translation in modern systems with hardware

virtualization support is usually performed by a hardware technique called

Nested Paging. The processor has two page table pointers to perform the two

levels of address translation: one points to the guest page table (gCR3) and the

other points to the host page table (hCR3). The guest page table holds gVA

to gPA translation and the host page table holds gPA to hPA translations. In

the best case, the gVA to hPA translation is available in the TLB. In the worst

case, a TLB miss necessitates a 2D page walk. In a 2D page walk, a guest page

table walk proceeds in the same way a native page table walk does. However,

since guest memory is virtual, each guest page table access necessitates a host

page table walk (which again proceeds in the same way as a native page table

walk) to obtain the hPA. Once the hPA is obtained, the guest page table is

accessed on the host physical memory, and the pointer to the next level of the

guest page table is obtained. Page table memory references grow from a native

4 to a virtualized 24 references: 4 accesses to translate gCR3 (since each gPA

requires access to host page table) and each of the 4 levels of the guest page

13
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Figure 2.2: Page Table Walks in Virtualized Systems

table (guest page table holds gPA) plus 4 accesses for the guest page table

itself; to obtain the final hPA: 4× 5 + 4 = 24 references.

2.3 Translation Coherence

As TLBs are critical to processor performance, each core in a chip

multiprocessor (CMP) has its own private TLB. Additionally, depending on

the architecture, each core might contain private translation structures such

as MMU caches and Nested TLBs (nTLB) to mitigate the overheads of full

page walk in the common case. This replication mandates that all transla-

tion structures must be kept consistent with the OS page tables, so that the

information cached in each one of these structures preserves a globally con-

sistent view of virtual memory. There are a number of scenarios in which
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the information associated with a translation may change: free operations like

munmap() and madvise(); migration operations like page swap, deduplica-

tion and compaction; permission change operations like mprotect(); ownership

change operations like copy-on-write optimization; and remap operations like

mremap(). The aforementioned operations either update the mapping itself,

or update the metadata bits associated with the mapping. During such events,

consistency has to be maintained across private TLBs for correctness - no core

should access a stale translation. Translation coherence is a way to enforce

this consistency. In modern systems, TLBs are kept coherent at the software-

level by the operating system (OS). Whenever the OS modifies a translation,

it must initiate a coherency transaction among TLBs, a process known as a

TLB shootdown. Current CMPs rely on the OS to approximate the set of

TLBs caching a mapping and synchronize TLBs using costly Inter-Processor

Interrupts (IPIs) and software handlers.

2.3.1 Translation Coherence in Native Systems

A TLB shootdown is an elaborate transaction in which the core initiat-

ing a modification the page-table ensures that all cores invalidate the affected

mapping from their TLBs. The time line of a TLB shootdown in native envi-

ronments is as illustrated below. Figure 2.3 depicts the sequence of events in

a native system when a TLB shootdown is triggered to invalidate a mapping

Tg[21][22].

1. One of the physical cores executing an operation that modifies the page-

15



table, referred to as the initiator core, prompts the OS to lock the cor-

responding page table entry and disables kernel pre-emption.

2. The OS forms a list of physical cores, called the slave cores or target

cores, that requested a translation of the modified page-table entry in

the past. The list of slave cores is conservatively approximated, since all

cores in the list might not contain the modified translation due to TLB

evictions.

3. The initiator sends an IPI to all the slave cores, requesting them to in-

validate the TLB entries referring to the modified mapping. Meanwhile,

the initiator core invalidates the mapping in its private TLB and waits

for acknowledgments from all the slave cores.

4. All slave cores receive the IPI and execute the IPI handler for TLB

invalidations. The interrupt handler code invalidates any affected TLB

entries and sends an acknowledgement to the initiator core.

5. Once all acknowledgements are received by the initiator core, the OS

unlocks the modified page-table entry, enables kernel pre-emption and

continues its execution.

2.3.2 Translation Coherence in Virtualized Systems

With hardware virtualization, there is an abstraction layer sitting atop

the underlying hardware - as a result, the guest processes execute on virtual

16



Approximate 
slave cores IPI

Core 0

Core 1

Polling 
loop

Wait for 
ACK from 
target cores

Flush 𝑇"
from 

translation  
structures

Core 0

Flush 𝑇"
from 

translation  
structures

ACK
Core 1

Pipeline 
flush, save 

context

Restore context, 
Pipeline flush, 

Resume 
Execution

Pipeline 
flush, save 

context

Restore context, 
Pipeline flush, 

Resume 
Execution

Figure 2.3: TLB shootdowns in Native Systems

processors (vCPUs) and not directly on the physical cores. TLB shootdown in

virtualized environments must therefore ensure that all vCPUs invalidate the

affected mapping from their virtual TLBs. The time line of a TLB shootdown

in virtualized environments is as illustrated below. Figure 2.4 depicts the

sequence of events in a virtualized system when a TLB shootdown is triggered

to invalidate a mapping Tg[24][23].

1. One of the vCPUs executing a page-table modification operation, re-

ferred to as the initiator vCPU, prompts the guest OS to lock the cor-

responding page table entry.

2. The guest OS approximates a list of vCPUS, called the target vCPUs,

that requested a translation of the modified page-table entry in the past.

3. The initiator vCPU sends an IPI with a specific vector number to a set

of target vCPUs. The initiator then enters a polling based loop until all
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target vCPUs have processed and acknowledged the requests by setting

a flag located in shared memory.

4. The IPI transmission by the vCPU causes the hardware to trap into

the VMM. The VM emulates the IPI and generates a new IPI that is

transmitted to the VMM on the physical cores hosting the target vCPUs.

5. When the IPI is delivered to the physical core hosting the target vCPU,

it causes a VM trap. The IPI is handed off the VMM running on the

physical core. The VMM then injects a virtual interrupt to the target

vCPU.

6. As soon as the target vCPU resumes execution, it executes the IPI han-

dler for TLB invalidations. The interrupt handler code invalidates any af-

fected TLB entries and sends an acknowledgement to the initiator vCPU

by setting a flag located in shared memory.

7. Once all acknowledgements are received by the initiator vCPU, the guest

OS unlocks the modified page-table entry and resumes normal execution.

In native environments, TLB shootdowns are comparatively faster.

This is because the initiator physical core has to wait for target physical cores

to acknowledge before the IPI is handled -and the target physical core is always

available. However, in virtualized environments, since vCPUs are merely pro-

cesses running on the host, a target vCPU could potentially be preempted by

the host scheduler. In other words, target vCPUS are not always available to
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send the acknowledgement to the initiator vCPU. Target vCPUs can perform

the invalidation and send the acknowledgement only when they are scheduled

again. This can result in the latencies of TLB flush operations increasing by

orders of magnitude depending on the scheduling state of the target vCPUs.

This problem is referred to as the TLB shootdown preemption problem[23]. In

order to circumvent this problem, KVM utilizes a scheme called KVM paravir-

tual remote flush TLB scheme (kvmtlb) developed by the Linux community.

This scheme records the preemption state of all vCPUs inside the VMM and

shares this information with the VM. When there is a nested page table up-

date, if the target vCPU is running, TLB shootdown proceeds like in the native

case. However, if the target vCPU is preempted, a should_flush flag is set on

that target vCPU and the IPI is not sent. When rescheduling a vCPU, the

VMM checks the should_flush flag. If set, the VMM invalidates all TLB en-

tries of that vCPU. This eliminates the problem of increased latencies on the

initiator vCPUs waiting for acknowledgements from the remote vCPU[23].
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Chapter 3

Motivation: Virtual Memory Overheads in
Virtualized Environments

3.1 Address Translation Overheads

In native systems, address translation overhead is considerable as a

result of multiple memory references (proportional to the depth of the page

table) required to obtain a full translation. Although techniques like caching

of page table entries in data caches, MMU caches and caching intermediate

translations can remove some of the memory references for a TLB miss, ad-

dress translation in native systems still incurs a non-negligible performance

overhead. In virtualized systems, the address translation overhead increases

as a result of the increased number of memory references required to obtain a

full translation due to a 2D page table walk. Table 3.1 lists the measured page

walk cost per L2 TLB miss in both native and virtualized systems for some

PARSEC and graph workloads. Measurements were made on a state-of-the-art

Intel Skylake system with extended page tables. While some workloads (e.g.,

streamcluster) have very similar page walk costs in both native and virtual-

ized, others (e.g., connectedcomponent, gups) show significant increase under

virtualization as expected. With the increase in the number of page table

levels, these overheads will only be exacerbated.
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Benchmark Native Virtualized
canneal 53 61

connectedcomponent 44 1158
graph500 79 80
gups 43 70

pagerank 51 61
streamcluster 74 76

Table 3.1: Average Page Walk Cycles Per L2 TLB miss

3.2 Virtual Memory Associated Overheads induced by
Context Switching

Today, it is common to have multiple VM instances to share a com-

mon host system as cloud vendors try to maximize hardware utilization. The

aforementioned trend means that the host machines are constantly occupied

by applications from different businesses, and frequently, different contexts

are executed on the same machine. Although it is ideal for achieving high

utilization, the performance of guest applications suffer from frequent context

switching.

Context switches in virtualized workloads are expensive. Since both

the guest and host processes share the hardware TLBs, context switches across

virtual machines can impact performance severely by evicting a large fraction

of the TLB entries held by processes executing on any one virtual machine.

To quantify this, we measured the increase in the L2 TLB MPKI of a context-

switched system (2 virtual machine contexts, switched every 10ms) over a non-

context-switched baseline. Figure 3.1 illustrates the increase in L2 TLBMPKIs

for several multi-threaded workloads, when additional virtual machine context
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Figure 3.1: Increase in TLB Misses due to Context Switches. Ratio of L2 TLB
MPKIs in Context Switch Case to Non-Context Switch Case

switches are considered. Despite only two VM contexts, the impact on the the

L2 TLB is severe: an average increase in TLB MPKI of over 6X. This leads to

an overall degradation in performance of the context-switched workloads. For

instance, when 1 VM instance of pagerank was context-switched with another

VM instance of the same workload, the total program execution cycles for each

instance went up by a factor of 2.2X.

The higher miss rate of the L2 TLB leads to increased translation traffic

to the data caches. In the conventional radix tree based page table organi-

zation, the additional page walks result in the caching of intermediate page

tables. In the POM-TLB organization, the caches store translation entries

instead of page table entries. By translation entry we refer to a TLB entry

that stores the translation of a virtual address to its physical address. While
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caching of TLB entries inherently causes less congestion (one entry per trans-

lation as opposed to multiple intermediate page table entries), it still results in

polluting the data caches when the L2 TLB miss rates are high. This scenario

creates an undesirable situation where neither data nor TLB traffic achieves

the optimal hit rate in data caches. A conventional system is not designed to

handle such scenarios as the conventional cache replacement policy does not

distinguish different types of cache contents. This is no longer true as some

contents are data contents while others are TLB contents. When a replacement

decision is made, it does not distinguish TLB contents versus data contents.

But the data and TLB contents impact system performance differently. For

example, data requests are overlapped with other data requests with the help

of MSHR. On the other hand, an address translation request is a blocking

access, so it stalls the pipeline. Although newer processor architectures such

as Skylake have simultaneous page table walkers to allow up to two page table

walks, the page table walk being a blocking access does not change. In the

end, the conventional content-oblivious cache replacement policy makes both

the TLB and data access performance suffer by making them compete for en-

tries in capacity constrained data caches. This problem is exacerbated when

frequent context switches occur between virtual machines.

To quantify the cache congestion problem, we measure the occupancy

of TLB entries in L2 and L3 data caches. We define occupancy as the aver-

age fraction of cache blocks that hold TLB entries. To collect this data, we

modified our simulator to maintain a type field (TLB or data) with each cache
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Figure 3.2: Fraction of Cache Capacity Occupied by TLB Entries

block; periodically the simulator scanned the caches to record the fraction of

TLB entries held in them. Figure 3.2 plots this data for several workloads.

We observe that an average of 60% of the cache capacity holds translation

entries. In one workload (connectedcomponent), the TLB entry occupancy is

as high as 80%. This is because the L2 TLB miss rate is approximately 10

times the L1 data cache miss rate, as a result of which translation entries end

up dominating the cache capacity.

In summary, context switching increases L2 TLB MPKI, which in turn

causes increased translation traffic and congestion in the data caches. While

caching of the translation entries is useful to avoid DRAM accesses, the above

data suggests that unregulated caching of translation entries has a flip side of

causing cache pollution or creating capacity conflict with data entries. If the

congestion favors TLB contents while data contents are of more importance,
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performance will suffer. On the other hand, if the congestion favors data

contents while TLB contents are of more importance, performance will still

suffer. However, in the latter case, in virtualized environments, an expensive

2D page walk has to be performed to obtain a gVA to hPA translation, which

further worsens the performance impact of such a scenario.

3.3 Translation Coherence Overheads

TLB shootdowns are employed in modern CMPs to maintain a globally

consistent view of virtual memory. As discussed in Section 2.3.2, TLB shoot-

downs utilize costly IPIs and protection level switches to maintain coherence.

As a result, they impose a considerable execution overhead. In native sys-

tems, these overheads can be broken up into three distinct components [21]

in the following manner: (1) IPI delivery overhead: Overhead incurred by

the initiator core in approximating the set of slave cores and delivering IPIs

to each one of them (2) TLB invalidation overhead: Overhead of execut-

ing the handler which performs TLB invalidation on the initiator core (local

shootdown), and TLB invalidation on the slave core (remote shootdown). This

overhead is incurred by both the initiator core and the slave core (3) Busy

wait overhead: Overhead of busy wait for acknowledgements from all the

slave cores indicating that they have flushed the modified mapping from their

TLBs. Only the initiator core sees this overhead.

TLB shootdowns in virtualized systems incur a few additional over-

heads. Since vCPUs are processes running on the host, IPIs delivered by the
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initiator vCPUs must be transmitted to the physical cores running the target

vCPUs. Additionally, the physical core running the target vCPU must guar-

antee a remote TLB invalidation. This is enabled by the emulation of virtual

interrupts by the VMM, which involves the penalty of conversion of virtual IPI

into physical IPI and back into virtual IPI, and the penalty of a VM-exit on

the slave physical core. In addition to these undesirable overheads, there are

several inefficiencies associated with TLB shootdown in virtualized systems,

as summarized below.

1. Imprecise invalidations: In a virtualized system, when the VMM

updates the nested page table, it only tracks the gPA and the hPA.

It does not track the gVA. Modern processors do not permit precise

invalidations if the gVA is not known. This results in a complete flush of

all translation structures on the cores containing the modified mapping.

Repopulating these flushed structures incur the penalty of a 2D-page

table walk[24].

2. Expensive remote TLB invalidations: TLB invalidations on the

slave core/vCPU involve expensive pipeline flushes and protection level

switch to execute privileged instructions. This interferes with the work-

loads executing on the slave cores[21].

3. Slave cores/vCPUs are approximated: In a native system, the list

of slave cores is approximated. Therefore, some cores which may not

possess the modified mapping needlessly flush their pipeline and execute

27



the interrupt handler upon IPI delivery. In a virtualized system, VMMs

track the subset of cores that a vCPU runs on, and do not track the sub-

set of cores that a process on a vCPU runs on. In other words, mappings

are tracked at the VM-granularity rather than a process-within-a-VM

granularity. Therefore, when the VMM remaps a page pertaining to a

process running on the initiator vCPU, it conservatively issues IPIs to

all physical cores that may potentially have executed any target vCPU.

As in the native case, if the target physical core (which has potentially

run the target vCPU in the past) does not have the modified mapping,

it incurs the overhead of pipeline flush and interrupt handler execution.

Additionally, translation entries pertaining to other processes that run

on the target vCPU get needlessly invalidated due to flushing of the

translation structures[24].

To summarize these overheads in a succinct manner, in our measurements,

we have broken up TLB shootdown overheads into two distinct components:

(1) Initiator core (native) or Initiator vCPU (virtualized) overheads (2) Slave

core (native) or Target vCPU (virtualized) overheads. Initiator overheads are

comprised of the IPI delivery overhead, TLB invalidation overhead, and the

busy wait overhead. Slave/Target overheads are solely constituted by remote

TLB invalidation overheads. We measure these components independently on

a real system. We compute the total execution overhead of TLB shootdowns

as the summation of all the initiator overheads and all the slave overheads.

We perform the measurements a 8-core state-of-the-art Intel Skylake
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system with and without hardware virtualization. To collect this data, we use

the Linux perf utility in conjunction with the Linux ftrace utility. perf utility

provides precise information about the local and remote shootdown events,

while ftrace utility is used to measure latencies of these individual events.

While performing measurements, we demonstrate the behavior with

two different modes of oversubscription: (1) A single VM with a vCPU: CPU

ratio of 1:1, 2:1 3:1 and 4:1. In this mode, oversubscription is due to running

multiple vCPUs. (2) Multiple VMs, each with a vCPU: CPU ratio of 1:1. In

this mode, oversubscription is due to the presence of multiple VMs. In this

mode, a single VM runs the benchmark of interest, while all the other VMs run

a CPU-intensive benchmark from sysbench[28][23]. Both these modes are com-

monly used in datacenters: the first mode is used typically used to boost CPU

utilization, while the second mode is used to run multiple services at once.

Typically, the ratio of the number of virtual CPUs (vCPUs) in the virtualized

system to the number of physical cores present on the host is called the over-

commit ratio. Overcommit ratios ranging from 2:1 to 6:1 are commonplace for

the maximizing CPU utilization[4].

Figure 3.3 plots the percentage of execution time spent in TLB shoot-

downs with the first mode of oversubscription for four workloads: apache,

dedup, ferret and vips. For comparison, we plot the percentages for native

environment, and virtualized environments with overcommit ratios of 1:1, 2:1,

3:1 and 4:1. We observe that the time spent doing TLB shootdowns typi-

cally increases with overcommit and can consume a considerable portion of
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the application runtime across benchmarks. The proportion of time spent in

the initiator and slave cores varies widely across benchmarks, although the

overheads on the initiator usually larger. In apache, time spent in the initiator

doing TLB shootdowns constitutes around 25% the execution for higher over-

commit ratios. This can be attributed to wasteful busy waits on the initiator.

In vips, the proportion of time spent on the slave increases with overcom-

mit. This can be attributed to the imprecision of invalidation in virtualized

environments.

Figure 3.4 plots the percentage of execution time spent in TLB shoot-

downs with the second mode of oversubscription. In apache, the percentage

overhead increases from 25% in the previous mode to 50%. Although vips

and dedup spend more time doing TLB shootdowns, the percentage overhead

decreases due to the large increase in the execution time. However, in ferret,

percentage overhead increases and reaches upto 15% in the 4:1 overcommit

case.

Figure 3.5 plots the average TLB shootdown latency with different over-

commit ratios with the first mode of oversubscription. We consistenty observe

higher average TLB shootdown latencies in virtualized environments. In most

of the benchmarks, there is a noticeable jump in the shootdown latency from

the 1:1 overcommit case to the 2:1 overcommit case. In apache, the latency

increases 20X from the 1:1 to 2:1 overcommit case. In vips, we observe a

10-fold increase in latency from the 1:1 to 2:1 overcommit case. From 10us in

the native case, average TLB shootdown latencies exhibit an order of magni-
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Figure 3.5: Average TLB Shootdown Latency

tude increase to 100-1000us in virtualized environments with oversubscription.

These behaviors can be attributed to the additional overheads associated with

virtualization. We see that reducing the TLB shootdown costs would result in

a considerable performance boost. This motivates us to design a translation

coherence scheme which amortizes the overheads associated with TLB shoot-

downs in virtualized environments - like the busy wait on the initiator and

imprecise invalidations on the slave.
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Chapter 4

Related Work

4.1 Address Translation in Virtualized Environments
4.1.1 Translation Caching Structures

Oracle UltraSPARC mitigates expensive software page walks by using

TSB [19]. Upon TLB misses, the trap handling code quickly loads the TLB

from TSB where the entry can reside anywhere from the L2 cache to off-chip

DRAM. However, TSB requires multiple memory accesses to load the TLB

entry in virtualized environments as opposed to a single access in our scheme

(refer to Figure 15 in [29] for an overview of the TSB address translation

steps in virtualized environments). Further, our TLB-aware cache partitioning

scheme is applicable to the TSB as well, and as demonstrated in Section 6.2.2,

TSB architecture also sees performance improvement.

Modern processors implement MMU caches such as Intel’s PSC [17]

and AMD’s PWC [30] that store partial translation to eliminate page walks.

However, the capacity is still much smaller than application footprints that

a large number of page walks are still inevitable. Other proposals like coop-

erative caching [31], shared last level TLBs [32], and cooperative TLBs [33]

exploit predictable memory access patterns across cores. These techniques are

orthogonal to our approach and can be applied on top of our scheme since
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we use a shared TLB implemented in DRAM. Although software-managed

TLBs have been proposed for virtualized contexts [34], we limit our work on

hardware managed TLBs.

4.1.2 Speculation Schemes

Speculation schemes [35,36] continue the processor execution with spec-

ulated page table entries and invalidate speculated instructions upon detecting

the mispeculation. These schemes can effectively hide the overheads of page

table walks. On the other hand, our scheme addresses the problem of TLB

capacity. We aim to reduce the number of page walks significantly by having

much larger capacity.

4.1.3 Hiding Page Walk Latency and Increasing TLB reach

Huge pages (e.g., 2MB or 1GB in x86-64) can reduce TLB misses by

having a much larger TLB reach [37–39]. Our approach is orthogonal to huge

pages since our TLB supports caching TLB entries for multiple page sizes.

Various prefetching mechanisms [33, 40] have been explored to fetch multiple

TLB or PTE entries to hide page walk miss latency. However, the fundamental

problem that the TLB capacity is insufficient is not addressed in prior work.

Hybrid TLB coalescing[41] aims to increase TLB coverage by encoding memory

contiguity information and does not deal with managing cache capacity. Page

Table Walk Aware Cache Management [42] uses a cache replacement policy

to preferentially store page table entries on caches and does not use cache
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partitioning.

4.1.4 Translation-aware Cache Replacement and Cache Partition-
ing

Recent cache replacement policy work such as DIP [43], DRRIP [44],

SHiP [45] focuses on homogeneous data types, which means they are not de-

signed to achieve the optimal performance when different data types of data

(e.g., POM-TLB and data entries) coexist. Hawkeye cache replacement pol-

icy [46], also targets homogeneous data types, has a considerable hardware

budget for LLC, and cannot be implemented for L2 data caches. EVA cache

replacement policy[47] cannot be used in this case due to a similar problem.

Cache partitioning is an extensively researched area. Several previous

works ([48–62]) have proposed mechanisms and algorithms for partitioning

shared caches with diverse goals of latency improvement, bandwidth reduction,

energy saving, ensuring fairness and so on. However, none of these works take

into account the adverse impact of higher TLB miss rates due to virtualization

and context switches. As a result, they fail to take advantage of this knowledge

to effectively address the TLB induced cache congestion.

4.2 Translation Coherence

We have shown that translation coherence, which is currently an ex-

pensive operation implemented in software on most systems, can consume 10

to 30 percent of the application runtime. This observation is corraborated by
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various studies which show similar results[63]. These overheads mainly arise

due to various inefficiencies of TLB shootdowns. In native environments, in-

efficiencies arise due to long latencies between with IPI delivery and reception

of acknowledgement from the target cores, and inaccurate approximations of

the slave cores causing unnecessary pipeline flushes. In virtualized environ-

ments, the latency problem is worsened due to TLB shootdown pre-emption.

Additionally, precise invalidation of TLB entries is not possible in virtualized

environments because hypervisors only track the guest physical and host phys-

ical page numbers. In order to eliminate these inefficiencies, various techniques

have been proposed in both software and hardware.

4.2.1 Software Approaches

Oskin et al [64] propose a scheme for hardware-assisted TLB shoot-

down. Hardware-assisted TLB shootdown approach introduces a special form

of IPI, called the REMOTE_INVLPG, and an associated microcode change

that receives this special IPI and issues a TLB shoot-down process entirely in

microcode without necessitating any OS interaction. This approach eliminates

OS interaction on the slave cores. However, this approach still necessitates the

initiator core to deliver IPIs and wait for acknowledgements from all the slave

cores, therefore, it incurs the entire initiator overhead component elaborated

in the previous section.

Amit et al [26] introduce Access Based Invalidation System (ABIS).

They assert that that access bits of the PTE can be used to determine if the
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PTE is cached in any of the several private TLBs on the CMP. They use this

information to avoid sending IPIs upon updates to mappings that are private,

thereby preventing some of the penalties associated with both the initiator and

the slave. However, ABIS requires extensive hardware support for direct TLB

insertion and complex software infrastructure like a secondary page-hierarchy.

Mohan et al [25] propose a software-based TLB shootdown mechanism

called Lazy-Translation Coherence that can alleviate the overhead of the TLB

shootdown mechanism by handling TLB coherence in a lazy manner for page-

table update operations that do not enforce synchronous updates. Lazy Trans-

lation Coherence avoids expensive IPIs which are required for delivering a

shootdown signal to remote cores and the performance overhead of associated

interrupt handlers. However, Lazy-translation coherence is only applicable for

operations that can update the TLB asynchronously and cannot be applied

for operations that enforce synchronous translation updates like mprotect or

mremap.

Ouyang et al [23] propose a paravirtual TLB shootdown scheme named

Shoot4U, which eliminates TLB shootdown preemptions in virtualized envi-

ronments. It does so by intercepting remote vCPU TLB flush operations and

performing the invalidations directly in the VMM instead of handling them in

the guest environment. This optimization allows Shoot4U to avoid any delays

caused by a vCPU which has been pre-empted and to ensure that the delays

are consistent. Although Shoot4U decouples TLB shootdown completion from

the host scheduler behaviors, it does not eliminate the busy wait loop on the
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physical core on which the initiator vCPU is running. Additionally, it does

not eliminate expensive IPIs between the physical cores.

4.2.2 UNITD: UNified Instruction/Translation/Data Coherence

Romanescu et al [22] propose a scalable hardware-based TLB coherence

protocol called UNITD. The idea behind UNITD is to identify whether or not

a page translation is present in a specific TLB by augmenting each TLB entry

with the physical address of the last-level PTE of the translation that it holds.

This is done by using structure called the Page Table Entry CAM (PCAM).

Whenever the OS changes a PTE, the change propagates to the last-level

PTE, and the cache-coherence protocols detect and relay this information to

all the translation structures. Lookups are performed in the PCAM using the

physical address of this last-level PTE, and TLB entries which are tagged with

the same physical address are invalidated. There are two major drawbacks to

this scheme: (1) It cannot track changes to intermediate PTEs. Although

the authors argue that all the changes to the intermediate PTE need to be

propagated to the last-level PTE, it might not be true in the case where a

mapping changes (2) It increases coherence traffic to the TLBs to a large

extent. Since the data caches do not distinguish data from page-table entries,

cache coherence messages are relayed to the TLBs upon each update to the

data cache contents.
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4.2.3 DiDi: A Shared TLB Directory

Villavieja et al [21] propose a scalable architectural mechanism that

couples shared TLB directory with load/store queue support for lightweight

TLB invalidation and eliminates the need for costly IPIs. The scheme has two

components - a second-level TLB that acts as a Dictionary Directory (DiDi),

and a Pending TLB Invalidation (PTLBI) buffer. DiDi eliminates unneces-

sary IPIs by tracking the location of every address translation stored on the

first-level TLBs of the whole system using the Directory Bitmap. On the

other hand, the PTLBI buffer eliminates the overheads of interrupt process-

ing performing the following operations: storing all broadcasted invalidations,

injecting a memory barrier into the load/store queue, actually performing

the invalidation, and sending acknowledgement back to the DiDi. DiDi lacks

support for hardware virtualization. Although it eliminates expensive IPI de-

livery, it does not eliminate the busy wait on the initiator core waiting for

acknowledgements from the slave cores.

4.2.4 HATRIC: Hardware Translation Invalidation and Coherence

Yan Zi et al [24] propose a hardware mechanism called HATRIC to

piggyback translation coherence atop existing cache coherence protocols. In a

manner similar to UNITD, by adding co-tags (system physical address of the

nested page table entry) to translation structures, HATRIC obviates the need

for full translation structure flushes by more precisely identifying invalidation

targets. HATRIC then exposes these co-tags to the cache coherence protocol to
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precisely identify coherence targets and to eliminate VM exits. HATRIC works

well in virtualized environments with heterogeneous memories with potentially

a large number of host-page remappings. In modern virtualized systems with

no heterogeneous memories, we have observed that the host-page remappings

are quite infrequent. Instead, we observe a lot of guest-page table remappings

and associated overheads as detailed in the background section. However, HA-

TRIC does not support hardware coherence for guest-page table remappings.

Moreover, since it tags the TLB entries with the physical address of last-level

PTE, it suffers from the same drawback as UNITD - it cannot track changes

to intermediate PTEs.

40



Chapter 5

Architecture Description & Evaluation

5.1 Context Switch Aware Large TLB

The address translation overhead in virtualized systems comes from

one apparent reason, the lack of TLB capacity. If the TLB capacity were large

enough, most of page table walks would have been eliminated. The need for a

larger TLB capacity is also seen as a recent generation of Intel processors [65]

doubled the L2 TLB capacity from the previous generation. Traditionally,

TLBs are designed to be small and fast, so that the address translation can

be serviced quickly. Yet, emerging applications require much more memory

than traditional server workloads. Some of these applications have terabytes

of memory footprint, so that TLBs, which were not initially designed for such

huge memory footprint, suffer significantly.

Recent work [20] by Ryoo et al. uses a part of main memory to be

used as a large capacity TLB. They use 16MB of the main memory, which is

negligible considering high-end servers have terabytes of main memory these

days. However, 16MB is orders of magnitude higher than today’s on-chip

TLBs, and thus, it can eliminate virtually all page table walks. This design

achieves the goal of eliminating page table walks, but now this TLB suffers
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Figure 5.1: CSALT System Architecture

from slow access latency since off-chip DRAM is much slower than on-chip

SRAMs. Consequently, they make this high-capacity TLB as addressable, so

TLB entries can be stored in data caches. They call this TLB as POM-TLB

(Part of Memory TLB) as the TLB is given an explicit address space. CSALT

uses the POM-TLB organization as its substrate. It may be noted that CSALT

is a cache management scheme, and can be architected over other translation

schemes such as conventional page tables.

Figure 5.1 depicts the system architecture incorporating CSALT ar-

chitected over the POM-TLB. CSALT encompasses L2 and L3 data cache

management schemes. The role of the stack distance profilers shown in the

figure is described in Section 5.1.1. In the following subsections, we describe

the architecture of our Context-Switch Aware Large TLB (CSALT) scheme.
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First, we explain the dynamic partitioning algorithm that helps to find a bal-

anced partitioning of the cache between TLB and data entries to reduce the

cache contention. In Section 5.1.2, we introduce a notion of “criticality” to im-

prove the dynamic partitioning algorithm by taking into account the relative

costs of data cache misses. We also describe the hardware overheads of these

partitioning algorithms.

5.1.1 CSALT with Dynamic Partitioning (CSALT-D)

Since prior state-of-the-art work [20] does not distinguish data and TLB

entries when making cache replacement decisions, it achieves a suboptimal

performance improvement. The goal of CSALT is to profile the demand for

data and TLB entries at runtime and adjust the cache capacity needed for

each type of cache entry.

CSALT dynamic partitioning algorithm (CSALT-D) attempts to max-

imize the overall hit rate of data caches by allocating an optimal amount of

cache capacity to data and TLB entries. In order to do so, CSALT-D at-

tempts to minimize interference between the two entry types. Assuming that

a cache is statically partitioned by half for data and TLB entries, if data

entries have higher miss rates with the current allocation of cache capacity,

CSALT-D would allocate more capacity for data entries. On the other hand,

if TLB entries have higher miss rates with the current partitioning scheme,

CSALT-D would allocate more cache for TLB entries. The capacity partition-

ing is adjusted at a fixed interval, and we refer to this interval as an epoch. In
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order to obtain an estimate of cache hit/miss rate for each type of entry when

provisioned with a certain capacity, we implement a cache hit/miss prediction

model for each type of entry based on Mattson’s Stack Distance (MSA) algo-

rithm [66]. The MSA uses the LRU information of set-associative caches. For

a K-way associative cache, LRU stack is an array of (K +1) counters, namely

Counter1 to CounterK+1. Counter1 counts the number of hits to the Most

Recently Used (MRU) position, and CounterK counts the number of hits to

the LRU position. CounterK+1 counts the number of misses incurred by the

set. Each time there is a cache access, the counter corresponding to the LRU

stack distance where the access took place is incremented.

LRU stack can be used to predict the hit rate of the cache when the

associativity is increased/reduced. For instance, consider a 16-way associative

cache where we record LRU stack distance for each of the accesses in a LRU

stack. If we decrease the associativity to 4, all the accesses which hit in po-

sitions LRU4 − LRU15 in the LRU stack previously would result in a miss

in the new cache with decreased associativity (LRU0 is the MRU position).

Therefore, an estimate of the hit rate in the new cache with decreased asso-

ciativity can be obtained by summing up the hit rates in the LRU stack in

positions LRU0− LRU3.

For a K-way associative cache, our dynamic partitioning scheme works

by allocating certain ways (0 : N − 1) for data entries and the remaining ways

for TLB entries (N : K − 1) in each set in order to maximize the overall

cache hit rate. For each cache which needs to be dynamically partitioned,
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we introduce two additional structures: a data LRU stack, and a TLB LRU

stack corresponding to data and TLB entries respectively. The data LRU

stack serves as a cache hit rate prediction model for data entries whereas the

TLB LRU stack serves as as a cache hit rate prediction model for TLB entries.

Estimates of the overall cache hit rates can be obtained by summing over

appropriate entries in the data and TLB LRU stack. For instance, in a 16-way

associative cache with 10 ways allocated for data entries and remaining ways

allocated for TLB entries, an estimate of the overall cache hit rate can be

obtained by summing over LRU0 − LRU9 in Data LRU stack and LRU0 −

LRU5 in the TLB LRU stack.

This estimate of the overall cache hit rate obtained from the LRU stack

is referred to as the Marginal Utility of the partitioning scheme[67]. Consider

a K-way associative cache. Let the data LRU stack be represented as D_LRU

and the TLB LRU stack be represented as TLB_LRU. Consider a partitioning

scheme P that allocates N ways for data entries and K − N ways for TLB

entries. Then the Marginal Utility of P , denoted by MUP
N is given by the

following equation,

MUP
N =

N−1∑
i=0

D_LRU(i) +
K−N−1∑

j=0

TLB_LRU(j). (5.1)

CSALT-D attempts to maximize the marginal utility of the cache at each

epoch by comparing the marginal utility of different partitioning schemes.

Consider the example shown in Figure 5.2 for an 8-way associative cache.

Suppose the current partitioning scheme assigns N = 4 and M = 4. At the
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Algorithm 1 Dynamic Partitioning Algorithm
1: N = Number of ways to be allocated for data
2: M = Number of ways to be allocated for TLB
3:
4: for n in Nmin : K − 1 do
5: MUn = compute_MU(n)
6: end for
7:
8: N = arg max

N
(MUNmin

,MUNmin+1, ...,MUK−1)

9: M = K - N

end of an epoch, the D_LRU and TLB_LRU contents are shown in Figure 5.2. In

this case, the dynamic partitioning algorithm finds the marginal utility for the

following partitioning schemes (not every partitioning is listed):

MUP1
4 =

3∑
i=0

D_LRU(i) +
3∑

j=0

TLB_LRU(j) = 34

MUP2
5 =

4∑
i=0

D_LRU(i) +
2∑

j=0

TLB_LRU(j) = 30

MUP3
6 =

5∑
i=0

D_LRU(i) +
1∑

j=0

TLB_LRU(j) = 40

MUP4
7 =

6∑
i=0

D_LRU(i) +
0∑

j=0

TLB_LRU(j) = 50

(5.2)

Among the computed marginal utilities, our dynamic scheme chooses the parti-

tioning that yields the best marginal utility. In the above example, CSALT-D

chooses partitioning scheme P4. This is as elaborated in Algorithm 1 and

Algorithm 2.

Once the partitioning scheme Pnew is determined by the CSALT-D
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algorithm, it is enforced globally on all cache sets. Suppose the old partitioning

scheme Pold allocated Nold ways for data entries, and the updated partitioning

scheme Pnew allocates Nnew ways for data entries. We consider two cases: (a)

Nold < Nnew and (b) Nold > Nnew and discuss how the partitioning scheme

Pnew affects the cache lookup and cache replacement. While CSALT-D has no

affect on cache lookup, CSALT-D does affect replacement decisions. Here, we

describe the lookup and replacement policies in detail.

Cache Lookup: All K-ways of a set are scanned irrespective of whether a

line corresponds to a data entry or a TLB entry during cache lookup. In case

(a), even after enforcing Pnew, there might be TLB entries resident in the ways

allocated for data (those numbered Nold to Nnew − 1). On the other hand, in

case (b), there might be data entries resident in the ways allocated for TLB

entries (ways numbered Nnew to Nold − 1). This is why all ways in the cache

is looked up as done in today’s system.

Cache Replacement: In the event of a cache miss, consider the case where

an incoming request corresponds to a data entry. In both case (a) and (b),

CSALT-D evicts the LRU cacheline in the range (0, Nnew − 1) and places the

incoming data line in its position. On the other hand, if the incoming line

corresponds to a TLB entry, in both case (a) and (b), CSALT-D evicts the

LRU-line in the range (Nnew, K − 1) and places the incoming TLB line in its

position.

Classifying Addresses as Data or TLB: Incoming addresses can be clas-

sified as data or TLB by examining the relevant address bits. Since the POM-
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Algorithm 2 Computing Marginal Utility
1: N = Input
2: D_LRU = Data LRU Stack
3: TLB_LRU = TLB LRU Stack
4: MU = 0
5:
6: for i in 0 : N − 1 do
7: MU += D_LRU (i)
8: end for
9: for j in 0 : K −N − 1 do

10: MU += TLB_LRU (j)
11: end for
12: return MU

TLB is a memory mapped structure, the cache controller can identify if the

incoming address is to the POM-TLB or not. For stored data in the cache,

there are two ways by which this classification can be done: i) by adding 1 bit

of metadata per cache block to denote data (0) or TLB (1), or ii) by reading

the tag bits and determining if the stored address falls in the L3 TLB address

range or not. We leave this as an implementation choice. In our work, we

assume the latter option as it does not affect metadata storage.

Finally, the overall flow is summarized in Figure 5.3. Each private

L2 cache maintains its own stack distance profilers and updates them upon

accesses to it. When an epoch completes, it computes marginal utilities and

sets up a (potentially different) configuration of the partition between data

ways and TLB ways. Misses (and writebacks) from the L2 caches go to the

L3 cache which performs a similar update of its profilers and configuration

outcome. A TLB miss from the L3 data cache is sent to the L3 TLB. Finally,
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Figure 5.2: LRU Stack Example

a miss in the L3 TLB triggers a page walk.

5.1.2 CSALT with Criticality Weighted Partitioning (CSALT-CD)

CSALT-D assumes that the impact of data cache misses is equal for

both data and TLB entries, and as a result, both the data and TLB LRU

stacks had the same weight when computing the marginal utility. However,

this is not necessarily true since a TLB miss can cause a long latency page

walk. Note that even if the translation request misses in an L3 data cache,

the entry may still hit in the L3 TLB thereby avoiding a page walk. In order

to maximize the performance, the partitioning algorithm needs to take the

relative performance gains obtained by TLB entry hit and the data entry hit

in the data caches into account.
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Therefore, we propose a dynamic partitioning scheme that considers

criticality of data entries, called Criticality Weighted Dynamic Partitioning

(CSALT-CD). We use the insight that data and TLB misses incur different

penalties on a miss in the data cache. Hence, the outcome of stack distance

profiler is scaled by its importance or weight, which is the performance gain

obtained by a hit in the data cache. Figure 5.3 shows an overall flowchart with

additional hardware to enable such scaling (the red shaded region shows the

additional hardware).

In CSALT-CD, a performance gain estimator is added to estimate the

impact of a TLB entry hit and a data entry hit on performance. In an attempt

to minimize hardware overheads, CSALT-CD uses existing performance coun-

ters. For estimating the hit rate of the L3 data cache, CSALT-CD uses per-

formance counters that measures the number of L3 hits and the total number

of L3 accesses that are readily available on modern processors. For estimating

the L3 TLB hit rate, a similar approach is used. Utilizing this information,

the total number of cycles incurred by a miss for each kind of entry is com-

puted dynamically. The ratio of the number of cycles incurred by a miss to the

number of cycles incurred by a hit for each kind of entry is used to estimate

the performance gain on a hit to each kind of entry. For instance, if a data

entry hits in the L3 cache, the performance gain obtained is the ratio of the

average DRAM latency to the total L3 access latency. If a TLB entry hits

in the L3 cache, the performance gain obtained is the ratio of the sum of the

TLB latency and the average DRAM latency to the total L3 access latency.
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These estimates of performance gains are directly plugged in as Criticality

Weights which are used to scale the Marginal Utility from the stack distance

profiler. To estimate these performance gains, the following approach is used.

Estimating performance gains: We use the notation L1DAcc, L2Acc, and

L3DAcc to represent the access times for L1, L2, and L3 data caches respec-

tively. L1TAcc, L2TAcc, and L3TAcc represent the access times for L1 TLB, L2

TLB and L3 TLB respectively. L2Dhit, L2Dmiss, L3Dhit, and L3Dmiss repre-

sent the hit rate and miss rates of L2 and L3 data caches. L3Thit, L3Tmiss

represents the hit and miss rate for L3 TLB respectively. PWAcc represents

the page walk cycles, and DRAMAcc represents average DRAM access latency.

Consider a virtual address VA whose translation resident neither in L1

TLB nor L2 TLB. If its translation is found in the L2 data cache, the process

of translation is sped up by a certain measure as a result of not incurring a

page walk. The speedup STr obtained is given by

STr =
Translation time on a L2 data cache miss(NTr)

Translation time on a L2 data cache hit(DTr)
(5.3)

The denominator is a summation of the access times of L1 TLB, L2-

TLB and L2 data cache.

DTr = L1TAcc + L2TAcc + L2DAcc (5.4)

The numerator, however, is dependent on other factors. In the event on a L2

data cache miss, it is possible that the translation entry is resident in the L3

data cache or the L3 TLB. In the worst case, the virtual address VA might
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incur a page walk if the the translation for VA is resident neither in L3 data

cache nor L3 TLB. The numerator is approximated by utilizing hit rate of the

L3 data cache and the hit rate of the L3 TLB as follows.

NTr = DTr + L3Dhit × (DTr + L3DAcc)+

(L3Dmiss)× (L3Thit)× (DTr + L3DAcc + L3TAcc)+

(L3Dmiss)× (L3Tmiss)× (DTr + L3DAcc+

L3TAcc + PWAcc) (5.5)

On the other hand, consider a data cache line DL. A hit in the L2/L3 data

cache for DL eliminates the off-chip memory access latency. The relative

speedup SDat obtained in this case is

SDat =
Access time on a L2 data cache miss(NDat)

Access time on a L2 data cache hit(DDat)
(5.6)

where the denominator is a summation of access times of L1 and L2,

DDat = L1DAcc + L2DAcc (5.7)

and the numerator is estimated by utilizing information about the hit rate of

L3 data cache.

NDat = DDat + (L3Dhit)× (DDat + L3DAcc)+

(L3Dmiss)× (DDat + L3DAcc +DRAMAcc) (5.8)

Therefore, a TLB entry hit in the L2 data cache results in a speedup of STr,

and a data entry hit in the L2 data cache results in speedup of SDat. Speedups

for the L3 data cache can be obtained in a similar manner.
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We define a new quantity called the Criticality Weighted Marginal Util-

ity. For a partitioning scheme P which allocates N data ways out of K ways,

Criticality Weighted Marginal Utility (CWMU), denoted as CWMUP
N , is given

by the following equation. We could normalize the values in the LRU stack

with respect to the number of data and TLB entry accesses, but we do not do

so for the sake of simplicity.

CWMUP
N = SDat ×

N−1∑
i=0

D_LRU(i) + STr ×
K−N−1∑

j=0

TLB_LRU(j). (5.9)

The partitioning scheme with the highest CWMU is used for the next

epoch. Figure 5.3 shows the overall flow chart of CSALT-CD with the addi-

tional step required (the red shaded is the addition for CSALT-CD). We have

used separate performance estimators for L2 and L3 data caches as the per-

formance impact of L2 and L3 data caches is different. Algorithm 3 shows the

pseudocode of CSALT-CD. For a data entry, this performance gain is denoted

by SDat, and for a TLB entry, by STr. A method to estimate these perfor-

mance gains have been elaborated previously. These criticality weights are

dynamically estimated using the approach elaborated earlier. The rest of the

flow (cache accesses, hit/miss evaluation, replacement decisions) is the same

as in CSALT-D.

Criticality weighted partitioning attempts to maximize the CWMU at

each epoch by comparing CMWU of different partitioning schemes and choos-

ing the one with highest CWMU. Computation of CWMU is as elaborated

Algorithm 3. Maximization of CWMU is achieved as shown in Algorithm 1.
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Algorithm 3 Computing CWMU
1: N = Input
2: D_LRU = Data LRU Stack
3: TLB_LRU = TLB LRU Stack
4: CWMU = 0
5:
6: for i in 0 : N − 1 do
7: CWMU += SDat×D_LRU (i)
8: end for
9: for j in 0 : K −N − 1 do

10: CWMU += STr×TLB_LRU (j)
11: end for
12: return CWMU

The values of SDat and STr are calculated using equations in 5.6 and 5.3 at

each epoch.

5.1.3 Hardware Overhead

Both CSALT-D and CSALT-CD algorithms use stack distance profil-

ers for both data and TLB. The area overhead for each stack distance profiler

is negligible. This structure requires the MSA LRU stack distance structure,

which is equal to the number of ways, so in case of L3 data cache, it is 16 entries.

Computing the marginal utility only requires a few adders that will accumu-

late the sum of a few entries in the stack distance profiler. Both CSALT-D

and CSALT-CD also require an internal register per partitioned cache which

contains information about the current partitioning scheme, specifically, N ,

the number of ways allocated for data in each set. The overhead of such a reg-

ister is minimal, and depends on the associativity of the cache. Furthermore,
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the CSALT-CD algorithm uses a few additional hardware structures, which

include the hit rates of L3 data cache and L3 TLB. However, these counters

are already available on modern processors as performance monitoring coun-

ters. Thus, estimating the performance impact of data caches and TLBs will

only require a few multipliers that will be used to scale the marginal utility by

weight. Therefore, we observe that the additional hardware overhead required

to implement CSALT with criticality weighted partitioning is minimal.

5.1.4 Effect of Replacement Policy

Until this point, we assumed a True-LRU replacement policy for the

purpose of cache partitioning. However, True-LRU is quite expensive to imple-

ment, and is rarely used in modern processors. Instead, replacement policies

like Not Recently Used (NRU) or Binary Tree (BT) pseudo-LRU are used [68].

Fortunately, the cache partitioning algorithms utilized by CSALT are not de-

pendent on the existence of True-LRU policy. There has been prior research

to adapt cache partitioning schemes to Pseudo-LRU replacement policies[68],

and we leverage it to extend CSALT.

For NRU replacement policy, we can easily estimate the LRU stack

positions depending on the value of the NRU bit on the accessed cache line.

For Binary Tree-pseudoLRU policy, we utilize the notion of an Identifier (ID)

to estimate the LRU stack position. Identifier bits for a cache line represent the

value that the the binary tree bits would assume if a given line held the LRU

position. In either case, estimates of LRU stack positions can be used to update
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the LRU stack. It has been shown that using these estimates instead of the

actual LRU stack position results in only a minor performance degradation[68].

5.2 Translation Coherence using Addressable TLBs (TCAT)

In this section, we describe TCAT, our hardware translation coherence

scheme which precisely captures nested-page table updates initiated by the

guest OS. Our design alleviates virtually all foreground overheads associated

with translation coherence as listed in Section 3.3. In a manner similar to

UNITD[22] and HATRIC[24], our design integrates TLBs into the existing

cache coherence protocol. It exploits the addressing scheme of the Part-Of-

Memory TLB (POM-TLB)[27] architecture to enable sending coherence mes-

sages to achieve precise invalidation on the slave cores upon a guest page table

update.

5.2.1 Overview of our scheme

TCAT is a hardware translation coherence scheme designed for virtu-

alized environments. While HATRIC[24] can track host page table changes,

TCAT can track guest page table changes by overlaying TLB coherence atop

cache coherence. Additionally, unlike current VMMs[69] which do not track

guest virtual pages, and hence cannot perform precise invalidation on the slave

cores, TCAT enables invalidation of TLB entries for a specified page. It does

so by leveraging the POM-TLB. Each translation is tied to a specific location

in the POM-TLB - therefore, when translation structures receive a coherence
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message for a POM-TLB address, they know which translation entries to in-

validate.

5.2.2 Overlaying translation coherence atop cache coherence

Our design integrates TLBs into the existing cache coherence protocol.

From the cache coherence protocol perspective, a TLB is just another cache

which houses translations instead of data. TLBs use the same set of coherence

states that a data/instruction cache uses. If a MOESI protocol is used, the

possible coherence states in the TLB are: Exclusive (E), Shared (S) and Invalid

(I), since translations cannot be modified in the TLBs themselves. When a

translation T is brought into the TLB, it is marked as Exclusive (E). When

another core tries to read T and incurs a L2 TLB miss, it goes through the

POM-TLB address translation procedure, either installing the translation in

the L2 data cache of that core or reading the translation from the L2 data cache

of that core where it is already resident. In either case, the L2 data cache sends

a coherence message to all the TLBs, and the translation is marked as Shared

(S). The cached translation can be accessed by the local core as long as it is

in the Shared (S) state. The translation remains in this state until the TLB

receives a coherence message invalidating the translation. The translation is

then marked Invalid (I). Coherence messages invalidating a translation can

be received due to page table updates on any other core or due to page table

updates on the the local core. Page table updates on the local core are captured

by self-snooping. Page table updates on a remote core are relayed by the

58



directory. Subsequent memory accesses which need the translation will miss

in the TLB and go through the POM-TLB address translation procedure.

Note that in native environments, TLBs store V A − PA mappings.

Therefore, coherence states need to be updated when a V A − PA mapping

changes. In virtualized environments, TLBs store gV A − hPA mappings. In

this case, coherence states need to be updated in two cases: (1) gV A − gPA

mapping changes (2) gPA−hPA mapping changes. The first case corresponds

to a guest page table update, and the second case corresponds to a host-page

table update. Our design, currently, can capture only case (1). We leave case

(2) as future work.

When a coherence message is received by the TLB, it has to iden-

tify translations whose coherence states must change. This is achieved by

exploiting certain features of the POM-TLB design and is elaborated in the

subsequent sections.

5.2.3 Coherence lookups in the TLB

While cache coherence is based on physical addresses of blocks, a trans-

lation cached in a TLB is not directly addressable by the physical addresses

on which it resides. For the TLBs to participate in the coherence protocol,

the hardware coherence scheme must be able to perform coherence lookups in

the TLB. In native environments, UNITD accomplishes this by augmenting

the TLBs with the physical address of the last-level PTE. Similarly, in virtual-

ized environments, HATRIC augments the TLBs with the physical address of
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the last-level host PTE to capture updates to the nested page table initiated

by the host. In our design, we exploit features of the Part-Of-Memory TLB

(POM-TLB) addressing scheme to enable coherence lookups.

As referenced in the previous section, POM-TLB is a large shared L3

TLB after the private L2 TLBs, and is a part of the main memory. Each

entry in the POM-TLB has a valid bit, process ID, Virtual Address (VA),

and Physical Address (PA) as in on-chip TLBs. To facilitate the translation

in virtualized platforms, it also has Virtual Machine (VM) ID to distinguish

addresses coming from different virtual machines. The attributes include in-

formation such as replacement and protection bits. POM-TLB is designed as

a 4-way set associative TLB - each entry is 16B and four entries make 64B.

As each set holds four 16-byte TLB entries, POM-TLB comprising N sets is

assigned an address range of 64 × N bytes. The virtual address (V A) of the

L2 TLB miss is converted to a POM-TLB set index by extracting log2(N) bits

of the V A. The memory address of the set that the V A maps to is given by:

ADDRPOM−TLB(V A) = (((V A⊕VM_ID) >> 6) & ((1 << log2(N))−1))∗64+

BASE_ADDRPOM−TLB (5.10)

Due to the POM-TLB addressing scheme and layout, any guest virtual

address (gVA) to host physical address (hPA) translation from a single VM

maps to a fixed location in the POM-TLB. Due to the entirety of the virtual

address space mapping to a fixed-size POM-TLB, many gVA-hPA mappings

map to the same location in the POM-TLB. As a result, the POM-TLB design
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enforces a many-to-one mapping between guest virtual address (gV A) and

POM-TLB address (ADDRPOM−TLB). We utilize this feature to devise a

method to acheive coherence lookups in the TLB.

5.2.4 Achieving Translation Coherence

Consider a guest page table mapping Tg which maps guest virtual ad-

dress gV A1 to guest physical address gPA1, and the host page table mapping

Th which maps guest physical address gPA1 to host physical address hPA1.

In virtualized environments, TLBs store the mapping gV A1−hPA1, which we

denote by Ttlb. When the guest OS initiates an guest page table update U on

Core C, it updates the gV A1 − gPA1 mapping to gV A1 − gPA2. The update

U has resulted in the mapping gV A1−hPA1 becoming stale. Suppose another

core C ′ 6= C has the translation gV A1 − hPA1 resident on its private TLBs.

Translation coherence necessitates that this stale translation be invalidated

from the private TLBs of C ′. This is achieved by our translation coherence

scheme in the following manner.

5.2.4.1 Initiator core operations

After the guest OS performs writes to gPAs corresponding the guest

PTEs of the translation Tg, it performs a hypercall to the underlying VMM

with information about the gV A of translation that it modified. In the hyper-

call, the VMM performs the following sequence of steps on the initiator core

C i.e. the physical core on which an update to mapping Tg has been initiated.
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• Calculate the POM-TLB address corresponding to gV A1: From

equation 5.10, the POM-TLB address A corresponding to gV A1 is cal-

culated. Any mapping from gV A1 to any of one of the numerous host

physical addresses must reside at this fixed location A owing to the

many-to-one mapping property of the POM-TLB addressing scheme.

• Perform a Read-Modify-Write (RMW) to POM-TLB address

A: The address A may or may not contain the translation Ttlb. This is

because Ttlb may not be a recently-used translation in any of the cores,

and hence, might not be resident on the POM-TLB. The RMW inspects

the contents of address A to determine whether Ttlb is resident or not.

If it is resident, the RMW changes the valid bit of Ttlb to 0. If it is

not resident, the RMW writes back the same contents to address A.

This RMW operation results in two things: (1) Coherence messages

are generated from Core C for physical address A. These coherence

messages are relayed to the private translation structures of all cores by

the directory (TLBs, MMU caches, nTLBs) in addition to their data

caches (2) Contents of address A are resident on L1 data cache of Core

C.

• Perform a Cache Line Flush of address A: Cache Line Flush of

address A performs the following set of operations: (1) invalidates the

cache line that contains A from all levels of the processor cache hier-

archy (2) the invalidation is broadcast throughout the cache coherence
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domain (3) If, at any level of the cache hierarchy, the line is dirty, it is

written to memory before invalidation. Almost all architectures enable

cache line flush either through a single instruction or a sequence of in-

structions. For instance, in x86-64, CLFLUSH instruction performs the

exact set of operations as described above[70]. In ARM, this operation

can be achieved through a combination of writes to CP15 register and

the MCR instruction[71]. Therefore, we assume support for this oper-

ation across microarchitectures. Cache Line Flush for A is always valid

because of the guarantee provided by the RMW: A is resident on the L1

data cache. After Cache Line Flush, the following properties are guar-

anteed (1) The translation Ttlb is not resident on any of the data caches

or translation structures on any core. Non-residence on the data caches

of the local core is guaranteed by Cache Line Flush. Non-residence on

translation structures of local core is guaranteed by RMW operation and

self-snooping (2) If the translation Ttlb was resident on the POM-TLB at

address A, the valid bit of Ttlb has been set to 0 on account on writing

back to memory.

5.2.4.2 Slave core operations

On the other hand, the following sequence of operations occur on the

slave core C ′ i.e. the core which needs to perform invalidation of Ttlb on its

private translation structures.

• Translation structures receive coherence messages: All private
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translation structures on Core C ′ receive coherence messages relayed by

the directory on account of a translation update on on the initiator core

C. These coherence messages are generated by the RMW step on the

initiator core for Address A.

• Precisely identify invalidation targets: While this operation is per-

formed on each one of the private translation structures, we demon-

strate the operation for private TLBs. On other translation structures,

the operation can be performed in a similar manner. We propose two

approaches to precisely identify targets for invalidation: TCAT-cotag

and TCAT-cotagless. In TCAT-cotag, we tag each TLB entry with the

POM-TLB address, like HATRIC’s cotags. This allows invalidation at

a translation entry granularity. In TCAT-cotagless, we do not utilize

cotags. Instead, we compute the index of the set on the private TLB

which contains the invalidation target by using the POM-TLB address.

This approach leverages certain features of the POM-TLB addressing

scheme. Computing the set index on the private TLB e comprises of two

steps (1) Calculate the POM-TLB set-index SPOM−TLB(A) for address

A (2) Determine the set index on the private TLB, Scur−tlb(A), from

SPOM−TLB(A). To calculate the POM-TLB set index, a modified form

of Equation 5.10 is used.

SPOM−TLB(A) =
ADDRPOM−TLB −BASE_ADDRPOM−TLB

64

= (ADDRPOM−TLB −BASE_ADDRPOM−TLB) >> 6 (5.11)

64



Due to the many-to-one mapping nature of the POM-TLB addressing

scheme, all translations which are potentially affected by the received

coherence messages can reside only in this POM-TLB set. POM-TLB,

by nature, is always the the largest TLB in the system. Therefore, the

index bits of POM-TLB subsume the index bits of any private TLB. In

other words, if a private TLB contains M sets, then N > M , where N is

the number of POM-TLB sets. Therefore, the log2(M) least significant

bits of the POM-TLB set index SPOM−TLB(A) can be used to determine

the set index of the private TLB Scur−tlb(A) in the following fashion.

Scur−tlb(A) = SPOM−TLB(A) & ((1 << log2(M))− 1) (5.12)

Again, due to the many-to-one mapping nature of the POM-TLB ad-

dressing scheme, all translations which are potentially affected by the

received coherence messages can reside only in this private-TLB set.

• Invalidate entire set: On each translation structure, all translations

resident in the set Scur−tlb computed in the previous step are invalidated.

Non-residence on data caches of remote cores is guaranteed due to coherence

messages generated by RMW operation. Non-residence on translation struc-

tures of remote cores in guaranteed by RMW operation and slave-core opera-

tions. These guarantees, coupled with the guarantees provided by Cache Line

Flush on the initiator core, ensure that when any of the cores in the system try

to obtain the host physical address corresponding to gV A1, they always incur
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a 2D-page walk and read the updated translation. This proves the correctness

of our translation coherence scheme.

5.2.5 Discussion

5.2.5.1 Why is Cache Line Flush required?

Cache Line Flush is necessary to ensure that the modified translation

has been invalidated in the all caching structures in the system. In other words,

Cache Line Flush in necessary for the correctness of our coherence scheme.

Suppose core C updates the mapping Tg. This necessitates invalidation of the

mapping Ttlb as explained previously. Assume that we do not perform Cache

Line Flush after the RMW operation, and that the mapping Ttlb was resident in

the POM-TLB. After RMW, contents of POM-TLB address A containing Ttlb

are resident in the L1 and L2 data caches of Core C (assuming non-inclusive

caches). They are also resident in the LLC. However, the valid bit on Ttlb is

guaranteed to be 0 only in L1 data cache of C on account of the RMW. In the

L2 data cache of C and the LLC, the mapping Ttlb can still be valid. Coherence

messages generated by the RMW to address A invalidate the mapping Ttlb in

the private data caches and private translation structures all remote cores.

Consider the scenario in which a core C ′ 6= C tries to get the host

physical address corresponding to the guest virtual address gV A1. Translation

coherence enforces the requirement that core C ′ must always fetch the latest

mapping. However, the following sequences of operations ensue: Due to non-

residence in the private translation structures of Core C ′, POM-TLB address
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translation procedure kicks in, and tries to read contents of the address A from

the L2 data cache of core C ′. As data caches on C ′ cannot contain contents

of A due to RMW, it incurs a L2 data cache miss. The L2 data cache miss

may result in two different sequences of events: (1) A cache-to-cache transfer

request is initiated from the private caches of Core C ′ to the private caches

of Core C. This is because the L2 data cache of Core C still contains the

contents of address A (2) A LLC access is initiated. In case of the cache-to-

cache transfer, once the transfer completes, the POM-TLB address translation

procedure inspects the contents of A and finds out that the translation Ttlb

has its valid bit set to 0 because of the previous RMW. As a result, the

POM-TLB address translation procedure initiates an LLC access. Therefore,

both sequences culminate in a LLC access. When the POM-TLB address

translation procedure accesses the LLC for contents of address A, barring a

LLC eviction, it will find the mapping Ttlb in the LLC in valid state. As a

result, it is possible for core C ′ to pick up the stale translation and install

it in its own private TLBs. There is no guarantee that the mapping Ttlb is

invalidated from LLC, which in turn provides no guarantee that Core C ′ does

not pick up the stale translation. This precludes the correctness of TCAT.

A Cache Line Flush performed after the RMW circumvents this cor-

rectness issue by flushing contents of A from all levels of the cache hierarchy.

It also writes back to memory i.e. POM-TLB with the valid bit of Ttlb cleared.

As a result, the POM-TLB address translation procedure on Core C ′ fails to

find the mapping for guest virtual address gV A1 in any of its translation/-
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caching structures, and a 2D page table walk is initiated. Since the guest

PTEs corresponding to the mapping have already been updated by the guest

OS, Core C ′ is ensured to find the latest mapping for the guest virtual address

gV A1 upon a 2D page table walk.

5.2.5.2 Assumptions

We assume that the system is architected atop a POM-TLB. We also

assume a POM-TLB addressing scheme which results in a many-to-one map-

ping between the guest virtual addresses and the POM-TLB addresses. For

TCAT-cotagless, additionally, we assume that the POM-TLB set index bits

subsume the index bits of the private TLBs. This is a reasonable assumption

because of two reasons: (1) POM-TLB is a very large shared TLB by design,

and supposed to contain more sets than any of the private TLBs (2) We have a

POM−TLBsmall dedicated to small pages (4kB) and a POM−TLBlarge ded-

icated to large pages (2MB/4MB). In case of a large page, the set-index bits

of POM −TLBlarge subsume the set-index bits of the private TLBs dedicated

to large pages. In case of a small page, the set-index bits of POM −TLBsmall

subsume the set-index bits of the private TLBs dedicated to small pages. For

a skewed-associative TLB, it is not straightforward to compute the index of

the set to be invalidated on receiving a coherence message. However, since

the POM-TLB address is broadcast to all translation structures, a skewed-

associative TLB can still precisely identify the target - although it might have

to go through an additional set of computations.
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5.2.5.3 Precision of Invalidation

In TCAT-cotag, upon reception of coherence messages for POM-TLB

address A, the slave core performs invalidations of entries which are tagged

with A. This results in precise invalidations at the granularity of a translation

entry. In TCAT-cotagless, given a coherence message for POM-TLB address

A, the slave core identifies the set in the TLB which can potentially contain

the modified mapping and invalidates the entire set. The precision of invali-

dation achieved by TCAT-cotagless scheme is at the granularity of a set. The

overhead of such imprecision is minimal as evident from our results.

5.2.6 Putting it all together

Figure 5.4 details our coherence scheme’s overall operation. Figure

5.4(a) shows the initial state of the system with two cores. A mapping T1

from guest virtual address gV A1 to host physical address hPA1 is resident on

TLBs of CPU0 and CPU1. A single 64B POM-TLB entry, which holds 4 16-

byte TLB entries containing translations T1, T2, T3, and T4 respectively, is

resident on the on-chip data caches and on the POM-TLB. The dark-gray box

on the far-left of the POM-TLB entry on the on-chip data caches represents

the valid bit.

A vCPU running on CPU0 changes the mapping T1. To ensure transla-

tion coherence, the VMM performs the initiator core operations. The VM first

computes the POM-TLB address corresponding to gV A1, which is A. It then

reads the contents of address A. This results in the 64-byte POM-TLB entry
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containing translation T1 to be brought into the L1 data cache of CPU0. The

VMM inspects the contents of the POM-TLB entry, and finds that the POM-

TLB entry does contain the translation T1. Therefore, it performs a write

to A changing the valid bit of translation T1 to 0. This generates coherence

requests to the directory for address A. The directory forwards the request

to the list of sharers, in this case CPU1. Cache coherence clears the valid bit

of the POM-TLB entry resident on the L2 data cache of CPU1. Slave opera-

tions detailed in the previous section ensure that the valid bit of translation

T1 on the TLB of CPU1 is cleared. CPU1 sends an acknowledgement to the

directory conveying that it has performed the necessary invalidations. The di-

rectory removes CPU1 from the sharer list and forwards the acknowledgement

to CPU0. Self-snooping on CPU0 ensures that the valid bit of translation T1

on the TLB of CPU0 is cleared. The sequence of activities occuring on hard-

ware upon a RMW, and the state of the system after the RMW is depicted in

Figure 5.4(b).

The VMM then initiates a Cache Line Flush of address A. Cache Line

Flush clears the valid bit of the cache lines which hold the POM-TLB entry

containing translation T1. It also performs a write-back of the dirty POM-TLB

entry to the POM-TLB. The state of the system after the Cache Line Flush

is depicted in Figure 5.4(c). In this state, note that any core in the system

is mandated to perform a 2D-page walk to obtain the address translation of

gV A1, as the translation T1 is not valid on any of the translation-caching

structures.
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Figure 5.4: Coherence Scheme in action
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Chapter 6

Results

6.1 Experimental Set-Up

We evaluate the performance of CSALT and POM-TLB translation co-

herence using a combination of real system measurements, Pin tool [72], and

heavily modified Ramulator [73] simulation. The virtualization platform is

QEMU [74] 2.0 with KVM [75] support. Our host system is Ubuntu 14.04 run-

ning on Intel Skylake [17] with Transparent Huge Pages (THP) [76] turned on.

The system also has Intel VT-x with support for Extended Page Tables [77].

The host system parameters are shown in Table 6.1 under Processor, MMU,

and PSC categories. The guest system is Ubuntu 14.04 also with THP turned

on. Although the host system has a separate L1 TLBs for 1GB pages, we do

not make use of it. The L2 TLB is a unified TLB for both 4KB and 2MB

pages. In order to measure page walk overheads, we use specific performance

counters (e.g., 0x0108, 0x1008, 0x0149, 0x1049), which take MMU caches into

account. The page walk cycles used in this section are the average cycles spent

after a translation request misses in L2 TLB.
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Processor Values
Frequency 4 GHz
Number of Cores 8
L1 D-Cache 32KB, 8 way, 4 cycles
L2 Unified Cache 256KB, 4 way, 12 cycles
L3 Unified Cache 8MB, 16 way, 42 cycles
MMU Values
L1 TLB (4KB) 64 entry, 9 cycles
L1 TLB (2MB) 32 entry, 9 cycles

L1 TLBs 4 way associative
L2 Unified TLB 1536 entry, 17 cycles

L2 TLBs 12 way associative
PSC Values
PML4 2 entries, 2 cycle
PDP 4 entries, 2 cycle
PDE 32 entries, 2 cycle
Die-Stacked DRAM Values
Bus Frequency 1 GHz (DDR 2 GHz)
Bus Width 128 bits
Row Buffer Size 2KB
tCAS-tRCD-tRP 11-11-11
DDR Values
Type DDR4-2133
Bus Frequency 1066 MHz

(DDR 2133 MHz)
Bus Width 64 bits
Row Buffer Size 2KB
tCAS-tRCD-tRP 14-14-14

Table 6.1: Experimental Parameters
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VM1 VM2
canneal_x8 connected component_x8
canneal_x8 streamcluster_x8
graph500_x8 gups_x8
pagerank_x8 streamcluster_x8

Table 6.2: Heterogeneous Workloads Composition

6.2 Context-Switch Aware Large TLB
6.2.1 Workloads

The main focus of this work is on memory subsystems, and thus, appli-

cations, which do not spend a considerable amount of time in memory, are not

meaningful. Consequently, we chose a subset of PARSEC [78] applications that

are known to be memory intensive. In addition, we also ran graph benchmarks

such as the graph500 [79] and big data benchmarks such as connected compo-

nent [80] and pagerank [81]. We paired two multi-threaded benchmarks (two

copies of the same program, or two different programs) to study the problems

introduced by context switching. The heterogeneous workload composition is

listed in Table 6.2. The x8 denotes the fact that all our workloads are run

with 8 threads.

6.2.2 Simulation

Our simulation methodology is different from prior work [36, 82] that

relied on a linear additive performance model. The drawback of the linear

model is that it does not take into account the overlap of instructions and

address translation traffic, but merely assumes that an address translation re-
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quest is blocking that the processor immediately stalls upon a TLB miss. This

is not true in modern hardware as the remaining instructions in the ROB can

continue to retire as well as some modern processors [17] allow simultaneous

page walkers. Therefore, we use a cycle accurate simulator that uses a heavily

modified Ramulator. We ran each workload 10 billion instructions. The front-

end of our simulator uses the timed traces collected from real system execution

using the Pin tool. During playback, we simulate two contexts by switching

between two input traces every 10ms. We choose 10ms as the context switch

granularity based on measured data from prior works [83,84].

In our simulation, we model the TLB datapath where the TLB miss still

lets the processor to flush the pipeline, so the overlap aspect is well modeled.

We simulate the entire memory system accurately, including the effects of

translation accesses on L2 and L3 data caches as well as the misses from data

caches that are serviced by POM-TLB or off-chip memory. The timing details

of our simulator are summarized in Table 6.1.

The performance improvement is calculated by using the ratio of im-

proved IPC (geometric mean across all cores) over the baseline IPC (geometric

mean across all cores), and thus, higher normalized performance improvement

indicates a higher performing scheme.

This section presents simulation results from a conventional system

with only L1-L2 TLBs, a POM-TLB system, and various CSALT configura-

tions. POM-TLB is the die-stacked TLB organization using the LRU replace-

ment scheme in L2 and L3 caches [20]. CSALT-D refers to proposed scheme
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Figure 6.1: Performance Improvement of CSALT (normalized to POM-TLB)

with dynamic partitioning in L2, L3 data caches. CSALT-CD refers to pro-

posed scheme with Criticality-Weighted dynamic partitioning in L2, L3 data

caches.

6.2.3 CSALT Performance

We compare the performance (normalized IPC) of the baseline, POM-

TLB, CSALT-D and CSALT-CD in this section. Figure 6.1 plots the perfor-

mance of these schemes. Note that we have normalized the performance of all

schemes using the POM-TLB. POM-TLB, CSALT-D and CSALT-CD all gain

over the conventional system in every workload. The large shared TLB orga-

nization helps reduce expensive page walks and improves performance in the

presence of context switches and high L2 TLB miss rates. This is confirmed
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by Figure 6.2 which plots the reduction in page walks after the POM-TLB is

added to the system. In the presence of context switches (that cause L2 TLB

miss rates to go up by 6X), the POM-TLB eliminates the vast majority of

page walks, with average reduction of 97%. It may be emphasized that no

prior work has explored the use of large L3 TLBs to mitigate the page walk

overhead due to context switches.
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Figure 6.2: POM-TLB: Fraction of Page Walks Eliminated

Both CSALT-D and CSALT-CD outperform POM-TLB, with average

performance improvements of 11% and 25% respectively. Both the dynamic

schemes show steady improvements over POM-TLB highlighting the need for

cache de-congestion on top of reducing page walks. In the connected-component

workload1, CSALT-CD improves performance by a factor of 2.2X over POM-

1When we refer to a single benchmark, we refer to two instances of the benchmark
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TLB demonstrating the benefit of carefully balancing the shared cache space to

TLB and data storage. In gups and graph500, just having a large L3 TLB im-

proves performance significantly but then there is no additional improvement

obtained by partitioning the caches.
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Figure 6.3: Fraction of TLB Allocation in Data Caches

In order to analyze how well our CSALT scheme works, we deep dive

into one workload, connected_component. Figure 6.3 plots the fraction of L2

and L3 cache capacity allocated to TLB entries during the course of execution

for connected_component. The TLB capacity allocation follows closely with

the application behaviors. For example, the workload processes a list of active

vertices (a segment of graph) in each iteration. Then, a new list of active

vertices is generated based on the edge connections of vertices in the current

co-scheduled.
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Figure 6.4: Relative L2 Data Cache MPKI over POM-TLB
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Figure 6.5: Relative L3 Data Cache MPKI over POM-TLB
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list. Since vertices in the active list are placed in random number of pages,

this workloads produces different levels of TLB pressure when a new list is

generated. This is apparent that the L2 data cache, which is more performance

critical, favors TLB entries in some execution phases. This phase is when the

new list is generated. By dynamically assessing and weighing the data and

TLB traffic, CSALT-CD is able to vary the proportion allocated to TLB,

which satisfies the requirements of application. Interestingly, when more of L2

data cache capacity is allocated to TLB entries, we see a drop in L3 allocation

for TLB entries. Since a larger L2 capacity for TLB entries reduces the number

of TLB entry misses, the L3 data cache needs lesser capacity for TLB entries.

Even though L2 and L3 data cache partitioning works independently, our

stack distance profiler as well as performance estimators work cooperatively

and optimize the overall system performance. The significant improvement

in performance of CSALT over POM-TLB can be quantitatively explained

by examining the reduction in the L2 and L3 MPKIs. Figures 6.4 and 6.5

plot the relative MPKIs of POM-TLB, CSALT-D and CSALT-CD in L2 and

L3 data caches respectively (relative to POM-TLB MPKI). Both CSALT-D

and CSALT-CD achieve MPKI reductions in both L2 and L3 data caches. In

connected-component, both CSALT-D and CSALT-CD reduce MPKI of the

L2 cache by as much as 30%. CSALT-CD achieves a reduction of 26% in the

L3 MPKI as well. These reductions indicate that CSALT is successfully able

to reduce cache misses by making use of the knowledge of the two streams of

traffic.
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These results also show the effectiveness of our Criticality-Weighted

Dynamic partitioning. In systems subject to virtual machine context switches,

since the L2 TLB miss rate goes up significantly, a careful management of cache

capacity factoring in the TLB traffic becomes important. While TLB traffic

is generally expected to be a small fraction in comparison to data traffic, our

investigation shows that this is not always the case. In workloads with large

working sets, frequent context switches can result in generating significant

TLB traffic to the caches. CSALT-CD is able to handle this increased demand

by judiciously allocating cache ways to TLB and data.

6.2.3.1 CSALT Performance in Native Systems

While CSALT is motivated by the problem of high translation over-

heads in context switched virtualized workloads, it is equally applicable to

native workloads that suffer high translation overheads. Figure 6.6 shows

that CSALT achieves an average performance improvement of 5% in native

context-switched workloads with as much as 30% improvement in the connect-

edcomponent benchmark.

6.2.4 Comparison to Prior Works

Since CSALT uses a combination of an addressable TLB and a dynamic

cache partitioning scheme, we compare its performance against two relevant

existing schemes: i) Translation Storage Buffers (TSB, implemented in Sun

Ultrasparc III, see [19]), and ii) DIP [85], a dynamic cache insertion policy
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Figure 6.6: Performance Improvement of CSALT-CD in the native context

which we implemented on top of POM-TLB.

We chose TSB for comparison as it uses addressable software-managed

buffers to hold translation entries. Like POM-TLB, TSB entries can be cached.

However, unlike POM-TLB, the TSB organization requires multiple look-ups

to perform guest-virtual to host-physical translation.

DIP is a cache insertion policy, which uses two competing cache inser-

tion policies and selects the better one to reduce conflicts in order to improve

cache performance. We chose DIP for comparison as we believed that the

TLB entries may have different reuse characteristics that would be exploited

by DIP (such as inserting such entries into cache sets at non-MRU positions

in the recency stack). As DIP is not a page-walk reduction scheme, for a

fair comparison, we implemented DIP on top of POM-TLB. By doing so, this
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scheme leverages the benefits of POM-TLB (page walk reduction) while also

incorporating a dynamic cache insertion policy that is implemented based on

examining all of the incoming traffic (data + TLB) into the caches.

Figure 6.7 compares the performance of TSB, DIP and CSALT-CD on

context-switched workloads. Clearly, CSALT-CD outperforms both TSB and

DIP. Since TSB requires multiple cacheable accesses to perform guest-virtual

to host-physical translation, it causes greater congestion in the shared caches.

Since it has no cache-management scheme that is aware of the additional

traffic caused by accesses to the software translation buffers, the TSB suffers

from increased load on the cache, often evicting useful data to make room

for translation buffer entries. This results in the TSB under-performing all

other schemes (except in connected-component, where it performs superior to

DIP, but inferior to CSALT-CD). It may also be noted that the TSB system

organization can leverage CSALT cache partitioning schemes.

As such, DIP does not distinguish between data and TLB entries in the

incoming traffic and is unable to exploit this distinction for cache management.

As a result, DIP achieves nearly the same performance as that of POM-TLB.

This is not surprising considering that we implemented DIP on top of POM-

TLB. CSALT-CD, by virtue of its TLB-conscious cache allocation, leverage

cache capacity much more effectively and as a result, performs 30% better

than DIP, on average.
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Figure 6.7: Performance Comparison of CSALT with Other Comparable
Schemes

6.2.5 Sensitivity Studies

In this section, we vary some of our design parameters to see their

performance effects.

Number of contexts sensitivity: The number of contexts that can run on

a host system vary across different cloud services. Some host machines can

choose to have more contexts running than others depending on the resource

allocations. In order to simulate such effects, we vary the number of contexts

that run on each core. We have used a default value of 2 contexts per core,

but in this sensitivity analysis, we vary it to 1 context and 4 contexts per core.

We present the results on how well CSALT is able to handle the increased

resource pressure. Figure 6.8 shows the performance improvement results for

varying number of contexts. The results are normalized to POM-TLB. As
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Figure 6.8: Performance of CSALT with Different Number of Contexts

expected, 1 context achieves the lowest performance improvement as there is

no resource contention between multiple threads. Likewise, when we further

increased the pressure by executing 4 contexts (doubled the default 2 context

case), the performance increase is only 33%. This study shows that CSALT

is very effective at withstanding increased system pressure by reducing the

degree of contention in shared resources such as data caches.

Epoch length sensitivity: The dynamic partitioning decision is made in

CSALT at regular time intervals, referred to as epochs. In CSALT design,

the default epoch length was 256,000 accesses for both L2 and L3 data cache.

The epoch length at which the partitioning decision is made determines how

quickly our scheme reacts to changes in the application phases. We change

this epoch length after experimental evaluation. Figure 6.9 shows the perfor-
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Figure 6.9: Performance of CSALT with Different Epoch Lengths
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Figure 6.10: Performance of CSALT with Different Context Switch Intervals

mance improvement normalized to our default epoch length of 256K accesses

when the epoch length, at which the dynamic partitioning decision is made,
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is changed. In some cases such as connected_component and streamcluster,

shorter and longer epoch length achieve higher performance improvement than

our default case. This indicates that our default epoch length is not chosen

well for these workloads as it results in making a partitioning decision based on

non-representative regions of workloads. However, in all other workloads, our

default is able to achieve the highest performance improvement. Therefore,

for CSALT, we chose the default of 256K accesses as the epoch length.

Context Switch Interval Sensitivity: The rate of context switching affects

the congestion/interference on data caches and results in eviction of useful

data/TLB entries. Figure 6.10 plots the performance gain achieved by CSALT

(relative to POM-TLB) at context-switch intervals of 5, 10, and 30ms. CSALT

exhibits steady performance improvement at each of these intervals, with a

slightly lower (8%) average improvement at 30 ms in comparison to 10 ms.

6.3 Translation Coherence using Addressable TLBs (TCAT)
6.3.1 Workloads

The main focus of this work is on address translation coherence, and

thus, applications which do not exhibit a significant number of TLB shoot-

downs or significant amount of TLB shootdown penalties are not meaningful.

Consequently, we chose a subset of PARSEC [78] applications and apache

benchmark. As shown in the motivation, all these applications spend a con-

siderable amount of time performing address translation coherence, especially

in virtualized systems with higher overcommit ratios.
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6.3.2 Simulation

We use a cycle accurate simulator that uses a heavily modified Ramu-

lator. The simulator faithfully models the cache hierarchy of a Chip Multi-

Processor (CMP). It models the Reorder Buffer (ROB) in which all instruc-

tions other than memory instructions are retired with a fixed schedule, as

determined by the IPC of the benchmark on the real machine. We run each

workload for 2 billion instructions. The front-end of our simulator uses the

timed memory access traces collected from real system execution using the Pin

tool. It also uses a trace of TLB shootdowns. Each entry in the TLB shoot-

down trace contains an approximation of instruction count at which the TLB

shootdown occurred, the core which initiated the shootdown, and the number

of cores that were affected by the shootdown. During playback, the simulator

inspects the number of instructions that it has executed already, and injects

the TLB shootdown at an appropriate time. The timing details of our simula-

tor are summarized in Table 6.1. TLB shootdown penalty for each workload

is computed using the average TLB shootdown latency and the average clock

frequency during its execution. We use turbostat to measure the average clock

frequency during execution of the benchmark. Table 6.3 lists the shootdown

penalties for different benchmarks in the native setup and in the virtualized

setup with different overcommit ratios. The performance improvement is cal-

culated by using the ratio of improved IPC (geometric mean across all cores)

over the baseline IPC (geometric mean across all cores), and thus, higher nor-

malized performance improvement indicates a higher performing scheme.
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Benchmark Native 1:1 2:1 3:1 4:1
apache 7666 32219 660504 933364 1057079
dedup 22922 48660 155480 181460 180947
ferret 15683 530007 2206462 2492721 2583587
vips 9144 49167 368657 511626 696449

Table 6.3: TLB shootdown penalties (Cycles)

This section presents simulation results from a conventional native sys-

tem employing TLB shootdowns, conventional virtualized systems employ-

ing kvmtlb, and various TCAT configurations. Baseline-native refers to the

TLB shootdown baseline in native systems. Baseline-kvmtlb refers to the TLB

shootdown baseline in virtualized systems. TCAT-cotag refers to the pro-

posed scheme which employs POM-TLB co-tags to identify translations that

need to be invalidated. TCAT-cotagless refers to the proposed scheme which

employs computation of set-index to identify invalidation targets. Ideal-sim

refers to the maximum performance that can be obtained without address

translation coherence overheads in our simulator. Ideal refers to the maxi-

mum performance that can be obtained without address translation coherence

overheads in the real system. Ideal performance is computed by assuming

that the overhead of translation coherence in the real system, as measured in

the motivational data, has been completely eliminated. We see that Ideal-sim

tracks Ideal pretty reliably.

6.3.3 TCAT performance

We compare the performance (normalized IPC) of the baseline-kvmtlb,

TCAT-cotag and TCAT-cotagless in this section. Figure 6.11 plots the per-
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formance of these schemes for the 2:1 overcommit case. Note that we have

normalized the performance of all schemes using the baseline-kvmtlb. Both

TCAT-cotag and TCAT-cotagless gain over conventional system in every work-

load. Tracking guest page table updates by leveraging the POM-TLB cotag

helps eliminate the expensive IPI overheads and busy wait overheads. This

is confirmed in Figure 6.12 which plots the reduction in the busy-wait stall

cycles after TCAT is added to the system. TCAT eliminates a large portion of

the busy wait-cycles, with an average reduction of 99.52%. The performance

difference from the ideal stems from the penalty of a Cache Line Flush and

the penalty of a Read-Modify-Write (RMW). No prior work has explored the

use of addressable TLBs to mitigate the address translation coherence over-

heads. Using addressable TLBs, we eliminate the imprecision associated with

the invalidation in virtualized environments by allowing precise identification

of the the invalidation target.

Both TCAT-cotag and TCAT-cotagless outperform the baseline, with

an average performance improvement of 14% and 13% respectively. This high-

lights the need of a translation coherence scheme which allows precise identi-

fication of targets when the guest page table is updated in virtualized envi-

ronments. In apache, by eliminating almost all of the 25% overhead of TLB

shootdowns as seen in real systems, we obtain a 30% speedup. Similarly, in

dedup, by eliminating almost all of the 20% overhead of TLB shootdowns, we

obtain a 19% speedup. In vips and ferret, the shootdown overheads arise from

individual shootdown latencies rather than the number of shootdowns. Due to
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Figure 6.11: Performance improvement of TCAT

the small number of shootdowns, the penalty of RMW and Cache Line Flush

is negligible. As a result, in vips and ferret, the stall cycles are reduced by

almost 99.9%.

6.3.4 TCAT performance in Native Systems

While TCAT is motivated by the problem of imprecision of invalida-

tion associated with virtualized environments, it is equally applicable to na-

tive environments. In native environments, the POM-TLB stores V A − PA

translations. Therefore, to enforce coherence upon update to a translation, the

POM-TLB address corresponding to the virtual address (whose translation was
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Figure 6.12: Percentage stall cycles eliminated

modified) can be written to, in a manner similar to virtualized environments.

Figure 6.13 shows that TCAT achieves an average performance improvement

of 1.4% (TCAT-cotag) and 1.2% (TCAT-cotagless) in native environments.

The average performance gain is low because the percentage execution over-

head of TLB shootdowns is comparatively low in native systems. However,

with the advent of heterogeneous memories and page remapping between the

slow and fast memories, shootdowns can consume a considerable portion of

the application runtime [24]. Our approach will be able to eliminate all of

those overheads.
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Chapter 7

Conclusion

In this work, we study the virtual memory overheads in virtualized

environments, and propose two hardware solutions to mitigate those overheads.

First, we demonstrate the problem of TLB misses and cache contention

caused by context-switching between virtual machines. We show that with

just two contexts, L2 TLB MPKI goes up by a factor of 6X on average across

a variety of large-footprint workloads. We presented CSALT - a dynamic

partitioning scheme that adaptively partitions the L2-L3 data caches between

data and TLB entries. CSALT achieves page walk reduction of over 97%

by leveraging the large L3 TLB. By designing a TLB-aware dynamic cache

management scheme in L2 and L3 data caches, CSALT is able to improve

performance. CSALT-CD achieves a performance improvement of 85% on

average over a conventional system with L1-L2 TLBs and 25% over the POM-

TLB baseline. The partitioning techniques in CSALT are applicable for any

designs that cache page table entries or TLB entries in L2-L3 caches.

Second, we demonstrate the overheads of TLB shootdowns in virtual-

ized environments. We show that with higher overcommit ratios, the total

time spent doing TLB shootdowns accounts for upto 50% of the application
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runtime in a variety of multi-threaded workloads. We also show the inability

of current hardware translation coherence schemes to track guest page table

updates and achieve precise invalidations in virtualized environments. We pre-

sented TCAT - a hardware translation coherence scheme that overlays TLB

coherence atop cache coherence and leverages the addressable POM-TLB to

enable precise invalidations. TCAT eliminates almost all of the busy wait

overheads (upto 99.8%) by leveraging the addressable TLB. It also enables

precise invalidations on the slave core by allowing precise identification of the

invalidation target. TCAT achieves a performance improvement of 13% on

average over conventional virtualized systems with kvmtlb baseline.
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tacharjee, and T. Krishna, “Latr: Lazy translation coherence,” in Pro-

ceedings of the Twenty-Third International Conference on Architectural

100

http://lca.ece.utexas.edu/pubs/isca2017.pdf


Support for Programming Languages and Operating Systems. ACM,

2018, pp. 651–664.

[26] N. Amit, “Optimizing the tlb shootdown algorithm with page access

tracking,” in Proc. USENIX Ann. Conf, 2017, pp. 27–39.

[27] J. H. Ryoo, N. Gulur, S. Song, and L. K. John, “Rethinking tlb de-

signs in virtualized environments: A very large part-of-memory tlb,” in

Proceedings of the 44th Annual International Symposium on Computer

Architecture. ACM, 2017, pp. 469–480.

[28] A. Kopytov, “Sysbench manual.”

[29] C.-H. Yen, “SOLARIS OPERATING SYSTEM HARDWARE VIR-

TUALIZATION PRODUCT ARCHITECTURE,” 2007. [Online].

Available: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=

3F5AEF9CE2ABE7D1D7CC18DC5208A151?doi=10.1.1.110.9986&rep=

rep1&type=pdf

[30] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accelerating

Two-dimensional Page Walks for Virtualized Systems,” in Proceedings

of the 13th International Conference on Architectural Support for

Programming Languages and Operating Systems, ser. ASPLOS XIII.

New York, NY, USA: ACM, 2008, pp. 26–35. [Online]. Available:

http://doi.acm.org/10.1145/1346281.1346286

101

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=3F5AEF9CE2ABE7D1D7CC18DC5208A151?doi=10.1.1.110.9986&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=3F5AEF9CE2ABE7D1D7CC18DC5208A151?doi=10.1.1.110.9986&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=3F5AEF9CE2ABE7D1D7CC18DC5208A151?doi=10.1.1.110.9986&rep=rep1&type=pdf
http://doi.acm.org/10.1145/1346281.1346286


[31] J. Chang and G. S. Sohi, Cooperative caching for chip multiprocessors.

IEEE Computer Society, 2006, vol. 34, no. 2.

[32] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared last-level

TLBs for chip multiprocessors.” in HPCA. IEEE Computer

Society, 2011, pp. 62–63. [Online]. Available: http:

//dblp.uni-trier.de/db/conf/hpca/hpca2011.html#BhattacharjeeLM11

[33] A. Bhattacharjee and M. Martonosi, “Inter-core Cooperative TLB

for Chip Multiprocessors,” in Proceedings of the Fifteenth Edition

of ASPLOS on Architectural Support for Programming Languages

and Operating Systems, ser. ASPLOS XV. New York, NY,

USA: ACM, 2010, pp. 359–370. [Online]. Available: http:

//doi.acm.org/10.1145/1736020.1736060

[34] X. Chang, H. Franke, Y. Ge, T. Liu, K. Wang, J. Xenidis, F. Chen, and

Y. Zhang, “Improving virtualization in the presence of software managed

translation lookaside buffers,” in ACM SIGARCH Computer Architec-

ture News, vol. 41, no. 3. ACM, 2013, pp. 120–129.

[35] T. W. Barr, A. L. Cox, and S. Rixner, “SpecTLB: A Mechanism for

Speculative Address Translation,” in Proceedings of the 38th Annual

International Symposium on Computer Architecture, ser. ISCA ’11.

New York, NY, USA: ACM, 2011, pp. 307–318. [Online]. Available:

http://doi.acm.org/10.1145/2000064.2000101

102

http://dblp.uni-trier.de/db/conf/hpca/hpca2011.html#BhattacharjeeLM11
http://dblp.uni-trier.de/db/conf/hpca/hpca2011.html#BhattacharjeeLM11
http://doi.acm.org/10.1145/1736020.1736060
http://doi.acm.org/10.1145/1736020.1736060
http://doi.acm.org/10.1145/2000064.2000101


[36] B. Pham, J. Vesely, G. H. Loh, and A. Bhattacharjee, “Using TLB Spec-

ulation to Overcome Page Splintering in Virtual Machines,” 2015.

[37] N. Ganapathy and C. Schimmel, “General purpose operating system sup-

port for multiple page sizes.” in USENIX Annual Technical Conference,

no. 98, 1998, pp. 91–104.

[38] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, transparent op-

erating system support for superpages,” ACM SIGOPS Operating Sys-

tems Review, vol. 36, no. SI, pp. 89–104, 2002.

[39] M.-M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos, “Prediction-

based superpage-friendly TLB designs,” in High Performance Computer

Architecture (HPCA), 2015 IEEE 21st International Symposium on.

IEEE, 2015, pp. 210–222.

[40] G. B. Kandiraju and A. Sivasubramaniam, Going the distance for TLB

prefetching: an application-driven study. IEEE Computer Society, 2002,

vol. 30, no. 2.

[41] C. H. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid tlb coalescing: Im-

proving tlb translation coverage under diverse fragmented memory allo-

cations,” in Proceedings of the 44th Annual International Symposium on

Computer Architecture. ACM, 2017, pp. 444–456.

[42] “bpoe8-eishi-arima,” http://prof.ict.ac.cn/bpoe_8/wp-content/uploads/

arima.pdf, (Accessed on 08/24/2017).

103

http://prof.ict.ac.cn/bpoe_8/wp-content/uploads/arima.pdf
http://prof.ict.ac.cn/bpoe_8/wp-content/uploads/arima.pdf


[43] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adap-

tive insertion policies for high performance caching,” in ACM SIGARCH

Computer Architecture News, vol. 35, no. 2. ACM, 2007, pp. 381–391.

[44] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High perfor-

mance cache replacement using re-reference interval prediction (RRIP),”

in ACM SIGARCH Computer Architecture News, vol. 38, no. 3. ACM,

2010, pp. 60–71.

[45] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr,

and J. Emer, “SHiP: Signature-based hit predictor for high performance

caching,” in Proceedings of the 44th Annual IEEE/ACM International

Symposium on Microarchitecture. ACM, 2011, pp. 430–441.

[46] C. L. Akanksha Jain, “Back to the Future: Leveraging Belady‘s Algo-

rithm for Improved Cache Replacement,” https://www.cs.utexas.edu/

~lin/papers/isca16.pdf, 2016.

[47] D. S. Nathan Beckmann, “Maximizing Cache Performance Under Uncer-

tainty,” http://people.csail.mit.edu/sanchez/papers/2017.eva.hpca.pdf,

2017.

[48] M. K. Qureshi and Y. N. Patt, “Utility-Based Cache Partitioning: A

Low-Overhead, High-Performance, Runtime Mechanism to Partition

Shared Caches,” in Proceedings of the 39th Annual IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO 39.

104

https://www.cs.utexas.edu/~lin/papers/isca16.pdf
https://www.cs.utexas.edu/~lin/papers/isca16.pdf
http://people.csail.mit.edu/sanchez/papers/2017.eva.hpca.pdf


Washington, DC, USA: IEEE Computer Society, 2006, pp. 423–432.

[Online]. Available: http://dx.doi.org/10.1109/MICRO.2006.49

[49] R. Wang and L. Chen, “Futility Scaling: High-Associativity

Cache Partitioning,” in Proceedings of the 47th Annual IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO-47.

Washington, DC, USA: IEEE Computer Society, 2014, pp. 356–367.

[Online]. Available: http://dx.doi.org/10.1109/MICRO.2014.46

[50] K. T. Sundararajan, T. M. Jones, and N. P. Topham, “Energy-efficient

Cache Partitioning for Future CMPs,” in Proceedings of the 21st

International Conference on Parallel Architectures and Compilation

Techniques, ser. PACT ’12. New York, NY, USA: ACM, 2012, pp. 465–

466. [Online]. Available: http://doi.acm.org/10.1145/2370816.2370898

[51] C. Yu and P. Petrov, “Off-chip Memory Bandwidth Minimization

Through Cache Partitioning for Multi-core Platforms,” in Proceedings

of the 47th Design Automation Conference, ser. DAC ’10. New

York, NY, USA: ACM, 2010, pp. 132–137. [Online]. Available:

http://doi.acm.org/10.1145/1837274.1837309

[52] M. Moreto, F. J. Cazorla, A. Ramirez, and M. Valero, “Transactions

on High-performance Embedded Architectures and Compilers III,”

P. Stenström, Ed. Berlin, Heidelberg: Springer-Verlag, 2011, ch.

Dynamic Cache Partitioning Based on the MLP of Cache Misses, pp.

105

http://dx.doi.org/10.1109/MICRO.2006.49
http://dx.doi.org/10.1109/MICRO.2014.46
http://doi.acm.org/10.1145/2370816.2370898
http://doi.acm.org/10.1145/1837274.1837309


3–23. [Online]. Available: http://dl.acm.org/citation.cfm?id=1980776.

1980778

[53] W. Wang, P. Mishra, and S. Ranka, “Dynamic Cache Reconfiguration

and Partitioning for Energy Optimization in Real-time Multi-core

Systems,” in Proceedings of the 48th Design Automation Conference,

ser. DAC ’11. New York, NY, USA: ACM, 2011, pp. 948–953.

[Online]. Available: http://doi.acm.org/10.1145/2024724.2024935

[54] R. Kandemir, Mahmut a nd Prabhakar, M. Karakoy, and Y. Zhang,

“Multilayer Cache Partitioning for Multiprogram Workloads,” in

Proceedings of the 17th International Conference on Parallel Processing

- Volume Part I, ser. Euro-Par’11. Berlin, Heidelberg: Springer-

Verlag, 2011, pp. 130–141. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=2033345.2033360

[55] P.-H. Wang, C.-H. Li, and C.-L. Yang, “Latency Sensitivity-based Cache

Partitioning for Heterogeneous Multi-core Architecture,” in Proceedings

of the 53rd Annual Design Automation Conference, ser. DAC ’16.

New York, NY, USA: ACM, 2016, pp. 5:1–5:6. [Online]. Available:

http://doi.acm.org/10.1145/2897937.2898036

[56] W. Hasenplaugh, P. S. Ahuja, A. Jaleel, S. Steely Jr., and J. Emer, “The

Gradient-based Cache Partitioning Algorithm,” ACM Trans. Archit.

Code Optim., vol. 8, no. 4, pp. 44:1–44:21, Jan. 2012. [Online].

Available: http://doi.acm.org/10.1145/2086696.2086723

106

http://dl.acm.org/citation.cfm?id=1980776.1980778
http://dl.acm.org/citation.cfm?id=1980776.1980778
http://doi.acm.org/10.1145/2024724.2024935
http://dl.acm.org/citation.cfm?id=2033345.2033360
http://dl.acm.org/citation.cfm?id=2033345.2033360
http://doi.acm.org/10.1145/2897937.2898036
http://doi.acm.org/10.1145/2086696.2086723


[57] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and Efficient

Fine-grain Cache Partitioning,” in Proceedings of the 38th Annual

International Symposium on Computer Architecture, ser. ISCA ’11.

New York, NY, USA: ACM, 2011, pp. 57–68. [Online]. Available:

http://doi.acm.org/10.1145/2000064.2000073

[58] M. Zhou, Y. Du, B. Childers, R. Melhem, and D. Mossé, “Writeback-

aware Partitioning and Replacement for Last-level Caches in Phase

Change Main Memory Systems,” ACM Trans. Archit. Code Optim.,

vol. 8, no. 4, pp. 53:1–53:21, Jan. 2012. [Online]. Available:

http://doi.acm.org/10.1145/2086696.2086732

[59] A. Pan and V. S. Pai, “Imbalanced Cache Partitioning for Balanced

Data-parallel Programs,” in Proceedings of the 46th Annual IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO-46. New

York, NY, USA: ACM, 2013, pp. 297–309. [Online]. Available:

http://doi.acm.org/10.1145/2540708.2540734

[60] J. Chang and G. S. Sohi, “Cooperative Cache Partitioning for Chip

Multiprocessors,” in ACM International Conference on Supercomputing

25th Anniversary Volume. New York, NY, USA: ACM, 2014, pp. 402–

412. [Online]. Available: http://doi.acm.org/10.1145/2591635.2667188

[61] Y. Xie and G. H. Loh, “PIPP: Promotion/Insertion Pseudo-partitioning

of Multi-core Shared Caches,” in Proceedings of the 36th Annual

International Symposium on Computer Architecture, ser. ISCA ’09.

107

http://doi.acm.org/10.1145/2000064.2000073
http://doi.acm.org/10.1145/2086696.2086732
http://doi.acm.org/10.1145/2540708.2540734
http://doi.acm.org/10.1145/2591635.2667188


New York, NY, USA: ACM, 2009, pp. 174–183. [Online]. Available:

http://doi.acm.org/10.1145/1555754.1555778

[62] R. Manikantan, K. Rajan, and R. Govindarajan, “Probabilistic Shared

Cache Management (PriSM),” in Proceedings of the 39th Annual

International Symposium on Computer Architecture, ser. ISCA

’12. Washington, DC, USA: IEEE Computer Society, 2012, pp.

428–439. [Online]. Available: http://dl.acm.org/citation.cfm?id=

2337159.2337208

[63] A. Bhattacharjee, “Preserving virtual memory by mitigating the address

translation wall,” IEEE Micro, vol. 37, no. 5, pp. 6–10, 2017.

[64] M. Oskin and G. H. Loh, “A software-managed approach to die-stacked

dram,” in Parallel Architecture and Compilation (PACT), 2015 Interna-

tional Conference on. IEEE, 2015, pp. 188–200.

[65] “Intel(R) 64 and IA-32 Architectures Optimization Reference Manual,”

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-optimization-manual.pdf.

[66] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger,

“Evaluation Techniques for Storage Hierarchies,” IBM Syst. J.,

vol. 9, no. 2, pp. 78–117, Jun. 1970. [Online]. Available:

http://dx.doi.org/10.1147/sj.92.0078

108

http://doi.acm.org/10.1145/1555754.1555778
http://dl.acm.org/citation.cfm?id=2337159.2337208
http://dl.acm.org/citation.cfm?id=2337159.2337208
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://dx.doi.org/10.1147/sj.92.0078


[67] D. Kaseridis, J. Stuecheli, and L. K. John, “Bank-aware dynamic cache

partitioning for multicore architectures,” in Parallel Processing, 2009.

ICPP’09. International Conference on. IEEE, 2009, pp. 18–25.

[68] K. Kędzierski, M. Moreto, F. J. Cazorla, and M. Valero, “Adapting cache

partitioning algorithms to pseudo-lru replacement policies,” in Parallel

& Distributed Processing (IPDPS), 2010 IEEE International Symposium

on. IEEE, 2010, pp. 1–12.

[69] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the

linux virtual machine monitor,” in Proceedings of the Linux symposium,

vol. 1, 2007, pp. 225–230.

[70] P. Guide, “Intel® 64 and ia-32 architectures software developer’s man-

ual,” Volume 3B: System programming Guide, Part, vol. 2, 2011.

[71] “Arm information center,” http://infocenter.arm.com/help/index.jsp?topic=

/com.arm.doc.den0024a/BABJDBHI.html, (Accessed on 05/01/2018).

[72] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building

Customized Program Analysis Tools with Dynamic Instrumentation,”

in Proceedings of the 2005 ACM SIGPLAN Conference on Programming

Language Design and Implementation, ser. PLDI ’05. New York,

NY, USA: ACM, 2005, pp. 190–200. [Online]. Available:

http://doi.acm.org/10.1145/1065010.1065034

109

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/BABJDBHI.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/BABJDBHI.html
http://doi.acm.org/10.1145/1065010.1065034


[73] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and

Extensible DRAM Simulator,” IEEE Comput. Archit. Lett.,

vol. 15, no. 1, pp. 45–49, Jan. 2016. [Online]. Available:

http://dx.doi.org/10.1109/LCA.2015.2414456

[74] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,”

in Proceedings of the Annual Conference on USENIX Annual

Technical Conference, ser. ATEC ’05. Berkeley, CA, USA:

USENIX Association, 2005, pp. 41–41. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1247360.1247401

[75] I. Habib, “Virtualization with KVM,” Linux J., vol. 2008, no. 166, Feb.

2008. [Online]. Available: http://dl.acm.org/citation.cfm?id=1344209.

1344217

[76] A. Arcangeli, “Transparent hugepage support,” in KVM Forum, vol. 9,

2010.

[77] Intel, “Intel(R) Virtualization Technology,” http://www.intel.com/content/

www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.

html.

[78] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC

Benchmark Suite: Characterization and Architectural Implications,”

in Proceedings of the 17th International Conference on Parallel

Architectures and Compilation Techniques, ser. PACT ’08. New

110

http://dx.doi.org/10.1109/LCA.2015.2414456
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1344209.1344217
http://dl.acm.org/citation.cfm?id=1344209.1344217
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html


York, NY, USA: ACM, 2008, pp. 72–81. [Online]. Available:

http://doi.acm.org/10.1145/1454115.1454128

[79] The Graph500 List. [Online]. Available: Graph500:http:

//www.graph500.org/

[80] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale Graph

Computation on Just a PC,” in Conference on Operating Systems Design

and Implementation (OSDI). USENIX Association, 2012, pp. 31–46.

[81] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation

ranking: Bringing order to the web,” 1999.

[82] B. Pham, J. Veselý, G. H. Loh, and A. Bhattacharjee, “Large Pages

and Lightweight Memory Management in Virtualized Environments:

Can You Have It Both Ways?” in Proceedings of the 48th

International Symposium on Microarchitecture, ser. MICRO-48. New

York, NY, USA: ACM, 2015, pp. 1–12. [Online]. Available:

http://doi.acm.org/10.1145/2830772.2830773

[83] C. Li, C. Ding, and K. Shen, “Quantifying the Cost of Context Switch,”

in Proceedings of the 2007 Workshop on Experimental Computer Science,

ser. ExpCS ’07. New York, NY, USA: ACM, 2007. [Online]. Available:

http://doi.acm.org/10.1145/1281700.1281702

[84] F. Liu and Y. Solihin, “Understanding the Behavior and Implications

of Context Switch Misses,” ACM Trans. Archit. Code Optim.,

111

http://doi.acm.org/10.1145/1454115.1454128
Graph500 : http://www.graph500.org/
Graph500 : http://www.graph500.org/
http://doi.acm.org/10.1145/2830772.2830773
http://doi.acm.org/10.1145/1281700.1281702


vol. 7, no. 4, pp. 21:1–21:28, Dec. 2010. [Online]. Available:

http://doi.acm.org/10.1145/1880043.1880048

[85] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive

Insertion Policies for High Performance Caching,” in Proceedings of the

34th Annual International Symposium on Computer Architecture, ser.

ISCA ’07. New York, NY, USA: ACM, 2007, pp. 381–391. [Online].

Available: http://doi.acm.org/10.1145/1250662.1250709

[86] A. Bhattacharjee, “Large-reach memory management unit caches,” in

Proceedings of the 46th Annual IEEE/ACM International Symposium

on Microarchitecture. ACM, 2013, pp. 383–394.

[87] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching: skip, don’t

walk (the page table),” in ACM SIGARCH Computer Architecture News,

vol. 38, no. 3. ACM, 2010, pp. 48–59.

[88] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient

virtual memory for big memory servers,” in ACM SIGARCH Computer

Architecture News, vol. 41, no. 3. ACM, 2013, pp. 237–248.

[89] Y. Du, M. Zhou, B. R. Childers, D. Mossé, and R. Melhem, “Supporting

superpages in non-contiguous physical memory,” in High Performance

Computer Architecture (HPCA), 2015 IEEE 21st International Sympo-

sium on. IEEE, 2015, pp. 223–234.

112

http://doi.acm.org/10.1145/1880043.1880048
http://doi.acm.org/10.1145/1250662.1250709


[90] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,

B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The cheri

capability model: Revisiting risc in an age of risk,” in ACM SIGARCH

Computer Architecture News, vol. 42, no. 3. IEEE Press, 2014, pp.

457–468.

[91] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “Colt:

Coalesced large-reach tlbs,” in Proceedings of the 2012 45th Annual

IEEE/ACM International Symposium on Microarchitecture. IEEE Com-

puter Society, 2012, pp. 258–269.

[92] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh, “Increasing tlb

reach by exploiting clustering in page translations,” in High Performance

Computer Architecture (HPCA), 2014 IEEE 20th International Sympo-

sium on. IEEE, 2014, pp. 558–567.

[93] G. Cox and A. Bhattacharjee, “Efficient address translation for architec-

tures with multiple page sizes,” in Proceedings of the Twenty-Second In-

ternational Conference on Architectural Support for Programming Lan-

guages and Operating Systems. ACM, 2017, pp. 435–448.
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