
C

C-MOS ARRAY DESIGN TECHNIQUES
Contract NAS 12-2233

SUMC MULTIPROCESSOR SYSTEM STUDY
Contract Modification 7

May 1972

Authors: W.A. Clapp, W.A. Helbig, A.S. Merriam

Prepared for

GEORGE C. MARSHALL SPACE FLIGHT CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MARSHALL SPACE FLIGHT CENTER, ALABAMA 35812

Prepared by

ADVANCED TECHNOLOGY LABORATORIES
GOVERNMENT AND COMMERCIAL SYSTEMS
RCA
CAMDEN, NEW JERSEY 08102

https://ntrs.nasa.gov/search.jsp?R=19730001507 2020-03-23T09:47:51+00:00Z

SUMC MULTIPROCESSOR SYSTEM STUDY

By

W.A. Clapp, W.A. Helbig, A.S. Merriam

RCA

FOREWORD

This is the System Definition Report specified in Para. 3.b of Modification 7,

Contract NAS 12-2233. Work on this study was performed January through March 1972.

ii

SUMMARY

The current capabilities of LSI techniques for speed and reliability, plus the

possibilities of assembling large configurations of LSI logic and storage elements,

have demanded the study of multiprocessors and multiprocessing techniques, problems,

and potentialities. The design of a highly reliable and powerful multiprocessor system
•

of small physical size, which results from such studies, is of great interest for long-

life space missions.

The present study first evaluates three previous systems studies for the Space Ultra-

reliable Modular Computer multiprocessing system by IBM, CSC, and Intermetrics,

respectively, and then describes a multiprocessing system which originates in the

best results of these studies and carries them further both in extent and detail. The

proposed system is flexibly configured with up to four central processors, four I/O

processors, and 16 main memory units, plus auxiliary memory and peripheral devices.

This multiprocessor system features a multilevel interrupt, qualified S/360 compat-

ibility for ground-based generation of programs, virtual memory management of a

storage hierarchy through I/O processors, and multiport access to multiple and shared

memory units.

In conclusion, the present study is viewed as one in a continuum leading to con-

struction of a multiprocessor system meeting NASA mission objectives; therefore,

designation and brief discussion of the most profitable details for simulation and further

study have been included.

iii

TABLE OF CONTENTS

Section Page

1. 0 INTRODUCTION . . 1-1
1.1 Background „ 1-1
1.2 System Study Guidelines 1-2
1.3 System Terminology . 1-3

2.0 SYSTEM DESIGN ALTERNATIVES 2-1
2.1 Reconfiguration Control 2-1

2.1.1 Address Translation Unit . 2-2
2.1. 2 Communication Control 2-3
2.1.3 State Control 2-3

2.2 Unit Interconnection Techniques . 2-4
2.2.1 Salient Characteristics 2-7
2.2.2 Interunit Communication Techniques 2-11
2.2.3 Communication of Interrupts 2-13

2.3 Exeuctive Software 2-14
2.3.1 Common Operating System for SUMC Missions . . . 2-14
2.3.2 Executive Routine: Hardware, Firmware or

Software . .\ 2-15
2.3.3 Timeline Scheduling 2-15
2.3.4 Task Scheduling 2-16
2.3.5 File Protection and Sharing 2-18
2.3. 6 Deadlock Prevention 2-18
2.3.7 Interrupt Servicing 2-20
2.3. 8 Error Recovery 2-21

2.4 Man/Machine Interface . 2-21
2.5 Storage Management Features 2-23

2.5.1 Evaluation of Proposed Systems 2-23
2.5.2 Tradeoffs 2-25
2.5.3 Paging and Segmentation Management 2-27

3. 0 SELECTED MULTIPROCESSOR ARCHITECTURE 3-1
3.1 Salient System Features 3-1

3.1.1 Hardware Utilization 3-1
3.1. 2 Modular Design 3-2
3.1.3 Modular Configurations 3-4
3.1. 4 Virtual Memory Addressing 3-7
3.1.5 Hardware Task Switching 3-13
3.1.6 Reliability 3-21
3.1. 7 IBM S/360 Compatibility . 3-25

IV

TABLE OF CONTENTS (Continued)

Section Page

3. 2 Overall System Introduction 3-32
30 201 Physical Building Blocks „ . 3-35
3.2,2 Operating System 3-36
3. 2. 3 Interconnections 0 . 3-36

30 3 Major Operating Units « . . . 3-36
3.3.1 Main Memory Units (MMUs) 3-36
3.3.2 Central Processing Units (CPUs) 3-41
3.3.3 Input-Output Units (lOUs) . 3-45
3. 3.4 Auxiliary Memory 3-50

3.4 System Software 3-50
3.4.1 Objectives and Approaches . 3-50
3.4.2 MPOS Data Structures 3-57
3.4. 3 MPOS/CPU 3-57
3.4.4 MPOS/IOU 3-76
3.4.5 S/360 Interface Levels 3-84

4.0 MULTIPROCESSOR OPERATION 4-1
4.1 Dynamic Task Management 4-1

4.1.1 Initiation 4-1
4.1. 2 Activation 4-2
4.1. 3 Termination 4-2

4.2 IOU Subchannel Servicing . 4-6
4.3 Paging Operations 4-8
4.4 Interprocessor Communication „ 4-11

4.4.1 Hardware/Firmware Support of the Mailbox
Facility 4-11

4.4.2 Mailbox Configuration 4-11
4. 5 System State Transition Control 4-13

4.5.1 System States 4-14
4.5. 2 Initial Turn-On and Loading 4-15
4.5.3 Configuration Control by Operator „ 4-18
4.5.4 System Configuration Control . . 4-19

4.6 Failure Response . 4-19
4. 6.1 Power Failure 4-20
4.6.2 Scratchpad Memory Error 4-20

5.0 EXTENDED STUDIES . . 5-1
5.1 Introduction 5-1
5.2 System Coordination and Timing Analysis 5-2

5.2.1 Synchronous and Asynchronous Operation 5-2
5.2.2 Compatibility of Activity Rates 5-3

TABLE OF CONTENTS (Continued)

Section Page

5.3 Traffic Accommodation Analysis 5-4
5.3.1 System Simulation as a Design Tool „ . 5-4
5.30 2 System Deadlock Potentiality 5-6
5.3.3 Main Memory Traffic 5-6
5.3.4 Executive System Traffic 5-7

5.4 Mechanization Studies 5-8
5.4.1 Bus Interconnections 5 -̂8
5.4.2 Error Checking Logic 5-8

5.5 Reliability 5-8
5.5.1 Error Detection and Control 5-9
5.5.2 TMR Potential for Increasing Reliability „ 5-9

5.6 Conclusion . 5-10

REFERENCES R-l

VI

.LIST OF ILLUSTRATIONS

Figure Page

2-1 Crossbar switch matrix 2-6
2-2 Multiport units 2-9
2-3 Circular deadlock 2-18
2-4 Unique resource deadlock 2-19
2-5 Single task lockout „ . . 2-20
2-6 Program commutation by page faulting . 2-29
2-7 Throughput sensitivity to interfault number 2-32

3-1 Average cost per gate 3-2
3-2 Hardware cost for space station missions 3-3
3-3 Minimum operational system 3-5
3-4 Simplex system 3-5
3-5 CVT multiprocessor 3-6
3-6 Fourfold multiprocessor system 3-6
3-7 Multicomputer configurations 3-7
3-8 Address translation 3-9
3-9 ATU CAM word formats . 3-12
3-10 Physical address search 3-13
3-11 Flag and mask logic nets 3-17
3-12 PSW word formats . 3-18
3-13 Lock-and-Go instruction 3-20
3-14 Typical memory package (8192 x 5) 3-24
3-15 Multiprocessor block diagram . 3-33
3-16 Main memory unit block diagram 3-39
3-17 Paged data flow 3-40
3-18 Memory word format 3-41
3-19 CPU block diagram 3-44
3-20 IOU block diagram 3-47
3-21 SUMC operating system functions . 3-52
3-22 MPOS/CPU data structures 3-58
3-23 MPOSAOU data structures . 3-59
3-24 Task control block 3-60
3-25 State diagram for MPOS tasks 3-63
3-26 Normal processing transitions 3-63
3-27 Task control transitional functions 3-64

Vll

LIST OF ILLUSTRATIONS (Continued)

Figure Page

4-1 Task initiation ' 4-3
4-2 Task activation for CPU or IOU 4-4
4-3 Task termination 4-5
4-4 Subchannel servicing „ . „ 4-7
4-5 Subchannel sequence activation mask table 4-9
4-6 Page fault routine 4-10
4-7 CPU/lOU communications via MMU mailboxes 4-12
4-8 Processor state diagram . „ 4-15
4-9 Detailed computing state transitions „ 4-16
4-10 Scratchpad memory error routine „ 4-21
4-11 Level 14 procedure for scratchpad error 4-23

LIST OF TABLES

Table Page

2-1 Dependency of Throughput of Page Faulting 2-31

3-1 Conversion Cost Estimates 3-27
3-2 Main Memory System Gross Specifications 3-37
3-3 Main Memory Unit Gross Specifications . . „ 3-37
3-4 CPU Gross Specifications * . .3-42
3-5 CPU Interrupt Priority Levels 3-45
3-6 IOU Gross Specifications 3-48
3-7 IOU Interrupt Priority Levels 3-49
3-8 Combinations of Access Modes 3-83
3-9 S/360 to SUMC Program Conversion Costs by Programming

Language 3-86

Vlll

Section 1.0

INTRODUCTION

This report documents the work .performed on NASA Contract NAS12-2233, mod-

ification 7, which has expanded the SUMC/DV system definition to a multisystem con-

figuration operating in a multiprocessor mode.

1.1 BACKGROUND

The SUMC/DV computer design provided a viable, real-time computer design

concept for a standalone uniprocessor. For several years considerable effort has

been directed to devising schemes for employing more than one computer to solve a

given problem or set of problems. Multicomputers have been successfully applied to

problems that were separable, but not all problems are separable. Distributed and

parallel machines like Illiac IV also employ multiple computer-like elements with

central control, but again the class of applicable problems is limited. All of the

above systems have their limitations in both types of problems to be solved and in

utilization of hardware present.

Tradeoffs exist among throughput, hardware, and class of problems intended.

Multiprocessors sharing memory banks show promise of a reasonable and cost-

effective balance for a space station environment. A multiprocessor system incorpo-

rates multiple hardware modules capable of independent operation, with each type of

module devoted to performing a particular portion of the overall process required to

run a program. Active modules are central processing units (CPUs), input-output

units (lOUs) and main memory units (MMUs). An additional feature of a multiprocessor

system is that multiple copies of each module type operate relatively independently of

one another with no restriction imposed on which modules must share workload with

which other ones.

1-1

The SUMC multiprocessor system described in this document is such a system.

It incorporates the real-time features required for space missions, provides for

independent operation for each of the major system modules for high throughput and

increased reliability, and achieves a high degree of compatibility with current third-

generation IBM S/360 type systems in order to take advantage of software inheritance.

1.2 SYSTEM STUDY GUIDE LINES

The major guidelines employed were to produce a system capable of meeting the

processing loads projected for typical future space missions like Space Shuttle and
*

Space Station. Previous NASA reports were used to extract approximate sizing

requirements for both the computational load and the supporting data base. Although

these estimates varied widely, they provided usable guidelines.

The SUMC multiprocessor system described here meets computational goals.

Although detailed timing was not estimated in this contract, BCA is confident that this

multiprocessor design, when implemented in state-of-the-art technology, is fully ad-

equate to meet the goals and provide a growth capability.

During the study, the following guidelines were added to these computational and

data base requirements guidelines.

• Improve upon third-generation computer systems to provide for real-time
applications

, Capitalize on new technology developments as they occur.

« Provide hardware functions to minimize software complexity.

• Provide a fail-safe capability.

• Employ common modules capable of being assembled into several system
organizations (simplex, master-slave, federated, etc.)

• Build on the work performed for NASA by IBM, Intel-metrics and CSC .

See Refs. 9, 10, 15, 16.

1-2

Alternative concepts advanced in previous studies have been evaluated in Sec. 2

following. The selected multiprocessor design which in the opinion of RCA best meets

the above guidelines is presented in Sec. 3. Section 4 suggests the manner of operation

of the selected SUMC multiprocessor system by showing implementation of certain op-

erational details.

1.3 SYSTEM TERMINOLOGY

In this report, the attempt has been to use simple, self-explanatory, or conven-

tional terms to designate concepts and physical parts of the multiprocessors under

discussion. Description and context within individual sections should make the term-

inology clear; nevertheless, a few of the basic and frequently used words are intro-

duced in the following overview.

Some confusion arises from the concept of simultaneity which, in computer sys-

tems, covers time multiplexing as well as truly parallel activity. Thus multiprogram-

ming is the simultaneous (often time multiplexed) performance of programs as multi-

processing is the simultaneous execution of elements of these programs. Multipro-

cessing and multiprogramming can be done with a single digital processor with appro-

priate scheduling algorithms. A multiprocessor, however, is designed for parallel

processing, or true simultaneity. To realize its potential, it must be multipro-

grammed; single-thread processing is either a highly redundant or else a degraded

mode of operation.

The systems studied are multiprocessor systems composed of autonomous

hardware processing units incorporating software and communication facilities re-

quired to employ this hardware in meaningful and reliable activity over the mission

life. Units of the system are the CPUs (central processors), IQUs (I/O units), and

MMUs (main memories). The autonomy attributed to units of the selected multi-

processor system conveys an enlarged meaning to that of the usual independence. Not

only can units execute their programs in parallel from main memory, barring

1-3

interference, but they can execute sequences of executive code for housekeeping,

emergency, and recovery.

The multiprocessor system can be configured to operate in several modes. The

most usual and that promoting highest throughput is the democratic multiprocessor

mode, in which each processor shares an equal opportunity to work at the available

tasks of executive and user jobs. Another mode, which has received attention because

of its potential for reliability is the TMR (triple modular redundant) mode. In this

mode, three like units operate in synchronous parallel with 'Votes" be ing taken at

diverse times and places within the system as to agreement of status or results.

Activities and effects which involve a unit alone, or two units during mutually

dedicated operation, will be called local while those which would involve the whole

system (or any member without preference) will be called global. This distinction

proves useful in the discussion of control, interrupts, and recoveries.

The software for multiprocessor systems will be modular, with the primary

distinction being between collections of routines called in connection with the multi-

processor operating system (MPOS), or executive programs, and the applications, or

user programs. Both user and executive programs are entered into the system as

jobs which are executed in pieces called tasks which are indivisible and individually

indentified by task ED so that they may be accounted for independently of the hardware

used to process them.

The memory system is physically backed by an auxiliary memory and is logically

dealt with as a virtual memory. Each task sees such a memory as potentially of a

size that the sum of what is seen by all tasks would be many times the capacity of the

actual physical memory, a mirage that works because the operating system can man-

age allocations so that tasks without restriction are satisfied within the memory avail-

able. Management of stored data requires moving it in units of fixed size, pages, or

of variable size, segments. Since the main memory units are connectively located

1-4

between units, they are the means of interunit communication with message areas

called in this report mailboxes for the exchange of control data.

Beal-time interrupt in processing units allows fast task switching to respond to

emergencies and failures according to established priority levels. Masked interrupts,

also ordered by priority level, allow for flexible task switching to meet the needs of

varying jobs. The latter interrupt may be received at any time, but its recognition is

under control of operating routines.

1-5

Section 2. 0

SYSTEM DESIGN ALTERNATIVES

This section discusses alternative methods of implementing various key concepts

in a multiprocessor computer design. From the basic discussions techniques for

implementing these concepts were selected for a multiprocessor design which is dis-

cussed in detail in Sec. 3.0.

Frequent reference is made to previous studies performed for NASA/MSFC by

other contractors. In particular, the following material was used:

• IBM Modular Space Station Computer Study

• Intermetrlcs Multiprocessor Computer System Study Final Report

• Computer Sciences Corporation SUMC Multiprocessor Configuration
Control Analysis and Specification

For simplicity in this section when reference is made to specific concepts contained

in these documents the author's name is used to denote the document. 1

2.1 RECONFIGURATION CONTROL

Two important reasons for the use of a multiprocessor are to provide computa-

tional capability greater than that available from a single processor and to provide

computational capability of some magnitude even under failure of one or more system

units. For graceful degradation each unit (CPU, IOU, MMU, etc.) must have two

independently defined states, or groups of states: operational and nonoperational.

The IBM study has stated that three necessary components added to the system

endow it with reconfiguration capability. These are:

• Address Translation Unit (ATU)

• Communication Control

• State Control
2-1

The ATU translates virtual addresses into the physical memory addresses. The

Communication Control defines a unit's ability to transfer information between itself

and certain other units in the system. CPUs can communicate with all other units in

the system, but lOUs and MMUs can communicate only between units of different

types. The State Control governs the type of operations, if any, the unit will be per-

forming at any particular time. In the IBM system all units are in one of four states:

• Off-Line

• Nonoperating

• Operating

• Reconfiguration.

Not all states, however, are permitted for all units.

With regard to these three components,j the questions to be considered are:

• What characteristics should these components possess ?

• Are there any other components whose incorporation into the system would
be an asset ?

• How do configured components interact ?

2.1.1 Address Translation Unit

Of the two studies that discuss the use of address translation for changing

virtual address to physical memory address, Intermetrics implements this by means

of paging some program into main memory with remainder paged into auxiliary mem-

ory. Intermetrics does not discuss the actual mechanism to be used to perform the

necessary address translation.

The IBM study describes the mechanism which it recommends. The word

capacity of one page is designed to be equal to that of a main memory unit; and the

translation points to an address in any one of the MMUs under the direction of system

control information.

2-2

From the work performed by Denning* and others it can be surmised that

optimum page size should be small, of the order of 64 to 256 words. Any implementa-

tion must provide address translation on address increments considerably smaller

than the size of a main memory unit.

2.1.2 Communication Control

IBM recommends use of a Communication/State Register (CSR) in controlling

transfer of data between units. Under software control, the contents of the CSR may

be changed during running of a program. Communication control is employed a) to

permit isolation of processors from the system, b) to provide redundancy in the con-

trol of communication of processors and I/O controllers with memory, and c) to control

the assignment of an I/O controller to a processor.

Communication control is not only redundant but appears highly susceptible

to single-mode failures and system lockup. If the CSR for an MMU were to become

set to inhibit communication with any other unit, then without overriding connection,

recovery could not occur except by system reset such as might occur only in power

shutdown.

Neither the Intermetrics system nor the system envisioned by CSC uses such

a control. It appears that both of these studies have assumed that the communication

control will be adequately provided by the ATU and the executive program.

2.1.3 State Control

IBM suggests ,a mechanization of state control such that a CPU can enter

a state which permits it to control the state of all other units in the system. To

monitor the operation of this supervisory CPU, a pair of Reconfiguration State Monitor

Units (RSMUs) are included. The operator and the CPU in turn monitor the operation

of the RSMUs.

* Denning, Ref. 6, pp. 153-190.

2-3

The CSC system envisions seven different states, one of which is a state to

allow the system to run with three like units in a Triple Modular Redundant (TMR)

mode. The other states provided in the CSC system could be considered subdivisions

of the IBM off-line state. One is a self-test state; the other two make distinctions in

reasons for entering into the isolated state.

These distinctions make the system more capable of monitoring the operational

status of a unit. However, this capability assumes the presence of a state monitor

called the State Control Unit (SCU), which must be of redundant construction for relia-

bility. CSC uses one SCU for state control of all units.

Neither of these systems has included a workable system initialization. When

in the initial state the unit (CPU/IOU) must bootstrap itself into an operating state

even though its program status registers and address translation registers are initially

cleared and no one particular main memory unit is active.

When the changing of the state of one unit must be done by another unit instead

of by itself, both systems end up with a critical link which must be made redundant.

However, the system may be reconfigured in the event of failure. If, on the other

hand, each unit could control only its own state, a hardware-redundant state control

(or monitor) unit would not be needed. The monitoring could be done via the system

executive which all processors can execute. Furthermore, any failed unit which

cannot change its own state into the isolated state for test and repair can be powered

down and disconnected by the system operator.

2.2 UNIT INTERCONNECTION TECHNIQUES

The Intermetrics study report describes four general configurations for a multi-

processor which, depending on the particular arrangement used, requires the use of

one or more interconnection techniques. For these proposed arrangements of the

2-4

system and for other systems which have been proposed and/or built, three design

approaches to the interconnection of units have been used:

• Multiple direct connection

• Crossbar switch matrix

• Data bus multiplexing.

The multiple direct connection system was the most commonly used primarily

because the technology of the day prevented construction of circuits that could work in

any other arrangement. The only driving circuits available were those that need be

connected to one end of a transmission line with the single receiver connected to the

other. The connection of either a multiplicity of receivers at one end or distributed

along the transmission line resulted in excessive signal reflection, creating an un-

acceptably noisy environment.

The crossbar matrix switch* (Fig. 2-1) was developed as another approach to

circumventing these circuit problems while obtaining higher connectivity. Although

adding switching elements in the data path, the approach still allowed use of simplified

circuit designs.

Most recently developments have been made in circuits to allow the use of various

forms of a data bus for interconnection of multiple units. Initially, a single source

multiple receiver system was incorporated. Now data bus constructions** permit

* This system is used by Univac, Burroughs and others. A system connecting many
CPUs and many peripheral equipments is at least in the planning stages at the Naval
Electronics Laboratory in San Diego.

** Many variations are possible, as described in Sec. 3.1 of the Intermetrics report.
Many miniprocessors, such as the POP 11 and MAC-16, use this type of inter-
connection.

2-5

Fig. 2-1. Crossbar switch matrix.

multiple drivers, as well as multiple receivers, to be used for data transfer over a

single conductor through the use of driver circuits whose output circuit puts only a

high impedance load on the bus when the driver is turned off and the use of high input

impedances in the receiver circuits.

To make a choice the salient characteristics of each of these three approaches

must be evaluated. There are many variations of each that capitalize on advantages

and that circumvent problems of the projected physical medium. The following dis-

cussion of the needed designs will emphasize approaches favoring silicon gate C-MOS

LSI technology.

2-6

2.2.1 Salient Characteristics

2.2.1.1 Multiple Direct Connection

Use of a single driver sending data over a single path to a single receiver

characterizes this approach. Currently this technique would seem an inefficient

implementation. To provide a one-word parallel transfer path for two-way communi-

cation of data between two units requires a total number of conductors greater than

twice the size of the data word, extra lines being needed for control. Adding another

unit to the system and providing full-duplex data transfers between all units requires

twice as many interconnections as before. The number of interconnections and con-

ductors increases in each unit as the number of units in the system grows. Equipment

sizes grow and power requirements increase when another unit is added to the system.

As the number of signal transfer paths expands, so also does the level of signal cross-

talk.

The use of simplex interconnections, however, has some points in its

favor. It is an arrangement which incurs the lowest technological risk. The circuits

to be used for data transfer require no exacting control of the impedance presented

to the conduction path, but they do have to accommodate any offset in reference voltage

at opposite ends of the cable. This, however, appears to be no significant problem

for a transmission gate driver circuit.

A further point is that the designer of simplex interconnections has the greatest

freedom of choice. Data-channel-to-data-channel interaction is nil. Within a given

channel the designer may arrange any sequence of timing for the signal without concern

for conflict.

2.2.1.2 Crossbar Switch Matrix

A way to overcome the limitations on numbers of senders, receivers and

conductors is to provide switches establishing the path. These switches would permit

2-7

any one of a number of similar units to be connected to a single driver. If more than

one sender unit is in the system, with each requiring unique connection to one of

several receiving units, a crossbar switching matrix system, as shown in Fig. 2-1,

will meet their needs.

Because of the circuit limitation only one sender may be connected to one

receiver at a time. Since any connection made in this system is temporary, dynamic

control of the matrix must be provided. Such an operation is usually provided by a

switch matrix controller.

Problems characteristic of such an arrangement are:

• Where to put the switch matrix to allow the controller to function efficiently,

• How to prevent a data transfer rate slowdown due to the added distance of
sending data to the switch unit and then out to a receiving unit,

• What means are used to prevent crosstalk in the switch unit,

• How to accommodate the multiple differences of reference voltage in
several transmitting units,

• How to service a unit or part of the switch matrix without having to deactivate
the system, and

• How to construct the switch matrix and its controller so that there are no
single-mode system failure points.

2.2.1.3 Data Bus Multiplexing

Present technology allows driving several receivers from a single trans-

mitter, or driving a single receiver from several transmitters. Interconnection of

multiport units* is shown in Fig. 2-2. The need for a switch matrix is obviated by

placing in each unit a logic network that resolves the conflicts of simultaneous re-

quests for communication.

* This approach is proposed by IBM for use in the Modular Space Station Computer
System, Ref. 15, Sec. 2.1.3.

2-8

Fig. 2-2. Multiport units.

The number of units of one type or other can be expanded to a maximum

size originally planned for the system. A complete redesign of some units is required

when the expansion goes beyond that limit. If the capacity provided for a rather large

limit, either the unused capacity or the total number of connections required would

be extravagant.

Many variations of single conductor multiplexing have developed, e.g.,

serial transmission and time multiplexing. Time multiplexing needs one time slot for

each unit of "simultaneous" data transfer in the fully expanded system. The maximum

operating rate of the bus driver and receiver circuits limits the maximum number of

"simultaneous" data transfers possible in any one particular system.

2-9

The search for a method of going beyond this limit has led to frequency

multiplexing techniques*, used so effectively by both the telephone and the broadcast

industry. Frequency multiplexing permits multiple channels of high data rate commu-

nication to occupy simultaneously the same conductor. Tuned bandpass filters permit

data transfers without confusion.

The tuned filter method is technically feasible, but the practical problems

of its implementation have previously been overwhelming. The means for modulating

or demodulating a carrier frequency to provide a high data rate required expensive,

bulky and complex circuits. Provision of a number of these modulator and demodulator

circuits for each unit of the system to make all of the units identical in design resulted

in a greatly increased size and cost for the units. An approach which uses the previously

employed circuits is even more disproportionate in size and cost when applied to LSI

units. This approach calls for new modulation/demodulation techniques, of which

semiconductor microsonics offers the most compatibility with LSI techniques.

Once a data bus approach is to be used, the choices for design and imple-

mentation are numerous. Elimination of many of the construction problems still

leaves an almost overwhelming number of organizational choices. For example, a

carrier for data transmission and transformer coupling of the circuits to the bus

eliminates problems of reference offset voltage and bus system single-mode failures.

The data bus system provides a great potential expansion means for the

system. It reduces making connections to units that, as in use of hybrid packaging- of

LSI arrays, are physically small. Small size makes the data bus system more

practical by reducing overall conductor length and thereby removing many of the

problems associated with signal transit time.

*Miller, Ref. 16, Sec. 5.6.2.

2-10

2.2.2 Interunit Communication Techniques

There are many organizational possibilities for the Data Interface Unit

(DIU). Additionally there are a multitude of choices available for coordinating trans-

mission of data over the bus, e.g. , asynchronously or through synchronized operation

of all DIUs.

The selected techniques will depend on the interconnection system used. For

multiple direct connection and crossbar switch matrix no interunit conflicts arise.

For data bus multiplexing the use of asynchronous communication can be confusing un-

less each channel can appear as a single bus. Then the design approach can be the

same as for the multiple direct connection system.

Asynchronous communication between units has been used in many configura-

tions. Presently used standard interfaces often employ "handshaking" techniques.

The sending unit places the data on the data lines, then sends a control signal on

saying that the data is ready. The receiving unit, upon accepting the data, returns

a control signal saying that the data has been accepted. Other signals may be ex-

changed for error control, interrupt and status reporting.

Communication lines between remote units use a completely serial approach

of asynchronously sending. To signify that data is ready, the transmitter sends a

standard message header. This usually is a single "one" bit. The data bits then are

sent in a set of fixed size with standard timing of each bit. When the data word plus

error control bits is sent, the transmitter makes certain that no "one" bit appears on

the line for a fixed period of time so that the receiver will unambiguously recognize

the initial "one" bit preceding a data word.

Systems that employ a combination of serial-parallel techniques, where each

part of the data word is sent serially over a wire, have been used only to a limited

extent. Varying delays cause the data bits to arrive skewed in time. Previously

correction of skew cost a prohibitive amount of hardware. Present design and

2-11

construction methods make the added cost less significant. Capability of providing high

throughput and excellent error control now make this approach an excellent choice.

A specific example of an application of this approach appears in Sec. 3.2.4.3.

Frequency multiplexing to provide multiple asynchronous channels presents

challenging organizational requirements when considered for use on the internal data

bus (between the CPUs/IOUs and MMUs). The first requirement is for a coordination

technique when the number of channels is less than the number of potentially simul-

taneous users. Frequency multiplexing requires DIUs to request the use of one of the

bus channels by notifying the other DIUs that a particular channel is to be occupied for

the next period for the transfer of a data word. To avoid disruption of another unit in

communication the DIUs must refrain from requesting a previously reserved channel.

Any DIU using a channel must also temporarily relinquish the use of the channel between

transfer periods to avoid system hangups. Most importantly a DIU must be capable of

resolving, with the cooperation of like DIUs and without the help of an outside unit,

any simultaneous requests for use of a single channel.

The second requirement is the inclusion of a feature that allows sending the

priority code to the addressed MMU before beginning the normal data exchange cycle.

Until any access conflicts have been resolved at the MMU, a DIU must not start its

data transfer cycle.

There are, depending on the number of users and the number of simultaneous

channels available, several methods to resolve conflicts of multiple DIUs simultaneously

requesting use of the bus. If a time multiplexing system were used, then, with enough

channels to permit all possible links to be active at once, the approach might be to

have the bus available to each link periodically. This forces synchronization of the

operations of all units connected to the bus and implies that conflicts for use of a single

unit are resolved by delaying the user's operation by one or more periods of transfer.

2-12

An example might be the request, by two or more CPUs, for access to a

single memory module. The simple discipline of having the memory honor the first

request it receives after it becomes available will lock out one or more CPUs once one

CPU gains access and uses the memory. Stacking requests from the several CPUs not

only adds complexity to the memory unit but decreases system throughput because of

waits for a bus transfer period.

Allowing users occupancy of the next available bus data transfer period will

decrease the delays at the memory module. To provide for filling next time slots

from a queue requires a bus controller to permit use of a particular time slot.

2.2.2 Communication of Interrupts

Data transfers over all of the buses in most systems are controlled by either

the CPUs/IOUs; i.e., all requests for transferring information originate from

one of these units. The exception is that the peripheral equipments usually are

capable of asynchronously initiating a request for service. One exception is an

operator's console signal to send a message to the CPU system upon manipulation

of the send request control. This action by the operator occurs at a time independent

of the CPU program execution. When requests for service are initiated asynchronously

with bus activity, a special method for transferring them to the CPU must be provided.

Different methods have been proposed as candidate approaches for handling

peripherally generated requests for service, separate into two classes. One class

is characterized by transfer of signals entirely asynchronously with operation of

the computer system; the other is characterized by transfer only after the peri-

pheral equipment has been polled by the system which searches for a service request.

Implementation methods further subdivide the two classes. Polling, for

instance, can be such that software controls the majority of functions required. Alter-

nately, these same functions could be performed under firmware control, or they

could be wholly implemented in special purpose hardware.

2-13

With the IOU able to execute a rich set of instructions, it could carry out the

polling operation by software, the slowest of the approaches, which nevertheless

allows configuring a system that can perform the polling operation at a rate that uses

the data bus and does not produce excessive delays in the time a peripheral equipment

waits for service.

Firmware control of the polling operation, which requires no more special

hardware than control by software, permits 100 percent usage of the data bus. There-

fore any special purpose hardware design can be considered overly expensive. More

generally, the use of polling to sense requests for service from the peripheral equip-

ment is foreseen as satisfactory.

2.3 EXECUTIVE SOFTWARE

2.3.1 Common Operating System for SUMC Missions

The IBM study recommends the development of a common executive routine de-

sign for all SUMC space applications. This would substantially reduce redundant

development efforts as well as the risk inherent in developing new executives for new

applications. The practicality of standard executive routines in a variety of data

processing, process control and time-sharing utilities has been proved. Not only

does this approach eliminate much redundant development work, but it encourages

modification and improvement of the standard executive so that after a period of time

it becomes more efficient and more reliable than the first version of any custom-built

executive. A common implementation of the common design, so that program imple-

mentation errors are also removed as a risk factor, should be encouraged. This

recommendation does not mean that the executive routine would never be changed or

enhanced; instead, it means that, given a functionally decomposable design, one can

substitute new modules for old without having to start from scratch. The better the

functional decomposition, the easier it will be to add new functions and change old ones.

2-14

This approach should also be applied to other significant software components

such as file control routines, language translators (compilers) and job schedulers.

The IBM study recognizes well that the executive routine interface is the crucial one.

Many changes in I/O and storage device speeds, configurations and interfaces can then

be made invisible to the application programs, since the effects of these changes can

be absorbed by appropriate, one-time changes in the executive routine. Thus, by

providing a standard operating system interface, the cost of transferring applications

programs from one SUMC mission to the next is reduced to the cost of compensating

for changes in the system configuration for capacity reasons only (e.g., memory size,

number of disk drives, number of display terminals).

2.3.2 Executive Routine; Hardware, Firmware or Software

The CSC study proposes that serious consideration be given to a complete

"reformulation of concepts" of the multiprocessor executive with a view toward

implementing the basic control functions of the executive in digital logic hardware.

While the authors made a good case for the technical feasibility of doing this and so

achieving significant cost savings in hardware, they failed to note, or estimate, the

greatly increased development costs and operational risks of a new, untested tech-

nology in the nerve center of the multiprocessor operating system.

The use of read-write control memory for microprogram storage would allow

the gradual transfer of executive routine functions from software to firmware in

response to the results of actual system performance analysis studies. Embedding

today's software macro instructions and control functions in tomorrow's instruction

set is probably the most conservative way to improve system cost/performance (like

the acquisition of floating point instructions) and it is least disruptive.

2.3.3 Timeline Scheduling

The principal prescheduling control in the space station environment is the

timeline schedule. The CSC report calls attention to the need for a mechanism to

allow the station crew to make modifications to the timeline via a special, high-level

2-15

language. Of even greater potential is its proposal that the modification of timelines

due to schedule changes, overruns, experiment aborts, etc., is an excellent application

for the SUMC computer system. The MPOS scheduler has the needed information—

it knows what time it is, which experiments or jobs were successfully completed,

which were aborted, which were started late, which finished early, etc. Therefore,

it is appropriate that automatic rescheduling of timeline and batch jobs should be

done as a normal MPOS administrative function. The station crew will furnish inputs

to this "rescheduler" and will request changes when the schedule adjustments recom-

mended by the rescheduler are unsatisfactory.

The motivation for this feature is to relieve the crew of the burdensome task

of rearranging schedules in which precedence rules control the permissible order of

execution of jobs. This type of scheduling constraint can remove many superficial

scheduling problems from the realm of hand calculation.

2.3.4 Task Scheduling

The CSC study rightly asserts that no single task scheduling algorithm is likely

to be satisfactory for the several different SUMC systems they identify (DMS, Experi-

ment and GNC) or other as yet undefined SUMC missions. These CSC results suggest

that one or more task schedulers which exhibit the following characteristics be imple-

mented:

1) The scheduler algorithm is actually formulated of parameters specified
initially at system generation, and based on empirical studies of the
behavior of the system under the job mixes that are typical for the
mission at hand.

2) The task scheduler is self-adjusting; i.e., it is responsive to the resource
usage levels in the system.

3) In emergencies the parameters controlling the scheduler can be modified
dynamically by the station crew using a "symptom/cure" tuning guide in
their SUMC handbook.

2-16

This kind of scheduling is the best of the alternatives that the CSC study

considers; however, the basic scheduling parameters (start and due-out times) of the

system are not accommodated in this strategy. Timeline scheduling of jobs means

that jobs have both start times (earliest and latest) and they have due-out times

(earliest and latest). Failure to take this vital requirement into account in task

scheduling is the biggest oversight in the IBM study. The CSC study recognizes

that "deadline" is a parameter of task scheduling, but it is not explicitly connected

to the due-out requirements of the timeline.

As do most experienced operating systems developers, the authors of the

CSC study overemphasize the efficient use of computer system resources and under-

emphasize honoring the deadlines imposed by the timeline and the station crew.

Efficient, timely and reliable performance of the space shuttle and space station

missions must take precedence over the efficient use of computer system resources.

This is not meant to encourage "over-buy" or to claim that resource utilization is not

related to meeting deadlines, but simply to put first things first.

In this light, predictability of due-out time for tasks and jobs is extremely

important to the success of the shuttle and station missions and also to the wellbeing

of the station crew. The crew does not need the added surprises caused by an unpre-

dictable, erratic computer system. A "slow" but rhythmic response at an experimenter's

display or astronaut's control console is easier on the operator (and therefore more

efficient) than a "fast" but uneven response — another reason for avoiding time-slicing

as a major parameter of the scheduling algorithm. Time-slicing loads the system

artificially but does not, in practice, encourage a steady interaction rate.

The best way to get efficient computer resource utilization is to have a large

queue of very low priority, nondeadline, jobs which can be initiated on a best-resource-

fit basis whenever the current resource levels permit and which can be suspended

whenever resource contention endangers the completion of more important deadline

work. It is not unreasonable to expect that certain mission housekeeping tasks can

be placed in this category.

2-17

2.3.5 File Protection and Sharing

The Intel-metrics study proposes a data file system in which data sharing and

exclusive use of data are controlled by cooperative interlocks between the user pro-

grams accessing the data. This system leaves data file integrity at the mercy of the

least thoroughly tested user application program. Centralized control of sharing and

locking is not only inherently more reliable, but it places control over sharing and

locking where it can be monitored and changed, if necessary, without requiring re-

programming of all of the applications which access the pertinent data.

2.3.6 Deadlock Prevention

The specter of system deadlocks in a multiprogramming, multiprocessing

environment has troubled the authors of the CSC, Intermetrics and IBM studies.

Deadlocks represent one of the hazards of dynamic resource allocation. The

deadlock (or circular wait situation) is illustrated in Fig. 2-3.

Task A Task B

1) Has exclusive control
of resource X and will not
give it up.

2) Requests resource Y and
will not proceed without it.

1) Has exclusive control
over resource Y and will
not give it up.

2) Requests resource X and
will not proceed without it.

Under these conditions Task A and Task B are deadlocked (X and Y

might be tape drives, displays or data records). Under this con-

dition neither task is able to progress.

Fig. 2-3. Circular deadlock.

Certain types of deadlocks can be easily prevented by controlling the initiation

of tasks which can potentially deadlock each other. For example, two tasks, each of

which contains requests for exclusive use of 10 K bytes of memory, should not be

initiated when less than 20 K bytes remain to be allocated. Thus the prevention of

2-18

deadlocks resulting from insufficient amounts of a bulk resource can be avoided

by: a) supplying sufficient amounts of that resource to support worst-case requests

adequately and/or b) refusing to schedule a new task when its potential resource needs

could deadlock the system. None of these studies proposed a deadlock prevention

strategy in sufficient detail to determine whether this simple form of deadlock could

be prevented.

The more serious form of deadlock occurs when unique, nonbulk resources are

involved, as illustrated in Fig. 2-4.

Task A

1) Holds record X in File F.

2) Requests record Y in
File F.

Task B

1) Holds record Y in File F.

2) Requests record X in
File F.

Task A and Task B are deadlocked until A releases record X or B

releases record Y.

Fig. 2-4. Unique resource deadlock.

Deadlock over unique resources turns into single task lockout when all tasks,

save one, relinquish their exclusive holds on the resource. In Fig. 2-5, if Task A

releases its hold on record X, Task B's request for record X can be satisfied. How-

ever, that does not help Task A, since Task A still cannot proceed until Task B releases

record Y. If Task B terminates without releasing record Y, goes into an endless

loop, or omits unlocking of record Y, then Task A will be stymied until someone

releases record Y.

2-19

Task A

t = 1: Holds record X, File F
t = 2: Releases record X, File F
t = 3:
t = 4: Requests record Y, File F

Task B

t = 1: Holds record Y, File F

t = 3: Requests record X, File F

Tasks A and B are not deadlocked at t = 4, but Task A cannot proceed until

Task B releases record Y.

Fig. 2-5. Single task lockout.

Deadlocks over exclusive use of unique resources are much more difficult

to prevent. Ground rules specifying that such resources are to be released within

some reasonable period may reduce delay to acceptable proportions, but the problem

of overdue library books represents an example of how ineffective this type of con-

trol really is. Therefore, in a multiprocessor environment it becomes important

to limit the number of exclusively used unique resources and to provide a mechanism

for breaking system deadlocks and single task lockouts when the delays become

inordinately long.

2.3.7 Interrupt Servicing

The CSC study proposed a trap (interrupt) mechanism for a multiprocessor

configuration in which, at any given time, only one processor is designated as an

interrupt processor. In other words only one processor (usually a "stopped" pro-

cessor) is interruptible, putting the burden of responding to all interrupts on one pro-

cessor. The consequences of this dependency under peak loading of the system could

be devastating. Moreover, dedicated processors require special interrupt control

logic, create additional modes of system failure in which no interrupts are serviced,

and complicate recovery and reconfiguration. A more "democratic" multiprocessor

with interrupt masking would permit any number of the on-line processors to respond

to the same type of interrupt or alternatively to specialize and designate specific

processors for specific interrupt types. Also, in a "democratic" multiprocessor,

reconfiguration for interrupt servicing becomes primarily a matter of changing the

interrupt masks in the surviving processors.

2-20

- V
•'!•;!!

2.3.8 Error Recovery

The Intermetrics study recommends that recovery from computer system

hardware failures be the responsibility of the operating system; i.e., user application

;•* programs are not required to incorporate their own recovery procedures. Leaving

•:•;•''.-. hardware error recovery as an exercise for the applications programmer is a poor
»'••'';>. . ' "

•'!;.:•:. ' if not impossible use of his specialized skills, but more importantly, it would seriously

i'cj "impair system reliability and the ability to reconfigure the multiprocessor system.

The reasons for this are:

a) Each user would provide his own recovery procedures based on his own
notion of what is sensible. Thus the reliability of the system would rest
on the weakest attempt at error recovery in the most poorly tested user .
application program.

b) Uniform response to errors by MPOS could, if proved effective, be
revised to obtain a better recovery probability by changing one program.
If each user does recovery his own way, then only by changing a significant
number of user programs can the system's error recovery performance
be improved.

Moreover, system selection of default responses to certain error conditions

at system generation may be the best way to obtain uniform recovery procedures.

User application programs, nevertheless, must be notified when unrecoverable

errors occur so that the user task in control can cancel, degrade gracefully or

request the scheduling of an alternate task or job by the human monitor or experi-

menter involved. The operator must be told of the application consequences of an
t

unrecoverable hardware failure.

2.4 MAN/MACHINE INTERFACE

The Intermetrics study discusses applications of displays as an interactive

component in a spaceborne multiprocessor system. There are* however, two more

modes of interaction between man and the system than the one the authors describe.

The first is used when the man initializes the system following "power on." The

second is used when the operator controls the configuration of the system. The third

mode is used when the operator finds it necessary or useful to interact with the system.
2-21

Many techniques have been used to provide these three modes of operation. The

first two modes are usually implemented through provision of an operator's panel and

the third through a soft copy display with supporting software. The operator's panel

comprises indicator lights and switches. The soft copy display equipment may con-

sist of a cathode ray tube and a keyboard.

For an LSI multiprocessor system, however, the usual techniques for operator's

panel construction do not apply. The processor is disparately small compared with

physical size and power requirements of indicators and switches. In the RCA-proposed

hybrid packaged C-MOS LSI system a CPU/IOU will have only 40 square inches of

external surface exposed after mounting—this surface being 1 inch high and 10 inches

long on four of the sides. The surface must be shared with the cable connectors used

to provide for interunit connection.

A separate operator's panel of the conventional design could be used — another

source of problems. Making connections to this panel from the unit is possible, but

involves two unfavorable points. Use of a remote panel requires long leads, which

add to the capacitance that must be driven by the circuits to which they are connected

and whose performance they are being used to monitor. Such added capacitance limits

the upper switching rates of the circuits and is contrary to the purpose of using the

hybrid packaging approach to reduce capacitance load for high performance circuits.

The other point is that with hybrid packaging many logic elements are interconnected

within one package and the connections to other hybrid packages are intentionally

minimized. Added connections between the logic elements and any control panel

would reduce the amount of logic that could be put in a. package by using up the con-

nections before using up package space.

The ideal solution for the multiprocessor system would be to provide an interactive

console of universal design that connects to the system via the data bus and that can be

used as an operator's panel as well as an interactive console.

2-22

2. 5 STORAGE MANAGEMENT FEATURES

Presently there is general agreement that the memory system will encompass a

hierarchy of speeds, capacities and technologies, but no limitation can be put on total

size, which would be one factor in judging the appropriateness of system members.

The current assumptions are that on-board storage will run to over 4 M words (16 M

bytes or. 10^ bits) and that the memory system will support an execution rate of 106

operations per second from the processors. Although memory technology is advancing

rapidly, the ideal of the monolithic random access store meeting the minimum require-

ments is not foreseen. Comparisons only can be made in the implementation and manage-

ment of a large hierarchial and open-ended storage facility.

2.5.1 Evaluation of Proposed Systems

IBM* proposes a system of 15 execution modules (MMUs) each accommodating

16 K 36-bit words (32 data + 4 parity) with access time on the order of 1 MS. Words

from any one of these modules are directly available, without buffer or cache, to the

addressing unit. Backing the 15 modules are three auxiliary memories with average

access time three decimal orders greater and with a total capacity of 3 M words (13 M

bytes or 10 bits). Thus the ratio of execution to backing store is approximately 1:4.

Still further storage is provided by the bulk store, which consists of peripheral

devices feeding in and out of the multiprocessor system data bus. Each bulk storage

unit is capable of storingj33 M words (134 M bytes or 108 -109 bits) on a reel of tape.
i - '

Recognizing that program and data requirements have yet to be sized in any

detail, IBM has left an open-ended system with blocks to be swapped into the system

and data to be buffered out either for data link transmission or in reels of tape for

physical transport to the earth. Additionally recognizing that the system may be built

and tried out in steps, IBM allows an add-on approach for building the full system.

*McNabb, Ref. 15.

2-23

Intermetrics* is equally aware of the uncertain sizing of the multiprocessor

system, and it proposes module sizes at the Ml level without limitation as to numbers

of modules; while at the M2 and M3 levels it gives maximum sizes with no suggestions

as to the number of modules Intermetrics might include. Thus Intermetrics is inhibited

from detailed discussion of addressing and address translation schemes; nevertheless,

it has module hierarchy and management characteristics that can be clearly distinguished

from those of IBM.

Intermetrics uses, at its Ml level, a buffer (or cache) associated with each

CPU and each IOU. A single Ml module is large, 2 K - 16 K words (105 -106 bits),

and is composed of small blocks of eight words each. It is fast (100 ns cycle time),

and it keeps the system busy; every word updated in it must be copied immediately

into a corresponding word in M2, the next memory level up, which is one decimal

order of magnitude slower and supplies 1 M words (4 M bytes or 107 -108 bits). After

two levels of memory hierarchy, Intermetrics with its large processor buffers is

somewhat beyond IBM for capacity and three decimal orders faster. For bulk store,

a ROM and R/W combination, Intermetrics proposes a capacity of about twice that of

its stated R/W section, which alone was suggested at 134 M words (a billion bytes or
q 1Q

10 -10 bits). Such capacity is very generous in view of Intermetrics1 citation of an

M-D/IBM preliminary estimate of 300 K - 500 K words of execution memory and 7M -

40 M words of bulk storage required for the space station computer system.

Both studies see the implementation of the faster storage units in LSI

technology. For its buffers Intermetrics suggests bipolar transistor flip-flops to

achieve the 100-ns speeds. For the l-/us store, the lower-power C-MOS technology

is recommended. For auxiliary memory (between bulk and execution) IBM favors

bubble memories for their small size, weight and power drain as well as for high

reliability. For bulk store IBM recommends high density magnetic tapes, which,

although they involve moving mechanisms, offer the option of data link transmission

or physical transport.

*Miller, Ref. 16.

2-24

2.5.2 Tradeoffs

Given that a memory hierarchy will be established, certain tradeoffs as to

the management of the system must be considered. An excellent review of some of

these tradeoffs can be found in the Intermetrics study; they are summarized here. *

• Integrated vs. segregated program and data code. Separate busing reduces
congestion but increases bus hardware.

• Paged vs. segmented or a mixture of both achieving virtual memory
management.

• Alternate storage protection schemes. Paging carries one scheme almost
free.

• Interleaving or not. Interleaving can propagate massive failures if one
modular participant fails.

• Autonomy for the memorylunit v. CPU supervision. The more a memory
unit can do its own housekeeping, the more time a CPU has to attend to
throughput. , .

• Alternatives of coding for error detection/correction. The price is in extra
logic as well as in extra storage.

• ROM for some program and data storage v. R/W for all. This does not
constitute a real tradeoff. Flexibility over long mission life makes R/W
preferable.

The list might be extended with two future tradeoffs not listed by Intermetrics

although the first was given some consideration in its report:

• Stack storage vs. S/360 dynamic allocation. Although the two methods of
referencing stored information are not mutually exclusive, systems orienta-
tion will favor one or the other.

• Alternatives in the design of an address translation unit for conversion of
virtual address to physical address. Address translation in some form is
required for the use of virtual memory.

These tradeoffs are discussed below in varying detail; depending upon their

emphasis during this study.

*Miller, Ref. 16, pp. 67-69.

2-25

It is generally agreed that threat to flexibility militates in favor of all R/W

program and data storage and that reliability requirements call for abandoning inter-

leaving in MMU operation. Exploitation of autonomy of all units is a design principle

of great potential for a multiprocessor which cannot risk vulnerability of centralized

control. This principle is an emergent one, however, and should be studied for the

tradeoffs it generates as details of the system evolve.

The ability to establish stacks is attractive to the compiler designer. The

structure of higher order programming languages finds convenience in push-down/

pop-up lists. For most systems they are created through software, or software with

some additional registers for pointer storage. From machines that exist today, it

could be concluded that the better compromise is to adapt a machine with conventionally

computed addressing (additive components) to establish stacks than to adapt a stack

machine to conventional addressing.

A machine which expects to establish some compatibility with S/360 is

forced to S/360 address computation methods to implement dynamic allocation of blocks

of sequential information. The advantages of stack processing for implementing nested

and recursive routines and for compacting memory contents must be realized in

software.

Four-bit parity on the 32-bit data word is the generally accepted check on the

storage, which must be interpreted as 12. 5 percent beyond the sizes given above in

order to accommodate this error detection feature. Extreme reliability requirements
i
call for a review of more powerful techniques, i.e., those involving correction as

well as detection.

2.5.2.1 Error Correction Coding

Dual-bit error checking and single-bit error correction is presently being

employed in the S/370 system for control of some memory errors. However, as

2-26

Intermetrics states, this approach still leaves the errors caused by address selection

errors such as no-word, wrong-word or multiple-word responses. To eliminate

these remaining errors Intermetrics suggests that the only choice may be the multiple

copy approach. Neither Intermetrics nor IBM has tried the approach of organizing

the memory such that the error control capabilities of the code is matched with the new

organization. Such an approach, as discussed in Sec. 3.1.6.2, is capable of econ-

omically eliminating the possibility of any single mode failures in a main memory unit

causing a system failure.

2.5.2.2 Data Segmentation

Management of virtual memory involves the most fundamental and critical

tradeoffs of the memory system. Paging and segmentation separately or in combination

are the chief means of achieving such memory, and its effectiveness depends upon

selection of various parameter sizes. A good tutorial treatment of the history and

operation of paging and segmentation appears in the Intermetrics study*. The gross

distinction is that paging implies standard-size blocking of information in a manner

invisible to the programmer, whereas segmentation implies blocks defined according

to the requirements of the programmer. Thus segmented programs tend to use

storage more efficiently than the paged, but the price is in having segments sized with

dimensions explicitly stated by the programmer and preserved through compilation.

Paging can gain operational efficiency in that it enforces some uniformity of data

handling.

2.5.3 Paging and Segmentation Management

Another distinction is found in the fragmentation problem, i.e. , development

of "waste" space in memory because of storage management policies. Segmentation

incurs the risk of not being able to store a segment because the overlay space will not

accommodate it. Allocation policies for "checkerboarding," or alternating segments

*Miller, Ref. 16, pp. 85-88.

2-27

with unused space, will increase the chances of being able to overlay a segment on

demand, but they intentionally induce fragmentation. Such fragmentation by intent is

called external fragmentation in contrast to the internal fragmentation that occurs

when portions of information in varying sizes are handled in fixed-size pages.

Studies of fragmentation show that quantitative organization of program and

data can affect efficiency of storage utilization sometimes very seriously. Both the

programmer and the compiler must work with knowledge of memory management

policies in order to keep fragmentation down.

Paging and segmentation can be combined in an attempt to achieve advantages

of both. Segments are allocated in pages to realize uniform transmissions of data

and assurance of placement. Combination schemes will, however, exact some of the

overhead of both methods.

2.5.3.1 Critical Parameters

Implementation of paging or segmentation entails further tradeoffs involving

certain critical parameters:

• Page/segment sizes

• Memory unit capacity ratios

• Average backing store seek times

• Transport time ratios

• Fetch policies

• Replacement algorithms

• Frequency of page faulting.

A completed system ideally will have these parameters tuned to near optimum

conditions. But because of the program dependency of frequency of page faulting there

can be considerable variation in the behavior and efficiency of the system under any

parameters, and it is realized that best efforts to achieve optimum parameter settings

2-28

will result in great inefficiencies under some uses. As the dynamic influence of

program interaction has become more apparent, ingenious fetch policies and replace-

ment algorithms have given way to the more straightforward ones. Going beyond the

fetch on demand (page fault) and LRU (least recently used) replacement are refine-

ments that can be left for consideration after the operating system and applications

programs can be studied for dynamic characteristics.

2.5.3.2 Page Management Illustration

Viewed in greater detail, the effect of a paging scheme on multi-programming

can be suggested by an illustrative setup and some postulated parameters. A single

CPU can support the simultaneous running of several applications programs. Program

A runs until a new page must be brought in. During the transfer a succession of pro-

grams can be run with the page fault motivating the commutation between programs

(see Fig. 2-6). The parameters being considered are :

f: fraction page exchanges required by page faulting

i: number of MMU references per instruction

N: number of words per page

n: number of interfault references

PROG. A

i"
^PAGE FAULT

N (l + f)itb + t0

r—PAGE AVAILABLE

PROG. B — —

INSTRUCTION
EXECUTIONS PAGE CHANGING

PROG. C

PROG. D

Fig. 2-6. Program commutation by page faulting.

2-29

t^: time for auxiliary memory transfer of word

tj: average time per instruction

t0: average time for auxiliary memory setup.

The paging period can be defined in terms of these parameters as:

it +t
b o

and the program throughput time per instruction:

Nfl + QV'o
n

If the ideal of complete utilization of paging waits is approached, the

machine average throughput time per instruction approaches t. and the throughput
10**

rate in Kops approaches-7—. When a simple program is considered alone, its
4

throughput rate, T , becomes:

1C3

T_ =P N (1 + f) it + t
t + - -^— 2.
i n

Neglecting t as much smaller than N (1 + f) it^ assumes the seek, or setup time,

is negligible compared to the total page transport time. Under rearrangement, the

expression for throughput becomes

T
P S \ nt. + N (1 + f) it

1

In this form it becomes clear that theoretical throughput is degraded for the program

by a factor that is decreased by number of interfault references (n) if the average time

2-30

per instruction (t.) remains constant. Table 2-1 shows the dependency under a

typical set of parameters; the results are plotted in Fig. 2 -7. Runs of 100 to 200

instructions without the development of a page fault have been considered as typical

for system parameters.

TABLE 2-1. DEPENDENCY OF THROUGHPUT ON PAGE FAULTING

System Parameters
Set at

N = 130

f - .3

t. = 10 MS

t = 5 MS
i

i - 2

THEN N(l + f)it, = 338
b

Number of
Instructions

Between
Page Faults

10

30

50

100

150

200

250

300

Degradation
Factor

.97

.92

.87

.77

.69

.63

.57

.54

Program
Throughput

(Kops)

6

16

26

46

62

76.

86

92

This illustrative treatment of paging parameters is subject to the criticism

that an assumption is made that immediate transfer from one user program to the

next constitutes normal operation. Since high priority systems housekeeping routines

are usually inserted between applications programs, the figures calculated represent

upper bounds rather than the averages. Reality of these figures could be established

only from further definition of the system and discovery of program characteristics.

Though such definition cannot be supplied at this point, familiarization with the

dynamic potentialities can be had through calculations of families of curves resulting

from scheduled parameter variations or from simulations.

2-31

100

80

0)60
a.
o

40

20

0

.8

.6

a
<
a:

.2

THROUGHPUT
'DEGRADATION
DUE TO PAGING

I I I
50 100 150 200

INTERFAULT NO.

PROGRAM
THROUGHPUT

250 300

Fig. 2-7. Throughput sensitivity to interfault number.

2.5.3.3 Address Translation

Paging and segmentation are accompanied by the need for generating

physical addresses from virtual addresses supplied by the compiler. Mapping of

address components is done by an address translation unit (ATU). Components of S/360

type addresses are a 12-bit displacement, which locates a byte within a 4 K byte block,

and a 24-bit base which can locate 4 K byte blocks in 15 K different and potentially over-

lapping areas. A further 24-bit component, used for indexing in some instructions,

adds another degree of freedom to relocation. Manipulation of these components

results in a virtual address that is satisfactory to user and compiler but must be dy-

namically adjusted to system requirements imposed on a particular user at a particular

time. Final control is maintained in the production of the physical address. Here a

2-32

wide variety of protection can be supplied. Two examples are MMU (module) access

and access to pages or segments. Denial of use of a module found to be faulty until it

is repaired and ready for test must be supplied for long-life, reliable operation; and

immediate provision of alternate addressing ensures continued operation on a real-

time basis. Equally important is the assurance of program and data integrity. Pages

must be associated with certain tasks on a read-only or write-only discipline. They

may share pages in common, a convenient means for transferring information between

programs, but common access is always under system control. The ATU is the point

and means of control.

An ATU, however, has its price. Since it is primarily a function table, it

requires its own storage space. It also interposes retrieval and logic steps between

CPU/IOU address generation and actual addressing. Content addressed memories

(CAMs) can speed the table-lookup but are costly. Tradeoffs can be realized in fitting

the CAM size to the management problem. It is not economical to store the entire vir-

tual address translation in a CAM, and the CAM in turn must be managed to make alter-

native portions available as needed.

IBM has specified an ATU primarily for allocating information in various

memory modules — an important aspect of reconfiguration. Intermetrics has not

dealt with the addressing problem in any detail largely because it has left memory

capacity open-ended at all levels of the hierarchy and because it has presented an

almost equal case for calculated addresses v. list structuring.

2-33

Section 3.0

SELECTED MULTIPROCESSOR ARCHITECTURE

This section presents the proposed multiprocessor architecture synthesized from

the best concepts from the evaluation of previous studies and extended to show further

potential and detail. This section deals with the selected techniques for the multiprocessor

and some of the necessary implementations at the system block diagram level.

The salient system features are discussed to emphasize the major concepts em-

bodied in this multiprocessor design. Following this discussion an overall introduction

to the system is included to provide a survey of the major units. Brief specification and

description of each of the major operating units and their interconnection follow. The

hardware and software are presented, and operational concepts are discussed.

3.1 SALIENT SYSTEM FEATURES

3.1.1 Hardware Utilization

A basic premise of this system design is that with the ever decreasing hardware

cost per function, additional hardware should be utilized wherever possible to minimize

system complexity, minimize software complexity and maximize system throughput.

The practicality of large-scale-integration (LSI) coupled with design automation makes

possible this decrease. Figure 3-1 illustrates the rapid decrease in cost per gate

with advance in calendar year. On top of this trend is the change in breakdown

of total costs for an operational system. The total software cost presently is more ex-

pensive than the entire hardware cost, and of the hardware cost, the major portion is

spent for peripheral equipment. Therefore, even if LSI did not provide this continual

reduction of gate costs, the cost of any additional hardware used in the computer main-

frame would be swamped by other expenses when the whole system is priced. In

recognition of these two facts, RCA has been liberal in its use of additional gates

to improve total system throughput.

3-1

1.0

O.I

V)
oo
UJ

.01

.001
68 69 70

GATE COST
RANGE

I

71 72
YEAR

73 74 75

Fig. 3-1. Average cost per gate.

This philosophy can be applied to space hardware only if an ultra-low-power

technology like C-MOS is used. From studies made by McDonnell-Douglas as reported

by IBM* the cost of hardware for a Space Station Mission is indicated in Fig. 3-2. The

hybrid module listed is typical of C-MOS technology. Power is obviously of prime

importance.

3.1.2 Modular Design

One of the guidelines during this study was to permit flexibility and growth of

each major system module as well as expansion of the overall systems constructed from

them. The concept of autonomy of all major units in the multiprocessor system

followed. Any system is configured from the three basic module types — central

processing unit (CPU), main memory unit (MMU) and input-output unit (IOU). These

*McNabb, Ref. 15.

3-2

Incremental Hardware

1 hybrid package
(3000 gates)

4.18 in3

200-400 mW
0.105 Ib

Assessment

$l,500/ft3

$7,650/W/10 Years
$250/lb

Total

Additional
Hardware Cost

$3.63
$1530-» $3060
$26.25

$1560 ->$3090

Fig. 3-2. Hardware cost for space station missions.

modules perform their function independently and cooperatively. The tenet employed

is one of "functional split" of responsibilities, a concept which pervades this system

design. The MMU performs storage, retrieval, and error checking on data and

instructions. The IOU performs all input-output operations for the computer system

and is capable of fetching and executing executive code related to all I/O operations and

I/O housekeeping. With this capability, the IOU can be completely independent of the

CPU. The CPU fetches and executes instructions, interprets code, and performs oper-

ations for user and executive routines relating to non-I/O operations and housekeeping.

Thus, the CPU is dedicated to serving the computing sections of user and

executive programs, and the IOU is dedicated to executing the input-output and memory

data swapping user and executive programs. For any system application, the mix of

CPUs and lOUs can be adjusted to maximize total system throughput. An additional

benefit of this functional split is that in an error condition an IOU can execute

executive code and user code related to computing and thus provide an extra degree of

"fail soft" capability. s

A further benefit derives from the fact that the IOU design and implementation

are almost identical to those of a CPU and consequently maximizes replacement and

backup module benefits and minimizes design costs.

3-3

The interconnection of modules for a system has been simplified over that

found in other multiprocessor designs. There is only one interface. The CPU-MMU

interface and IOU-MMU interface are identical. There is no communication between

CPU and IOU except through an MMU. This arrangement results in minimal design

and complexity of the multiprocessor system.

Programs to be run on this multiprocessor are modularized by the executive.

A complete program as presented by the user or executive is a job which is then

broken into tasks which are functionally related sequences of instructions with defined

resource requirements. Tasks are the smallest defined work package. A task is

scheduled, initiated, executed and terminated as a separate entity.

3.1.3 Modular Configurations

Modularity fosters flexibility and reliability when used to facilitate reconfigura-

tion. The general requirement is that there be an MMU for data and instruction stor-

age, an IOU for input-output operation and a CPU for normal computing functions.

Under exceptional conditions and because of broad capabilities of the IOU, participa-

tion of the CPU may not be necessary. Such operation will not be as efficient as with

full processor complement, but it can serve in emergencies.

The minimum operational system that can be formed from the multisystem

modules is shown in Fig. 3-3. A simplex system would significantly increase system

throughput. This system would have one CPU, one IOU and one or more MMUs,

depending on the storage requirements. Such a configuration is shown in Fig. 3-4.

The next major step in capability is provided by the CVT multiprocessor configuration

with two CPUs, two lOUs, and two or more MMUs. Such a system is illustrated in

Fig. 3-5. After the step has been made to a multiprocessor configuration, the system

is extendable to include more than two CPUs and more than two lOUs. There is no

restriction on the mix of CPUs and lOUs in any one multiprocessor system. The actual

mix will be determined by the application programs and needs. A limit of eight MMU

3-4

MMU

IOU

DATA BUS

Fig. 3-3. Minimum operational system.

MMU

r
MMU

I

CPU IOU

DATA BUS

Fig. 3-4. Simplex system.

ports was used in this study to allow independent operation of up to eight CPUs or lOUs

in any mix. Though not requisite to the multiprocessor design, a limit of eight appears

reasonable. A balanced fourfold multiprocessor system is shown in Fig. 3-6.

3-5

MMU MMU MMU

CPU IOU IOU

DATA BUS

DATA BUS

Fig. 3-5. CVT multiprocessor.

MMU MMU MMU

DATA J -
BUSES 1 -

Fig. 3-6. Fourfold multiprocessor system.

3-6

In addition to the multiprocessor configurations illustrated above, the basic

modules can be used in more conventional multicomputer systems like the master/slave,

or federated configurations illustrated in Fig. 3-7.

3.1.4 Virtual Memory Addressing

A virtual memory gives each user the impression that he has a very large

memory at his disposal; moreover, it relieves him of memory management (overlay

and swapping) problems. The problems remain, but they are taken over by automatic

procedures within the system. The user, then, does not see the real, or physical,

address but uses a virtual address, which is the result of conventional S/360 base and

indexing arithmetic on a displacement. This virtual address must be translated by the

address translation unit (ATU) into a physical address by which a memory unit is

actually addressed. Synthesis of the virtual address incorporates user and compiler

address control, whereas address translation incorporates system control.

Fig. 3-7. Multicomputer configurations.

3-7

The whole collection of virtual addresses, called name space, is an abstraction.

Not all of the names (virtual addresses) can correspond uniquely to memory locations,

although any one of them can. Physical addresses by contrast refer one-to-one to real

locations in MMUs or auxiliary memories. The mapping function diagrammed in Fig.

3-8 is specified by a map table stored in the ATU. As shown in this figure, not all

names are used, and not all can be connected to physical addresses in either of the

memories. The first situation is inconsequential, but the second is known as a fault,

which can be cleared only if the desired reference can be found in auxiliary memory,

moved to main memory, and the appropriate revision made in the translation table.

The data moved from auxiliary memory to main memory involves at least an

overlay but possibly a replacement, i. e., the copying out of the contents of a main

memory location into "free" space in the auxiliary memory before writing the desired

data into main memory. To realize more efficient use of time in transfer, blocks of

information rather than individual words are moved when faults are encountered. Pages

are uniformly sized blocks of words, and they fit between standard memory boundaries

called page frames.

3.1.4.1 Paging and Page Protection

The multiprocessor uses demand paging; i. e., it moves pages into main

memory, if it can, whenever a fault is encountered. Whether it first copies out the

overlaid page depends upon whether any changes were made to that page during its

residency in main memory. Which page frame in main memory is selected for overlay

or replacement depends upon when the contents of the page was last used. The least

recently used (LRU) discipline is one of the simplest. Although more sophisticated

methods have been developed for page fetch and replacement they are sensitive to

program dynamics. Initially the simplicity of fetch on demand and LRU page

replacement is recommended, but with parametric provision for dynamic tuning.

When the software becomes more definitely specified, it may be shown that

segmentation and prepaging of program material are advantageous. Because the task is

a fundamental unit of processing and also a unit bounded by the intent of the programmer,

3-8

a

b

c

d

6

f

1 —
• —

*

*

/

NAME SPACE

MAIN MEMORY SPACE

AUXILIARY MEMORY

NAME
WORD

(VIRTUAL ADDRESS)

a

b

c

d

e

f

TRANSLATION

AT T|

(UNUSED)

b'
. 1

(ILLICIT)

(e"--NOT IN MMU)

f1

AT T2

(UNUSED)

b'

c'

(ILLICIT)

1

f1

ADDRESS MAPPING TABLE

Fig. 3-8. Address translation.

3-9

a segment should be associated with a task. Emphasizing this connection, task storage

will refer to a segment which is associated with one or more tasks. Pages, then, can

be organized to constitute task storage units; and, through software manipulation,

these pages can be moved as groups within the memory system.

The benefits of system control of memory allocation, deallocation, and mode

and privileges of access via an ATU are considerable. Use of an entire memory unit,

or portions of it, can be refused or granted by translation. Such capability makes

the ATU key to fast reconfiguration which may be required for routine load adjustment

as well as for response to emergencies. Control of access privilege, in addition, is

doubly advantageous.

First, areas of memories can be protected not only from intrusion from another

task, but also from specific kinds of intrusion. Specification of protection can go

beyond read-protect and write-protect to more complex read-only-after-write, write-

only-after-read, or timed access, i.e., allowing access only after certain waits.

Such protection is more than memory protection; it can be used to guard from software

errors like too frequent sampling of data. Further software error protection is at-

tained by extra bits in the data word. _

' \ . " . \
Second, areas of memory can be shared by ATU permission. Sharing of data

from a common area saves copying. When read-after-write disciplines are combined

with sharing, intertask communication and updating are easily implemented. The multi-

processor system will avail itself of the flexibilities of system control through ATU

and will not limit them to MMU assignments.

Through the ATU access to memory pages can be shared or denied. The impli-

cation is that the executive must be supplied with, or must develop, information con-

cerning page use during running; and resulting directives must be coded into entries

in the Virtual Memory Allocation Lists to be loaded into local ATU on demand. Per-

missions and protections at the page level are linked to task ID numbers. Word level

control is supplied within the data word itself.

3-10

3.1.4.2 Address Translation Using a Content Addressed Memory

Theoretically, virtual memory appears as a linear array of 17 M (224) word

locations. In actuality this capacity is more than ample for a single user who, even

with files, will accept restriction to a few percent of this figure without being limited.

The system will see virtual word spaces in groups of 128, which will fit up to 4 K

(212) page frames in up to 16 main memory modules plus up to 8 K (213) page frames in

auxiliary memory.

Since the processing units (CPUs/IOUs) can use operands and instructions only

from MMUs, a directory of where a particular page is at any time must be maintained

in the executive areas in the MMUs in order to determine whether it is necessary to

have an IOU fetch a requested page from auxiliary memory. Maintenance of the Virtual

Memory Allocation Lists is a constant housekeeping activity of the executive which must

also notify involved ATUs of changes of status in their stored tables.

Each ATU associated with its processing unit stores the small portion of the

page directly that is pertinent to its current activity. The heart of the ATU is a

content-addressed memory (CAM) which uses virtual address and task ID information

as a descriptor to retrieve the physical address. Formats for input and output address

words are shown in Fig. 3-9. The physical address word format indicates the intended

manners of relocations of data in the memory system. Removals to different page

frames, memory modules, or portions of auxiliary memory can be made by changing

the contents of specific fields.

Since the ATU CAM contains only 20 table entries out of a theoretically possible

4 K, there is a table management problem similar to that of a memory hierarchy. At

any time the ATU CAM should hold its 20 most-likely-to-be-used translations. Although

this criterion can be met for only a small fraction of processing time, an immediate

CAM translation represents such a gain in overall efficiency that inefficiencies in CAM

use can be tolerated. Tentatively, half of the CAM has been dedicated to executive

translations, instantly addressable. The other half of the CAM is assigned to current

user tasks so that any running task has several pages of instantly addressable words.

3-11

TASK NO.

r
„;

BASE ADDRESSING (+ INDEXING)

DISPLACEMENT

r 8 H

TRANSL

DIRECT TRANSFER

1
TASK NO.

AUX. MEM..
BLOCK -

u •- j

[WORD

ATION
DIRECT T

1 ' 1
MOD. NO. PAGE FRAME NO. WORD

k-

NO.]

RANSFER

1
NO.

DESCRIPTOR
INFORMATION

ASSOCIATED
PHYSICAL
ADDRESS

Fig. 3-9. ATU CAM word formats.

Attempt at translation of a virtual address can have one of several outcomes,

as shown in Fig. 3-10. If translation is immediately successful, the proper MMU will

be addressed with the least delay. The greatest delay will be in page swapping from

auxiliary memory to MMU, which involves engaging an I/O processor. While the

swap takes place, the user must wait, but the processor can occupy the delay with

other tasks. An intermediate situation occurs when the page referenced is in an

MMU but the corresponding address translation is not in the CAM. The user task must

then be suspended until the CAM can get the reference from the Virtual Memory Alloca-

tion Lists in the executive area of the MMU.

Management of the ATU CAM, the updating of allocation lists, and the imple-

menting of system control via the ATU are areas for more detailed study. The ATUs

deserve careful attention, as they are key points of system control, especially for

reconfiguration.

3-12

Does the
ATU
CAM
recognize
the
virtual
address ?

Y

N

Search
ATU CAM
for physical address

Search page
directory for
reference in MMUs

Y

N

Y

N

Address MMU

Notify user that
access is denied

Move ATU
reference from
directory to
CAM

Reference in
auxiliary
memory ?

Y

N

Start I/O
for page
overlay/
swap

Notify user
and executive
of no
reference

Fig. 3-10. Physical address search.

3.1.5 Hardware Task Switching

Inherent in this multiprocessor hardware design is the concept of multitasking;

i.e., the hardware switches tasks within the system. All tasks are initiated one at a

time by the executive scheduler when CPU resources are available. CPUs have

several tasks actiye at any time, although only one task is in execution by one CPU at

any time. As soon as that running task is halted, however, an additional task ready

for execution in that CPU is then executed. Hardware minimizes time spent in the

switching operation.

In this sytem task switching is performed by the multilevel interrupt structure.

If a request for attention is set at a higher priority interrupt.level, hardware will

automatically switch control to the new level and a new sequence of instructions will

be executed, indicated by the program counter of the new interrupt level. Almost no

time penalty is incurred for this switching since each priority level has a set of

immediately available general register and status words. By associating a separate

3-13

task with each interrupt level for each CPU or IOU, the automatic switching to the

highest waiting priority program ensures that the CPU is never idle.

In a uniprocessor system all events that would cause a priority interrupt are

reacted to by the single processor. Any reaction is always by that processor. With

multiple processors in a democratic network, several possible situations occur where

the event will signal only one processor, and that processor is designated the one to

react. • In other situations an event will signal all processors with any one, but only

one, processor required to react.

The structure of the proposed multiprocessor multilevel priority interrupt

control system has been derived from an analysis of situations arising from

situations needing attention. According to the analysis, parametric description of

interrupt situations, lead to complete definition of hardware/firmware, hardware/

control system requirements. Further valuable insight has been gained concerning

the interaction of this control system with the executive operating system. In particular,

an interlock instruction more powerful than IBM's Test and Set instruction must be

used. This analysis has also provided some information on how many priority

interrupt levels might be needed, how many similar situations should be handled at

each level, and what situations are to be handled at which level.

More details of this analysis are supplied in the following sections, beginning

with the description of the interrupt situations that could occur. Section 3.1. 5.2

describes the function and coding of the Lock-and-Go (LGO) instruction.

3.1.5.1 Task Interaction

An interrupt causes a change in the sequence of execution of instructions.

Interrupt arises either synchronously or asynchronously from external or internal

3-14

sources. The change sequence could happen immediately, or it could be delayed until

some more convenient time which could occur after any instruction execution is com-

pleted and before the next execution is begun.

A Data Exception Branch is also a change in sequence of the execution of in-

structions but results from operations such as fixed point arithmetic overflow, float-

ing point exponent overflow, floating point exponent underflow, divide error, and

significance error. Which exceptions as well as what action is to be taken depend

on the task being executed; therefore, each task, when performed by a processor,

should have individual control over the recognition of and the reaction of these data

exceptions.

An interrupt that occurs anywhere in the system and calls for action by any

processor is a global interrupt. An interrupt .that occurs anywhere in the system and

calls for action by one specific processor is a local interrupt. A local interrupt will

usually be designated for a specific processor when it arises from some action of the

hardware associated with that processor.

When two or more interrupts occur, the system must choose which one is to be

honored first. The choice is made on the basis of established priority - the interrupt

with higher priority being honored first. If an interrupt has been responded to but the

response has not been completed when an interrupt of higher priority occurs, the sys-

tem may or may not respond immediately to the later one. If the previous action is

suspended in order that the processor respond to the later interrupt, then the later

one has the higher priority, which will determine the action to be performed first.

Interrupt is signalled to the processor by a pulse which will set a flip-flop,

called a flag. The pulse should endure only long enough for the processor to recog-

nize it but not so long that the response is completed and it looks to the processor

like a pulse signalling a subsequent interrupt. The system will await the next inter-

rupt before the cycle described is begun again. The length of time taken by processor

response must be less than the shortest time between interrupts or some will be lost.

3-15

The processor may wish to delay or ignore certain events because of the times

at which they occur. This situation necessitates the inclusion of two types of masking

hardware: one, to prevent the setting of the flag, the other to allow the flag to be set

but temporarily block the processor's ability to recognize that the flag had been set.

The logic design of'interest for this system is shown in Fig. 3-11. In these

nets both the flag and the mask can be set or reset by signals sent to the processor

from external sources or by signals generated locally.

When it is necessary to activate a task at a higher priority level than the cur-

rent task, the higher priority task will be readied and the active task suspended. When

an active task is suspended, the processor stores the previous contents of the Program

Status Word (PSW) registers into scratchpad memory locations assigned to the pre-

viously active level for PSW word storage. The new contents to be placed in the PSW

registers are read from the scratchpad memory locations used to store the PSW words

for the level becoming active. The formats used for the PSW words are shown in

Fig. 3-12.

Any time a processor is denied a resource (e.g., a routine), it must wait for

the resource to be available before it can gain access to that resource. The processor

itself does not have to idle, but may go to some other task while the original task

waits. The original task, however, should be notified when a denied routine is avail-

able so that it can try again. The processor would then be called back to the task to

run the now available routine.

Under certain circumstances a processor may be attempting to respond to a

global interrupt and attempt to execute a task unrelated to its current task. Upon

finding itself locked out of the routine needed in the response to the interrupt, it would

reset the request to run the routine. No notice for callback is needed since the request

to run the routine is obviously being fulfilled by another processor.

3-16

r

UJ C3
I- O
Z U

-I K

*$
O UJ
U. O

w1

W

"̂̂ ^^

v v

ec. uj
K O
UJ UJ

So

< J

IK
U. O

be

I

bfi

3-17

ILC CC

0 1 2

TASK ID

0 7

BRANCH
ILC

3

0000

4

PROGRAM
BRANCH

FLAG

8

BRANCH
CC

0 1 2 3

15

7

NEXT INSTRUCTION
ADDRESS

8 - 3 1

PROGRAM CALLING
BRANCH PROGRAM

MASK ' LEVELS

16 23; 24 31

0000

4

BRANCH NEXT
INSTRUCTION ADDRESS -

7 8 3 1

STARTING ADDRESS OF ADDRESS TRANSLATION TABLE

0 31

Fig. 3-12. PSW word formats.

3.1.5.2 Lock-and-Go (LGO) Instruction

This instruction provides the processor interlocks needed to avoid conflicts.

It enables one processor to lock and unlock a section of code and it will provide infor-

mation to enable the processor to determine whether it locked the code, unlocked the

code, or found it locked. The instruction will enable the processor to calculate, de-

pending on existing conditions, one of three possible entries for the next executable

instruction.

The Lock-and-Go instruction always addresses a sequence of protected code

which starts within the Locking Word and ends with the Unlocking Return, which resets

the program counter to point to the Locking Word. These two words can protect as

much code as is needed. Both the address word of the instruction and the Locking

Word have fields for task ID. The task ID current in the processor which is executing

the LGO is supplied to the MMU by the address. A corresponding field in the Locking

3-18

Word is used to indicate the protection status—locked or unlocked, and, if locked,

by whom. Other fields of the LGO instruction format contain an immediate address

and components of return address.

The sequence of activity of LGO execution can be followed with reference to

Fig. 3-13. When a processor addresses the Locking Word, its task ID field is

examined. If the field is cleared to zeros, the code is unlocked and the processor

may execute the sequence. First the processor locks the sequence by writing its

task ID into the task ID field of the Locking Word and stores its return addressing

components into a prescribed MMU location. The processor will eventually come

to the end of the locked sequence and be referred once more to the Locking Word.

This time the task ID field of the Locking Word contains the ID of the current task ED.

Comparison of the field with the ID of the address word reveals equality and causes

the task ED field in the Locking Word to be cleared and a general callback to all

processors (CPUs/IOUs) to be issued. Thus the protected code is unlocked after

use. Finally the processor retrieves its return address components, computes its

next address, and continues with the task.

If, while the processor was executing the protected code, another processor

addressed the Locking Word, comparison of the task ED field in the address with

that field of the Locking Word would reject the incursive processor and would turn

it aside by causing it to generate another address. The intent is to have it interrupt

its current task and work on another until it can have exclusive access to the pro-

tected sequence.

3-19

LOCKING WORD

PROTECTED CODE

UNLOCKING RETURN

EXIT

ADDRESS
LOCKING
WORD

a. MAIN MEMORY AREA USED

(PROTECTED CODE LOCKED) NO

NO

ACCEPT
REJECTION
NOTICE

GENERATE
NEXT
ADDRESS

YES

CLEAR IDM TO

ZEROS IN
LOCKING WORD

YES
(PROTECTED CODE UNLOCKED)

STORE IDA IN

LOCKING WORD

(UNLOCK PROTECTED CODE)

SEND GENERAL
CALLBACK SIGNAL
TO ALLCPU/IOUs

CONTINUE OTHER
PROCESSING

AWAITING CALLBACK

(LOCK PROTECTED CODE)

STORE NEXT ADDRESS
COMPONENTS IN
PRESCRIBED LOCATION

GENERATE
NEXT
ADDRESS

CONTINUE AFTER
HAVING USED

PROTECTED CODE

b. INSTRUCTION FLOWCHART

CONTINUE BY
USING

PROTECTED CODE

KEY

IDA = CONTENTS OF TASK ID
FIELD IN ADDRESS WORD

IDM = CONTENTS OF TASK ID
FIELD IN MMU LOCATION

Fig. 3-13. Lock-and-Go instruction.

3-20

3.1.6 Reliability

Two forms of redundancy are employed in this system. Multiple similar units
1 (CPU/IOUs) and redundant error control data bits are used with the address and data

in the MMUs and interconnections to the CPUs and lOUs. A separate arrangement of

error control bits is used with the data sent on the main data bus.

3.1. 6.1 Use of Multiple Like Units

More than the minimum required number of CPUs and lOUs have been pro-

vided to increase the reliability of the SUMC system. An identifying number is given each

unit and used only by the operating system to identify task program assignments to the

CPUs.

In many multiprocessing systems the CPU's identifying number is used as a

priority code to break ties in the arrival of requests for the same MMU. A particular

task under this artificial arrangement is given variable priority as the executing

processor may be varied.

To remedy this fortuitous selection each CPU/IOU in the multiprocessor sends,

along with other data, the active task ID number which is seen by the MMU as the

priority number. Thus priority is linked with task rather than with the processor that

happens to be executing it.

3.1. 6. 2 Error Correcting Code for Memory Units

The error correcting code (ECC) discussed in some detail here is for LSI

memory technology. The details for an ECC for plated wire memory are different to

protect against different failure modes.

The correcting code chosen was developed at the RCA Laboratories and was

chosen for the simplicity and speed with which errors can be corrected and data encoded.

The price paid for its high speed, inexpensive operation is twofold.

3-21

First, for burst correction errors must be confined to five bits contiguously

located in the data word; e.g., a burst of errors is correctable if they appear in the

first five bits or in the second five bits of the encoded word and are not necessarily

correctable if they appear in the third through the seventh bits. Construction in

physical packages of five bits confining all single-mode failures to a specific physical

package is a way around this peculiarity.

Second, the error correction capability is limited to one burst of five bits. De-

sign of a physically independent package of five bits ensures that only one five-bit group

will fail at one time.

Organizing an MMU from five-bit physical packages and using the suggested

ECC will eliminate single-mode failures. Possible failures fall in four classes* and are

corrected as described:

1) One or more bits read in error. Since this error by physical construction is
confined to a single package, the correcting code will correct the erroneous
bits.

2) No response to addressedWord. Since each physical package of an MMU is
a complete entity, all the other packages will respond and the missing bits
will be supplied by the error correction network. With individual power
supplies for each package, even a power supply failure will not produce an
erroneous output. Furthermore, even a missing module board will not
cause an uncorrectable error to occur.

3) Delivery of ORed contents of several word locations. Again with the memory
packages, construction will confine any failure of this type to a single package
and it can be corrected.

4) Delivery of contents of location not addressed. Since the word delivered would
quite likely be a legitimate word, this would be a problem even in a word
organized memory with ECC. The planned approach limits any incorrect
access fa a single byte and corrects it.

*Miller, Ref. 16.

3-22

Each memory must be a complete operating unit to eliminate all single mode

failures; i.e., each package comprises the full address decoding for a 32-bit address

word. It receives five bits of data, will read out five bits of data. Each package

receives five incoming data bits and corrects them by using the contents of the en-

coded word. Output errors are corrected in the same way.

A complete MMU word consists of 32 data bits, 7 status bits and 11 bits for

ECC — making a total memory word length of 50 bits. If each 5-bit memory package

is constructed with 8192 words of 5 bits each, as shown in Fig. 3-14, then a total

8192-word MMU will require ten memory packages.

3.1. 6. 3 Use of the Burst ECC for Correcting Internal Bus Errors

The use of a burst ECC on the internal bus can, as in the main memory, correct

all single mode failures. By organizing the bus such that data sent between the units are

bit-serial groups over a number of parallel wires, it is possible to select a burst ECC

that can correct for all errors that could occur in any one-bit serial group. This

technique is similar to that proposed for the main memory units. Moreover, the same

grouping of bits can be used for the internal bus system as that used for the main mem-

ory units. Identical grouping permits the same design for all ECC logic units. It is

possible also that data sent from a CPU could be encoded at the CPU and corrected

only where the data is handled. For a store-and-then-fetch operation, correction would

occur at the input to the MMU, at the output of the MMU, and upon its return to the CPU.

3.1. 6. 4 Use of a Burst ECC for Main Data Bus Errors

Three alternate approaches apply to use of ECC for the Main Data Bus. Using

the arrangement for the internal bus would result in a multiwire bus. The same effec-

tive data transfer rate would require a 13-wire bus, would result in greater weight

and size, and would require many more connections.

3-23

fe
UJ

O T
H

IR
T

Y
-T

W
O

<r
a
u
c

c
a
c

1
i

H-

O
UJ LE

A
S

T

'

S
IG

N
IF

IC
A

N
T

P
CD

{

{

(

)—

t—

^

(*-™ ~̂

1

A
D

D
R

E
S

S

0
n
c

i
•

r

c
;

«

i

n
D
C.

n
••
g

n
3
c

y

(/
Q:
IL

a
C_
U.
tt

1

L

c
3 -H

- X

bffi
> CM
J
>

|

L

r
J rH

§&

J

>

|

U

c
J-,
- x

iS
j

1

L
_

"• X

^

j

>
!

|

Q_

0
tc.
o
o
CM

I

CL

o
tr

4 **

l

o
cc

o
CM

r
1

o

1-
r-4 -1

-1

— 1

H

^
^~

§ "

^ UJ —

O O 5

l

l ,
T '

u

o
o
UJ

S 0
< o
9 2< H
UJ <
ceo

cc

u •
c ̂ ~
o ^
< w

<K

J

)

>

1

- 1

<

* '

\ '

C

<h
4
C

z

•4

1 '1

O
T

H
E

R

V.

<
UJ

UJ

1

M
O

D
U

L
E

S

1

'1

K *"
UJo!
s a.
£ =" '

i
D

A
T

A
 F

R
O

M
O

T
H

E
R

X
<Ncs

bJDcj
'

a

|
a>a

•a
o

I
co

3-24

One advantage of the multiwire bus is that error correction systems are more

efficient than those applicable to a single wire subsystem. Any burst of errors would

usually affect a larger number of bits in a row than any practical error correction code

can accommodate.

A more practical approach would be to use an error checking code. An error

would initiate a request for a repeat of the message. This approach can be implemented

in a number of ways. The two most practical schemes result in a transmission effi-

ciency of 50 percent.

The most efficient encoding scheme for an error checking code is a two-

dimensional Hamming code capable of one-bit error correction and two-bit error

detection. This scheme, when used with a large data block, approaches the 50 percent

transmission efficiency and 100 percent error detection capability. *

The other scheme calls for the receiving unit to return the message to the

sending unit. ** The return message is compared bit by bit with the original message

for any discrepancy. Repetition of message corrects the error.

3.1. 7 IBM S/360 Compatibility

3.1. 7.1 Motivation for Supporting S/360 Compatibility

Many valuable programs potentially useful for NASA in SUMC have been, and

will be, developed, tested and used in IBM S/360 computers. While the SUMC missions

might be so novel that no existing S/360 applications programs will fit their require-

ments, much general purpose software that could support these missions has been

developed by IBM, by IBM users, and by software product firms. Moreover, the

savings in development costs and the increased assurance of reliability obtained

by using existing, tested software are significant.

* Peterson, Ref. 18.
**Proch, Ref. 19.

3-25

A further argument for a significant degree of S/360 compatibility is that much

of the program development for SUMC software components (operating system software

and application programs) could be done by NASA and NASA contractors using S/360s

and thus reducing the number of SUMC computer systems needed to support program

development.

Examples of existing, or proposed, IBM S/360 programs whose conversion to

MPOS/SUMC could save considerable amounts of money over total redevelopment in-

clude:

Programming language compilers (e. g. , for PL/1)

Data base management systems (IMSII, GIS)

Linear programming packages (LP 360)

Simulation packages (e.g., GPSS)

Trajectory equation solvers

Guidance and control programs

3.1.7.2 S/360 Compatibility Alternatives

"Compatibility, " as used in computing, however, is a term almost entirely

devoid of meaning. When computer people use this term they are usually talking about

characteristics of programs and their data, which could be more accurately and more

meaningfully described otherwise. An operational definition of "convertibility" pro-

vides a terminology with meaning and measure for discussing compatibility.

An informal, operational definition of convertibility is: the cost in dollars

and linear time of replacing one computer system with another. Thus, we can give the

term convertibility meaning by saying that it is a property of a given computer-

system-for-computer-system replacement and that the measure of that property is the

cost of carrying out this replacement. The measure of convertibility in replacing a

given S/360 model 40 with an identically configured S/360 model 50 can be held to zero.

3-26

Emulation (hardware/software) is the most successful method of minimizing

conversion cost or maximizing convertibility.

Job Control Language is a programming language; therefore Job Control

Stream conversion is a special case of program conversion. Assembly Language

programs are invariably more costly to convert than FORTRAN, ALGOL or COBOL

programs; usually complete reprogramming is required. Table 3-1 shows the

range of conversion procedures applicable in conversion between S/360 and SUMC,

together with the relative cost of each approach.

TABLE 3-1. CONVERSION COST ESTIMATES

Amount of
Rework
by User

Impact on
Cost of new
System's
Software

Conversion Level

20-80% +0% Algorithm to Algorithm

The original problem analysis remains con-
stant but the old source program is discarded,
resulting in complete reprogramming. A
re-implementation of the algorithm and some
modification of the algorithm is likely. Full
advantage is taken of new compilers, new
operating system, and new hardware features.
This is the only conversion procedure
applicable to on-line communications appli-
cations programs.

1-10% +20% Source Program to Source Program

The algorithm remains constant and the
original source program is recompiled using
the software of the replacement system.
Ideally no manual conversion is required
prior to this recompilation although program
controlled conversion is often used. A
strong functional similarity between oper-
ating systems is required. Some advantage
is usually taken of new operating system
features and new hardware features simply
because the new compiler tries very hard
to do so. This approach rarely is appli-
cable to assembly language programs.

3-27

TABLE 3-1. CONVERSION COST ESTIMATES (Continued)

Amount of
Rework
by User

Impact on
Cost of new
System's
Software

Conversion Level

0-1 +40% Object Program to Object Program

Source program remains constant and old ob-
ject program is reprocessed by the new sys-
tem's linkage editor and/or loader. Requires
new operating system to have same interface
as old as well as identical functions. User
subset of the computer architecture must be
identical.or else simulated.

+5% Executable Program to Executable Program

The loadable (executable); program remains
constant. Requires the execution of both the
original application program and the original
operating system. All differences in com-
puter architectures must be detected and
trapped during program execution. Pro-
grams with timing or special device
dependencies cannot be emulated. No ad-
vantage is taken of new operating system or
new hardware; Throughput increase as good
as can be expected. There are two basic types:

(a) Stand-Alone Emulation (Simulation)

New computer system is dedicated
to emulating the old computer
system.

(b) Concurrent Emulation (Simulation)

New computer system multiprograms
the emulation of the old computer
system concurrently with execution
of programs prepared for the new
system.

3-28

Concurrent emulation of OS/360 under control of the native MPOS could be a

disaster in space. Even if the behavior of MPOS were predictable and its reliability

near perfect, the resource allocation and scheduling characteristics of OS/360 could

adversely affect both its predictability and reliability. Moreover, any applications

run under control of OS/360 would themselves be beyond the "knowing" of MPOS

and its monitoring, error detection and error recovery facilities.

The very programs one wishes to run in this mode may require some amount

of rework (i. e. , conversion) in order to achieve acceptable levels of performance,

reliability and resource integrity, and the requirement (or the desirability) of using

alternative peripheral devices in the multiprocessor environment may require con-

version of S/360 programs to interface with these new devices.

Given the present level of reliability of OS/360 (extended also to OS/370) it

is unlikely that the "concurrent emulation" mode would provide an adequate degree

of confidence for a space environment. It is presently reported that OS/360 software

releases contain approximately 1000 detected, documented errors.

3.1. 7. 3 Two Levels of S/360 Convertibility Chosen for Support in SUMC

It is reasonable to assume that source program conversion for S/360 pro-

grams and data file conversion for S/360 data files can be so automated as to make

the conversion cost per program (per data file) small compared with that for original

development, and that the ratio of conversion cost to development cost can be kept

below 10 percent on the average, given the current thinking on multiprocessor

architecture (i. e. , the S/360 architecture is a subset of SUMC). The reason these

conversion costs exist are:

• Differences in the behavior of MPOS compilers v. OS/360 compilers.

• Differences in the interfaces for object programs between MPOS and OS/360.

3-29

The proposed approach represents the best compromise between two ex-

tremes: running the original program under the old operating system via emulation

of S/360 hardware with no opportunity to improve either this program or the operating

system and complete reprogramming to take advantage of the features and behavior of

the operating system.

It should be emphasized that this level of compatibility will be worth the

effort it takes to minimize the two differences cited. Using this minimization of

differences as a design criterion results in much better tradeoff decisions in the

design. Designers would have to justify the introduction of novel features which

increase the cost of converting S/360 program and data files.

It would be short-sighted to do anything in the design of SUMC which pre-

cludes stand-alone emulation of OS/360 at the multiprocessor architecture interface.

SUMC systems, electronically isolated from any space station controlling activities,

would support this interface. The multiprocessor would employ a single CPU as a

uniprocessor and the lOUs as S/360 multiplexor and selector channels.

This S/360 emulation capability would be valuable in validating the S/360

programs prior to their conversion to equivalent programs running under control of

MPOS.

3.1. 7. 4 Effects of Storage Allocation Techniques on S/360 Compatibility

The designers of Multics virtual memory and storage allocation system

make a good case for a two-level addressing scheme in which pages are

contained in segments, and segments correspond to natural subdivisions

3-30

of an application into program modules and data files. The additional complexity and

an additional table access during address translation are justified by the following

advantages:

• Use of logically distinct segments eliminates the need for users to manage
program overlays, given a sufficiently large segment space.

• Simultaneous sharing of information (data or program modules) between
tasks is readily effected if that information is managed as a segment.

• Moving data between address spaces is not a prerequisite for passing the
data to another task; a segment pointer can be passed instead.

The multiprocessor design has managed to retain the first two capabilities

without requiring a two-level addressing mechanism. Imposing a useful segmenta-

tion mechanism on SUMC would negate much of the carefully attained S/360-SUMC

convertibility. This feature was felt to be too great an asset to sacrifice for a

memory management technique that may quickly become technological obsolete.

It should be noted that in multiprocessor terminology "task" is similar to Multics'

"process" and "Program Structure list" closely resembles the Multics' "directory

structure."

The third advantage cited by Multics (moving data between address spaces)

is questionable. If the data are in a large table or a file (as in Multics) then the cost

of the move could be prohibitive. However, in the multiprocessor system, files are

managed by a conventional means, for convertibility reasons. Therefore the penalty

for moving data in order to make it addressable has been accepted in order to gain the

advantages of IBM S/360 and simplified address space management.

3-31

3.2 OVERALL SYSTEM INTRODUCTION

The final system selected for the multisystem architecture embodies all of the

characteristics and features discussed in Sec. 3.1. The block diagram appears

in Fig. 3-15. The resulting system can be characterized by four major features:

1) high-throughput democratic multiprocessor, 2) fault tolerant operation, 3) com-

patible with third generation IBM 360 type computer systems, and 4) open-ended.

The high-throughput democratic multiprocessor is achieved by use of several

techniques. The design employs virtual memory addressing to present adequate address-

ing space to the applications programmer and eliminate any need for him to plan

overlays. Moveover, by using paging to achieve the virtual memory addressing, a

severe memory allocation problem in a multiprogramming environment is solved.

With the fixed size pages, bringing active program pages into main memory is a

low overhead function. To ensure maximum utilization of the hardware modules,

hardware multitasking is employed. Each CPU has several tasks ready for execu-

tion at any one instant. As one task is halted in the CPU, its hardware rapidly

switches to a new task and proceeds with execution of that task. When this new task is

halted another or perhaps the first, again begins execution. In this manner the CPU

is switched among several tasks in minimum time. This system in general will

maximize total system throughput at the expense of individual task throughput.

However, the executive scheduler using information concerning task deadlines may

after task execution to follow minimumAiaximum time-line schedule critical to a

mission. Section 3. 4.3.2 discusses task schedule management in detail. This

technique is compatible with the system being task driven as opposed to being CPU

driven.

Fault tolerant operation is likewise achieved by several techniques. All single-

point communications are eliminated. The failure of any one module type does not

affect the other modules except to notify them of the failure. Related is the fact that

each communication path has only one "boss." Each CPU and IOU has its own bus to

3-32

13
S

S

s
2

g

^

1

4

o

*

o

. o

•

OL

X S
3 UJ
< S

1 1

• •

CO

I-

Q

• x s
=> LU
< S

1

Q" QJ
UJ O

E o
ff

K Ul
UJ U

Q_ >

K Q
Ul

or LU
LU O
X >

tr o
LU
Q_

fi

O
o

$-1
o
CO
GO
d>o
2

m
iH
I

CO

Wl

3-33

the MMUs and each IOU is in control of its own data bus to the outside world;

furthermore, each unit type is independent of similar units. The only interaction

is the vying for executive space at aperiodic intervals. Units communicate with

different type units (CPU with IOU) through the MMU in which communication areas

are set up so that communication is ensured with minimum overhead. Because

MMUs are central to the entire system, communication error correcting coding is used

to monitor and correct their input and output. A single error is automatically corrected

whether it is in address information, data, or status, and the system is notified. Error

checking is also built into the MMUs at the word level to ensure legitimate usage of each

word. Bits stored in the word indicate type and legal use of information stored there

(data, instruction, nonexecutable, etc.). For each MMU access, these indicators •

are checked by hardware and any error reported to the originating module (CPU or IOU).

Compatibility with IBM S/360 computer systems is obtained by adopting the IBM

360/370 addressing and instruction format. IBM 360/370 becomes a subset of the

multiprocessor defined here. In the CPUs additional hardware has been added to

facilitate use of IBM 360/370 software. Provision has been made for emulation of

IBM 360/370 software. In this mode the multiprocessor becomes a uniprocessor, with

the CPU emulating the IBM 360/370 CPU and the IOU performing the channel command

programs only.

Open endedness is obtained from modularity and "functional split" of responsibility

discussed in Sec. ;3.1.2. Additional redundancy can be added later either by additional units

or within existing units. System throughput can also be increased with the use of

additional units, in the system and by capitalizing on advances in technology. Any

unit type, because of its independence, can be implemented in several technologies

without adversely affecting the total system. Taken to the extreme, each unit in the

multisystem can be implemented in a different technology, and the system will still

function.

3-34

3.2.1 Physical Building Blocks

The multisystem is configured from four major units. This section will briefly

summarize the characteristics of each unit type. Section 3.3 gives detailed information.

The MMU must provide storage for both programs and data. Each MMU is ac-

cessible by both CPUs and lOUs via independent paths. In case of simultaneous access,

the MMU determines priority based on a decode of the task ID number.

The CPU must execute user and executive code for the "compute" type of functions.

It sequences, fetches, and executes instructions for non-I/O types of instructions. The

CPU handles all instruction and data formats of IBM 360/370. Each CPU contains 16

levels of interrupt, with each level having a separate set of general registers and status

words. Of the 16 independent program levels, seven are for independent user tasks

and nine are dedicated to entering the executive. This scheme allows each CPU to

handle quickly the executive needs of the user tasks. Normally one CPU does not need

to communicate with another. Each CPU translates its own virtual addresses to

physical addresses. In the event of a translation fault, the CPU reverts control to an

executive interrupt level designed to handle this fault.

The IOU must execute executive code for I/O related functions, which include, the

paging and memory management functions required. The IOU must also translate its

addresses as does a CPU. The lOUs like the CPUs, are independent of other lOUs.

Any IOU can perform I/O tasks for any CPU. The IOU must also provide all system

communication with the outside world. It must take control of the main data bus to

perform the I/O functions with the peripheral equipment. A separate, conventional

digital interface is provided by each IOU to interface with an auxiliary memory.

The auxiliary memory adds storage capacity for user and executive code that

may be required by the tasks currently active in the multisystem. As tasks require

address space not currently in the MMUs, the lOUs locate the requested code and retrieve

it from the auxiliary memory. Bubble or holographic technologies are strong candidates

for the implementation of the auxiliary memory.

3-35

3.2.2 Operating System

The executive system for the multisystem computer coordinates functions re-

quired to initiate user programs, to supply support functions required during the ex-

ecution, and to schedule resources needed by these programs. The key feature of this

multiprocessor operating system (MPOS) is a division of a total operating system into

CPU-related and lOU-related functions. The CPUs then independently execute the

compute-type functions and the lOUs execute the I/O-type functions as needed.

Parallelism tends to minimize resource conflicts.

3.2.3 Interconnections

The multiprocessor system modules communicate over one type of interface.

The CPUs and lOUs have identical interfacing to the MMUs. By employing a standard

interface, maximum interchangeability in the event of failure is ensured. A CPU

can be switched to a memory port previously used by an IOU with no modification needed.

Heavy reliance on the memory interconnection dictates that an error correcting code

will be used on the internal bus to implement correction of any single failures. The code

will be used for correction at the CPU-to-bus, lOU-to-bus, and MMU-to-bus interfaces.

3.3 MAJOR OPERATING UNITS

3.3.1 Main Memory Units (MMUs)

The MMUs provide intermediate storage between the small, fast scratchpads in

the processing units (lOU/CPUs) and the bulk storage of the auxiliary memories, and

they are the instruction and operand storage for the processing units. They are also

the chief communication links between processors and so hold messages, status

reports, and executive tables for immediate reference by any processor. Because

of their vital role in system and individual processor"operation, each of the MMUs

is more than a large set of registers with necessary addressing logic, and includes

error checking/correcting and interrupt signal generation hardware to make versatile

responses to actions of the processing units.

3-36

Gross specifications for the MMUs are shown in Tables 3-2 and 3-3.

They are subject to refinement as the rest of the system is more fully specified, and

its demands more accurately known.

TABLE 3-2. MAIN MEMORY SYSTEM GROSS SPECIFICATIONS

Number of units

Capacity

Physical realization

Features

8-16

65 K-262 K words
(3.2 M-13 Mbits)

Plated wire/C-MOS

Word oriented
Priority service
Protected areas
Message areas
Preferential areas
Dynamic storage allocation
Error checking/correcting
Interchangeable ports
Interrupt generation

TABLE 3-3. MAIN MEMORY UNIT GROSS SPECIFICATIONS

For Each Unit

Access time

Cycle time

Physical size

Weight

Power required

Storage capacity

Page frame capacity

Word size

.6-. 8 |as

1 us

425 in3

7lb

10-15 W

16 K/8 K (2M/213) words

256/128/64 pages

128/64 words

50 bits

3-37

A block diagram showing major functional units of an MMU is shown in Fig. 3-16.

Although the processing units (GPU/IOU) will retrieve and store words

individually from the MMUs, chief movement of contents is in pages and is effected as

a type of I/O operation between MMUs and auxiliary memory via the auxiliary data bus.

Figure 3-17 shows the relative rates of transfer in the paging operation. Memory ports

interface in a standard manner with all processing units so that any IOU can change

pages on demand of any CPU.

Service of access request is on a first-come-first-served basis except when the

MMU is busy or the accesses are simultaneous. Then the MMU may queue requests

and serve them according to priorities based on task ID. Previous studies have shown

that queueing for common memory access need be no serious problem in a multimodule

memory system; therefore, schemes for buffering, interrupting, and notifying the

system of a queue await further knowledge of specific timing and dynamic use of the

multiprocessor system.

Control and checking information is stored in each word. Word format and an

explanation of the control and status indicator bits are shown in Fig. 3-18. These

indicator bits are maintained and checked by the CPU/IOU served.

Certain program logic errors can be detected in the MMU access mechanism of

the CPU/IOU by means of these indicators. Since software errors are more frequent,

and often more difficult to diagnose, than hardware errors, memory word status

indicators can improve SUMC reliability through increased ability to detect software

errors and through improved capability in isolation of software faults.

Any MMU can generate interrupts arising from

• Unit failure — e.g., power

• Unrecoverable data transmission error

• Program exceptions — e.g., illegal use or specification of address
or data bounds

• (Overuse — e.g., queue building).

3-38

_ LJ _
_l
Q.
Q.

LU

Q.

Q
O

co
I

CO

3-39

o;
o

.J
X

I
UJ

o
o

•
T)
T3
o

I
CO

bX)

o
o

UJ

Q
O

X
o
UJ

o

H~ 55 coz § *UJ o K
Q 2 O

OL CN O

UJ

is
UJ UJ
og
Q. CC
O O
co U.

Qo:
o

3-40

ERROR CORRECTION BITS

WORD STATUS
INDICATORS

W

DATA BITS

1 1 32

1LOADABLE: CAN BE WRITTEN INTO BY OS ROUTINES,
OTHERWISE "PERMANENT"

-O WRITABLE: CAN BE WRITTEN INTO BY USER TASKS:
OTHERWISE A "READ ONLY" WORD TO USER
TASKS

-O INSTRUCTION: INSTRUCTION(S)

-O READABLE: SOMETHING HAS BEEN WRITTEN -
WORD WRITTEN INTO SINCE THE MOST RECENT
ALLOCATION OF PAGE FRAME THAT CONTAINS IT

-O ENTERABLE: ENTRY POINT INSTRUCTION

Fig. 3-18. Memory word format.

The first should generate a global interrupt. The last source of interrupt is

tentative and both its generation and whether it can be handled locally must be

determined by need.

3.3.2 Central Processing Units (CPUs)

The CPUs perform the bulk of the computational work of the system. Although

they must support various housekeeping operations, they are relieved of many such

burdens because of the autonomy and versatility of the lOUs in combination with the
MMUs.

Gross specifications for the CPUs are given in Table 3-4. These specifications,

too, are subject to change as the entire system becomes more definite.

3-41

TABLE 3-4. CPU GROSS SPECIFICATIONS

Number of Units

Word Size

Instruction Complement

Ito 4

32 bits

Full S/360 set
plus system
instructions

Add Time (RR)

Physical Size

Weight

Power Required

95 in

2.41b

5 W

Scratchpad

Cycle Time

Register Complement

General

PSW

Floating Point

256

64

128

200 ns

448

Multiprogramming Facility

Processing Levels

User

Executive

System Engineering

7

5

16

Features ROM firmware control
ATU for virtual addressing
S/360 emulation
Six processing states
Sophisticated interrupt management

3-42

The block diagram of one unit shown in Fig. 3-19 indicates the familiar

SUMC processor design with its basic cycle of multiplexer registers, arithmetic unit,

and scratchpad with parallel floating point unit. Interface with the internal data bus to

the MMUs is via standard interface, allowing interchangeability of units. Interface

with the main data bus is via DIU. Connection to the auxiliary memories is direct.

Control sequences are ROM controlled.

Three structures shown are less familiar: the Byte Transform Unit, the

Interrupt Control, and the Address Translation Unit. The Byte Transform Unit is a

byte-wide logic unit with multiplexers for handling SS-type instructions. Typically

these instructions determine the course of processing the next byte of a variable-length

string according to results of processing the current byte. Byte-oriented instructions

are vital to executive operations.

The Address Translation Unit (ATU) accommodates virtual addressing by trans-

lating the locally computed address into the system physical address. Chief substructure

of the ATU is a content addressed memory (CAM) which holds 20 words, part of each of

which is the descriptor by which the word is retrieved. Among other substructures is

a logic net which can be set up by system parameters to decide on the propriety of the

physical address. Thus the ATU functions partly as a memory-protect unit. Rationale

for and function of an ATU have been treated in a previous section (Sec. 3.1.4), and

the application of address translation in a dynamic paging situation will be shown later

(Sec. 4.3).

The third new structure, Interrupt Control, will contain an interrupt register

consisting of 16 flags (one for each level of interrupt) and a mask register to facilitate

temporary or permanent suppression of each interrupt. Interrupt levels arranged by

priority are listed in Table 3-5.

3-43

ce
o

1- < C
>- (t z
m H ID

-1 O Z
U_ 0- 13

Q H
UJ Z _
vj- — —J

i O _l
U- O. <

s
OS

O

s
o

I
CO

bx>

o
a:

O
o

t j

O

3-44

TABLE 3-5. CPU INTERRUPT PRIORITY LEVELS

Routine Function

Power Failure
Module Failure Entry
Mode Switching
MMU Code Check Failure

Executive Entry
Task Control
I/O Request
Page Fetch
Interval Timer

User Level 6
User Level 5
User Level 4
User Level 3
User Level 2
User Level 1
User Level 0

Priority Level

15
14
13
12

11
10

9 I
8
7

6
51

4
3

i

t^ ^^™

£>•ao
•iH
f_|

ft

2
1
0

An interrupt of higher priority will, when honored, cause the Active task to be

Preempted to the Ready state from which it will be Pended to wait to complete itself at

least until after the higher priority interrupt has been serviced. It will be necessary

to Terminate it if, when Pended, it still claims needed resources. If no other interrupt

higher than the previously current level has come in during the intervening servicing, then

a return by interrupt to the previously current level can be made. If it has been

Terminated, then all resources needed must be available so that it can become Active

again. At all times a CPU will attempt to process at the highest task priority level for

which there is an outstanding interrupt.

3.3.3 Input-Output Units (lOUs)

The lOUs serve the system as chief movers of bulk information. They load MMUs

from peripheral devices and auxiliary store for processing, and they move the processed

information out. They forward interunit messages from CPUs to the operator. Moreover,

3-45

they are autonomous; i.e., they do their own housekeeping as well as operate

independently on I/O tasks.

The I/O task is the unit of I/O processing, and the page is the unit of data

transfer. Although only one word at a time can be moved by a single IOU, the IOU will,

despite possible interruption, strive to complete a page transfer just as a CPU

strives to complete a task.

An IOU executes subchannel programs upon orders left in "mailboxes" by CPUs.

To do so it must when unemployed automatically and regularly check for orders. It

will also poll the devices it is servicing according to a schedule maintained by the

Periodic Calling Routine (see Sec. 4.2). Results of transfers must be recorded in

the data structures of the executive; consequently, the IOU spends a significant portion

of its processing capability in maintaining system records described later (Sec. 3.4.2).

Residual processing is entailed in maintaining the IOU as a "good citizen" of the

multiprocessing system. It performs its own executive functions, chiefly allocation

and deallocation of resources and participating in orderly bus use. Under reconfiguration

it is responsive to system demands, even to performing as a limited CPU.

The block diagram of Fig. 3-20 shows the portions of CPU hardware and capability

used for the IOU. Building the IOU identical to the CPU in LSI hardware is economical

in that uniformity of design and construction outweighs loss in unused CPU features.

There is, moreover, an important benefit in having full CPU hardware present and

wired into an IOU, and this benefit lies in the ability to incorporate an IOU readily

into the system as a CPU.

The memory interface will be standard with that of the CPUs and so allow inter-

changing units, a flexibility needed for reconfiguration. Memory addressing techniques

are uniform throughout the systems; hence the ATU will be a standard adjunct. The

scratchpad requirements for both IOU and CPU are the same for 16-level interrupts.

3-46

ce
o

LULLJ £- i_

£ 2 z
m i- 3

Q I-
UJ Z _,

*: O -I
LL. £L <

X

<

Pf
UJ
o

t iu h-
<2 Z E
O Z 3

O Q
I- z

i
CO

I
S-i

SP

42

O
H-(

0°

oo

bfi

O

o
cc

zo
O

t.
— O

3-47

What differentiates an IOU from a CPU is the firmware, or contents of the

control ROM. Although the ROMs of both types of unit will have regions of identical

code, which directs micro-operation for the common S/360 type instructions, they will

differ as to specialized instructions. The IOU, furthermore, is committed to its own

interrupt structure and even the top four interrupts can have different implications for I/O,

Gross specifications for the lOUs are shown in Table 3-6. Again, these are

subject to refinement as the rest of the system becomes more fully specialized.

TABLE 3-6. IOU GROSS SPECIFICATIONS

Number of Units

Word Size

Instruction Complement

Throughput

Add Time (RR)

Word Transfer Rate

Physical Size

Weight

Power Required

Channels

Auxiliary Memory

Subchannels

Scratchpad

Cycle Time

Register Complement

General

PSW

Floating Point

Features

1-4

32 bits

S-360 type
Less floating point
Plus system instructions

1 \l s

Up to 100 K words

425 in3

7 Ib

15 W

1, 2

Ito 7

200 ns

448

256

64 ,

128

ROM firmware control
ATU for virtual addressing
Sixteen interrupt levels
Alternate standard S/360 I/O

interface

3-48

The IOU accepts and responds to interrupts as does the CPU. Its tasks, although

of different function, have the same four processing states and transitions initiated

by interrupt. The 16 interrupt levels ordered by priority are given in Table 3-7.

TABLE 3-7. IOU INTERRUPT PRIORITY LEVELS

Routine Entry

Power Failure
Module Failure
Mode Switching (Reconfiguration)
MMU Code Check Failure

Executive
Page Program
Task Control
Page Fault

7 Subchannel Programs

Subchannel Servicing

Priority Level

15
14 i
13 '
12

11
10
9
8

IL

£>_
• r-t
f-l
0

&

1-7

0

Seven task levels, similar to user levels, are employed for setting up and

terminating use of individual subchannels. The lowest level is used for routine servicing

of the seven subchannels as described in detail in Sec. 4.2. Discipline on the main

data bus, over which each IOU must poll and exchange data, is maintained locally

in each IOU by the Periodic Calling Routine and globally by use of the Lock-and-Go

instruction, which allows unique access to a key instruction without which the IOU cannot

use the main data bus.

The lOUs are connected to the auxiliary memory units via a separate data bus

over which information in pages can be brought. The separate bus precludes interference

between page exchanges and traffic with the peripheral devices.

Internally the IOU is connected to the MMUs via a memory interface, the standard-

ization of which makes interchangeability of units possible.

3-49

3.3.4 Auxiliary Memory

The sizing of auxiliary memory units must follow further specification of the storage

needs of the system. Throughout this study auxiliary memory has been regarded as an

"expansion joint" which has provided adequate buffering between bulk storage and the

MMUs, as well as providing an adequate number of page frames for virtual memory

management. Conservatively its capacity will be between one-half and twice that of the

combined capacity of the MMUs — 32 K - 524 K words. Its transfer rate must'be about

100 K words/s. Auxiliary memory is envisioned in modular units which can be switched

on line to meet system needs.

3.4 SYSTEM SOFTWARE

3.4.1 Objectives and Approaches

In this section the design objectives of the SUMC multiprocessor operating system

(MPOS) are presented, and the design approach selected to meet each of these objectives

is described.

These design objectives are not mutually exclusive, and the basic features of the

MPOS design were required to cover most, if not all of them. The following summary of

MPOS characteristics represents a unified, coherent design approach that can be

implemented for the intended environment.

3.4.1.1 Multiprocessing

• Objective

MPOS must be inherently oriented to a multiprocessor configuration without

requiring any effort on the part of its users to take full advantage of the potential for

parallelism.

3-50

• Approach

All system components are treated as allocatable resources, especially

CPUs and lOUs. Hardware interrupts, built-in resource interlocks (Lock-and-Go

Instructions) plus appropriate operating system data structures support asynchro-

nous operation of CPUs and lOUs. Moreover these mechanisms operate at either the

firmware or operating system level, hence the user application programmer makes

no special provisions in either his program design or its implementation for the

multiprocessing capability.

3 o 4 o l o 2 Functional Modularity

• Objective

A high degree of functional decomposition must be achieved to obtain effective

work load distribution, to minimize the effect of component failure (hardware and soft-

ware), and to minimize the processing disruption caused when recovery procedures

are instituted.

• Approach

The basic structural subdivision of MPOS into program management (MPOS/

CPU) and data management (MPOS/IOU) mirrors the subdivision of the hardware into

CPUs and lOUs. In addition, each of these MPOS subsystems is itself further

decomposed functionally (see Fig. 3-21)0

The usual penalty for strict functional modularity is the higher overhead for

added execution time for intermodule communication and for added memory require-

ments of the modules themselves. In the SUMC design, hardware support for inter-

module communication (e.g., multiple interrupt levels) substantially reduces this

overhead. The penalty is further reduced by the unusually small number of levels in

the hierarchy of program structures within MPOS, Reduction in levels is achieved by

designing routines which are self-contained except for controlled sharing of data

structures (tables and files).

3-51

• Interrupt and Timer Services

• Task Control for OS and User Tasks: task initiation, switching and
termination

• Job Control: entry, selection, initiation and termination of user jobs

• Program Management: program load requests, program deletion,
debugging and monitoring

• Data Handling: data read and write requests

• Virtual Memory Management: allocate and deallocate

• Diagnostics, fault isolation, recovery and reconfiguration

• Emulate S/360 CPU at OS/360 Control System Interface

CPU Functions

• Interrupt and Timer Services

• Task Control for IOU Tasks: task initiation, switching and termination

• I/O Dispatching and error recovery for data files, communications and
displays

• Message Control, distribution and recovery, including polling and
reconfiguration

• File Control, and file and record lockout, and file recovery

• Program and program overlay loading

• Spooling (buffering) for low speed peripherals

• Simulate S/360 selector and MUX channels

IOU Functions

Fig. 3-21. SUMC operating system functions.

3.4.1.3 Simplicity

• Objective

Reliability considerations dictate that MPOS be considerably less complex

than its peer operating systems without sacrificing needed functions or capabilities.

Complexity in this context is measured by:

1) Number of parameters at user interface

2) Number of interfaces internal to MPOS

3) Number of options open after system generation

4) Number of data structures

5) Simplicity of algorithms selected.

• Approach

Simplicity is achieved, in part, by focusing the design on the SUMC mission.

MPOS does not have to be universal in the sense that OS/360 had to be equal to sustaining

the sales and revenue of tens of thousands of computing systems in a variety of

environments. While the SUMC mission is not as specialized as some fire-control and

avionics missions, it is, nevertheless, a far cry from the extreme generality sought

by manufacturers of general purpose computer systems.

Further simplicity is achieved through functional modularity and the selectivity

built into the system generation process. When a specific version of MPOS is created

from a library of all possible MPOS components, only those components necessary to

support the mission need be included. It will often be advantageous to have different

versions of the same component (e.g., Task Scheduler) to customize MPOS for par-

ticular operating environments.

3-53

3.4.1.4 Self Regulating

• Objective

MPOS must be unobtrusive and predictable in its behavior. MPOS must do

its job with a minimum of required operator intervention and a minimum of surprises

for its users. It must be human-engineered for its ultimate operating environment.

• Approach

To minimize operator intervention, MPOS will employ an internally stored

contingency response file. Thus, for each error, conflict or information requirement

which can arise in MPOS operation, there will be a default response or action. These

defaults can be specified at the time MPOS is configured (via system generation pro-

grams) for a specific mission. This specification will be done parametrically, with

no coding changes being needed. As a result, MPOS will be able to continue to operate

even if the crew refuses to or is unable to respond to internal operating system prob-

lems. Thus a persistent error in a data transfer operation (main memory or peripheral

device) will be corrected via error correcting code without requiring operator attention,

although the error condition will be logged and, if traffic permits, displayed on an

operator's console.

Human intervention will normally be required only to override mission de-

faults. When the crew requests this override mode, MPOS will include an operator's

terminal in its decision making loop. When the system is not in override mode, the

operator's terminal serves as a passive monitor.

3.4.1.5 Evolutionary

• Objective

MPOS must not be such a radical departure from current operating system

technology as to risk failure in the initial development stage or to risk instability or

poor performance in the operational stage.

3-54

• Approach

While the MPOS design includes several novel features, it represents a

systematic attempt to improve on third generation operating systems by correcting for

their faults rather than by introducing a new approach. The principal innovations are

really matters of degree rather than kind.

Functional decomposition of operating systems using CPUs and lOUs has

been successfully employed, e.g., UNI VAC LARC, CDC 6600. The novelty in the

decomposition of MPOS into MPOS/CPU and MPOS/IOU is in the mechanization of the

interface between the two, not the basic concept.

3.4.1.6 IBM S/360 Compatibility

• Objective

MPOS must support a high degree of compatibility with S/360 type, third-

generation, computer hardware and software, in order to minimize the cost of trans-

ferring applications programs and files from S/360 to the SUMC environment. Point-

less differences which artificially increase personnel training costs and errors

must also be avoided.

• Approach

The ability to minimize the cost of conversion of S/360 programs for execu-

tion under MPOS on SUMC hardware will be accomplished by:

1) Stand-alone emulation of S/360 hardware

2) Source program conversion routines which rely on SUMC support of S/360
architecture and the high degree of functional similarity between OS/360
and MPOS.

3-55

3.4.1.7 Reliability

• Objective

It is essential that MPOS achieve as high a level of reliability as software

technology will permit. Therefore a high level of confidence in the design integrity

and operational stability must be assured in advance of each mission involving SUMC

hardware and MPOS software.

• Approach

Reliability will be achieved by introducing a two-level operating system

verification procedure. The first level is a design verification process which will

systematically test each module in MPOS in its operating environment and, by

suitable benchmark tests, will systematically overload typical hardware/software

configurations to determine the operational limits of the MPOS/SUMC system.

The second level is highly mission oriented. Given the current state of the

art in aerospace software, the most effective way to achieve confidence in the relia-

bility of general purpose software is to run extensive, live operating tests, using

actual mission hardware/software configurations and application programs.

To implement this two-level verification procedure, MPOS will include the

following features:

a) Built-in monitoring capability with data logging

b) Data reduction and analysis routines

c) Ability to simulate interrupts and externally introduced data so as to permit
"true to life" testing before live mission data and interrupts are available.

3-56

3.4.2 MPOS Data Structures

The data structures of the MPOS Executive determine legitimate activity within

the system. The routines in the Executive which manipulate these data structures may

come and go, but the data structures are permanent. They form the interface between

components of the Executive in the same way that cables and pin-connectors form the

interfaces between modules of complex electronic systems.

In practice, these data structures provide for much parameterization of Executive

functions, e. g., type of support for prepaging, selection of tasks to be activated.

Parameterizing reduces the number of steps and therefore instructions in the Executive

routines which implement these functions and increases the ease with which a needed

change in the Executive can be effected by changing parameter values instead of

rewriting instructions.

The principal data structures (tables, lists and queues) of MPOS and their

principal interrelationships are shown in Figs. 3-22 and 3-23. The fundamental

control mechanism for both MPOS/CPU and MPOS/IOU is the Task Control Routine.

A program is executed under control of MPOS by describing a basic unit of work called

a task and then associating that program with the task. A task is described by
\

means of a Task Control Block (TCB), shown in Fig. 3-24. A list of the TCBs of the

tasks currently using CPUs and another list of the tasks currently using lOUs are

maintained in main memory.

3-57

cc
a

^

a
m
UJ
0

I

D
A

T
A

 R
E

Q
U

E
S

T
B

LO
C

K
 L

IS
T

T

M

2LUOO

rv o1 £r
S a: -J

I ,
_i
0
K
1-

IH
CO J

3 O
a. _j
o co

1-
00

oo
Ul
=>
O"
UJ
cc

C9
_

N

E
LU
«rt

M

> <

§
cc
o
cc
UJ

1

cc
8
CC
a.
ĵ -
H

o

i

>-
cc
2

s

.
V

IR
T

U
A

L

t

^ t

p
J
^^

8

,

C/)

j""__

H-
<t

8
<

i

1-

o

z
o
O
0

CO
0— »

I

T
A

S
K

 S
E

Q
U

E
N

C
E

L
IS

T

'
LU
O

Z

g

cc
o
o
cc
a.
CO
oo

'
LUne
1-
o
cc

P
R

O
G

R
A

M
 !

i

i 4
.

00

-J

'

1-
ts>

t

.

1

JO
B

 S
C

H
E

D
U

LE

^

CO
a
UJ

H
O

1

GO
O

O
Z
O
Z
ID
a.

i

o
0

t

UJ

Ii
UJ

>

Ul

UJ

0

i

3
LU

1

CO

O

!-,

to

3

s

(N
(N

cc
•

bJD

3-58

M
M

U
 P

A
G

E
A

L
L

O
C

A
T

IO
N

L
IS

T

t

-i

M
E

S
S

A
G

E
' t <

I-
S2

o

0.
o

t .

P
E

R
IP

H
E

R
D

E
V

IC
E

L
IS

T

5

t ,

_i
o

o J
o ^

l§
1- 03

•(

A
U

D
IT

 T
R

A
IL

LI
S

T
S

F
IL

E
 A

U
D

IT
T

R
A

IL

LI
S

T
S

C
O

N
S

O
LE

T

LU -
C Y\

UJ =}
S

j

0

a>

\

o

C
O

M
M

U
N

IC
A

l
N

E
T

W
O

R
K

S
P

E
C

IF
IC

A
T

L
IS

T

^_

ô
UJ
S
_l
<
3

cc

^

—

CO

CO
_1

-L
O

C
A

T
IO

N

— ,

^ ,

CO
_l

Ô

3
0
ce
o
o
Ul
a:

t

CO

O
O

UJ

t

.̂cc
1-z

UJ UJ

^0u. o
"•"* — J

S O — 1

—

^
0-

o

, '
D

IS
P

LA
Y

i

D
IS

P
L

A
Y

1 !

R
E

Q
U

E
S

T
 L

IS
T

o
o

cc
o
Or
CC
LU

1

i-
co

— 'O
Z
_J

0
or
o
CO

1 ,

CO
Ule>

BA
CK

UP
 IM

;

k

>-
Of

D
IR

E
C

T
O

—

Q

UJ

1

_i

si,
S ° co
— to — :
CO e

1

*> —i

i

UJ

UJ
ZJ
o

I/O
 R

E
Q

U
E

S
T

—

t ,
CO

1
e
jj
j_
i_

m
o
z
_l
o
o
0.
CO

J

B
o
h
^ĈO

rt

3
P3

2
CQ

2s
co
<M

co

Q
UJ
CO

I-
UJ
O

3-59

TASK CONTROL BLOCK

TCB LENGTH

POINTER TO NEXT TCB

TASK ID

CPU/IOU ID

TASK STATUS INDICATORS

LOCK STATUS (LOCK-AND-GO LINK OR NULL)

SWITCHING PRIORITY

ENTRY POINT ADDRESS

ENTRY POINT NAME

PROGRAM STRUCTURE LIST POINTER

JOB ID

REGION ADDRESS

REGION LENGTH

TASK STATE REGISTERS (PSW AND GENERAL REGISTERS)

Fig. 3-24. Task control block.

3.4.3 MPOS/CPU

The principal MPOS/CPU features are discussed in this section. The intent

is to discuss the key components of the MPOS/CPU executive and their specific duties

and responsibilities.

3.4.3.1 Interrupt Servicing and Processor Control

The multiprocessor organization will allow all processors (CPUs/lOUs)

to be jointly and continuously sensitive to interrupts. Response to interrupts in the

multiprocessor is controlled by the contents of the interrupt mask registers in each

processor and by requiring that each processor, upon sensing the interrupt, reset its

own interrupt flag and service that interrupt. Consequently, all SUMC processors

(CPUs/IOUs) must contain interrupt analysis and control tasks.

Since the initial response to interrupts is handled in hardware/firmware, the

processor servicing an interrupt can begin without making a memory (MMU) access.

3-60

When a memory access is eventually made, the coding and data accessed will be in

nonpageable pages in memory (MMU). Therefore there is almost no overhead involved

in allowing the several processors to share the burden of servicing global interrupts.

However, some small amount of time may be lost by one processor if it responds to

an interrupt just after another processor has. The second processor will immediately

discover that the interrupt has been intercepted by another processor through the Lock-

and-Go instruction mechanism and will return to its original task.

The multiprocessor organization requires that any processor unit be able to

execute the reentrant interrupt servicing program for the interrupts that can be

handled by its unit type. Thus, each processor has hardware/firmware interrupt

handling logic and a ready interrupt servicing task associated with each interrupt

level. The duplication adds little to the cost of the processor unit; and, since it must

be interchangeable for system reconfiguration, the duplication improves reconfigura-

tion support.

Thus, each processor unit contains a small, "bare bones" control program

capable of sensing and responding to local interrupts. On the other hand, all other

functions performed by the processors are scheduled by the MPOS executive which

runs as a single task. Thus while global interrupt analysis is performed by whichever

processor responds first, the initiation of tasks, scheduling of jobs and all other sys-

tem functions are controlled by a unique executive task which can be performed by

any processor but never by more than one at a time. Thus, there is always one job

scheduler and one task scheduler in even the most elaborate SUMC configuration, and

the CPUs and lOUs are treated as resources which are allocated by a single operating

sytem.

To avoid excessive interruption of user tasks, the lOUs will normally service

all external interrupts. Thus the multiprocessor can achieve the effect of insulating

user tasks from interrupt interference that was sought after by CSC but without limiting

interrupt servicing to one processor.. The lOUs can be designated as eligible to

3-61

respond to external interrupts and data bus servicing, while the CPUs are free to

concentrate on execution of user tasks. In this way the IOUs can buffer the CPUs

from external world events, thus allowing the tasks in the CPU to deal with the external

world events at whatever response rate is appropriate.

3.4.3.2 Task Control

There are two types of tasks in MPOS: user tasks and system tasks. Both

types are managed by Task Control and both are defined for MPOS by means of param-

eters assembled in a Task Control Block (TCB). A task is the smallest identifiable

unit of work that can be processed by the MPOS Executive.

When a task is being processed, it is in one of four states as shown in Fig. 3-25.

The task enters the system as Terminated and the transitions from Initiation to final Ter-

mination or Cancellation are determined by Task Control. Normally, i.e., without inter-

ruption or emergency, a task will proceed through the states as shown in Fig. 3-26. All

transitions are summarized in Fig. 3-27 and are discussed in detail below.

To be made Ready, a task must have been allocated all of the resources it

needs except a CPU and, if Pended to await an event, that event must have occurred.

Being Ready means that the task has been assigned to a specific CPU, which assign-

ment holds until Termination.

To be Activated a task must first be in the Ready state and then be selected

for activation by the task scheduler.

The task scheduler is parameter driven, and it does not employ a fixed

algorithm for selecting tasks to be activated. While no one task scheduling procedure

is likely to be satisfactory for all SUMC missions, the following discussion shows the

sensitivities of a baseline task scheduler.

3-62

ACTIVATE

TERMINATE

ENTRY
STATE

Fig. 3-25. State diagram for MPOS tasks.

Terminated

I
Fended

I
Ready

1
Active

I
Fended

I
Terminated

Fig. 3-26. Normal processing transitions.

3-63

Old Status New Status Function Description

Terminated-

Ready-

Active-

Active-

••Pended

Active

Fended

Ready

Pended-

Pended-

Pended-

Ready-

Terminated

Terminated

Ready

Pended

Initiate

Activate

Suspend

Preempt

Cancel

Terminate

Unpend

Pend

Place a nonactivated task in the queue
of tasks to be made ready for Activa-
tion.

Give a waiting task control of a specific
CPU (or IOU) and other resources
allocated to it.

Temporarily place an active task into
a waiting state, at the request of the
task, until a specified event occurs.

Temporarily place an active task into
a waiting state, but without consent of
the task. The task can immediately
compete for Activation.

Forcibly remove a task from a
Pended state.

Remove a task from Pended state at
its request, or the request of a con-
trolling task.

Place a Pended task into contention
for a CPU (or IOU), the reason for
its being Pended having been removed,

Temporarily place a ready, but
waiting, task into a Pended state,
involuntarily. Task can immediately
compete for the Ready state.

Fig. 3-27. Task control transitional functions.

3-64

In general, task scheduling is deadline oriented (see Sec. 2.3.4). The

guiding principle is getting jobs completed on time. The task scheduling strategy

stresses throughput after deadlines. In fact it stresses throughput before equal

sharing of system resources by competing tasks. As a consequence, when the task

scheduler gains control after an interrupt for CPU. has been processed (it always gets

control at this point), will normally Activate (return control to) the same task that

was active in CPU. when the interrupt occurred. Thus MPOS tends to force an Active

task to Terminate or Pend itself once it has been activated. As a consequence, high

priority tasks are completed with minimum delay.

Activating a new task on a given CPU occurs only when a preemptive task

becomes Ready or when the current task in that CPU Suspends itself — usually either

by issuing an I/O request or as a result of a page fault. The exception to this rule is

that a task may be preempted if its estimated CPU time-to-complete is exceeded

by X percent and then only when X is given as a task switching parameter.

A task can have two scheduling priorities associated with it:

• A scheduling priority, which determines the probability that it will be
Initiated

• A switching priority, which, for a Ready task, determines the probability
that it will be Activated.

These two priorities are, by definition, independent of each other, although

a task with high scheduling priority may also, coincidently, have high switching

priority.

3-65

When emergency conditions arise, when a deadline is in jeopardy or when

the tasks priority dictates, a task will be given exclusive use of the CPU, i. e., no

other user tasks will be given control of that CPU until the task in exclusive use

Terminates or Pends itself.

Time-slicing will not be employed as a basic task scheduling strategy but

will be used only as a last resort when human-engineering principles dictate smoothing

response time fluctuations for tasks which interact directly with a manned terminal.

A spare task slot (a position in the list of Ready tasks) is reserved for

emergency use, i.e., for scheduling tasks which have preemptive priority. To avoid

losing this task slot when emergencies cause cascaded scheduling of such tasks, a

lower-priority, Ready task will be Pended, if necessary, in order to reduce the

number of Ready tasks (i.e., tasks contending for use of a CPU) to an acceptable

level consistent with the nature of the emergency.

Actual switching of tasks by the task scheduler is very rapid in comparison

to task switching times for typical S/360 style systems. The reasons are that, in

SUMC, most of the housekeeping functions saving and restoring of a task's environ- -

ment, are done in firmware and there is extra hardware for each "permanent"

system task to have its own scratchpad area for general registers, PSW, etc.

3-66

3.4.3.3 Job Control

From the user's point of view, getting the MPOS/SUMC system to do some-

thing for him requires that he submit a job. A job typically is composed of explicitly

defined user tasks, and each task may call for the execution of one or more user-

developed program modules. When the job is run under control of MPOS, other

MPOS tasks will be invoked to respond to requests for service embedded in the user

defined tasks, e.g., the task invoked to load a user program module. Thus execution

of a job under MPOS control involves the performance of many tasks, some explicitly

defined by the user, others implicit in the service requests and resource demands

made by the user tasks.

Resource allocation is a paramount consideration in job scheduling in a

multiprogramming environment, and memory management strategies are a paramount

consideration in resource allocation. Thus memory management strategies for

MPOS are chosen to harmonize with and to enhance the job and task scheduling

strategies.

Jobs to be run by MPOS are entered into job queues, which consist of lists

of job files (see Sec. 3.4.3.9) describing the jobs to be run. The principal queue of

jobs in the MPOS environment is the queue that is dynamically obtained by examining

the time-line schedule. Other jobs are entered into job queues as a result of action

taken by other jobs and explicit requests entered by crew members. In fact, one of

the jobs that can be entered on a nonscheduled basis is a job whose function it is to

revise the time-line schedule to meet new constraints based on inputs furnished by

crew members.

The job scheduling strategy for MPOS will be based on satisfying the follow-

ing constraints, given in order of decreasing priority:

a) Conformance to time-line schedules. This requires the scheduler to com-
pare the estimated time-to-complete for a job with the due-out-time as
specified by the time-line schedule.

3-67

1) For an unqueued (nonready) job this means providing for its resource
needs and than placing it in a ready queue when current-time plus
estimated-time-to-complete is within a specified tolerance of due-out-
time.

2) For a ready job this means increasing its execution priority when there
is a danger that due-out-time will not be met unless the job is activated
within a specified time interval. In some cases this may result in low
priority jobs being suspended or canceled in order to improve the nearly-
late jobs chances of contending successfully for the resources it needs.

3) For an active job this may mean canceling or suspending some tasks
belonging to low priority jobs, and/or it may also require increasing the
switching priority of a task in order to improve its chances of competing
successfully for the CPU.

b) Conformance to a job scheduling priority initially assigned independently of
consideration for due-out-time requirements. This assignment allows for
the case in which, for example, a non-time-line job of considerable urgency
is submitted for execution.

c) Efficient use of system resources. When, by measurement of suitable param-
eters, MPOS determines that one or more of the systems resources (e.g., a
CPU) is idle, it will then run the Job Scheduler in an effort to get a job into
the ready queue that can make use of those resources. An effective way to
use resources is to give MPOS a large and diverse list of very low priority
jobs which can be used to supplement more important work whenever system
resource utilization drops below an acceptable level.

3.4.3.4 Program Management

Programs are stored in the form of data files and are accessed by the MPOS

Loader through the use of the file management facilities of MPOS/IOU. Program data

files, as are other data files, are accessed by MPOS/IOU through the system file

catalog.

The program module containing the current entry point for the task being

initiated is automatically loaded, if necessary, during task initiation. A separate,

distinct service request to the MPOS Loader is not required. If a copy of that pro-

gram module is currently loaded and in a reusable state, no loading is done.

3-68

The shared program facility in MPOS allows two or more tasks running in

any of the CPU/IOUs to share the same copy of a reentrant program module. A

reentrant program is one which does not modify itself during execution and which has

no modifiable data storage areas of its own: All input data, work areas and output

data areas are provided by the calling program. When the MPOS Loader is given a

request to load a reentrant program, it first checks to see whether a copy of that

program has already been loaded. If it has, the physical memory locations occupied

by that copy are entered into the appropriate entries in the requesting task's address

translation table. Due to the use of virtual memory management, the same reference

to a given program may appear in different sections of the virtual address space of

each task sharing the common code, even though it occupies a unique section of the

MMU. .

3.4.3.5 Data Request Interface with IOU

In the CPU/IOU partitioning for SUMC, all of the file processing, display

support and peripheral device control is done in the IOU. User and system tasks in the

CPU issue requests for data transfers at the logical record level. Such requests are

typically parameterized as follows:

• File ID (name of data file)

• Record ID (name or number)

• Passwords (security control codes)

• Function (read, write, replace, delete)

• Address of record area

• Length of record area.

This information is passed to an IOU by means of the following procedure:

• The parameters of the request are entered into a Data Request Block, which
is then linked to a list of such blocks.

• The CPU-to-IOU mailbox entry for the task issuing the request is modified
to show that an outstanding request is present.

3-69

When the request has been satisfied by the responding IOU, the lOU-to-CPU

mailbox entry for that task will be modified to show that a data request, specifically

the one which caused that task to be suspended, has been satisfied (see Sec. 4. 4,

Interprocessor Communication).

All other file management processing is done in the IOUs under control of

MPOS/IOU.

3.4.3.6 Resource Allocation and Protection

In MPOS the following are the types of allocatable resources:

• Processors: CPUs, IOUs

• Task slots (interrupt levels) in a CPU or IOU (control points)

• Memory: page frames in MMU, page frames in Auxiliary Memory

• Programs and program files

• Data files and data records

• Input/output devices and their controllers

• Logical I/O channels (i.e., data bus priority groups).

These resources are managed by MPOS using a coherent resource allocation

strategy that is applied to the management of each of these resources. Any specific

one of these resource types can be dedicated (preallocated) to a job or a task in the

interests of meeting deadlines or improving throughput. For example, a task slot in

at least one IOU is permanently dedicated to the task which services MMU page faults.

In addition, that task has permanently resolved for it the following: sufficient MMU

page frames to guarantee that all of the programs needed in the execution of the task

are resident. The reasoning behind this is fairly obvious; page faults will happen

often enough that, in spite of the low access time expected for Auxiliary Memory, it

should be made impossible for the servicing of a page fault to itself cause a page fault.

Moreover, the dedicated task slot guarantees that the page fault servicing task will

never have to wait for another task to terminate (give up a task slot) in order to allow

it to contend for IOU time.

3-70

Avoiding resource contention is important to throughput and meeting dead-

lines. MPOS will avoid contention by:

a) Task Scheduling Strategies

Reserving sufficient resources for the sum of all critical tasks and/or
reserving less than that and being prepared to preempt additional resources
from less critical tasks as the reserves are used.

For noncritical tasks reserve the maximum, or near maximum, of the task's
resource needs just prior to placing the task in the Ready queue. For MMU
resources, this could be accomplished by partitioning main memory instead
of employing variable regions).

Estimating the memory resources needed for a given job mix can be done
using the following formula:

M = page size x average number of tasks x average number of pages/task

b) Reducing Paging Overhead

Various tactics for reserving or dedicating MMU page frames can be readily
employed through varying the prepaging parameters (i.e., using predicted
page usage to anticipate page needs). The tactical gain resulting from such
a parameter change can be startling. The following'elements form a pre-
paging vector, which could be used to control resource use and task com-
pletion time:

• Extent of prepaging

No pages prepaged

Only the P-counter page

Only the running set (r, where r < w)

Only the working set (w)

The full set (f, where f > w)

• Number of pages preempted by prepaging

• Number of pages in full set.

Further use of prior information is attainable by assigning a "sticking power"
to pages of high frequency tasks, which would alter the page replacement
pattern by reducing the probability of replacement of pages with "high"
sticking power.

3-71

c) Sharing of Reentrant Programs

In effect, ah arbitrary number of tasks can share a single copy of a re-
entrant program module. This is mechanized through the program structure
list for each task. The entry for a sharable program is marked so as to
cause the loader to check for an existing, loaded copy before loading another
copy.

Avoiding system deadlock is crucial to the success of MPOS/SUMC. The

following strategies are applicable:

a) Limit cases in which a task is both queued for a resource and is retaining
exclusive control of other resources. Such limitation can be done empirically
by:

1) Enforcing programming standards to prevent deadlock unless it is
unavoidable.

2) Detect this case during program tests and/or mission simulation and
attempt program revision to correct for this behavior.

3) As a last resort, add the names of such tasks to the task serializing
list (a list of those tasks whose mutual contention for resources is known
to allow deadlocks to occur).

b) Backing out of deadlocks involving "bulk" resources

For main memory deadlocks the task scheduler can instruct memory
management to page the least recently used pages of active tasks to auxiliary
memory. If that is not sufficient, the task scheduler can then request that
a preemptive replacement algorithm be executed which pages some or all of
the pages of active tasks of lower priority than the two deadlocked tasks. As
a last resort, the task scheduler can suspend or cancel one or more lower
priority tasks. This same approach can be used for auxiliary memory,
even though the penalty there is that the read-only pages of the lower priority
task will have to be reloaded before that task can be reactivated.

3.4.3.7 Diagnostics, Fault Isolation, Recovery, and Reconfiguration

The functional testing of SUMC hardware components (such as input/output

devices) and the partial testing of memory units and processors can be accomplished

through the use of software diagnostic routines. More detailed self-checking of CPUs,

lOUs and MMUs can best be done via microprogrammed diagnostic routines as is

being done on IBM's System 370 ̂ computers. At the microprogram level, all pertinent

flip-flops, registers and intermediate results are accessible.

3-72

MMU Error Recovery is handled in MPOS as follows:

1) Read-only pages

IOU is given a request to reread the program or data page into a different
physical page frame in the MMU and, if successful, to modify the ATU
entry accordingly.

2) Read-write pages

Critical program pages, data pages and executive data structures will be
supported with backup copies in alternate MMU page frames. If an error
occurs for a writable page that has been modified and does not have a backup
copy, then the affected task is canceled and reinitiated.

On-line diagnostics and fault isolation tasks can be initiated manually from

control terminals, or automatically by MPOS upon detection of faults. A faulty

unit (MMU, CPU or IOU) can be "dropped out" of a SUMC configuration auto-

matically, if it is not the last such unit. Multiple unit failures may require manual

intervention for reconfiguration.

3.4.3.8 Emulation of IBM S/360 CPU

While most of the S/360 architecture is either directly supported in the

SUMC architecture or (in Selector and MUX channels) simulated by MPOS/IOU, there

may be additional S/360 features (e.g., interval timers, S/370 instructions, CPU

serial numbers, S/370 virtual memory) which must also be supported in order to

achieve a required level of S/360 emulation. In many cases these additional features

will be implemented via SUMC microprograms, but there may be some residual

features whose simulation by MPOS/CPU software represents the best tradeoff. An

example would be the servicing analysis and classification of S/360 Program

Controlled Interrupts.

3.4.3.9 Program and Job File Maintenance

Utility programs which operate under control of MPOS provide facilities

for creating, updating and deleting program files and job files. All such files are

3-73

cataloged data flies and are manipulated by using standard MPOS/IOU file

control routines. Program files are also called program library files, emphasizing

that such files typically contain from 10 to 100 related programs or program modules.

Job files are also called job library files to emphasize that such files typically contain

from 2 to 20 related job descriptions.

In addition to creating, updating and deleting entire program modules, these

file maintenance routines provide for the addition, deletion and reordering of both

individual lines of coding within a source program module and individual job control

statements within a job description.

3.4.3.10 Programming Language Support

Of the programming languages in wide use today the following are con-

sidered to be most appropriate for program development in the MPOS/SUMC environ-

ment.

a) JOVIAL (J6)

b) PL/1

c) FORTRAN (ANSI approved)

d) COBOL (ANSI approved)

e) APL

Suitable compilers for these and other applications-oriented languages or

their equals should be supplied as part of the MPOS program preparation facilities.

Compilers, in executable form, will be stored in system program library

files and can be executed using standard job control procedures.

3.4.3.11 System Generation

System generation is the process by means of which a customized version

of MPOS is created in conformance with a specified set of system functions and system

3-74

performance criteria. System generation procedures are carried out entirely under

program control on a standard, system-generation-oriented SUMC configuration by

using a standard version of MPOS. There are two modes of operation for this process:

a) Initial system generation where no previous customized version of MPOS
exists. ^~

b) Updating an existing version of MPOS by systematically replacing program
modules and regenerating selected MPOS data structures.

The following specific functions are performed for an initial system genera-

tion process.

a) Creating the appropriate data structures to support the SUMC hardware and
software configuration described by the input data presented to the system
generation process, including:

1) Creation of a physical device list

2) Creation of a data file catalog

3) Formation of an initial main memory allocation for all resident MPOS
routines, tasks and lists.

4) Specification of initial job queue entries.

5) Creation of an initial Task Control Block List and related task manage-
ment lists.

6) Creation of initial MMU ATU translate tables.

7) Creation of MMU Page Allocation List.

b) Creating the MPOS system program library files by selecting precompiled
system program elements from a master program library.

c) Running system validation tests by using the newly generated or updated
versions of MPOS.

3-75

3.4.4 MPQS/IOU

The salient features of MPOS/IOU are discussed in this section. The major

routines of MPOS/IOU are listed here along with a discussion of their capabilities and

responsibilities.

3.4.4.1 Interrupt and Timer Services

Servicing IOU interrupts is done under control of MPOS/IOU by using the same

interrupt analysis and control programs employed by MPOS/CPU. Thus any IOU

can, and in emergencies must, be able to service any global interrupt by using

the interrupt servicing routines for those interrupts not masked or inhibited for

lOUs. One or more lOUs in the multiprocessor configuration are usually con-

nected to the main data bus with auxiliary memory interrupts permitted. This

arrangement assures that pacing interrupts will be serviced by the first available IOU

as long as there is at least one IOU in operation.

3.4.4.2 Physical Memory Management

Physical memory management (translation of virtual addresses to physical

addresses in MMU and auxiliary memory) for CPUs and lOUs is by hardware and micro-

code. The only aspect of physical memory management visible to MPOS/CPU software

is the ability to determine saturation levels in MMUs and auxiliary memory. Thus

MPOS/IOU will have access to page frame usage counts for both the MMUs and auxil-

iary memory. MPOS/IOU will pass this information to MPOS/CPU resource allocation

routines via MMU for use in measuring system resource utilization and preventing

system overload.

The MPOS/IOU tasks which service MMU page faults are the only tasks which

are directly involved in physical memory management. These tasks execute MPOS/

SUMC page placement and page replacement algorithms. Consequently, these same

3-76

MPOS/IOU tasks also maintain the MMU Page Allocation List and the Auxiliary

Memory Page Allocation List, (see Sec. 3.4.3.6).

3.4.4.3 Task Control

MPOS/IOU will use the same task control routines used in MPOS/CPU, the

principal difference being that the available task slots in the lOUs are normally

dedicated to the execution of specific IOU functions while CPU task control manages

the multiplexing of user tasks together with MPOS/CPU tasks. Thus, for a given

MPOS/SUMC configuration, the MPOS/IOU task structure is considerably more stable

than the MPOS/CPU task structure.

3.4.4.4 I/O Device Control

MPOS device control routines initiate data transfer and control command

transfers for all devices attached to the main data bus. I/O interrupt control routines

are assigned to servicing all external interrupts received from device controllers

attached to the bus. MPOS device control performs the following functions:

• Accepts I/O requests from MPOS user and system tasks.

• Queues I/O requests for dispatching. Queuing is by device or controller,
whichever is appropriate.

• Dispatches I/O requests on a FIFO basis within task priority, by sending
appropriate command sequences to the device controller.

• Transfers data between the main data bus and preallocated I/O buffer areas
in an MMU.

• Performs I/O error recovery procedures as required.

• Requests initiation of device diagnostic .and fault isolation tasks as required.

• Enters device error conditions into the system log.

• Notifies MPOS file control when an unrecoverable error from device, con-
troller or bus requires a file-oriented, rather than device-oriented, re-
covery procedure.

3-77

3.4,4.5 Program Loading

Object programs produced by compilers from source programs are stored in

Object Program Library Files, which are implemented by means of standard, cataloged,

data files residing in the auxiliary memory. The MPOS Loader needs three items of

information to satisfy a program load request:

• Name of program library file containing the program.

• Name of program (or program module) to be loaded from the specified program
library file.

• Name (address) of the Task Control Block (TCB) of the task for which the
loader request is being executed. The TCB contains pointers to other MPOS
data structures which are in turn manipulated by the loader. These struc-
tures are:

1) Virtual memory allocation lists

2) Program structure list

3) Subprogram linkage list.

The loader uses the normal MPOS/IOU file control facilities to access the

data files containing program libraries and uses the normal MPOS/CPU Virtual Memory
»

Allocation routines to acquire the virtual memory address space for the program being

loaded. Indirectly, the loader uses these routines to acquire the MMU allocation routines

for the necessary physical memory space in MMUs and auxiliary memory.

Symbolic name references and definitions generally appear in the object

program modules produced by compilers. These names describe intermodule refer-

encing in object modules. The loader uses these names to link references during the

loading of modules so that the loaded program has name references replaced with:

• The virtual addresses

• A pointer to the entry for that name in the Program Structure List (PSL). A
reference to such a pointer appears in the form of an MPOS loader service
request plus the pointer to the PSL.

3-78

The loader will resolve references by name in either of the two modes

described, according to the information supplied in the Program Structure Table.

3.4.4.6 Message Control

MPOS Message Control Routines initiate message transmission, routing and

logging for all message traffic in the multiprocessor. Message Control Routines call

on MPOS/IOU Device Control to handle the actual device control functions. MPOS

Message Control performs:

• Message header analysis

• Date/time stamping

• Assignment of routing codes and queues for output messages

• Management of routing queues and alternate terminal assignments

• Management of message journals and message retrieval, including "lost
message" service

• Initiation of terminal testing and diagnostic tasks

• Control of bulk storage for direct buffering of messages and routing queues.

An extremely important feature is input validation for each input message.

Validation consists of the following basic steps, which are executed before the message

is available for processing:

• Header validation and analysis

• Message format validation

• Validation of fields in the message body for correctness of content (e.g.,
range check on numeric fields).

3.4.4.7 File Control

One of the principal objectives of MPOS File Control is to provide a compre-

hensive file management facility that offers the user both a device independent file

3-79

processing interface and access techniques which are independent of the physical

arrangements of data on the storage device, i. e. , independent of the storage structure

employed. In this context, device independence means that the system is able to make

device substitutions (e. g. , disk for tape) without requiring alteration in the user pro-

gram or its interface with MPOS File Control.

Storage structure independence guarantees that user programs and their File

Control interfaces can remain fixed even when the track capacity of a disk or the block

capacity of a BORAM device is changed. Design for independence allows introduction

of new storage technology into the MPOS environment with software changes limited to

the MPOS File Control routine.

A secondary objective is to manage the automatic allocation and deallocation

of peripheral devices (displays, backing store devices, terminals, etc.) and the auto-

matic mounting and dismounting of storage media for removable media devices.

In MPOS the user accesses data one logical record at a time. The interface

with MPOS File Control is at the logical record level with the user specifying a re-

trieval key value or record number whenever he wishes to read or write a logical

record.

The following pages describe the MPOS File Control facilities imple-

menting these concepts.

MPOS maintains an on-line directory of all files in the system, including

user data files, program library files, system scratch files and job files. This di-

rectory is a semipermanent repository of information about files and, as such, it

relieves the user of the need to supply file description data other than the catalog

3-80

name each time the file is accessed. File description parameters maintained in a

typical file catalog are:

• File identification (file-name)

• File access passwords (read, write, delete)

• File sharing criteria

• File label creation and checking information

• Identification of backup copy or alternate file

• Physical identification of file storage

• History of file usage and current disposition

• Physical device requirements and mounting instructions

• File structure and names of the file control program needed for processing
the file

• Date of creation of catalog entry

• Type of file backup and recovery procedures to be invoked for this file in the
event of an unrecoverable error.

Using the catalog, information pertaining to a file can be entered, deleted or

retrieved with only the name of the file as a symbolic pointer to the corresponding

file catalog record.

Unlike some current file systems in which data sharing and data inter-

locking are controlled by cooperation between the users of the data, the MPOS sys-

tem builds these functions into the file management subsystem itself. Thus, data

sharing and interlocking do not depend on cooperative efforts of all the tasks which

choose to access a specific item of data, but rather it is centrally controlled by the

user who cataloged the file. Consequently, a failure in data sharing or interlocking

can occur only through hardware or logic error in file management software/firmware.

This arrangement is superior to depending on the many tasks using a given data file

3-81

to control sharing and interlocking cooperatively since a single program error in one

of these tasks jeopardizes the intention of the sharing and interlocking. Moreover,

since sharing and interlocking is under control of a single program, changes in the

status of data for sharing can be effected through changes in the file control para-

meters which are centrally managed by the file management subsystem. Improved

reliability and control may be obtained through functional decomposition; i.e., file

protection and control responsibility are not shared between applications, programs

and MPOS file control.

Data file protection and protection against device misuse are further as-

sured in the multiprocessor by the division of labor between CPUs and lOUs. User

tasks in a CPU can gain access to data only by data requests which are serviced by an

IOU. Also, no user task can be performed in an IOU unless it has been converted in-

to a system task and is scheduled as a system task by MPOS.

Unlike the decentralized approach to I/O control, MPOS will, in effect,

stand between the user and system resources including files and peripheral devices.

Special routines developed to handle special purpose I/O devices must be designed and

built to MPOS system routine specifications and standards and then incorporated into

the file management subsystem of MPOS.

MPOS File Control ensures basic file organizations or data structures.

Users are expected to map each of their data structures (data files) onto the most

appropriate MPOS file organization. The organizations are:

• Sequential — a named linear array of records

• Partitioned (modular) — an ordered set of named linear arrays or records

• Indexed (named) --an ordered set of named records.

3-82

Within each organization, logical records can be stored and retrieved:

• Sequentially, e.g., read next record, write next record

• By record number, e.g., read ith record, write jth record

• By record name, e.g., read record A, write record B.

Table 3-8 shows permissible combinations.

TABLE 3-8. COMBINATIONS OF ACCESS MODES

Organization Access Modes for Logical Records

Sequential

Partitioned

Indexed

1) Sequential (next)

2) By record number

1) Sequential within partitions

2) By record number within partitions
(selection of partition is by partition name)

1) Sequential

2) By record number

3) By record name

Partitioned organization is used primarily for program and job library files.

Sequential and indexed organizations are classical file structures.

3.4.4.8 Spooling

Spooling denotes the buffering of data going to and from low-speed input

output devices. Spooling obviates system-wide slow-downs by creating intermediate

files, usually in bulk storage, which allow processing programs to run at full speed.

Then, through the use of special system routines, these intermediate files are written

to lower speed output devices. In MPOS, spooling for input and output files is con-

trolled by MPOS/IOU.

3-83

In MPOS device independence is obtained as an additional benefit of spooling.

A file spooled to disk could be rerouted for display or storage from one terminal de-

vice to another without change in the program that originally created the file.

Files spooled to disk from low-speed input devices are cataloged and held

until they can be accessed by the intended user or system job. Files spooled to disk

by a user or system job and destined to be written to output devices are automatically

scheduled for transcription by MPOS without explicit operator action.

3.4.4.9 Simulation of IBM S/360 Selector and MUX Channels

To support emulation of S/360 hardware, certain MPOS/IOU routines will be

written to interpret IBM S/360 physical I/O functions. The principal features are:

1) Trapping of S/360 privileged I/O instructions (e.g., start I/O)

2) Interpretation of S/360 channel programs (CCW chains) and translation of
these channel programs into equivalent SUMC-IOU/data-bus operations.

3) Fabrication of S/360 sense-byte indicators and error indicators.

4) Simulation of S/360 channel-to-CPU interrupts.

The routines performing these functions will run under control of MPOS/IOU.

Emulation of S/360 hardware and execution of IBM software require that IBM peri-

pheral devices, and in some cases their controllers, be attached to the data bus of

the multiprocessor configuration on which emulation is to take place

3.4.5 S/360 Interface Levels

3.4.5.1 Source Language Conversion

Programs developed for compilation and execution on IBM S/360s can be

converted to execute under control of MPOS in the SUMC environment. It is

3-84

estimated that conversion costs associated with transferring S/360 programs to SUMC

environments will be held to less than 10 percent of the original development costs of

those programs. SUMC and MPOS are convertible because:

• SUMC includes the S/360 universal instruction set as a subset of its own in-
struction set.

• MPOS will support a user program interface that is functionally similar to
OS/360 user program interface. The execution environments for MPOS ob-
ject programs will, by design, accommodate the program management and
data management capabilities of OS/360.

• MPOS compilers will be able to recompile S/360 programs, thereby pro-
ducing object coding that interfaces with MPOS to achieve the operating
system support originally provided by OS/360.

The conversion envisioned will apply more or less effectively to S/360, pro-

grams according to the programming languages used in their original development.

Assuming that COBOL, FORTRAN and assembly languages are supported with appro-

priate compilers, library routines and linkage editors, the figures in Table 3-9.

show the relative cost of conversion. PL/1 and JOVIAL have been included to illus-

trate the range of conversion costs associated with higher level languages.

Programs developed to run on IBM S/370 computers under AOS (a new IBM

operating system which is likely to be announced in 1972) should be convertible to

MPOS at even lower costs if the expected implementation independency of AOS is

achieved, i.e., if AOS provides a cleaner interface for user programs than OS/360.

Depending on the number of S/360 programs likely to be converted to run

under MPOS, the following conversion aids would be cost-effective. They are listed

in order of decreasing usefulness:

1) Job Control Language translation aid (OS/360 to MPOS job control language)

2) Program library translation aid

3) Data File conversion routines

4) Linkage Editor Control statement translator (OS/360 to MPOS program
structure description language).

3-85

TABLE 3-9. S/360 TO SUMC PROGRAM CONVERSION COSTS
BY PROGRAMMING LANGUAGE

Programming Languages Used Relative Conversion Cost*

OS/360 FORTRAN G-H 1-4%

DOS/360 FORTRAN F-G 2-6%

OS/360 COBOL ANS 1-2%

DOS/360 COBOL ANS 1-2%

OS/360 COBOL E and F . 1-5%

DOS/360 COBOL D with no DAM files 1-3%

DOS/360 COBOL D with DAM files 2-10%

OS/360 PL/Is 10-20%

DOS/360 PL/Is 15-25%

JOVIAL (J6) 25-40%

S/360 Assembler (with no PIOCS, no 35-50%
BTAM and no QTAM)

S/360 Assembler (with PIOCS or BTAM 60-90%
or QTAM

* As a percentage of original development cost.

3.4.5.2 Direct Execution of S/360 Programs

On isolated stand-alone SUMC configurations (either single CPU or multiple

CPU) it will be possible to emulate IBM S/360 or S/370 hardware with the accuracy

needed to run S/360 applications programs under control of OS/360, OS/370 or their

successors. Such emulation is based on the inclusion of the S/360 and S/370 univer-

sal instruction sets with emulation of privileged instructions as subsets of the SUMC

CPU instruction set.

3-86

Considerations of system reliability and performance preclude both concurrent

simulation of OS/360 with MPOS and hierarchical simulation of OS/360 by MPOS; the

possible risk to space station life support systems is too great.

The stand-alone emulation of S/360s on dedicated SUMC configurations is

feasible provided that S/360 peripherals or their replacements can be operated satis-

factorily by S/360 emulation programs running in lOUs. These programs would inter-

cept S/360 I/O instructions, interpret S/360 channel programs and simulate S/360

selector and MUX channel interfaces.

3-87

Section 4.0

MULTIPROCESSOR OPERATION

Rather than attempt a complete description of how the proposed multiprocessor

is to operate, certain aspects of the operation have been selected for description:

• Dynamic task management

• I/O subchannel servicing

• Paging operations

• Interprocessor communication

• System state transition control

• Failure response.

Treatment of each aspect is broad enough to engage with the other aspects and

to reference previous structural descriptions so that a unified (if not uniform) picture

of entire system operation emerges. Areas less well-defined are among those

recommended in Sec. 5 for further study.

4.1 DYNAMIC TASK MANAGEMENT

A task in the multiprocessing system must be in one of four processing states --

Terminated, Pended, Ready, Active — as described in Sec. 3.4.3.2. Proper transi-

tion from one state to the next constitutes dynamic task management and is described

in detail below.

4.1.1 Initiation

Task initiation is one of the functions of the Task Control Routine in the MPOS

Executive. Tasks are initiated in both CPUs and lOUs. The fundamental process is

4-1

that of changing a task's status from Terminated to Ready. A new task that has

never before been made Ready must start as a Terminated Task; i.e., it holds no

system resources in its name.

The change from Terminated to Ready includes changing task status to the inter-

mediate state of Fended where it waits for a resource to be allocated, or other event(s)

that must occur before the task can be given control of a CPU or IOU. When all such

requirements are met, including the acquisition of a Task Slot, the task's status is

changed from Fended to Ready. More specifically, the operations involved in this

transition are shown in Fig. 4-1.

4.1.2 Activation

Task activation is one of the functions of the Task Control Routine in the MPOS

Executive. Tasks are activated in both the CPUs and lOUs. The fundamental process

is that of changing a task's status from Ready to Active. An Active task is one which

has control of a CPU or an IOU. To be eligible for activation a task must have been

assigned a CPU/IOU Task Slot and all other resources (see Fig. 4-2) needed to run it

except use of the CPU/IOU. The transition can be made (Exit 1) only if system

resource checks are satisfied; otherwise, the task remains Ready (Exits 2-5) from

which it may become Pended and Cancelled. When Ready, a task awaits only the

assignment of a C PU/IOU.

4.1.3 Termination

Task Termination is a function of the Task Control Routine in the MPOS Execu-

tive. A task can be Terminated either by inherent request (Termination) or by imposed

request (Cancellation). Figure 4-3 shows the successive procedures and checks made

for proper Termination (Exit 1). It is improper to Cancel a Terminated task (Exit 2).

To be Terminated, a Ready or Active task must first be Pended. A Pended task is

neither in control of, nor contending for control of, a CPU/IOU. Task Termination is

essentially a process of changing a task's status from Pended to Terminated. Upon

4-2

<n
o

tr
o
U.

tc
o

o
o

< s
o:£
£ H >
v> w h-
uj S z
3 >. UJ

< £ y>°y
H >- UJ
z m n
UJ O

Ul <

z <
UJ 0-

o ^ J,

5^^-i§sr
u:"2^
O CC Q in
g O Ul =
5j"- b H

=elp3 < ui o
j± O Q Z

o: 9 z o

^§3
g s s a
x u ^ ^ SH 5"J5

o
>•a:

a o

CO
O

OQ CA
O <
t- H

«
Q

->.
CD Q
O <
h- ui

OQ to

CO
as
H

bo
•pH
P-l

Q O O
< O Qo a: o-i a. s

4-3

"-

o
z

^^

c^-

0

cc
o
23
Q.
O

N
E

M
P

LO
Y

E
D

)
S

T
H

E
R

E
 A

N
 A

V
A

IL
A

B
L

E
 (

U

00
Ul
>-

00
UJ
>- ^

Ul
cc
l_
z
Ul

z

o
Ul
I—
^-
2
C£
1 1 1o!
5

E
 N

U
M

B
E

R
 O

F
 R

E
A

D
Y

 T
A

S
K

S
 C

U
R

R
E

N
T

 M
A

X
IM

U
I

i.1—
00

S
Y

S
T

E
M

 (
I.
E

.,
 I

S
 T

H
E

 S
Y

S
T

E
M

 T
A

S
K

 B
O

U
N

D
)?

u

ĈO

ro^V ">^V
H X fe. H \

X /
Ul/ ,

J-* *J-^W
i- X
x /
LU/

/

oo
UJ
>•

O

O
Z

--

Ul
H

00
UJ
X
K
00

LU

IS
 T

H
E

 P
A

G
IN

G
 R

A
T

E
 >

M
A

X
.

P
E

R
M

IT
T

E
D

 R
A

T
E

M
E

M
O

R
Y

 B
O

U
N

D
)?

£.

o2
fc

x /Ul /

c^-
Ul
o
Ul
o
o
>-
a
<
LU
CC

UJ
X

Z

s:
oo
<

<
Ul
OL
LU
X

00

00
Ul

>^

z
Ul

u7>
Sl°
i=>-5
- H rf<c = <uj o Q:
1- UJ ̂
0 => K
^ Q /^
n? "-"- » f 5
< 00 U .
X h- Z oo
O Z O Q:

'
T

A
S

K
 F

R
O

M
 T

H
E

 R
E

A
D

Y
 Q

U
E

U
E

 W
H

O
S

E
 i

IN
G

 P
R

IO
R

IT
Y

,
P

A
G

E
 F

R
A

M
E

R

E
Q

U
IR

E
M

E
Y

 M
A

T
C

H
 T

H
E

 C
U

R
R

E
N

T
 T

A
S

K
 A

C
T

IV
A

T
I

E
S

 O
F

 T
H

E
 T

A
S

K
 S

E
L

E
C

T
IO

N

P
A

R
A

M
E

T
E

i- z -
1 ^

< o w -J
E K "A <i- t o>
L. > -J
H oo o W

3o r f c> -
t,Hi^

iuj =
<^9

S ^ Ks^s
°g?< to ?7
O oo O
-1 UJ oo

O I—
Q O —
5 a: u.
< 0. o

U
P

D
A

T
E

 T
H

E
 S

T
A

T
U

S
 I

N
D

IC
A

T
IO

R
S

 I
N

 T
H

E
 T

C
B

G
E

N
E

R
A

L
R

E
G

IS
T

E
R

S
 I

F
 N

E
C

E
S

S
A

R
Y

.
C

H
A

N
G

E
(O

R
 P

-C
O

U
N

T
E

R
)

T
O

 G
IV

E
 T

H
E

 T
A

S
K

C

O
N

T
R

O
L

(X

* I-
^ X

Ul

/

p
o

O

o
•iH

ts
o

•3

4-4

LU
>"

V

C/
4
Lr

s

5
C

O

Q.
op

3
oo
t£
0
Q

HI
Q.

1

00
HI

IS
 T

A
S

K
 T

E
R

M
IN

A
T

E
D

?

O
Z

>

1

0

HI
o:
a:
0
HI

H
O

GO

i

r

1

o """
z

HI
0
^ oQ- |_

GO L

^ £

o:
o

~̂
_ yp
j °

: o:
JiJ LU g

"• _ HI

D
O

E
S

 T
A

S
K

 H
A

V
E

 A
N

Y
 O

U
T

S
T

A
N

D
IN

G
 D

A
T

A
R

E
Q

U
E

S
T

S
,

D
E

B
U

G
 R

E
Q

U
E

S
T

S
,

E
X

E
C

. S
E

R
V

P
R

O
G

R
A

M
 L

O
A

D
 R

E
Q

U
E

S
T

S
,

F
IL

E
 L

O
C

K
S

,
R

S
U

B
-T

A
S

K
S

?

O
z

HI

^

h
H

a

00
HI

O
HI
a:
GO

o
HI

0
cc
tr
HI

o
0
-1

^^
^^^CM^^S^

1- Ŝ

X s^
HIX^

)—
- GO

> =
: O-
1 HI
i o: .
• ^ ^

o £ ^
c) 0 <2

GO LU 1-
H O H.

U

c
H
a
c
H

H

D

C

<

tc

2
it<
H
0
U.
a
H

D
 U

N
LO

C
K

 A
L
L
 F

IL
E

S
 A

N
D

 R
E

C
O

R
D

S
.

C
A

N
D

 C
A

N
C

E
L
 A

N
Y

 O
U

T
S

T
A

N
D

IN
G

 S
U

B
T

A
S

K
S

 0

z z
< <

i *

HJ ^

fe H ^ S^ HI
C3 HI PI ^~ ^
z *~ Z m £
5 Q HI , =

" Q- h- w S
5 ^ "^ — i S03 — _l ^

52^1 <

J H =3 Q-

3 0^ GO GO

M
Y

O
P

E
N

E
D

 F
IL

E
S

 A
N

D
 R

E
LE

A
S

E

D
E

V
IC

E
S

.
P

.
F

IL
E

 S
P

A
C

E
.

F
LU

S
H

 S
U

B
P

R
O

G
R

A
M

 L
IN

K
A

C
C

O
U

N
T

IN
G

 L
O

G
S

.
U

P
D

A
T

E
 P

R
O

G
R

A
M

 S
T

T
C

B
 A

N
D

 C
O

P
Y

 T
C

B
 B

A
C

K
 I

N
T

O
 T

H
E

 T
A

S
K

:
V

IR
T

U
A

L
 M

E
M

O
R

Y
 A

N
D

 A
LU

 P
A

G
E

 E
N

T
R

IE
riO

N
 L

IS
T

.
M

A
R

K
 T

A
S

K
 S

LO
T

 U
N

U
S

E
D

.

^ S fTl ^ ̂ ^
HI o [i] °J ̂

S I ' < HI O
Q Q Q -1 _l

-1 Z Z Q. HI -1
O < < 13 CC <

4-5

termination the task's TCB is marked to show whether it was Terminated or Cancelled

and whether a normal task initiation can be attempted at some future time.

A Terminated task has no resources allocated to it as a task, although the job

it belongs to may have resources assigned for the duration of job execution.

4.2 IOU SUBCHANNEL SERVICING

The IOU subchannel routines use a special microcode sequence shown in Fig. 4-4

for servicing the transfer of data between the IOU and the Main Data Bus. This sequence

will also manage the transfer of data between the MMUs and the IOU. The rate of ex-

ecuting sequences must be balanced to the data transfer capability of the peripheral equip-

ment. If, for example, a disc transfer were assigned to subchannel 6 and a tape station

were assigned to subchannel 1 of the same IOU, then the microcode sequence to service

data transfers over the data bus should be executed more often for subchannel 6 than

for subchannel 1.

The function of the IOU subchannel Periodic Calling Routine is to initiate execution

of microcode sequences for the subchannels at the appropriate rate. This routine wiD

in turn be activated by an internal timer. Upon checking to see if any subchannel's

sequence is to be run and finding one, the routine will try to gain control of the bus by

using the LGO instruction. If the bus is available, the subsequent portion of the Periodic

Calling Routine will be unlocked.

Which subchannels should be activated at any particular time is designated by a mask

table which is shown in Fig. 4-5. When the calling routine is run, it will step through

the entries in the table and activate microcode sequences for each subchannel indicated.

When more than one subchannel microcode sequence is to be activated at one step, priority

level determines the order in which each subchannel is serviced. The Periodic Calling

Routine waits for completion of the run of all the activated subchannel sequences. When

the calling routine resumes, it relinquishes the bus and then suspends itself until the

next call from the timer.

4-6

INITIALIZE
SUBCHANNEL
SERVICE TABLE

WAIT FOR
TIME MARK FROM
INTERVAL TIMER

APPLY MASK
TO SUBCHANNEL
SERVICE TABLE

IS THERE A
PERMITTED REQUEST?

YES

NO IS THIS THE
LAST STEP?

YES

i
EXECUTE
MICROCODE
FOR HIGHEST
PRIORITY REQUEST

RESET REQUEST

Fig. 4-4. Subchannel servicing.

4-7

4.3 PAGING OPERATIONS

In translating virtual to physical addresses, an ATU's CAM may find no stored

page address translation. The Virtual Memory Allocation lists in main memory must

be searched with one of three outcomes:

• Page is in an MMU

• Page is in the auxiliary memory

• Page is not in the system memories.

The last outcome indicates an error in programming I/O from peripheral devices;

and completion of the task, for which the physical address was sought, is impossible

without some programming correction. The other two outcomes will result in a valid

translation. If the required page is in main memory, reference to it must be loaded

into the CAM. If the page is in auxiliary memory, but not in main memory, it must be

copied into main memory.

A paging operation occurs in the latter situation. The Page-In-Page-Out procedure

locates the least-recently-used page in an assigned MMU, or from within a group of

assigned MMUs, and marks the page for replacement. Examination of a control word

in this page indicates whether the page can be safely overlaid; i. e., it has not been

changed since last copied into main memory, and the parent copy is at an appropriate

level of availability. If the page can be overlaid, an I/O transfer between auxiliary

memory and the involved MMU is set up to read-in words at the maximum rate of

access to the auxiliary memory. If the page cannot be overlaid, an I/O transfer between

auxiliary memory locations and an exchange of words in the MMU page frame must be

set up. Because the overlay procedure is not only simpler but faster, it will always

be used when it will not destroy data.

Whenever an ATU detects a page fault, its CPU is interrupted to task level 8 which

will put the CPU under control of the Page Fault Routine. Significant system activity

and decisions included in this routine are shown in Fig. 4-6. The CPU must request

4-8

STEP NO.

1

2

3

4

5

6

7

SUBCHANNEL

7

X

X

X

X

6

X

X

X

5

X

X

4

X

3

X

2

X

1

X

N X

1 l 1

X

Fig. 4-5. Subchannel sequence activation mask table.

service from some IOU by setting a bit in its CPU-to-IOU mailbox (see Sec. 4.4 follow-

ing) and setting up a search for reply after fixed interval.

An IOU takes up the routine upon detecting the CPU request in the mailbox, inter-

rupts to task level 10, and searches the MMU Page Allocation Lists to find the page. If

the page must be retrieved from auxiliary memory, the Page-In-Page-Out procedure is

called. Since the transfer of words is intermittent, each transfer is upon interrupt only

at task level 10. Between transfers, the IOU can process at lower priority levels.

At the end of a page transmission the IOU must update the MMU Page Allocation

and Virtual Memory Allocation Lists and leave a message in the lOU-to-CPU mailbox

for the waiting CPU, which, upon detecting the message, goes to task level 11 to supply

the appropriate reference to the CAM in its ATU. The ATU then can make direct

references to the retrieved page.

4-9

o
z

UJ Ul
a s

£ g _ ,
0 S H
K K <r

« 1

Q. D-y o o
<« =^ iPo

p
£

fea
£ %
Q- w
< 00

5|
£^
00 ">
Q oo

Q >-
CC 0
0 <
S UJ

O
z

Q. Ŝ ^̂ ^

n i 1 ^̂ *̂*̂

UJ 2 / _̂ ^̂

tc.
\-
01
o

Q

<
IE
1-

O

UJ

UJ_J

o U
P

D
A

T
E

IO
U

 C
O

U
N

T
E

R
S o

UJ

a
o

P
A

G
E

 T
R

A
N

S
 F

E
F

IN
IS

H
E

D
?

o
_J

UJ

UJ

13
g

oo
Ul

oz

U
P

D
A

T
E

 M
M

U
P

A
G

E
 A

L
L

O
C

A
T

IO
N

V
IR

T
U

A
L

 M
E

M
O

R
Y

A
L

L
O

C
A

T
IO

N

LI
S

T
S

UJ_i

g

1SH
O>

SP

CD

W)

o

^̂ ~*

— ̂1- oLJ —

L
E

A
V

E
 P

A
G

E
 F

A
U

R
E

Q
U

E
S

T
 I

N
 C

P
U

-
M

A
IL

B
O

X

|
C

P
U

L

E
V

E
L
 8

S
E

A
R

C
H

 M
M

U
P

A
G

E
 A

L
L

O
C

A
T

LI
S

T
S

 F
O

R
 P

A
G

E
LO

C
A

T
IO

N

o

UJ

UJ

g

-*

z

P--~̂
CE

IS
 P

A
G

E
 I

N
A

U
X

IL
IA

R
Y

 M
E

M
O

o

UJ

UJ

o

00
UJ

UJ
a:

S
E

T
 U

P
 P

A
G

E
-I

N
P

A
G

E
-O

U
T

P

R
O

C
E

o

Ul

a
g

O
1 *

R
E

S
E

T
IN

T
E

R
R

U
P

T
 F

L
A

o

Ul

UJ

g

Ul O O
a: H i-

4-10

4.4 INTERPROCESSOR COMMUNICATION

Several interconnection mechanisms could be used to implement data and control

signal transmission between CPUs and lOUs in a SUMC multiprocessor configuration.

These include crossbar switches, direct exchange channels, and conventional data

buses.

A desire to minimize system complexity and failure modes and a realization that

most information exchanged between CPUs and lOUs already resided in a common MM.'

led to selection of an alternative. Additional MMU monitoring by the IOU was what

was needed to complete the processor-to-processor communications. The complete

facility is called the MMU "mailbox."

4.4.1 Hardware/Firmware Support of the Mailbox Facility

The following facilities are employed to implement the mailbox:

• Lock-and-Go instruction to preclude destructive interference between
processors. This new instruction is included in both the CPU and IOU
instruction sets.

• A Multibyte Zero Test instruction to allow lOUs an expeditious check of the
mailbox locations in the MMU for service requests placed there by CPUs
and to allow CPUs an expeditious check of the status of requests previously
issued to the lOUs. The Multibyte Zero Test is similar to Translate
and Test, a standard IBM S/360 instruction.

• A timer-driven mailbox polling routine implemented in microcode in each
IOU, guaranteeing that no CPU service request will remain outstanding
without a response from an IOU longer than a specified interval. This
polling routine is executed under control of an IOU system task running at
a high-priority interrupt level.

4.4.2 Mailbox Configuration

Mailboxes shown in Fig. 4-7 are of three varieties: the CPU-to-IOU type, holding

request indicators; and the IOU-to-CPU type, holding status indicators. For each

CPU in the multiprocessor system, there is a request mailbox of the CPU-to-IOU

4-11

m

10

(VI

10

10

X
o
m

ID
O

I
O
h-
I

=)
0-

Ul
z
o

^ -y

m

•

to

CM

-

O

0
z

o
(A

(/>

1-

^v^N

R
E

Q
U

E
S

T

IN
D

IC
A

T
O

R

</)
UJ

CD

00

g
m

13
CL
O

6I-
I
o
UJ
z
o

in

10

CM

0
z

T
A

T
U

S

IC
A

T
O

R
S

S o
z

X
o
CD

w
a)

OJ

6

a!

ca
O

o
•aI
fi
o
o

O

t-
i

b

Io

O

UJ

CO

CO

o
z

to

(/>

o

t u j

4-12

type, each of which is implemented by eight contiguous bytes in main memory and each

of which is subdivided into eight equal partitions, one for each Task Slot. For each

CPU there is a status mailbox of the lOU-to-CPU type which is implemented in 16

contiguous bytes of main memory, and likewise each partition (byte-sized in this mail-

box) will be dedicated to each of the eight CPU Task Slots, A single system mailbox

will be provided for lOU-to-IOU communication.

The request indicators, a separate bit for each, include those for:

• Power failure

• Page fault

• Data request

• Module failure.

The status indicators chiefly signal that an I/O task has been completed, but

their interpretation depends upon the type of original request.

4.5 SYSTEM STATE TRANSITION CONTROL

Individual unit state control is necessary to guarantee the orderly progress of

each unit from power-on to operating and back to power-down without disturbing other

units in the system. Important features in the design of any state control system for

multiprocessor are:

• A set of defined states and transitions

• The ability of an individual unit to execute its own executive functions
as directed by the system executive code

• The ability to have like units simultaneously in different states.

Multiplicity of CPUs and lOUs in a system make a variety of combinations of states

possible; however, only the few that will favor a high level of computational throughput

will be allowed.

4-13

4.5.1 System States

The MMUs will be limited to two states: "On" or "Off". While On, use of an

MMU will be under assignment by the system executive. Access to an MMU is controlled

jointly by logic of the ATU and the MMU itself. While Off, an MMU will be in the power-

down state. Switching an MMU On or Off will be by manual control at the operator's

console.

When an MMU is switched On or switched Off, the system executive will be

notified, and such notification will be automatically relayed to the operator.

The CPUs and lOUs require seven operating states:

• Power-down

• Initial

• Isolated

• Idle

• Self Test

• Multiprocessor computing

• Triple modular redundant computing.

Most of the transitions will be initiated by command message from the operator's

console. One exception is transition from the Power*-down state to the Initial state.

This transition must be directly commanded by the operator from the console. Almost

all of these transitions are single-step, with two exceptions: the two transitions be-

tween the two computing modes — Multiprocessing and TMR.

The state diagram is shown in Fig. 4-8. There is no simplex computing state

although when three processors operate in the TMR state, the fourth unit would have

to be. operating in the simplex. It is expected that the fourth unit would be using the

multiprocessor executive so that it will be in the multiprocessor computing mode.

Transition to and from the TMR state must be via the Multiprocessor state. Since

4-14

Fig. 4-8. Processor state diagram.

TMR computing must be done with at least three operational units, any joining or dis-

connecting of processor service must start or end at the Multiprocessor state.

The transitions into and out of TMR computing are the only multi-step transi-

tions. The manners of transition are shown in Fig. 4-9.

4.5.2 Initial Turn-On and Loading

The state of a computer immediately following the application of power must be

anticipated. Registers have either an unknown content or, with the inclusion of a

power-on master-clear, have specified contents. The same is true of semiconductor

memory elements, with the exception of read-only-memory. Thus it is advantageous to

store basic firmware and initial program load routines in ROMs.

4-15

IDLE UNTIL
ABLE TO ENTER
EXECUTIVE
ROUTINE

Fig. 4-9^ Detailed computing state transitions.

Initially, there is no routine in a main memory for a processor to execute and

no entry in the ATU with which the processor could access the program code even if

there were a routine. The contents of the ATU tables could be loaded automatically

if they were in memory and if an interrupt could be produced, but no interrupt could

normally be expected, or made, to occur. Even if an interrupt were commanded, there

would be no PSW and no task level indicated as destination in the event of an interrupt.

Any CPU/IOU that is initialized must first be in a sufficiently determinate state

to enable certain essential activities such as writing-in a PSW and loading ATU tables.

Then the CPU/IOU should allow initial program load and bootstrapping to load the

operating system and task programs into main memory via the data bus from peripheral

devices. This loading must be performed by an IOU which will upon power-on be

initialized to run a firmware sequence which will run with inhibited instruction fetch

and test for interrupt until the initial load operations are complete.

The firmware sequence for loading begins register-clear operations as needed.

A poll (low rate if desired) of the interactive console starts and continues until

4-16

answered. Then the IOU fetches the following information from the console in order

to enable the next step: the PSW contents for one subchannel, ATU table entries to

allow sequence data to be stored, and a description of the input operation to load the

memory. These data could be sent sequentially, even one byte at a time, if sent

directly from the console. If the console is capable of off-line data composition, this

information could be composed before the poll is answered. Pressing the Load, or

Load-and-Go, button on the console permits the polling to be answered.

The input operation specified by the initial console action could be limited

to that of loading a bootstrap routine, after which the load control would be transferred

to the bootstrap routine. Both the bootstrap routine and the program it loads allow

entries in the ATU tables.

Since there is no direct connection between a CPU and the main data bus, a

different procedure gets a CPU operating. This procedure must use the only means of

communication that the CPU has — message areas of main memory. Upon power-on,

the CPU using a special firmware routine loads the minimum complement of registers

to bootstrap into an operating state. The memory data loading operation must contain

no instruction fetch and no recognize interrupts.

The chief difference in the CPU initial load and an IOU initial load is that the

CPU presumes initial loading of main memory by an IOU. The CPU must detect when

the IOU has completed the main memory load operation before it attempts to use main

memory data to begin its own load. Therefore, the last word that the IOU stores in a

dedicated location should be the first memory word that the CPU will receive.

There are two possible ways that a CPU can get this initial data from main

memory. Data from read-only control memory could create a physical memory

address and request a memory read operation. When the CPU receives a significant

word from memory, it performs several memory read operations until it has fetched

and stored in its PSW and ATU registers the data it needs for a bootstrap operation.

4-17

The problem with this approach is that the firmware generates a physical address

for main memory rather than a relocatable address. The main memory unit addressed

must be assumed operational.

An alternate approach would be to have the CPU start by continually reading

data from main memory. The IOU, upon loading the main memory with its last word,

would allow transfer of the word to the CPU. Upon receiving it, the CPU would use it

as the main memory entry to the data it needs for initialization.

This approach requires further capability in the system. If the memory per-

forms the sending operation, it must be able to do so without having been first requested

to by the intended receiver. Complementary capability must be in the IOU in order to

command this action. It would be possible for the IOU to send the data directly if both

the CPU and the IOU had an interconnecting bus. Were a frequency multiplexing scheme

used on the Internal Data Bus, the direct transfer could be effected by having the IOU

transmit on the same carrier frequency on which the CPU is receiving. If all CPUs

in the initialization process receive on a common channel, one data transfer from an

IOU would be sufficient.

To give the system operator full control, CPU initialization would be contingent

upon pressing the CPU Start button on the console.

4.5.3 Configuration Control by Operator

Like any other interactive operation, operator control of the system configura-

tion can be from a remote console. With the presence of communication supporting

software, the operator may initiate a message that will specify the state of any CPU,

IOU, or MMU. To optimize state control operations some control messages must be

generated upon setting individual control switches on the console. Other control mes-

sages could be composed by the operator using the off-line composition feature and

then sent to the system.

4-18

A configuration control message contains the identity of sender and of receiving

unit and instructions for the receiving unit. Including the sending unit ID allows analysis

of authorization of the sending unit for the type of message. The sender's ID part of the

message format being used, a reconfiguration message would be written into the system

via the console, without any display of the entered contents. The ID for the receiving

unit will provide for multiple unit addressing. This feature will be of value when a change

from multiprocessing state to redundant state is being requested. A communication

support routine will check the action being requested in order to ensure proper

resource allocation. If some minimum resource limit must be exceeded, the console

operator would be requested to confirm the original message before it is acted upon.

Since there is a limited set of actions that can be performed, the coding for the

requested action will be satisfied by a limited vocabulary.

4.5.4 System Configuration Control

Reconfiguration results from a routine to be implemented at a particular time

as one of the tasks of the system. Reconfiguration may require operator approval

before execution. Messages will display a description of the projected action, and

operator approvals are communicated to the system by having the operator place his

identity code in the sender's ID field and then dispatch the message. Modifications

to the planned action could be inserted by the operator before sending. One modifica-

tion might be to select an alternate unit as receiver.

4.6 FAILURE RESPONSE

So far two recipients of the fastest response of the multilevel interrupt-for execu-

tion of a specific program with minimum of delay have been identified. The highest

priority level routine will be run in event of power failure. The next level routine will

be run in event of a processing unit scratchpad failure.

4-19

4.6.1 Power Failure

Each processor will have its own power supply, with individual power failure

detection system. Upon detection of a power failure, an interrupt at the highest priority

level will occur. The routine run at this level will supervise an orderly shut down of the

failing processor and will require main memory storage of the current contents of all

internal registers: PSW Registers, General Registers, and Floating Point Registers.

Contents of other processor and ATU registers are not stored.

Having stored its register contents in memory, the processor posts the power

failure code in the CPU-to-IOU mailbox or system lOU-to-IOU mailbox as appropriate,

so that the executive routine executed by another processor will be able to detect the

failure. Actions such as operator notification, transfer of the stored register content

information to the auxiliary memory, and transfer to auxiliary memory of main memory

contents associated with the failed processor's tasks, request the services of any IOU

that is free to act upon the failure notice.

Finally, the failing processor will put itself into the Idle state so that when the

power goes off, the processor will not cause a transient that will disturb the system.

By going to the Idle state instead of to the Isolated state, the processor may be re-

activated if power is restored before the processor is completely shut down.

4.6.2 Scratchpad Memory Error

Error detection capability included in the processor scratchpad memory will

initiate a Scratchpad Error Routine (see flowchart, Fig. 4-10). For elementary

operations (EOs) that fetch data from the scratchpad memory, the retry control will

cause the EO to be repeated up to four times whenever an error is detected in the

SPM readout.

Anticipating the repetition, retry control inhibits use of the result of any EO

operation in which the readout error is detected; e.g., if the EO is performing an

RR Add, the use of the adder output is inhibited upon detection of an SPM readout

error. Any repeatable instruction may be retried.

4-20

SET APPROPRIATE
BIT IN ERROR
REPORT REGISTER

POSSIBLE TO
RETRY INSTRUCTION?

NO

YES

HAS INSTRUCTION
BEEN RETRIED?

YES

NO

TO RETRY
INSTRUCTION

YES

MASK INTERRUPT FOR
THIS TASK LEVEL

SET INTERRUPT #14

TO AWAIT
INTERRUPT

SERVICE

TO CONTINUE
INSTRUCTION

Fig. 4-10. Scratchpad memory error routine.

4-21

If the readout is still faulty, a change of control to task level 14 is then

performed. The routine executed at priority level 14 will be a diagnostic and recovery

sequence.

The following recovery procedure is proposed (see Fig. 4-11).

1) Determine which priority level was active when the error occurred.

2) Test the contents of all scratchpad memory locations to find the error.

3) Correct, if possible, the stored word containing the error and return control
to the previous instruction.

4) If the memory location is good but the faulty data cannot be corrected, send
the proper notice to the Executive and call the Task Assignment Executive
Routine.

5) If the memory location itself is bad, notify the Executive that the task level
that was active when the error occurred cannot be used. Then call the Task
Assignment Executive Routine.

6) If the Task Assignment Executive Routine is not operational at its original
priority level, the processor sends an SPM failure message to the Executive
and enters the Idle state.

4-22

o
UJ
>

o
UJ
x <

h- o
o u. or
zoo.

11

<m

02
I-O
iuce
U.U.

UJ
>

cc
o
ceIE
UJ

O;

p!

UJ
>

<
o

ce
o

g
K

5

PS I- tc z
LU O O
oo U. O

Q O
EC Z
o <

e/i CC
ujo
z <^
< UJ
o CQ

I-

il UJ —
CO Q

=- UJ

.
Z (/> S
< ui cf
O 0= to

O

^Icf

s
PS*I- O ouj ce j±
u. u. to

PS

fc*lIPS

S tr ~
z o i
= u. s

i<• » *;|p
g s « 3
H UI I <
Co -J t- O

o
UI
z
o
V,
< CJ3
_ Z

Q <

SB.
ce _i

o:
o
cc
o:

~ ui
%->
< d

33?

• g >
: — UJ

X Z
uj o _iz r; _J

UJ O O
CC -1 H

I

bi

4-23

Section 5. 0

EXTENDED STUDIES

5. 1 INTRODUCTION

No matter how extensive, no matter how well planned and executed, a study would

not have been imaginatively pursued if it did not reveal a multitude of details of interest

and profit for farther study. The potentialities of the ideas advanced in the previous

text have in part been suggested by intuition and in part by preliminary calculation.

Corroborative studies should be undertaken to establish these details and to explore

their further potentialities before hardware and software dollars become totally com-

mitted.

There is no question that multiple sets of hardware can be interconnected in a

fashion to provide simultaneous operation. The real question is how effective the opera-

tion of the particular collection of hardware with selected interconnection techniques is

in providing computing power. This section attempts to define fruitful areas of further

study effort in order to evaluate more completely the effectiveness of the multiprocessor

system proposed in this report. It is hoped that the following observations and sug-

gestions will enhance the value of the present study as one member of a series of sys-

tems studies for the SUMC and CVT. To realize full benefits from the multiprocessor

system and software work of IBM, Ihtermetrics, CSC, and now from RCA, the follow-

ing suggestions for continuing study are made.

Four principal areas have been identified as convenient nuclei for proposed study

topics:

• Coordination and timing analysis

• Traffic accommodation analysis

• Mechanizations studies

• Reliability studies.

5-1

It is recognized that a certain overlap in topical scope is natural and could be beneficial

if extended studies had to be partitioned for expedience and then synthesized for final

overall results. Software might merit a topic of its own, but in its functional aspects

it is so intimately a part of the system that to separate it would be a step backward

into hard-and-fast software and hardware compartments, which are not productive from

a systems point of view.

5. 2 SYSTEM COORDINATION AND TIMING ANALYSIS

5. 2. 1 Synchronous and Asynchronous Operation

Coordination and timing in a multiprocessor is the key to balancing unit em-

ployment and thereby keeping up overall throughput rates. Spatially distributed

autonomous units, efficient utilization of time, and real-time responsiveness dictate a

large amount of asynchronous operation. To this end a simple, yet powerful interrupt

system has been proposed for CPU/IOUs. Simplicity and order, however, are charac-

teristic of synchronous operation. Within individual units, elementary operations will

be governed by regular periodicity. The questions here raised for more rigorous

analysis and detailed design are:

• What is the ideal extent of asynchronous and of synchronous control in
order to obtain the most advantageous mixture of the two techniques?

• How is reliable and uniform distribution of clocking signals obtained for
the synchronous control?

• How much signalling and response (handshaking) constitute a minimum
necessary for maintaining required levels of reliability?

Polling as proposed for data exchange between the MMUs, and the bulk store periph-

eral units occupies a gray but significant area where the synchronous and the asyn-

chronous meet. An IOU polls on a periodic basis — albeit the unit may be carrying out

pollings of different periods simultaneously. The vehicle of the polling, the main data

bus, however, may under emergency configuration see polling from several lOUs asyn-

chronously. This situation is handled in Hie proposed system by software lockout (see

LGO instruction). The adequacy of this scheme must be analyzed from the point of view

5-2

of timing, deadlock proofing, and reliability. Analysis of adequacy will depend on

projected demands upon the main data bus; and until specifications are written for I/O

traffic, equations of the analysis can only be set up and solved for sensitivity factors.

5. 2. 2 Compatibility of Activity Rates

In order not to induce "binds" during processing, rates of data handling must

be matched. Part of this problem is in the rates of information transfer for each

module in the system. In the proposed system, the transfer rate of MMUs is ten

times that of auxiliary memory. Such a figure awaits confirmation on the basis of

calculation or simulation and in conjunction with pertinent rates for the rest of the

system.

The very integrity of a multiprocessor makes this an overall timing operation,

with each reworking of the timing increasing the system efficiency. Size, complexity,

and variability of the components dictate that insight and care must be used to ensure

convergence of the timing process. Because of the potentially high throughput, how-

ever, the rewards of correct timing are great both as to total jobs handled and as to de-

creased required buffering. Physically this could mean less auxiliary memory and

could realize a saving of weight and space.

For a system as powerful as the SUMC multiprocessor, timing after construc-

tion is extravagant. The changes dictated might be wasteful or prohibitively expensive,

and the time to do it nonexistent. During design, however, the system can be tuned if

a simulation model has been concurrently built. System modeling and simulation are

to be recommended for systems of this size and complexity.

The recommended simulation of data exchange rates and processing rates deals

with tried-and-true procedures which would need no simulation in themselves but would

require one because of their interrelationships.

5-3

Use of mailboxes for interunit communication, however, is not standard

operating procedure. Implementation of mailbox message handling must be worked out

and timed so that its competitiveness with a more conventional mode — the use of an

interprocessor bus — may be calculated. The comparison is not simple because use

of an interprocessor bus in a multiprocessor can mean direct transmission to multiple

receivers with the first-ready receiver the responder and all others notified of cancel-

lation of message. Counterpart of this action for mailbox transmission must involve

firmware and some software in the form of Lock-and-Go so as to award the response

task to only one, but any one, unit.

5. 3 TRAFFIC ACCOMMODATION ANALYSIS

5. 3. 1 System Simulation as a Design Tool

The system simulation is an ideal tool for the study of traffic problems and for

experimentation with their relief. System simulation could answer questions as to

sufficiency of parallel paths and alternate facilities and as to adequacy of storage and

buffering. These are the static questions of the first order, and they are vital to

sizing of the system. Because complex queuing situations are involved, they are in-

tractable by hand calculation.

Of even greater interest and greater subtlety are the second order questions:

those which are peculiar to dynamic situations. These are scheduling problems vital

to the stability of the system in action. The problem of multiprocessor task schedul-

ing has stimulated research, but the insight so gained requires application and testing

in particular multiprocessing situations. * Correct solutions will assure a viable

operating system which will commutate tasks so as to maximize throughput and main-

tain an even flow of data into and out of the main memories.

*Muntz, Ref. 17.

5-4

An illustration will be taken by citing the paging example in Sec. 2. 5. 3. 2.

This presimulation speculation in a dynamic area shows how throughput might be sen-

sitive to an interfault number (the number of consecutive accesses to main memory

without requiring retrieval of a new page). If, for example, it were critical to hold

fluctuation of throughput rate to a narrow band despite a wide variation of interfault

number, then something would have to be done to system parameters in order to de-

crease the slope of the sensitivity curve, i. e. , desensitize the system to variation of

interfault number. With a simple algebraic expression the alternatives are clear, but

seldom can the real situation be described in simple algebraic terms. It is here that a

faithful system model must be constructed and exercised in a "realistic" environment

with "realistic" inputs. Study of different dynamic profiles, which can be collected in

a single simulation run, will give insight as to how to desensitize the system. A few

cut-and-try simulation runs with the model will prove it. Results of the simulation can

be passed on to system designers as guidelines for construction or modification. The

same results will be of interest to software designers who may participate in relieving

problems by tuning the scheduling algorithm to tolerate wider throughput rate fluctua-

tions or by modifying the compilation and memory paging schemes so as to increase

the interfault number.

Interfault sensitivity is but one of many sensitivities that might well be studied

profitably by simulation. Experience in the dynamics of the system will motivate

speculation as to behavior, adequacy, and efficiency of the system into a third order

realm, entry to which may not be necessary if simulations of current designs prove

their behavior satisfactory.

In passing it should be noted that a significant advantage of system simulation

is an almost mechanical one. When a model is being built concurrently with a design,

the designer is forced to make his ideas explicit and understandable to the modeller.

A byproduct of the transfer is the elimination of a number of inconsistencies and in-

compatibilities. Thus, modeling serves as a meticulous design review.

5-5

5. 3. 2 System Deadlock Potentiality

The great multiprocessor problem has not been so much in building multiple

quantities of miniaturized hardware or even in distributing signals, although problems

of delay, skew, crosstalk, and signal degradation abound; it has been in whether the

multiprocessor can handle a wide variety of traffic situations without deadlock and

without idling large amounts of hardware. Cures for deadlock have been suggested

(Sec. 2. 3. 6) for the proposed multiprocessor. How effective these cures really are

can be measured only from a system simulation or from the constructed system. As

mentioned before, by the time the system is on the floor, it is too late.

5. 3. 3 Main Memory Traffic

As has been mentioned, paging is expected to constitute a significant portion

of traffic to and from MMUs. If the proposed rates of transfer and cycling are main-

tained, an MMU, while paging, will be at least 10 percent access loaded. Such load-

ing may appear small but it is of high priority and becomes an ever greater threat to

the dynamic stability of memory unit operation if access-loading reaches a moderate

(75 percent) size.

When access to an MMU is loaded to 30 percent, i. e. , 30 out of 100 possible

accesses averaged over a relatively long period, short term queues for access are

possible, even with a random distributuon of interaccess times. Buffering and waiting

will be necessary. A study must specify a reasonable amount of hardware and for

buffers and a reasonable amount of throughput slack to accommodate peaks.

A small but important item of MMU traffic is the number and timing of LGO

instructions. It is obvious that LGO can be an effective lock, but how fast it can

operate to turn aside other requests for the protected code while enabling the author-

ized task to use the code with the immediacy needed is in question. Whether several

LGOs to different areas of protected code in a single MMU can be tolerated without

5-6

deleterious effect on throughput must be established before an operating system can

depend upon it.

Similar studies of feasibility, i. e. , not whether the proposed schemes will

work but whether they will work well enough, must be made regarding mailbox com-

munication. How much access-loading mailbox messages represent is a function of

both user and executive requirements in communication. Total amount of traffic will

not, however, be as critical as how speedily messages get through. Because mes-

sages must be "picked up" either on timed stimulus or when a processing unit is idle

rather than upon their generation, effectiveness of the proposed plan must be demon-

strated in either a well detailed or a well parameterized simulation.

5. 3. 4 Executive System Traffic

Two features of the selected multiprocessing system engender executive sys-

tem activity that involve MMUs: the interrupt system and memory management.

Both feature the accessing and updating of master and derivative lists. It is a matter

of speculation that the housekeeping can be done without degrading throughput too

much.

Within the interrupt handling software or firmware, it may, for overall

throughput, be profitable to adjust task priority dynamically. It is easy to invent a

number of algorithms which will favor task parameters such as: length of task, num-

bers and types of system resources required, time since last activation contributing

to the job or task, and a running evaluation of the importance of tasks to the entire work

of the system. The results of a simulation from a model of the interrupt system, which

would include interaction and competition (via LGO) of several processing units, would
i

favor a selection of algorithms and would aid in identification of the parameters of the

situation in which each algorithm was the most advantageous.

5-7

5.4 MECHANIZATION STUDIES

Much is known and has already been proved concerning the design, construction,

and microprogramming of individual units. The particular requirements of the SUMC

multiprocessor that call for unusual study in mechanization are: the means of inter-

connection for data and the error checking logic.

5. 4.1 Bus Interconnections

The interconnection problem has been brought out in Sec. 2. 2 but detailed

attention should be given to development and testing of the proposed FM multiplexing.

Considerations of the bus interconnection involve a balancing of numbers of parallel

physical channels v. numbers of frequency channels and, in the area of modems,

complexity v. numbers. The critical size, reliability, speed, and cost will uncover

many points of tradeoff which must be established in sequence before the design is

achieved.

Design must then be centered in the Data Interface Unit (DIU) which connects

digital units, both system and peripheral, to an FM bus. Before physical details of

this unit can be described, specification of the required interfacing (data, control,

error check) must be written and the tradeoffs mentioned above must be made.

5. 4. 2 Error Checking Logic

As will be called for by further study suggested in Sec. 5. 5, logic for the

checking and generation of error-detect-and-correct code must be provided at points

found strategic and necessary to meet criteria of reliability. Physically the logic must

add little bulk to the system; but, more importantly, it must not in itself reduce reli-

ability nor should it drag down speeds of data transmission.

5.5 RELIABILITY

As the proposed system emerges, a parallel study aimed at applying theoretical

principles of reliability rigorously to the proposed design should be undertaken. As with

5-8

the suggested system simulations, such a study should be interactive with system design.

Major thrust of this work is seen in two areas: error control and TMR potentiality for

increasing reliability.

5. 5. 1 Error Detection and Control

Basic to any reliability concept is the ability to detect an error. Detection is

done for real time applications either by using redundant information (coding) or by

redundant hardware (comparison/voting) or by a combination of both. If extra com-

puter time is available prestored diagnostic routines can be executed and compared to

prestored results.

After the basic detection of an error, a larger problem occurs — what response

is appropriate. Typically error indications anywhere in the computer are ORed in

order to generate an interrupt, and the software directs subsequent action. Owing to

the complexity of modern computers, real time equipment cannot afford time to process

an error detection - error correction routine. The multilevel interrupt structure used

for this multiprocessor system should prove a great asset in eliminating software

through use of hardware and focusing the error response routines on the particular part

of the system in which error was detected. Additionally, each error response can

readily be made independent of that part of the processor which was detected as in

error.

In order to define a viable error detection and correction technique the multi-

processor system needs additional study in these areas. This study should use a

Triple Modular Redundancy (TMR) configuration as a baseline for evaluating tradeoffs

of additional complexity v. additional reliability. The TMR configuration has been

flown and considerable data on it is available.

5. 5. 2 TMR Potential for Increasing Reliability

The redundancy inherent in the multiprocessor itself suggests that reliability

could be enhanced by legislating redundant behavior and acting on majority results.

Triple Modular Redundant (TMR) operation has received some intuitive attention, but

again, for serious consideration, theoretical knowledge must be applied to a particular

5-9

SUMC multiprocessor system of at least three processing units. The study should

establish the tradeoff between gain in reliability and degradation of throughput. Simple

intuition that throughput will be reduced to one-third will likely be wrong because com-

parisons (voting), and competitions for, or common use of, MMUs and other facilities

will consume some processing time.

From the standpoint of system design, a number of problems raised solely by

TMR operation must be solved:

• How many and where the points of voting must be,

• How the voting is coordinated,

• What to do about the resulting simultaneous requests for commonly
used facilities,

• How to deal with voter disagreements, and

• How to coordinate the entrance or exit of any processor to and from
this mode of operation.

5.6 CONCLUSION

RCA considers the SUMC Multiprocessor Study here reported as one in a con-

tinuum of multiprocessor studies leading to the final design and construction of the

multiprocessor systems to which the Astrionics Laboratory of NASA aspires. Con-

sistent with this thought RCA has pointed out these avenues of further study.

5-10

REFERENCES

1. E. G. Coffman, Jr., etal., "System deadlocks," Computing Surveys, vol. 3,
pp. 67-78, June 1971.

2. E . G . Coffman and L. C. Varian, "Further experimental data on the behavior
of programs in a paging environment," Communications of the ACM, vol. 11,
pp. 471-474, July 1968.

3. Robert C . Daley and Jack B. Dennis, "Virtual memory, processes, and sharing
in MULTICS," Communications of the ACM, vol. 11, pp. 306-312, May 1968.

4. Peter J. Denning, ''The working set model for program behavior," Communica-
tions of the ACM, vol. 11, pp. 323-333, May 1968.

5. Peter J. Denning, "Thrashing: its causes and prevention, " Proc. 1968 FJCC,
pp. 915-922.

6. Peter J. Denning, "Virtual memory," Computing Surveys, vol. 2, September 1970.

7. Robert M. Jones, "Factors affecting the efficiency of a virtual memory, " IEEE
Trans, on Computers, vol. C-18, pp. 1004-1008, November 1969.

8. M. Joseph, 'An analysis of paging and program behaviour," The Computer Journal,
vol 13, pp. 48-54, February 1970.

9. J. R. Kennedy and W. S. Fitzpatrick, "Spaceborne computer executive routine
functional design specification — volume II: computer executive design for space
station/base, "final report, contract NAS 8-24930, NASA report CR-1868, Com-
puter Sciences Corp., October 1971.

10. J. E. Kennedy et al.» "System configuration and executive requirements specifi-
cations for reusable shuttle and space station/base," final report, contract NAS
8-24930, NASA report CR-1820, Computer Sciences Corp., May 1971.

11. Donald E. Knuth, The Art of Computer Programming: Vol. 1. Fundamental
Algorithms. Reading, Mass.: Addison-Wesley, 1968.

12. Jaroslav Krai, "One way of estimating frequencies of jumps in a program,"
Communications of the ACM, vol. 11, pp. 475, July 1968.

13. C. J. Kuehner and B. Randell, "Demand paging in perspective," Proc. 1968 FJCC,
vol. 33, pp. 1011-1018.

14. Daniel J. Lasser, "Productivity of multiprogrammed computers — progress in
developing an analytic prediction method," Communications of the ACM, vol. 12,
pp. 678-684, December 1969.

R-l

V,

15. R. E. McNabb, 'Modular space station computer study," IBM report 71W-00345,
27 October 1971.

16. James S. Miller etal., 'Multiprocessor computer system study,"final report,
contract NAS 9-9763, Intermetrics, Inc., March 1970 .

17. R. R. Muntz and E. G. Coffman, Jr., 'Optimal preemptive scheduling on two-
processor systems,"IEEE Trans, on Computers, vol. C-18, November 1969.

18. William Wesley Peterson, Error-Correcting Codes. Cambridge: M.I.T. Press,
1961.

19. G. E. Proch, "A conceptual study of the SSV/GN&C system data bus," final report,
contract NAS 9-5191, NASA report CR-1792, Lockheed Electronics Co., August
1971.

20. B. Randell, 'A note on storage fragmentation and program segmentation," Report
RC2102, EBMT. J. Watson Res. Ctr., Yorktown Heights, N. Y., May 1968.

21. P. Wegner, "Machine organization for multiprogramming," Proc. 22d ACM
Nat. Conf. 1967, pp. 135-150.

22. Peter Wegner, Programming Languages, Information Structures, and Machine
Organization. New York: McGraw-Hill, 1968.

R-2

1 . REPORT NO. 2. GOVERNMENT ACCESSION NO.

4. TITLE ANO SUBTITLE

C-MOS Array Design Techniques: SUMC Multiprocessor
System Study (Contract Modification 7)

7. AUTHOR(S)

W.A. Clapp, W.A. Helbig, A.S. Merriam
9. PERFORMING ORGANIZATION NAME ANO ADDRESS

Advanced Technology Laboratories
Government and Commercial Systems
RCA
Camden. New Jersey 08102

12. SPONSORING AGENCY NAME AND ADDRESS

George C. Marshall Space Fligl
National Aeronautics and Space
Marshall Space Flight Center, i

it Center
Administration
\labama 35812

3. RECIPIENT'S CATALOG NO.

S. REPORT DATE

May 1972
6. PERFORMING ORGANIZATION CODE

8. PERFORMING ORGANIZATION REPORT It

10. WORK UNIT NO.

1 1. CONTRACT OR GRANT NO.

NAS 12-2233
13. TYPE OF REPORT & PERIOD COVERED

Contractor Report

14. SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES

Work performed for George C. Marshall Space Flight Center Astrionics Laboratory

16. ABSTRACT

The current capabilities of LSI techniques for speed and reliability, plus the possibilities of
assembling large configurations of LSI logic and storage elements, have demanded the study
of multiprocessors and multiprocessing techniques, problems, and potentialities. The design
of a highly reliable and powerful multiprocessor system of small physical size, which results
from such studies, is of great interest for long-life space missions.

The present study first evaluates three previous systems studies for the Space Ultrareliable
Modular Computer multiprocessing system by IBM, CSC, and Intermetrics, respectively, and
then describes a multiprocessing system which originates in the best results of these studies
and carries them further both in extent and detail. The proposed system is flexibly configured
with up to four central processors, four I/O processors, and 16 main memory units, plus
auxiliary memory and peripheral devices. This multiprocessor system features a multilevel
interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual
memory management of a storage hierarchy through I/O processors, and multiport access
to multiple and shared memory units.

In conclusion, the present study is viewed as one in a continuum leading to construction of a
multiprocessor system meeting NASA mission objectives; therefore, designation and brief
discussion of the most profitable details for simulation and further study have been included.

17. KEY WORDS

Operating Systems
Multiprocessing Systems
Memory Management
Multilevel Interrupts
Priority Scheduling
Information Structures

19. S E C U R I T Y CLASSIF. (of thU report)

Unclassified

Rec onf igurable
Systems

LSI Applications
Modular Processors

18 . D I S T R I B U T I O N S T A T E M E N T

20. SECURITY CLASSIF. (of thli p»g*) 21. NO. OF PAGES 22. P R I C E

Unclassified 161

