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ABSTRACT

TOWARDS OPTIMIZED TRAFFIC PROVISIONING
AND ADAPTIVE CACHE MANAGEMENT FOR

CONTENT DELIVERY

FEBRUARY 2020

ADITYA SUNDARRAJAN

B.E., ANNA UNIVERSITY

M.S., THE UNIVERSITY OF ARIZONA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ramesh K. Sitaraman

Content delivery networks (CDNs) deploy hundreds of thousands of servers around

the world to cache and serve trillions of user requests every day for a diverse set of

content such as web pages, videos, software downloads and images. In this disserta-

tion, we propose algorithms to provision traffic across cache servers and manage the

content they host to achieve performance objectives such as maximizing the cache

hit rate, minimizing the bandwidth cost of the network and minimizing the energy

consumption of the servers.

Traffic provisioning is the process of determining the set of content domains hosted

on the servers. We propose footprint descriptors that effectively capture the popu-

larity characteristics and caching performance of different content classes. We also

propose a footprint descriptor calculus that can be used to decide how content should

vi



be mixed or partitioned to efficiently provision traffic. To automate traffic provi-

sioning, we propose optimization models to provision traffic such that the cache miss

traffic from the network is minimized without overloading the servers. We find that

such optimization models produce significant reductions in the cache miss traffic when

compared with traffic provisioning algorithms in use today.

Cache management is the process of deciding how content is cached in the servers

of a CDN. We propose TTL-based caching algorithms that provably achieve perfor-

mance targets specified by a CDN operator. We show that the proposed algorithms

converge to the target hit rate and target cache size with low error. Finally, we pro-

pose cache management algorithms to make the servers energy-efficient using disk

shutdown. We find that disk shutdown is well suited for CDN servers and provides

energy savings without significantly impacting cache hit rates.
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CHAPTER 1

INTRODUCTION

Content delivery networks (CDNs) cache and serve trillions of user requests every

day for a diverse set of content such as web pages, videos, software downloads, images

and applications, among others. Content providers such as web portals, SaaS appli-

cation providers, e-commerce sites, news outlets, media companies, social networks,

and movie distribution services use CDNs to host and deliver their content. CDNs

are now ubiquitous and are key to the functioning of the Internet, as most of the

content accessed by users are served by such networks. It is estimated that 71% of

all online content will be delivered by CDNs in 2021 up from 52% in 2016 [62].

A large CDN has a deployed network of hundreds of thousands of cache servers

distributed throughout the world. The servers are deployed in clusters that are located

in over a thousand data centers around the world. When a user requests content that

is hosted on the CDN, the request is mapped to a proximal server in the network (see

Figure 1.1). If the server has the requested content in its cache (i.e., a “cache hit”),

it is delivered to the user. If the content is not available in the sever, it is fetched

from one of its peers within the cluster (i.e., a “cluster hit”) and served to the user.

If the content is not available in the network (i.e., a “cache miss”), it is fetched from

the content provider’s origin that has the original copy of the content.

1.1 The role of caching in CDNs

CDNs efficiently deliver content by caching the requested objects at the closest

edge servers. A cache hit is highly desirable because user requests do not traverse the
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Figure 1.1: Content is served from the cache of a CDN server, from one of its peers
within the same cluster, or from the content provider’s origin.

high latency WAN to retrieve content from the origin server that might be far away.

While a cache hit is the best case scenario, a cluster hit isn’t much worse. During a

cluster hit, the response time for serving the object is increased due to the additional

overhead of fetching content from a peer. This could increase the latency to the order

of several hundred microseconds to a few milliseconds but is still much better than a

cache miss which could add hundreds of milliseconds of latency to each request. A

cluster hit is therefore still desirable, and a cache miss is the least desirable.

1.1.1 Performance and cost metrics of a CDN

A CDN is designed to optimize several performance and cost metrics. We discuss

three important metrics that are relevant to this dissertation.

1) End-user latency: End-user latency is the time elapsed between requesting content

from a CDN and receiving a response at the end-user. Users experience a small latency

during a cache hit. On the other hand, during a cache miss, the request has to traverse

the high latency WAN link to retrieve content from the origin servers.

2) Bandwidth cost: Bandwidth cost of a CDN has two parts. The egress bandwidth

cost is the cost of serving egress traffic from the edge servers to the users. This is not

a cost overhead for the CDN and is paid by the content provider. On the other hand,
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the midgress bandwidth cost is the cost due to midgress traffic which is the cache

miss traffic from the edge servers to the origin servers. This is a cost overhead for the

CDN and reducing the midgress bandwidth cost can lead to significant savings in the

operating expenses of the CDN.

3) Energy cost: Energy cost is the cost associated with powering and running the

servers that host the requested content and the networking equipment that route

requests within the data center. The energy cost also includes the cost of cooling the

servers and networking equipment, to prevent overheating due to continuous use. The

energy cost constitutes a significant fraction of the operating expenses of a CDN and

any reduction will result in large savings. Moreover, energy reduction also reduces

the carbon emissions which is good for the environment.

A fourth metric that relates the three performance and cost metrics described

above is the cache hit rate. There are two notions of cache hit rate. The object hit rate

(OHR) is the percentage of requests that are found in cache. The byte hit rate (BHR)

is the object hit rate weighted by the object size. A larger cache hit rate leads to an

increased origin offload ratio which is the ratio of the total traffic served to users to the

traffic served by the origin servers. An increased origin offload ratio ensures a smaller

end-user latency due to fewer cache misses and reduced load at the origin. A larger

cache hit rate also reduces the midgress traffic which in turn reduces the midgress

bandwidth cost. On the other hand, a large number of active servers are required to

achieve high cache hit rates. This could lead to an increase in the energy cost for the

CDN. Hence, optimizing the energy cost presents a cost-performance tradeoff that a

CDN operator should take into consideration. From multiple perspectives, cache hits

at the edge servers are highly desirable and maximizing the cache hit rate while being

cognizant of its impact on different performance and cost metrics is a recurring theme

throughout this dissertation.
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1.2 Traffic provisioning and cache management in CDNs

When users request content that is hosted on a CDN, the requests are classified

into traffic classes. A traffic class is a collection of domains that host a specific type

of content belonging to one or more content providers with similar requirements. For

example, CNN videos and Apple iOS software downloads are each examples of a

traffic class. Large CDNs host content that belong to thousands of domains which

can in turn be classified into hundreds of traffic classes.

A large CDN is composed of several subsystems that work together to maximize

cache hits. Traffic provisioning and cache management are two important systems

(Figure 1.2) that perform complementary functions.

Traffic provisioning

Cache managementServers

Traffic 
classes

Figure 1.2: The traffic provisioning and cache management systems work together to
maximize the cache hit rate of the CDN.

1.2.1 Traffic provisioning

The traffic provisioning system operates at a higher level and determines what

stream of user requests are directed to each server in the CDN. Traffic provisioning is

the process of deciding what mix of traffic classes are to be cached and served by each

cluster (resp. server) to maximize the cache hit rate. As shown in Figure 1.2, the

traffic provisioning system decides which clusters (resp. servers) serve what fraction of

each traffic class such as CNN videos, Facebook images, or Microsoft downloads. The

goal of traffic provisioning is optimizing metrics that are important to the CDN, such

as maximizing the aggregate hit rate of each cluster (resp. server) and the specific
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hit rates of each traffic class that it hosts. Once traffic provisioning is complete, the

mapping system routes user requests to their appropriate servers in real time. The

reader is referred to [26,92] for a more detailed description of the mapping system in

the world’s largest CDN.

1.2.2 Cache management

The cache management system operates at the level of an individual cluster or

server. Each server maintains a cache that stores content requested by users. The

cache management system is composed of two policies that manage the content cached

in the servers. A cache admission policy decides if an object should be cached in the

server. A cache eviction policy decides which existing object(s) should be evicted

from cache when space needs to be created for a newly admitted object. Then, given

a stream of requests for a mix of traffic classes hosted in the cluster (resp. server),

the goal of the cache management system is to determine how to admit and evict

objects to maximize the cache hit rate.

1.3 Challenges in traffic provisioning and cache management

and proposed solutions

The complexity of content distribution and the diversity of performance and cost

metrics pose challenges for efficient traffic provisioning and cache management. We

list four challenges that we address in this dissertation and briefly describe the pro-

posed solutions.

1.3.1 Predicting caching characteristics of traffic mixes using footprint

descriptors

Challenge: Provisioning and controlling the sharing of the available cache space

in a server or cluster of servers among the hundreds of traffic classes hosted on a

CDN is an important and challenging operational area. It has direct impact on the
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cost-performance tradeoff of the CDN. The wide variability in popularity distribu-

tions, object size distributions and caching performance across traffic classes makes

it challenging to predict the hit rate of traffic mixes that share the cache space. This

in turn affects traffic provisioning across the CDN. Developing better caching mod-

els that accurately capture popularity and caching characteristics will enable better

traffic provisioning and cache management.

Proposed solution: Managing a vast shared caching infrastructure requires careful

modeling of user request sequences for each traffic class. We introduce the notion of

a footprint descriptor that is a succinct representation of the cache requirements of

a request sequence. Leveraging novel connections to Fourier analysis, we develop a

footprint descriptor calculus that allows us to predict the cache requirements when

different traffic classes are added, subtracted and scaled to within a prediction error of

2.5%. We integrated our footprint calculus in the traffic provisioning operations of a

production CDN and show how it is used to solve key challenges in cache sizing, traffic

mixing, and cache partitioning. This work has been published in ACM CoNEXT [107].

1.3.2 Midgress-aware traffic provisioning

Challenge: Traffic provisioning is traditionally performed by an operator who

makes ad hoc decisions based on past experiences. This can be sub-optimal due to

the wide variability in the popularity and caching characteristics of traffic classes that

are hosted on a CDN. The holy grail of traffic provisioning is to optimally map traffic

classes to clusters (resp. servers) automatically without human intervention at all.

Such automation should achieve different performance objectives such as minimizing

the cache miss traffic or minimizing the end-user latency, while also taking into ac-

count the resource constraints that are imposed by the clusters (resp. servers) in the

network.
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Proposed solution: We formulate traffic provisioning across the CDN as a mixed

integer linear problem. We propose algorithms that provision traffic classes to servers

and clusters such that the midgress traffic is minimized and no server is overloaded.

Using extensive traces from Akamai’s CDN, we show that our midgress-aware traffic

provisioning schemes can reduce midgress by nearly 20% in comparison with the

midgress-unaware schemes that are currently in use. We also propose an efficient

heuristic for traffic provisioning that achieves near-optimal midgress reduction and is

suitable for use in production settings. Further, we show how our algorithms can be

extended to other settings that require minimum caching performance per traffic class

and minimum content duplication for fault tolerance. Finally, our work provides a

strong case for implementing midgress-aware traffic provisioning in production CDNs.

This work is under submission.

1.3.3 Adaptive cache management using TTL-based caching

Challenge: CDNs would like to guarantee certain caching performance such as a

minimum cache hit rate or maximum cache space usage, for every traffic class. But,

it is difficult to do so in the face of increasing variability in user demands and the

characteristics of traffic classes served. Moreover, the request distribution in pro-

duction settings are non-stationary and difficult to model and analyze theoretically.

Developing cache management algorithms that adapt to such non-stationarity will

enable better use of caching resources and the ability to provide better performance

guarantees.

Proposed solution: TTL-based caching algorithms enable better control on the

cacheability of content. We propose two TTL-based caching algorithms that have

provable guarantees for bursty and non-stationary request traffic. The first algorithm

called d-TTL adapts a TTL parameter using stochastic approximation to converge to

its target hit rate. The second algorithm called f-TTL adapts two TTL parameters
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using stochastic approximation to converge to the dual target of hit rate and the

expected cache size, provided they are feasible. Using extensive traces from Akamai,

we show that both algorithms converge to their hit rate targets with a small error of

less than 2.3%. But f-TTL requires significantly smaller cache size since it uses one of

the TTL parameters to filter out non-stationary and unpopular content. This work

has been published in IEEE/ACM Transactions on Networking [7].

1.3.4 Energy-efficient caching using disk shutdown

Challenge: So far, we have focused on addressing challenges related to cache hit

rates which indirectly affect the performance and cost metrics such as the end-user

latency and the bandwidth cost. But CDNs are also concerned about the energy

consumption of the networks. Energy minimization has become critical for two rea-

sons. Deployed servers in data centers now account for more than 1.5% of the global

power consumption [77], consuming more power than mid-sized countries such as Ar-

gentina.With greater awareness of climate change, the CDN industry is increasingly

focused on making their systems more sustainable.

A second motivator is the rising cost of energy. The cost of energy has been rising

over the past decade [8]. The cost structures at most data centers are such that energy

cost presently ranges between 30-50% of the total operating expense, and is expected

to only rise further in the coming decades. Hence, CDNs have great incentive to

reduce the operating expenses by being energy-efficient.

Proposed solution: Each CDN server has multiple spinning disks that are used for

caching content. These disks account for 40-55% of the total server energy usage of a

CDN. Reducing the energy consumption of a CDN by shutting down some of the disks

is the main focus of our work. We propose and evaluate cache management schemes

that allow disks to be shut down without significantly impacting cache hit rates and

user-perceived performance. We empirically evaluate the energy-performance tradeoff
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of our algorithms using extensive request traces from Akamai. We show that it is

feasible to obtain a 30% disk energy savings with a 6.5% reduction in the normalized

server hit rate and a mere 3% reduction in the normalized cluster hit rate. This work

establishes disk shutdown as a key mechanism for energy savings in CDNs. This work

has been published in ACM e-Energy [108].

1.4 Dissertation outline

We characterize the variability of traffic classes served by a CDN in Chapter 2.

We also develop the theory of footprint descriptors and show how they can be used

to predict the caching characteristics of traffic mixes. In Chapter 3, we develop

optimization models for traffic provisioning to minimize midgress across the CDN.

We also develop heuristic algorithms that can be deployed in practice. In Chapter 4,

we describe a cache management scheme using adaptive TTLs to guarantee cache

performance metrics. In Chapter 5, we describe how disk shutdown can be used to

make the cache management system energy-efficient without significantly impacting

the cache hit rate. We conclude in Chapter 6 with a summary of the proposed

algorithms and some ideas for future work.
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CHAPTER 2

TRAFFIC MIXING USING FOOTPRINT DESCRIPTORS

A large CDN hosts content from tens of thousands of domains belonging to web

sites of thousands of content providers. Further, each content provider may host

different types of content, including web, downloads, videos, and images1. The content

traffic served by CDNs are in turn classified into traffic classes. A global CDN hosts

content belonging to hundreds of traffic classes. Requests from users accessing the

content provider’s web sites are routed by the CDN to an appropriate cache server

that can serve the content using a process called mapping [26].

A CDN performs traffic provisioning and request routing at the granularity of a

traffic class. Thus, a key decision a CDN must make is which subset of its hundreds of

thousands of servers must serve which traffic classes. Different traffic classes may have

different caching characteristics and different performance requirements. A traffic

class consisting of web content from an e-tailer may require fast response times and

high cache hit rates to aid more sales conversions, and the object sizes are smaller. In

contrast, a traffic class consisting of background software downloads has large object

sizes, but can tolerate lower hit rates and slower response times.

– Traffic provisioning: Traffic provisioning is the process of determining which traffic

classes are hosted in which cache servers of the CDN, given a vast platform of cache

servers with varying amounts of cache space available at each server. Despite the

1Content providers often segregate their content by type and place them on different domains
for better content management and delivery. For instance, a content provider may have a different
domain for each content type, such as {www,video,image,download}.foo.com.
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potentially diverse requirements for each traffic class, it is economically and opera-

tionally advantageous for the CDN to use a single shared platform of servers to serve

all the traffic classes and to have each cache serve multiple traffic classes. However,

such sharing across multiple traffic classes poses significant challenges that are the

focus of this work.

Provisioning traffic classes and controlling the sharing of the available cache space

between those classes to maximize cache hit rates is an important challenge with direct

impact on the cost-performance tradeoff of the CDN. For example, servers hosting

an aggressive mix of traffic classes relative to the available cache space may end up

providing poor cache hit rates. This may violate the performance requirements for

some classes, and raise bandwidth cost due to elevated midgress traffic. Conversely,

servers hosting a conservative mix of traffic classes may end up underutilizing their

resources, which makes the CDN buy more servers than necessary.

The goal of traffic provisioning is to model the caching requirements of traffic

classes and to predict the best way to assign traffic classes to cache servers, so as

to optimize the use of the cache resources and provide an acceptable hit rate at a

reasonable cost. To do so, the process takes as input the sizes of the caches available

in servers across the CDN, and the characteristics of the request sequences for each

traffic class. The process outputs the set of servers that serve each traffic class. Traffic

provisioning is an offline planning step but it must be performed regularly, since

new traffic classes are added or removed to the system and caching characteristics

of existing classes may change. Once traffic provisioning is complete, its output is

used by a mapping system to route the requests of each traffic class to one of the

provisioned cache servers in real-time.

– Challenges and contributions: The main conceptual challenges in traffic provisioning

and our contributions in addressing those challenges are below.
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1) To provide effective traffic provisioning, we need to first understand the diver-

sity of traffic classes hosted on a modern CDN, and how they vary in terms of user

request patterns, content popularity, object sizes, and caching requirements. In Sec-

tion 2.1, we provide the first detailed characterization of traffic classes on a modern

CDN.

2) The user requests for each traffic class must be modeled efficiently from the

traces. While traces may contain hundreds of millions of requests, the model must be

concise, and must be able to predict the resource-performance tradeoffs for caches that

serve that traffic class. In Section 2.2.1, we propose the novel notion of a footprint

descriptor (FD) that is computed efficiently from user request traces of that traffic

class. Using footprint descriptors, we can derive the full tradeoff between cache size

and hit rate for each traffic class.

3) A main goal of traffic provisioning is to answer important “what-if” questions

through modeling and prediction. Examples of such questions include: what would

the hit rate be when multiple traffic classes are mixed together and served by a single

shared cache? How should you partition a cache across multiple traffic classes, so

that each class receives its target hit rate? How would the hit rates change if the

traffic volume of a traffic class is increased? In Section 2.2.3, we develop a calculus for

footprint descriptors that lets us perform addition, subtraction, and scaling operations

on request sequences. The calculus lets us model, predict, and answer the key “what-

if” questions that arise in the traffic provisioning context. For instance, the calculus

allows us to efficiently compute the footprint descriptor of a mix of traffic classes,

given the footprint descriptors of each individual class in the mix.

4) Traffic provisioning must be able to process and manipulate traffic class models

in an efficient fashion. In Section 2.2.3, we show an intriguing connection to Fourier

analysis that lets us visualize and manipulate footprint descriptors. Specifically, we

show how Fast Fourier Transform (FFT) can be used to transform footprint descrip-
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tors to the “frequency” domain. Analogous to how signal processing can be speeded

up by using Fourier Transforms, we show how footprint descriptors can be efficiently

manipulated in the frequency domain.

5) The models used in traffic provisioning should provide predictions that are ac-

curate enough to use in production CDN operations. In Section 2.3, we highlight the

need for footprint descriptor calculus through simulations using traces from production

servers. We also compare our predictions with hit rates from the production network

and show that the prediction error is at most 2.5% in the scenarios considered. In

Section 2.4, we show how footprint descriptors are used to solve key challenges in

CDN operations.

– Footprint descriptor modeling versus cache simulations: In theory, one could eval-

uate the hit rates of different traffic class mixes by experimentally simulating cache

operations on each request trace mix. But, simulating various combinations of several

hundred traffic classes for different cache sizes is unscalable and prohibitively expen-

sive, even for an offline computation, since it must be repeated periodically (say, every

few days). With our approach, the footprint descriptor is computed for each traffic

class only once (Section 2.4.3 shows how to compute FDs efficiently using a map-

reduce paradigm) and traffic mixes are evaluated rapidly using footprint descriptor

calculus. The power of footprint descriptors is that it needs to be computed only once

for each traffic class from the voluminous traces. Various operations on traffic classes

can then be performed rapidly using the calculus without costly cache simulations of

traffic class mixes.

– Roadmap: The rest of this chapter is organized as follows. In Section 2.1, we describe

the characteristics of the different traffic classes hosted on the CDN. In Section 2.2, we

introduce the notion and develop the theory of footprint descriptors. In Section 2.4,

we show how footprint descriptors can be used in a production setting for CDN cache

operations. In Section 2.5 we review prior work and conclude in Section 2.6.
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2.1 Traffic class characteristics

Each domain hosted on the CDN can be thought of as generating a request se-

quence that consists of users requesting content from that domain. A domain also

belongs to a traffic class, where each traffic class is a set of domains from a set of sim-

ilar content providers, usually serving a specific content type. A request sequence for

a traffic class is simply a sequence of requests received for some domain within that

class. The major traffic classes in a modern CDN have content types that are either

web sites, videos, images, or downloads. A large CDN may host tens of thousands of

domains from thousands of content providers that form several hundred traffic classes.

The main challenge in traffic provisioning is the diversity of access patterns, object

sizes, and resource requirements across different traffic classes.

2.1.1 Trace collection

To illustrate this diversity of traffic classes in a quantitative fashion, we col-

lected extensive traces from Akamai’s production CDN for four representative traf-

fic classes from two production cache servers in Akamai’s CDN. The data set con-

tains anonymized logs of content accessed by end-users. Each line in the production

trace corresponds to a single request and contains a timestamp, the requested URL

(anonymized), and the size of the object.

The four representative traffic classes each represent a major content type: web,

downloads, videos and images. The web request trace is for HTML objects and asso-

ciated objects such as css and javascript files. The downloads request trace contains

predominantly large objects consisting of software updates from a content provider.

The image trace contains images embedded in web pages. The video trace contains

video-on-demand (VOD) objects. Typically the objects belonging to the download

and video traffic classes are several GB in size. But, in our traces, these objects are

smaller because a CDN fragments such large files to smaller chunks to avoid caching
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the entire object. CDNs typically cache only the byte-range that is requested and a

few extra bytes, anticipating future requests (spatial locality). Videos are normally

served in chunks that correspond to a few seconds of the video. Hence, CDNs typ-

ically only cache those chunks that are requested to avoid polluting the cache with

content that has not been requested.

We collected the web and download traces from one production server and the

image and video traces from the other production server. The characteristics of these

traces are described in Table 2.1. We also collected additional web, download, image

and video traces from two more servers to evaluate the accuracy of our cache models.

These traces are described in Section 2.3.

Traffic class Web Download Image Video

Length of trace (days) 2.5 2.5 3.5 3.5
Arrival rate (req/s) 520 77 52 57
Traffic volume (Mbps) 333.0 216.5 8.4 361.5
Object count (millions) 10.3 0.7 1.3 6.1
Average object size (MB) 0.21 2.32 0.03 1.53

Table 2.1: Characteristics of the chosen traffic class traces.

2.1.2 Analysis of traffic classes

We compare and contrast the four chosen traffic classes based on their popularity

distribution, object size distribution and cache hit rate. Figure 2.1 shows the popu-

larity distribution of each traffic class. For our download traffic class, we see that 92%

of all requests are for only 10% of the objects. For our web traffic class, 87% requests

are for 10% of the objects. Both of these traffic classes have a long tail of popularity,

indicating the presence of a large amount of unpopular content. For our image traffic

class, 90% requests are for 30% of the objects. The footprint of a set of objects is the

total bytes that need to be stored in cache to serve those objects from cache. From

the traces we collected, we observe that we can achieve a high cache hit rate with a
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small footprint for our image class due to smaller object sizes. Finally, 90% of the

requests in our video class are for 65% of the requested objects (i.e. requested video

chunks), indicating that a larger footprint needs to be cached to achieve a good hit

rate.

Figure 2.1: Popularity distribution of the 4 traffic classes.

Figure 2.2: Object size distribution of the 4 traffic classes.

Figure 2.2 shows the CDF of the object size distribution for each traffic class. The

x-axis is shown in log scale for clarity. In general, we see that the image and web traffic
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Figure 2.3: Hit rate curves of the 4 traffic classes.

classes have predominantly small objects and both the download and video traffic

classes have predominantly large objects. The extreme variability in object sizes

across traffic classes makes it challenging to manage cache resources across the CDN

because different traffic classes require different amounts of cache space to achieve

the same hit rate.

We compare the cache hit rate of the different traffic classes in Figure 2.3 by

plotting their hit rate curves (HRCs) which gives the hit rate as a function of cache

size. These hit rate curves were derived using footprint descriptors as shown in

Section 2.2.2. The x-axis is shown in log scale for clarity. Note that we need a

relatively smaller cache to achieve a large cache hit rate for the image traffic class,

when compared to the video traffic class which needs a much larger cache for the

same hit rate. For example, to achieve a hit rate of 60%, the image class requires a

cache space of about 0.4 GB, whereas the video class requires a cache space of about

1 TB.

The extreme variability in popularity, object size and caching performance high-

lights the importance of efficient traffic provisioning when caching content belonging

to different classes in a shared server. Note that two traffic classes of the same content
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type but different content providers may have different access characteristics and per-

formance requirements. Thus, traffic provisioning is done on a per-traffic-class basis,

rather than on content types.

2.2 Theory of footprint descriptors

We now describe a concise space-time representation of a traffic class called foot-

print descriptor (FD) and derive a calculus for evaluating traffic mixes. Let ρ be a

request sequence 〈r1, r2, · · · rn〉 corresponding to a traffic class τ , where each request

ri represents a user requesting an object belonging to that traffic class. Each request

ri has associated with it the timestamp ti when the request was made, a unique iden-

tifier idi of the object (such as its URL), and the size of the object si. We denote a

subsequence ρ′ of ρ to be the sequence of consecutive requests 〈ri, ri+1, · · · rj〉 of ρ, for

some i ≤ j. We call ρ′ a reuse subsequence if the same object is accessed in the first

and last request of the subsequence, but is not accessed elsewhere in ρ′. It is known

that reuse subsequences have great significance in evaluating caching properties in

other contexts [85]. They play an important role in FDs and their calculus as well.

2.2.1 Footprint descriptors (FD)

A typical request stream ρ may have tens of millions of requests. We would like to

efficiently summarize the attributes of ρ using the notion of a footprint descriptor, so

that we may answer questions regarding the cacheability of ρ using FD. To that end,

we define the FD of ρ as the tuple 〈λ, P r(s, t), P a(s, t)〉, where λ is the traffic volume

(in bits requested per second), P r(s, t) is the reuse-sequence descriptor function, and

P a(s, t) is the all-sequence descriptor function. We describe each component of FD

below.

1) The traffic volume λ is the average number of bits requested per second in

the request sequence ρ. For a sequence ρ with n requests, the traffic volume λ =
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(
∑

i bi)/(tn − t1), where bi denotes the number of bits requested by the ith request

and ti denotes the time of the ith request.

2) The reuse-sequence descriptor P r(s, t) is a “space-time” description of the reuse-

subsequences ρ′ of ρ. In particular, it provides the joint probability distribution of the

unique bytes s and the duration t for reuse subsequences ρ′ of ρ. The unique bytes s

accessed in ρ′ is simply the sum of the sizes of all the unique objects requested in ρ′.

The duration of t of ρ′ is the difference in timestamps of the first and the last request

in ρ′. Then, P r(s, t) is the probability that s unique bytes of content is requested

in some reuse sequence ρ′ of duration t. Given a request sequence ρ, P r(s, t) can be

estimated by enumerating all its reuse sequences ρ′ and tallying its unique bytes s

and duration t. Note that the unique bytes and duration on the first access of any

object is infinity. This accounts for the cold cache miss rate.

3) The all-sequence footprint descriptor P a(s, t) computes a similar statistic, but

using any subsequence ρ′ of ρ, i.e., ρ′ is not necessarily a reuse subsequence and the

first and last request of ρ′ can be arbitrary. P a(s, t) is the probability that s unique

bytes of content is requested in some subsequence ρ′ of duration t. Given a request

sequence ρ, P a(s, t) can be estimated by enumerating all its subsequences ρ′ and

tallying the unique bytes s and duration t.

2.2.2 Estimating cache properties from footprint descriptors

A footprint descriptor is a succinct representation of a request sequence that allows

us to predict the hit rate performance that can be achieved for that sequence. We now

show that the hit rate curve (HRC) of a request sequence can be derived from its FD

in the context of the commonly-implemented Least-Recently-Used (LRU) caching

algorithm. Most production CDNs use extensions of LRU, including Akamai [81],

Varnish [67] and NGINX [101].
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Theorem 2.2.1. The hit rate curve HRC(s) for a request sequence ρ is a function

that provides the hit rate achieved for ρ by an LRU cache of size s. The function

HRC(s) can be computed from the reuse-sequence descriptor P r(s, t) as follows.

HRC(s) =
∑
s′≤s

∑
t

P r(s′, t).

Proof. Let ρ′ = 〈ri, ri+1, · · · rj〉 be a reuse sequence of the request sequence ρ. That

is, ri and rj are consecutive requests for the same object. For any cache of size s

that uses LRU, the request rj experiences a cache hit if and only if the unique bytes

requested in ρ′ is at most s, i.e., if the unique bytes is more than s the object requested

by ri that enters the cache will get evicted by the time the next request for the same

object arrives at rj. Thus, the hit rate HRC(s) is simply the probability that a reuse

sequence has unique bytes that is at most s, which in turn equals
∑
s′≤s

∑
t

P r(s′, t).

Besides LRU, the above theorem can be extended to other stack algorithms using

the well-known relationship between unique bytes in a reuse sequence (called the stack

distance) and hit rate [85].

2.2.3 A calculus of footprint descriptors

The power of footprint descriptors is that it can support operations on request

sequences that are important for traffic provisioning. We present three key operations,

addition, subtraction, and scaling. In Section 2.4, we show key applications of these

operations in traffic provisioning in the production network.
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2.2.3.1 Addition

Let ρ1 and ρ2 be two request sequences that are independent and share no common

objects2. The addition operator ⊕ can be applied to the two sequences to obtain a

new sequence ρ which we represent as ρ = ρ1⊕ρ2. Request sequence ρ is obtained by

interleaving ρ1 and ρ2 in accordance with the time stamp for the requests. We now

show how the footprint descriptor FD = 〈λ, P r, P a〉 for ρ can be derived from the

footprint descriptor FD1 = 〈λ1, P r
1 , P

a
1 〉 for ρ1 and FD2 for ρ2 = 〈λ2, P r

2 , P
a
2 〉.

The traffic volume λ of ρ is simply the sum of the traffic volumes of ρ1 and ρ2,

i.e.,

λ = λ1 + λ2 (2.1)

To compute the descriptor functions, we introduce some notation. Given a de-

scriptor function P (s, t), let P (s | t) denote the conditional probability of unique

bytes s given time duration t and let P (t) denote the marginal distribution, i.e.,

P (t) =
∑

s P (s, t). Thus,

P (s, t) = P (s | t)P (t). (2.2)

The key observation of our calculus is that when two request sequences are com-

bined, i.e., ρ = ρ1 ⊕ ρ2, and we examine a subsequence ρ′ of ρ of duration t with s

unique bytes, the unique bytes s in ρ′ either come from ρ1 or ρ2. Since ρ1 and ρ2 have

non-overlapping sets of objects, some s1 must come from ρ1 and the remaining s− s1

must come from ρ2. Thus, to compute a descriptor function P (s | t) for ρ from the

descriptor functions P1(s | t) and P2(s | t) for ρ1 and ρ2 respectively, we can use the

convolution operator to enumerate and add up the probabilities of all possible ways

2The assumption that two traffic classes share no common objects is reasonable in practice, since
the objects belong to different domains from possibly different content providers. Such objects are
treated as being different by the caching system.
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of obtaining s1 unique bytes from ρ1 and the remaining s− s1 unique bytes from ρ2.

That is,

P (s | t) = P1(s | t) ∗ P2(s | t)

=
s∑

s1=0

P1(s1 | t)P2(s− s1 | t).

Using this observation, we now compute P r(s | t) of ρ from 〈P r
1 (s | t), P a

1 (s | t)〉

of ρ1 and 〈P r
2 (s | t), P a

2 (s | t)〉 of ρ2 as follows. Let ρ′ be a reuse sequence of ρ, i.e.,

the first and the last request of ρ′ is for the same object. Let ρ′ have s unique bytes

and duration t. ρ′ can be broken up into two subsequences ρ′1 of ρ1 and ρ′2 of ρ2.

With probability λ1
λ1+λ2

the first (and, last) request of ρ′ is derived from ρ1. That is,

ρ′ is composed of a reuse sequence ρ′1 and an arbitrary sequence ρ′2. Similarly, with

probability λ2
λ1+λ2

, ρ′ is composed of a reuse sequence ρ′2 and an arbitrary sequence

ρ′1. Thus,

P r(s | t) =
λ1

λ1 + λ2
(P r

1 (s | t) ∗ P a
2 (s | t))

+
λ2

λ1 + λ2
(P a

1 (s | t) ∗ P r
2 (s | t)) , (2.3)

where ∗ denotes the convolution operator.

We can also compute P a(s | t) from P a
1 (s | t) and P a

2 (s | t). The computation

is analogous to the above, except that ρ′ can be an arbitrary sequence of ρ, not

necessarily a reuse sequence. Since ρ′ is composed of two arbitrary subsequences of

ρ1 and ρ2, our computation involves only one convolution below.

P a(s | t) = P a
1 (s | t) ∗ P a

2 (s | t). (2.4)

Note that the convolution operator ∗ arises naturally in our calculus, allowing

us to leverage the powerful tools of Fourier analysis for the efficient computation of
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footprint descriptors. Putting together Equations 2.1, 2.2, 2.3, and 2.4 above, we

can compute the FD of ρ from the FDs of ρ1 and ρ2 as we show in more detail in

Algorithm 1.

Algorithm 1 Addition algorithm
Input: FD1 = 〈λ1, P r1 , P a1 〉, FD2 = 〈λ2, P r2 , P a2 〉, S and T be the buckets for s and t

respectively
Output: FD = 〈λ, P r, P a〉
1: λ = λ1 + λ2
2: for all t ∈ T do
3: P r(t) = λ1

λ1+λ2
P r1 (t) + λ2

λ1+λ2
P r2 (t)

4: P a(t) = λ1
λ1+λ2

P a1 (t) + λ2
λ1+λ2

P a2 (t)
5: for all s ∈ S do
6: P r(s | t) = λ1

λ1+λ2
(P r1 (s | t) ∗ P a2 (s | t))

+ λ2
λ1+λ2

(P a1 (s | t) ∗ P r2 (s | t))
7: P r(s, t) = P r(s | t)P r(t)
8: P a(s | t) = P a1 (s | t) ∗ P a2 (s | t)
9: P a(s, t) = P a(s | t)P a(t)

Time complexity: We can use Fourier analysis to speed up the computation of

the addition operation. Let S and T be the maximum value buckets for s and t

respectively. The addition operation can be performed in O(TS logS) time, since we

need to perform 3 convolution operations in total for Equations 2.3 and 2.4 for every

value of t, where each convolution takes O(S logS) time using Fast Fourier Transform

algorithm (FFT) and t takes on T values.

Inferring the individual hit rates of ρ1 and ρ2 after addition: Let the hit rate

curves HRC ′1(s) and HRC ′2(s) represent the post-addition individual hit rate curves

of ρ1 and ρ2 within ρ1 ⊕ ρ2, i.e. HRC ′i(s) is the post-addition hit rate of ρi when the

traffic mix occupies cache capacity s. Then, HRC ′1(s) and HRC ′2(s) can be computed

as follows.

HRC ′1(s) =
∑
s′≤s

∑
t

P r(s′ | t)P r
1 (t).

HRC ′2(s) =
∑
s′≤s

∑
t

P r(s′ | t)P r
2 (t). (2.5)
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2.2.3.2 Subtraction

The subtraction operation models the traffic provisioning operation of removing

some traffic classes from the list of traffic classes served by a cache server. The result

of that operation is that the request stream corresponding to those traffic classes are

subtracted out. Given a request sequence ρ1 that is a subsequence of ρ, we define

ρ2 = ρ	 ρ1 to be the sequence obtained when the requests of ρ1 are removed from ρ.

We show how the FD of the resultant sequence ρ2 can be obtained from the FDs for

ρ and ρ1. Note that we relate the request streams with the addition operator, i.e.,

ρ = ρ1⊕ρ2. Thus, the FD of ρ2 can be computed by simply “inverting” Equations 2.1,

2.3, and 2.4 that we derived earlier for addition. By inverting Equation 2.1, we get

λ2 = λ− λ1 (2.6)

The key idea for finding the descriptor functions is that the convolution A =

B ∗ C can be inverted by using the frequency domain, i.e., C = F−1(F(A)/F(B)),

where F and F−1 are Fourier transform and its inverse respectively. Thus, inverting

Equation 2.4 we get

P a
2 (s | t) = F−1(F(P a(s | t))/F(P a

1 (s | t))). (2.7)

To find P r
2 (s | t), we use Equation 2.3 to first compute P r

2 (s | t) ∗P a
1 (s | t). Then,

since we know P a
1 (s | t), we can compute P r

2 (s | t) by using the Fourier transform

and its inverse as above. We provide the details of the subtraction algorithm in

Algorithm 2. P r
2 (s | t) on line 8 in Algorithm 2 is computed from Equations 2.3 and

2.7.

Time complexity: Let S and T be the maximum value buckets for s and t re-

spectively. The subtraction operation can be performed in O(TS logS) time, since t

takes on T values, we need to perform O(1) Fourier (or, inverse Fourier) transforms
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Algorithm 2 Subtraction algorithm
Input: FD = 〈λ, P r, P a〉, FD1 = 〈λ1, P r1 , P a1 〉, S and T be the buckets for s and t respec-

tively
Output: FD2 = 〈λ2, P r2 , P a2 〉
1: λ2 = λ− λ1
2: for all t ∈ T do
3: P r2 (t) =

(
P r(t)− λ1

λ1+λ2
P r1 (t)

)
λ1+λ2
λ2

4: P a2 (t) =
(
P a(t)− λ1

λ1+λ2
P a1 (t)

)
λ1+λ2
λ2

5: for all s ∈ S do
6: P a2 (s | t) = F−1(F(P a(s | t))/F(P a1 (s | t)))
7: P a2 (s, t) = P a2 (s | t)P a2 (t)
8: P r2 (s, t) = P r2 (s | t)P r2 (t)

for each value of t, and each Fourier (or, inverse Fourier) transform takes O(S logS)

time using FFT.

2.2.3.3 Scaling

Suppose we wish to increase or decrease the traffic volume for a request sequence

ρ1. This operation is called scaling and we express the new request sequence ρ = ρ1⊗τ ,

where τ is the factor by which the volume is increased (resp. decreased). We model

the volume increase (resp. decrease) as scaling the time variable, i.e., the time stamp

of each request in ρ1 is divided by the factor τ . This has the effect of decreasing

(resp. increasing) the inter-arrival times for the requests by τ when τ > 1 (τ < 1).

We compute the FD of ρ from the FD of ρ1 as follows.

λ = λ1τ ;P r(s, t/τ) = P r
1 (s, t);P a(s, t/τ) = P a

1 (s, t). (2.8)

It is worth noting that scaling does not change the hit rate curve of P r(s, t/τ) since

the marginal distribution of P r(s) = P r
1 (s).

Time complexity: Let S and T be the maximum value buckets for s and t respec-

tively. The computations in Equation 2.8 can be performed in O(ST ) time, faster

than addition or subtraction.
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Note: It should be noted that the footprint descriptor calculus described in this

section predicts the byte hit rate of a request sequence, which is the metric considered

in this work. The calculus works just the same to predict the object hit rate, with

the slight modification that λ for a request sequence ρ is the arrival rate in requests

per second rather than in bits per second. Also, note that the calculus allows us

to compute the FD of complex traffic mixing operations by composing the three

supported operators. For example, to subtract a subclass τ ′1 from a class τ1 and add

the resultant to half the volume of class τ2, the FD of the final mix τ = ((τ1 	 τ ′1)⊕

(τ2 ⊗ 1/2)) can be computed efficiently using the calculus and FFT from the FD’s of

τ1, τ
′
1 and τ2.

2.2.4 A simpler footprint descriptor (SFD)

In this section, we outline a simplification of footprint descriptors that makes im-

plementations faster, at the cost of some theoretical rigor. Empirically, we observed

that on production traces the descriptor functions P a(s, t) and P r(s, t) were statis-

tically similar, i.e., the reuse sequences that start and end in a request for the same

object, and arbitrary sequences that do not have the reuse property were statistically

similar. The reason is that request sequences have requests for millions of different

objects, and conditioning on starting and ending on a request for the same object

does not alter the statistical behavior of the rest of the sequence very much. There-

fore, a simpler footprint descriptor (SFD) is a tuple 〈λ, P r(s, t)〉, i.e., the all-sequence

descriptor P a(s, t) is dropped since it is similar to reuse-sequence descriptor P r(s, t).

Having just one descriptor function makes computing SFD much simpler and faster

for the addition and subtraction operations. For instance, if P a(s, t) is assumed iden-

tical to P r(s, t), Equation 2.4 simplifies to the following equation that requires just

one convolution instead of two.

P r(s | t) = P r
1 (s | t) ∗ P r

2 (s | t). (2.9)
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Note that SFDs can be used to derive the cache hit rate curve HRC as described in

Section 2.2.2, since it depends only on P r(s, t). For these reasons, we often use SFDs

in practice, in lieu of FDs.

2.3 Validation of footprint calculus

In this section, we validate the addition operation described in Section 2.2.3 by

computing the hit rate curves using the footprint calculus on SFDs described in

Section 2.2.4. We then compare the calculus predictions with the hit rates obtained

via cache simulations using the production traces, a simple baseline algorithm, as

well as hit rates obtained directly from the production server. Further validation of

addition and subtraction also appears as part of the case studies in Sections 2.4.1.1

and 2.4.1.3 respectively. We do not validate the scaling operator since the hit rate

curve after scaling remains unchanged.

Additional traces for validating scalability of addition: Our initial set of traces

described in Table 2.1 were from servers that each served two major classes i.e., the

top two traffic classes accounted for most of the traffic from the server. To validate

the addition of more traffic classes, we chose two additional production servers one

that served four traffic classes across the four content types of web, image, video and

download and another server that served nine traffic classes across three content types,

namely web, video and download. These new traces let us evaluate the accuracy of

the calculus when a larger number of traffic classes are mixed. The details of the

additional traces are described in Tables 2.2 and 2.3 respectively. In Table 2.3 we

show nine different traffic classes that have web, video, and download content from

different content providers.

Baseline traffic mixing algorithm: We describe a baseline traffic mixing algorithm

commonly used in operations that predicts the cache hit rate of a traffic mix using

only the hit rate curves of all traffic classes. For every value of the cache hit rate,
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Traffic class Web Download Image Video

Length of trace (days) 1 1 1 1
Arrival rate (req/s) 223.53 51.04 216.42 180.01
Traffic volume (Mbps) 411.95 101.40 41.23 181.11
Object count (millions) 2.89 0.23 8.78 2.54
Average object size (MB) 0.3 0.4 0.02 0.24

Table 2.2: Characteristics of the 2nd set of traces.

Traffic
class

Web-
1

Web-
2

Web-
3

Web-
4

Video-
1

Video-
2

Video-
3

Video-
4

Download

Length
of trace
(days)

8 8 8 8 8 8 8 8 8

Arrival
rate
(req/s)

168 16 6 3 53 21 4 3 22

Traffic
volume
(Mbps)

1105.4 114.7 1.8 0.002 292.6 112.4 21.6 14.9 234.5

Object
count
(mil-
lions)

15 1.6 0.05 0.07 11.7 2.5 1.9 0.6 1.9

Average
object
size
(MB)

1.6 1.9 0.05 1.7 0.7 0.8 0.7 0.9 2.0

Table 2.3: Characteristics of the 3rd set of traces.

the baseline algorithm determines the cache capacities for each traffic class from their

respective hit rate curves and adds them up. The hit rate curve thus produced is the

predicted curve for the traffic mix. For example, consider two traffic classes with hit

rate curves HRC1(s) and HRC2(s) respectively. Then, the cache capacity required

by the traffic mix to achieve hit rate h is predicted as HRC−11 (h) +HRC−12 (h). This

is repeated for all values of h to produce the hit rate curve of the mix.

The baseline algorithm described above is extremely simple and fast with time

complexity O(S), for hit rate curves having S cache size buckets. While simple,

28



the baseline scheme does not account for the inter-arrival time distributions of the

request sequences, and hence is an unreliable predictor of cache hit rates. We discuss

the shortcomings in the following section.

2.3.1 Experimental evaluation

We show via simulations using production traces that the calculus is more accurate

at predicting hit rates of traffic mixes and is necessary for traffic provisioning. For

our simulation-based validation, we combine production traces corresponding to each

traffic mix and perform a cache simulation on these merged traces for different cache

sizes to obtain a hit rate curve. We call this the “simulated” hit rate curve. We also

compute the hit rate curve of the traffic mix using the calculus. We call this the

“calculated” hit rate curve. Finally, we compute the hit rate curve using the baseline

algorithm and we call this the “baseline” hit rate curve.

Traffic mixes Average error
of baseline, %

Average error
of calculus, %

web+download (Table 2.1) 0.24 0.13
video+image (Table 2.1) 0.63 0.10
Traffic classes in Table 2.2 10.2 0.28
Traffic classes in Table 2.3 11.8 0.34

Table 2.4: Average prediction error of the baseline algorithm vs. the FD calculus.

In Table 2.4, we present the average error of the baseline and the calculated hit

rates with respect to the simulated values. We present the error for performing the

addition operation for the web and download classes, and video and image classes in

Table 2.1 and the addition of all classes in Tables 2.2 and 2.3. While the baseline

algorithm has a small error for web+download and video+image from Table 2.1,

the large difference and variability in error between the baseline algorithm and the

calculus in general, and the consistently small average error of the calculus, highlight

the need for the more accurate calculus in predicting the effects of traffic mixing.
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We now discuss another scenario where the calculus is superior to the baseline

algorithm. Very often, CDN operators need to predict the effects of traffic scaling

on traffic mixing, to better provision caches under varying traffic conditions. For

instance, CDN operators would like to know the hit rate of a traffic mix when the

traffic volumes of one or more traffic classes are varied. We show that under such

circumstances, the calculus (using the scaling operation in conjunction with addition)

provides more reliable outputs than the baseline algorithm which responds erratically

to traffic scaling.

To illustrate this scenario, we consider the traffic mix of the traffic classes in

Table 2.2. We consider two scenarios, 1) the traffic classes are mixed at their current

traffic volumes (unscaled versions) and 2) we scale the traffic volume of the download

traffic class up by 20 times, to 2028 Mbps, and predict the cache hit rate under traffic

mixing in this new scenario (scaled versions). In Figure 2.4, we plot the “simulated”,

“calculated” and “baseline” hit rate curves without scaling. We also plot the hit

rates curves of the traffic mix (after scaling the download traffic class) predicted by

the calculus (“calculated-scale”) and the baseline algorithm (“baseline-scale”). We

refer to traffic mix web+image+video+download from Table 2.2 as “wivd”. We also

zoom in on the x-axis for clarity.

From Figure 2.4, we see that the hit rate curve predicted by the calculus,

wivd(calculated), closely matches the simulated hit rate curve, wivd(simulated), with

an average error of 0.28%. However, the error between the simulated curve, wivd(simulated),

and the baseline scheme, wivd(baseline), without scaling is much higher at 10.2% on

average, as previously discussed. After scaling the download traffic class up by a

factor of 20, we see that the hit rate of the traffic mix, wivd(calculated-scale), in-

creases as expected because the download traffic class dominates the mix (see the hit

rate curve of the download traffic class labelled pre-addition in Figure 2.5). On the

contrary, there is little change in the estimate of the baseline algorithm after scaling,
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Figure 2.4: Hit rate curves of the traffic mix in Table 2.2 before and after scaling the
download traffic class by a factor of 20.

Figure 2.5: Hit rate curves of traffic classes in Table 2.2.

wivd(baseline-scale), and the estimated hit rate is less than that of the calculus by

17.8% on average. This is because the baseline algorithm is unaware of the changes in

the inter-arrival times of requests after scaling, which the calculus takes into account.

We do similar comparisons for the other sets of traces. We scale up 20 times

the image traffic class in the video+image mix in Table 2.1. We also scale up 20

times the download traffic class in both the web+download mix in Table 2.1 and the
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mix of traffic classes in Table 2.3. We find that “baseline-scale“ is 8.6% less than

“calculated-scale” on average in the case of video+image in Table 2.1, 4.2% less than

“calculated-scale” on average in the case of web+download in Table 2.1 and 23.1% less

than “calculated-scale” on average for the traffic mix in Table 2.3. This evaluation

further emphasizes the need for the more accurate calculus that accounts for both

the spatial and temporal interactions between traffic classes during traffic mixing and

predicts hit rates accurately.

Production evaluation: We perform a production validation by comparing the hit

rates produced by our calculus with the hit rates measured directly from the produc-

tion server serving the required mix of traffic over the same time period. Measuring

it directly from the production server measures the actual production caching soft-

ware implemented on the deployed hardware. This validation method validates only

one point on the HRC, the point that corresponds to the actual cache size of the

production server. We measured the average hit rate reported by the production

servers corresponding to the traffic mixes in Tables 2.1, 2.2 and 2.3. The results are

in Table 2.5.

Traffic mix Cache size (TB) Hit rate from
calculus, %

Hit rate from
server, %

web+download
(Table 2.1)

3.0 86.6 84.1

video+image
(Table 2.1)

3.7 37.7 39.3

Traffic classes in
Table 2.2

2.0 79.9 77.4

Traffic classes in
Table 2.3

3.7 68.6 67.5

Table 2.5: Production validation.

From Table 2.5, we see that that calculus predicts the cache hit rate of the traffic

mixes considered with a prediction error of at most 2.5% in all cases. The difference
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in hit rates is in part due to the fact that the production servers were intermittently

used to serve small amounts of other traffic classes by the mapping system. Moreover,

the footprint calculus models a pure LRU algorithm while the production system has

extra optimizations that we do not currently model. The low prediction errors from

our production validation further strengthens the case for using footprint descriptor

calculus to provision traffic in CDNs.

2.4 Applying footprint descriptors in a production CDN

In this section, we provide case studies to show how footprint descriptors play a

key role in traffic provisioning in CDNs.

2.4.1 Traffic mix evaluation service

Several what-if questions arise in the process of determining the optimal traffic

mix of traffic classes that is served by a cache server. A traffic mix evaluation service

can provide detailed information about cache occupancy and hit rates when various

traffic classes are combined together. The output of the service prevents poor mixing

choices from going into effect in any cache server. We used footprint descriptors to

implement the service that is currently in use by the operations staff at Akamai in

a limited beta setting. The service computes footprint descriptors for each traffic

class hosted on the CDN using the techniques described in Section 2.2. The service

keeps a database of all the cache servers and their properties, including the cache

space available. We show how FDs are used to answer key questions that arise in the

context of traffic mixing.

2.4.1.1 Estimating space requirement of a traffic mix

Given a set of traffic classes with their respective traffic volumes, a CDN operator

might be interested in the cache capacity required by the traffic mix to provision
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Figure 2.6: Addition operation on web and download traffic classes in Table 2.1.

servers to achieve a target hit rate. The traffic mix evaluation service computes the

output using the following steps.

1) The footprint descriptor of all the traffic classes of interest are computed effi-

ciently using the techniques outlined later in Section 2.4.3. Each traffic class is then

scaled to the required traffic volume using the ⊗ operator described in Section 2.2.3.3,

and added together using the ⊕ operator described in Section 2.2.3.1, which gives the

footprint descriptor of the traffic mix.

2) Using Theorem 2.2.1, the HRC of the traffic mix is computed from its footprint

descriptor.

3) Given the HRC and the target hit rate h, the required cache size s is determined

such that the hit rate HRC(s) ≥ h.

Validation of functionality: We consider one example, the traffic mix of the web

and download traffic classes in Table 2.1 to illustrate the use of footprint descriptor

calculus. Figure 2.6 shows the HRCs of the web and download traffic classes labeled

“pre-addition”, as well as the HRC of the mix as computed by the calculus labeled

“calculated”. To validate the correctness of the HRC of the mix, we merge the

request traces for both the classes by interleaving the requests in the ascending order
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of their time stamp. The HRC derived from the merged trace using cache simulations

is shown in Figure 2.6, labeled “simulated”. As can be seen, the calculated and

simulated HRCs match closely with an average error of 0.13%, thus validating that

the addition algorithm works on production traces.

2.4.1.2 Predicting the outcome of traffic mixing in a given server

For this use case, the operator provides the cache size of the server and the traffic

classes with their respective traffic volumes to be mixed in that server. With this

input, the service does the following:

1) The footprint descriptors of all the traffic classes of interest are computed, scaled

to the required traffic volume using the ⊗ operator described in Section 2.2.3.3, and

added together using the ⊕ operator described in Section 2.2.3.1, to give the footprint

descriptor of the traffic mix.

2) Using Theorem 2.2.1, the HRC of the traffic mix is computed. Using Equa-

tion 2.5, we also compute the (post-addition) HRCs of each traffic class in the mix.

3) Given the total cache size and the HRC of the mix, we obtain the hit rate of

the mix. Using the total cache size and the (post-addition) HRC of the individual

traffic classes, we obtain the hit rates of each traffic class in the mix.

4) Using the post-addition hit rates of each traffic class and their (pre-addition)

HRCs, we can obtain the cache space occupied by each traffic class after the addition.

Thus, our service predicts the overall cache hit rate for a given traffic mix, indi-

vidual cache hit rates for each traffic class after mixing, and the cache space occupied

by each traffic class in the cache after mixing. This information is valuable to differ-

entiate between good and poor mixes.

Validation of functionality: We continue with the above example of mixing web

and download traffic classes described in Table 2.1. We assume here that the cache

server has a total cache size of 1 TB. As shown in Figure 2.6, the HRC labeled “web+
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Figure 2.7: Pre-addition and post-addition HRCs of web and download traffic classes
in Table 2.1.

download(calculated)” says that the cache will get 82% overall hit rate. The HRC

labeled “web+download(simulated)” confirms the correctness of the value. Figure 2.7

shows the pre-addition and post-addition HRCs for both the web and download traffic

classes. Plugging in 1 TB as the cache space, we see that within the mix, the web

traffic class gets a hit rate of 80.5%, while the download traffic class gets a hit rate of

84%. Now, performing a reverse lookup for these hit rates in the original HRCs for

these two traffic classes in Figure 2.7, we see that the web traffic class occupies 300

GB in cache, while the download traffic class occupies the remaining 700 GB.

2.4.1.3 Splitting domains in a traffic class

A traffic class consists of user requests for content hosted on a specific set of do-

mains. Often, domains need to be removed from traffic classes to achieve better load

balancing. In such situations, it is important to predict how the caching character-

istics of the traffic class would change if some domains are removed. This prediction

can be performed using the subtraction operator 	 described in Section 2.2.3.2. We

first collect the traces for the domains to be removed from the original traffic class,
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Figure 2.8: Subtracting a subset of domains from the video traffic class in Table 2.1.

and we compute the footprint descriptor for the resulting traffic class using the sub-

traction operation. The resultant footprint descriptor can be used to compute the hit

rates after the split.

Validation of functionality: We plot the results of this operation in Figure 2.8.

Note that the x-axis has been truncated for clarity of presentation. In this in-

stance, we want to remove a certain set of domains from the video traffic class in

Table 2.1. In Figure 2.8, video complete indicates the hit rate curve for the entire

traffic class, video set2(calculated) is the hit rate curve of the remaining domains

when video set1 is removed. video set2(simulated) is the hit rate curve of video set2

computed via cache simulations. We see that video set2(calculated) compares very

well with video set2(simulated), with an average error of 0.05%, confirming that the

	 operator works well on production traces as well.

2.4.2 Hit rate targets with cache partitioning

In many situations, it is necessary to guarantee a certain hit rate performance for

a subset of traffic classes in a traffic mix, while ensuring that the traffic mix does

well overall. The traffic mix evaluation service uses cache partitioning to ensure that
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each traffic class meets its target hit rate while making the best use of the remaining

cache space to maximize the overall cache hit rate. The aims of cache partitioning

are twofold:

1) Ensure that each traffic class gets at least its requisite cache space, and

2) Any leftover space is assigned appropriately to the traffic classes, so that the

hit rate of the cache as a whole is maximized.

The first aim is achieved using our calculus as follows:

1) Using Theorem 2.2.1, HRCs are computed from the footprint descriptor for all

traffic classes, and

2) A reverse lookup is performed on the HRCs, to get the cache size needed for

the given target hit rate. This is the requisite partition size for each traffic class.

Towards the second aim, the leftover cache space is divided into a number of

smaller blocks. Each block is added incrementally to the traffic classes, using the

following method:

1) Compute the traffic-weighted first derivative of the HRC of each traffic class at

the point where the size of the cache is equal to its current partition size,

2) Identify the traffic class with the highest value of this first derivative. This

class can provide the most benefit in cache hit rates if it is given the block being

considered, and

3) Assign the block to the class with the highest derivative, and increase its par-

tition size.

All the remaining cache space is assigned to traffic classes in this way. The re-

sulting partition of cache space maximizes the server’s cache hit rate, while meeting

the hit rate targets of the individual traffic classes. Once the partition sizes are de-

termined, the partitions are implemented as separate virtual LRU caches within the

given server. The method of allocating leftover cache space is similar to the utility
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maximization approach described in [100] where the first derivative of the HRC is the

utility function.

Validation of functionality: We continue with our example of mixing web and

download traffic classes from Table 2.1. We assume here that the cache server has

a total cache size of 1 TB. First we consider targets of 85% hit rates for both the

traffic classes. The (post-addition) HRCs for the individual traffic classes suggest

that neither class can achieve this hit rate, since the cache space available is 1 TB.

Thus, partitioning to achieve 85% hit rate is infeasible. Next, we consider a hit rate

target of 83% for the web class and 75% for the download class. These targets are

chosen to illustrate how footprint descriptors can be used for cache partitioning. A

reverse lookup of hit rate in Figure 2.6 shows that the requisite cache spaces for the

web and download classes are 625 GB and 125 GB, respectively. This leaves 250 GB

of available cache space unassigned to either class. The first derivative method [100]

is used to determine the assignment of the leftover 250 GB, and it assigns all of it to

the download class. Thus, the 1 TB cache is partitioned into 625 GB and 375 GB

partitions. The hit rate of the web class meets its target of 83%, while the download

class achieves a better than target hit rate of 82.5%. As observed in [100], cache

partitioning can be used to improve the overall cache hit rate when multiple traffic

classes share the cache space. Indeed the cache hit rate after mixing the web and

download traffic classes increases from 82% without explicit partitioning to 83% with

partitioning.

2.4.3 Parallelizing the computation of FDs

Before footprint descriptors can be used in operational decision making as il-

lustrated in previous sections, they need to be computed from request sequences.

Typically, request sequences over observation periods of a couple of days to a few

weeks are processed to compute footprint descriptors. These sequences may contain
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Figure 2.9: Map-reduce framework to parallelize footprint descriptor computation.

over a billion distinct URLs. Such industrial-strength computation is a heavyweight

proposition both in terms of memory and CPU cycles. We develop a novel map-

reduce-based framework that uses the ⊕ operation of our calculus to parallelize the

computation of footprint descriptors for large request sequences. The procedure is

below.

Map phase: Split the input request sequence into N smaller request sequences

that share no objects between them. We accomplish this by hashing the URL of each

request into N buckets, each bucket representing a smaller request sequence.

Reduce phase: Compute the footprint descriptors of the N smaller sequences in

parallel. Using the ⊕ operator, add the footprint descriptors for the smaller sequences

in parallel, until we are left with one footprint descriptor. This is the footprint

descriptor of the input stream.

The complete framework is shown in Figure 2.9 where, ⊕ is the addition algorithm

described in Section 2.2.3.1. The reduce phase begins by computing the footprint

descriptors for the N object-disjoint smaller sequences (the N leaves) and adding
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them in parallel, bottom up, until we obtain the footprint descriptor of the original

input sequence which is the root of the tree. This framework parallelizes a seemingly

serial process and can speed up computation that increases nearly linearly in the

number of compute nodes.

Validation: We implement this parallel footprint descriptor computation algo-

rithm in Amazon EMR [1]. We run map-reduce jobs in a cluster with up to 32 nodes.

We use m3.xlarge machines in all experiments. The reported time is the elapsed time

of the map-reduce job recorded by the cluster.

To evaluate the speedup due to parallelization, we use a much larger set of pro-

duction traces corresponding to a video traffic class collected from 29 servers over a

period of 8 days. The request rate is 1,234 req/s and the traffic volume is 6.76 Gbps.

The trace contains 227.3 million objects with an average object size of 0.7 MB.

We observe that it takes 420 minutes to compute the footprint descriptor of the

video traffic class without parallelization and 28 minutes with a 16-way parallelization

and 16 minutes with a 32 way parallelization, that is a speed up of 15 and 26.2

respectively with no impact on the accuracy of the output.

2.5 Related work

Caching has been active area of research for the past few decades. We only review

the work on caching that is most closely related to our work. Much of the closely-

related prior work fall into the realm of cache modeling and cache composition.

Cache modeling: We subdivide the relevant work on cache modeling into em-

pirical modeling based on stack distance, which is the number of unique bytes in a

reuse request subsequence, and theoretical modeling that assumes certain statistical

properties of the request sequences. Stack distance-based caching models were first

proposed in [85]. Stack distance is useful to compute hit rate curves that plot the

cache hit rate as a function of cache size. The simple algorithm proposed in [85] has
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high space and time overheads and is infeasible for large input sequences such as those

in the CDN context. Subsequently, several time and space-efficient algorithms have

been proposed in the literature, such as those in [4, 91, 113, 118]. However, none of

the stack distance algorithms in the literature provide a calculus that allows operations

such as addition, subtraction, and scaling, a key necessary ingredient that the foot-

print descriptor calculus provides for CDN traffic provisioning. Several theoretical

models have been proposed to predict cache hit rates as early as the 1970’s [55, 74].

Of particular interest is the work in [24,42] that relates the cache size with the cache

hit rate and cache eviction age for IRM traffic. More recent work [36,52] extend such

ideas to caching policies beyond LRU. In contrast, our work is focused on modeling

and predicting properties of arbitrary production workloads of a CDN that are hard to

capture with IRM-like models.

Cache composition: Cache composition has been studied in the context of CPU

caches, where applications running in multi-processor machines share the CPU cache.

More recently, cache composition has been studied in the context of memory caches

and storage systems. Analytical models have been developed to predict cache hit

rates of time-shared systems, such as those in [3,105,109]. These models compute the

hit rate of a shared cache in the presence of context switching. The authors in [22]

propose three cache composition models with varying degrees of accuracy that predict

the impact on cache hit rates when two non-overlapping applications run together in

the shared L2 cache. The model presented in [38] goes one step further to char-

acterize overlapping data in multi-threaded programs by predicting the overlapping

footprint based on how threads interleave when running concurrently. Some other

related work [114,119,120] develop models that more accurately characterize memory

footprint of processes using novel sampling techniques and derive hit rates from those

footprints. A more recent work [60] develops a kinetic model of LRU cache, based on

the average eviction time (AET). In contrast to prior work in cache composition, we
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support a wider range of composition operations on traffic classes, including addition,

subtraction and scaling. Unlike prior work, our work is based on a theoretical sound

foundation of footprint descriptor calculus. Further, our empirical approach is focused

to the specific challenges in CDN traffic provisioning.

2.6 Conclusion

Traffic provisioning in CDNs is challenging because of the diverse requirements

imposed by diverse traffic classes. It is also challenging due to the immense scale of

the operations, both in terms of traffic volumes and the large network of cache servers.

Footprint descriptors provide a simple and elegant way of capturing the caching prop-

erties of a traffic class. The theory of footprint descriptor calculus allows us to add,

subtract and scale traffic classes to answer important “what-if” questions that arise in

CDN operations. The connections to Fourier analysis that allow footprint descriptors

to be manipulated in the “frequency domain” is also of interest. Footprint descrip-

tors are well-suited for use in production network operations, since as we show the

prediction error is under 2.5% for key use cases on the servers considered. Currently,

footprint descriptors are being used in Akamai’s production network to decide what

traffic classes should be assigned to servers or clusters of servers to maximize cache

hit rates.
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CHAPTER 3

MIDGRESS-AWARE TRAFFIC PROVISIONING

The bandwidth cost of midgress caused by cache misses is a major expense for

the CDN and could cost tens of millions of dollars a year1. Thus, even a small factor

reduction in midgress is an attractive proposition. Much of the work in academia

and industry has focused on better cache management for reducing the cache miss

rates of individual caches. The past decades have seen research on numerous cache

admission and evictions policies, such as Adapt-Size [12], Cliffhanger [30], SLRU [68],

TinyLFU [40], S4LRU [61], CFLRU [96], ARC [87], LRU-S [104], LRU-K [94], and

GDS [17]. However, the complementary problem of optimizing the traffic provisioning

process to minimize midgress has not received much attention. The traffic provision-

ing process determines the mix of traffic classes that each cache serves (Figure 1.2).

The main thesis of this work is that by explicitly incorporating midgress considera-

tions, it is possible to devise traffic provisioning schemes that minimize midgress traffic

by nearly 20%, potentially resulting in millions of dollars of bandwidth cost savings.

Further, the midgress reduction due to better traffic provisioning is complementary

to any potential improvements in the cache management system.

In the current state-of-the-art, production CDNs assign traffic classes to servers

with the goal of not overloading the servers, without explicitly focusing on the cache

miss rates and midgress reduction of the network. CDN operators have traditionally

1As a back-of-the-envelope calculation, a large CDN serving 50 Tbps of egress traffic at a 20%
miss rate at the edge has a midgress traffic of 10 Tbps. The price of network bandwidth varies
greatly throughout the world. Though hard to estimate accurately, assuming a blended price of 50
cents per Mbps per month, midgress bandwidth costs 60 million dollars per year.
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focused on midgress reduction by simply tweaking the caching management policies

that operate at the level of individual servers. Our work shows that traffic provision-

ing in a midgress-aware manner can provide additional benefits to what can accrue

from better cache management alone. Our traffic provisioning approach incorporates

both traditional load balancing and the newer midgress considerations to minimize

midgress traffic. Hence, it can be viewed as a drop-in replacement for an existing

(midgress-unaware) traffic provisioning system.

– Midgress-aware traffic provisioning: “Midgress-aware” traffic provisioning algo-

rithms explicitly incorporate cache miss traffic in addition to “balancing” the load.

We illustrate the need for midgress awareness through a simple example. Consider

two servers and three traffic classes. Each server has a cache size of 4 TB and suffi-

cient capacity to serve all traffic classes. The three traffic classes have equal load of

λ that need to be assigned to the two servers. The miss rate curves (MRCs) for the

three traffic classes are as shown in Figure 3.1. The MRCs of traffic classes TC1 and

TC3 flatten out quickly (high gradient in the beginning and zero-gradient there af-

ter). This means that they require very little cache space to achieve the best possible

performance. On the other hand, traffic class TC2 has a slowly decreasing gradient.

Thus, the miss rate of TC2 keeps decreasing as more cache space is allocated to it.

Current traffic provisioning algorithms are midgress-unaware in that they only

ensure that no server is overloaded. Such an algorithm could choose any assignment

of traffic classes to servers, since any server has sufficient capacity to serve all classes,

e.g., assigning TC1 and TC2 to server 1 and TC3 to server 2 is one possible solution.

More generally, any assignment with (x + y + z) × λ traffic to server 1 and ((1 −

x) + (1− y) + (1− x))× λ traffic to server 2 is feasible, where x, y and z ∈ [0, 1], are

the traffic fractions of TC1, TC2 and TC3 respectively. However, a midgress-aware

algorithm would choose an assignment that minimizes the overall cache miss traffic

from the two servers, while also ensuring that no server is overloaded. In the above

45



0

20

40

60

80

100

0 1 2 3 4 5 6

Ca
ch

e 
m

iss
 ra

te
, %

Cache size, TB

TC_1
TC_2
TC_3

Figure 3.1: MRCs of traffic classes TC1, TC2 and TC3.

example, assigning all of TC1 and TC3 to server 1 and all of TC2 to server 2 would

result in the least amount of cache miss traffic from the two servers. This is because

TC2 gets the largest cache space possible for its entire load and TC1 and TC3 get

enough space to achieve the smallest cache miss rates.

– Contributions: We make the following specific contributions.

1) We develop an optimization model for midgress-aware traffic provisioning

that assigns traffic classes to servers in a manner that minimizes midgress traffic.

The model is a non-convex mixed-integer linear program (MILP) that we solve using

CPLEX (a standard constraint solver). Our work is the first to explicitly model

and minimize midgress in the traffic provisioning process, a significant advance over

the current state-of-the-art in traffic provisioning algorithms in CDNs. Since a large

CDN could incur a midgress of 10+ Tbps at a cost of $60+ million/year, even a small

midgress reduction translates into large cost savings for the CDN.

2) We apply our optimization solution to metro-level traffic provisioning where

the traffic classes provisioned to a set of server clusters within a metro area (e.g.,

NY city) are re-provisioned to reduce the total midgress traffic. Metro-level traffic

re-provisioning is a common operation within a CDN, since the latency impact of
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moving a traffic class from one cluster to another within the same metro is likely

minimal. Using extensive production traces from Akamai’s CDN, we show that our

midgress-aware traffic provisioning can reduce the midgress of an entire metro-area

by 18.37% on average compared to the prior midgress-unaware traffic provisioning.

3) We also use our optimization solution for cluster-level provisioning where we

take traffic classes assigned to a cluster and re-provision them to reduce the total

midgress traffic. Cluster-level traffic (re-)provisioning is also a common operation

within a CDN since moving a traffic class from one server to another within the

same cluster will likely not impact end-user latencies. Using production traces from

Akamai’s CDN, we show that cluster-level provisioning in conjunction with metro-

level provisioning can reduce the midgress of a traffic class by 41.07% on average

compared to the prior midgress-unaware traffic provisioning.

4) To be useful in practice, midgress-aware traffic provisioning has to be compu-

tationally efficient, since such provisioning is performed periodically across hundreds

of thousands of servers, deployed in 1000+ clusters around the world, that serve hun-

dreds of traffic classes. We propose a footprint-aware heuristic called local search

that is fast and near-optimal. The midgress achieved by local search is within 1.1%

of optimal for both metro-level and cluster-level traffic provisioning. Further, in our

experiments, local search completed in only 2 minutes, while finding the optimal

took several hours.

5) Using production traces from Akamai, we show that our traffic provision-

ing algorithms are robust across different cache management policies and provide a

midgress reduction in the range 7.76% - 13.3%.

6) CDN operators often have to deal with additional constraints such as main-

taining a certain level of traffic class redundancy for fault tolerance or guaranteeing a

minimum level of caching performance for certain traffic classes. We show how the op-
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timization model for midgress-aware traffic provisioning and the heuristic algorithm,

local search, can be extended to accommodate such constraints.

7) While the above results are for “shared” caches where a single unpartitioned

cache is used to store objects from all traffic classes, we show that our traffic provi-

sioning approach can be modified to also work with “partitioned” caches where each

traffic class is assigned a separate partition of the cache. We show that the midgress of

partitioned caches can be reduced by more than 14% using our midgress-aware traffic

provisioning approach, when compared to a baseline midgress-unaware approach.

– Roadmap: The rest of this chapter is organized as follows. In Section 3.1, we model

traffic provisioning to minimize midgress as a non-convex mixed-integer optimization

problem that can be solved by a constraint solver such as CPLEX. In Section 3.2,

we propose a faster heuristic for midgress-aware traffic provisioning called local

search, as well as a midgress-unaware baseline heuristic called baseline fit. In

Section 3.3, we evaluate our optimization model and heuristics using extensive traces

from Akamai’s production CDN to empirically understand the midgress reduction

achieved by our algorithms. In Section 3.4, we extend and evaluate our midgress-

aware traffic provisioning algorithms to include other cache performance guarantees

such as minimum redundancy and maximum cache miss rate per traffic class. Further,

we extend our work to partitioned caches. In Section 3.5 we discuss some related work

before concluding in Section 3.6.

3.1 Our optimization solution for traffic provisioning

We model traffic provisioning in a CDN as follows. We are given a set of N

traffic classes. For each traffic class j, we are given the (predicted) amount of load

of λj Gbps,∀j ∈ 1 . . . N . The predicted load for traffic provisioning is derived from

historical load values for these classes by the CDN. Further, we are given M sites

where the ith site has a cache of size Ci TB and a capacity of Ti Gbps,∀i ∈ 1 . . .M .
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In cluster-level traffic provisioning, each site models a single CDN server within a

cluster of M servers. In the more complex setting of metro-level traffic provisioning,

we model an entire cluster as a single site within a metro area with M clusters. While

not strictly accurate, we show that viewing the entire cluster as a single site in the

metro-area setting is useful in practice. The capacity (resp. cache size) of each site

is calculated as either the capacity (resp. cache size) of a single server in the former

setting or as the aggregate capacity (resp. cache size) of the entire cluster in the

latter setting. Henceforth, a site refers to a server in the cluster-level setting and a

cluster in the metro-level setting.

The goal of traffic provisioning is to produce an assignment of traffic classes to

sites, such that the total midgress across all the sites is minimized within the con-

straint that no site is assigned more load than its capacity. Note that a traffic class

may be fractionally assigned across multiple sites, e.g., a traffic class with 10 Gbps of

load can be assigned across two sites to host 7 Gpbs and 3 Gbps each of that class2.

3.1.1 Modeling cache eviction and midgress

Given a site with an assignment of traffic classes, we need to model the miss traffic

(i.e., midgress) that will result from serving those classes. The miss traffic is depen-

dent on the cache management policies used by the sites. Nearly all production CDN

caches use LRU (least-recently-used) variants as their eviction policy, since it is very

efficient and achieves a comparable (byte) miss rate for typical CDN content traffic in

comparison with other more complex eviction policies. For example, Akamai servers

evict content using LRU, while admitting objects on second hit [81]. Production in-

stallations of the popular content caches Varnish [67] and NGINX [101] also use LRU

variants, as do recent academic work on content caching such as AdaptSize [12].

2A CDN can implement such a fractionally-provisioned traffic class via a DNS mechanism that
returns the ip address of the first site 70% and the ip address of the second site 30% of the time.
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Production CDN servers also typically use a shared cache architecture where each

server uses a single unpartitioned cache to serve all its traffic classes [107]. It is

known that a partitioned cache that is sized in an optimal fashion can yield a greater

reduction in midgress over a shared unpartitioned cache under IRM traffic assump-

tions [37]. However, in a production CDN, each server hosts a large number of traffic

classes. Further, both the set of traffic classes hosted by a given server and the volume

of traffic served per class by that server varies throughout the day. Thus, there is sig-

nificant overhead involved in maintaining multiple cache partitions whose sizes must

be dynamically varied throughout the day. The constant resizing of cache partitions

could itself also lead to an increase in the midgress [99]. For these reasons, a shared

unpartitioned cache is typically used by CDNs in practice.

In light of the above discussion, since our goal is to devise traffic provisioning

algorithms to reduce midgress in production CDN settings, we develop a model for

sites that use an LRU cache eviction policy with a shared cache architecture. But,

later, we show empirically that our optimization model and algorithms produce a sig-

nificant reduction in midgress, even if the CDN were to use other eviction policies

(Section 3.3.3). Further, we show that our approach can also be easily extended to

provide midgress reduction in a partitioned cache architecture (Section 3.4.3).

3.1.1.1 Eviction age equality

The eviction age of an object in cache is the difference between the time the object

is evicted and the time that it was last accessed. In an LRU cache, at the time of

access, the object goes to the head of the LRU list. Then, the eviction age of the

object is the time for that object to move from the head to the tail of the LRU list

and then get evicted. Thus, this time is about the same for all objects, when the size

of an object is small with respect to the size of the cache. We make the modeling

assumption that the eviction age of all objects in cache are equal. This assumption
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is also borne out in production caches and the common eviction age of the objects is

logged as the eviction age of the cache.

The notion of eviction age can be extended to a traffic class by averaging the

eviction age of all the requested objects from that traffic class. Since we model each

object as having the same eviction age, all traffic classes assigned to a site share the

same cache, and so they must have the same eviction age, which we also denote to

be the eviction age of the cache. The eviction age of a cache has a direct relationship

with the cache hit rate. Requests that have inter-arrival times less than or equal to

the eviction age experience a cache hit and the rest experience a cache miss. So, for

a given mix of traffic classes, as the cache size increases, the eviction age increases

and so does the cache hit rate. Eviction age of a cache is similar to the concept of

window size in [42]. Eviction age equality is crucial in our modeling of the midgress

of traffic classes that share a single LRU cache.

3.1.2 Formulation of our optimization model

We now formulate our optimization model (referred to as OPT henceforth) for

midgress-aware traffic provisioning.

– Inputs of OPT: The input parameters used in the model are summarized in Ta-

ble 3.1. We are given N traffic classes and M sites. The load λj of the jth traffic

class is given, for all 1 ≤ j ≤ N . The cache size Ci and the capacity Ti of the ith site

is also given, for all 1 ≤ i ≤ M . Further, for each traffic class, we are given the miss

rate curve (MRC) and eviction age function as described below.

1) Miss rate curve (MRC),Mj(c). The MRC of a traffic class plots the cache miss

rate as a function of cache size c. In this work, we assume that this function is convex

(decreasing) which is generally true for CDN traffic classes [107]. As examples, MRC

of two traffic classes, traffic class 2 and 14 (see Table 3.3) are shown in Figure 3.2.
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Figure 3.2: MRCs of two traffic classes in a metro area.

From Figure 3.2, we can see that the MRCs are both convex. However, their

gradients vary at different rates. For instance, traffic class 2 has higher gradient at

very small cache sizes but gradually flattens out as it reaches a cache space of 30 TB.

Traffic class 14 on the other hand has a relatively high gradient until about 15 TB

after which the MRC flattens out.

2) Eviction age function, Tj(c, λ). The eviction age function of a traffic class plots

the eviction age at load λ as a function of the cache size c. The eviction age function

also gives us information about footprint pressure of a traffic class, which is a relative

measure of the amount of unique bytes accessed over a time period. A traffic class has

high footprint pressure if a large number of unique bytes are accessed over a short time

period. In this work, we assume that the eviction age function is convex (increasing)

based on observations from production traces. The convexity makes intuitive sense

based on the observation that the popularity distribution of CDN content tends to

be close to a Zipf distribution [107]. As examples, eviction age functions of traffic

classes 2 and 14 (see Table 3.3) are shown in Figure 3.3.

From Figure 3.3, we can see that the eviction age functions are convex. As

expected, at the given load, the eviction age increases with increase in cache size.
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Figure 3.3: Eviction age functions of two traffic classes in a metro area. The eviction
age functions indicate how traffic classes compete for shared cache space.

Note that until about an eviction age of 2.1 days, traffic class 14 has higher footprint

pressure when compared to traffic class 2, after which this behavior is flipped. Hence,

if traffic classes 2 and 14 are assigned to the same site, traffic class 14 gets more cache

space at smaller eviction ages (≤ 2.1 days) due to higher footprint pressure and lesser

cache space at larger eviction ages (> 2.1 days) due to smaller footprint pressure.

– Outputs of OPT: The output parameters of OPT are presented in Table 3.2. The

primary output is xij that represents the fraction of traffic class j assigned to site i.

Notation Description

N Number of traffic classes
M Number of sites
λj Load of traffic class j
Mj(cij) Miss rate of traffic class j at cache

capacity cij in site i
Tj(cij, λj) Eviction age of traffic class j at

cache capacity cij and load λj in
site i

Ci Cache size of site i
Ti Capacity of site i

Table 3.1: Input parameters of optimization model.
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Notation Description

cij Cache size occupied by traffic class
j on site i

ρi Eviction age of site i and of traffic
classes assigned to site i

xij Fraction of λj ∈ [0, 1] assigned to
site i

Table 3.2: Output parameters of optimization model.

– Objective function: The objective of midgress-aware traffic provisioning is to assign

the N traffic classes to the M sites such that the midgress traffic from all the sites is

minimized as follows.

min.
M∑
i=1

N∑
j=1

xijλjMj(cij) (3.1)

– Resource constraints: The first set of constraints are the cache size and the capacity

constraints of each site.

N∑
j=1

cij ≤ Ci ∀i = 1 . . .M (3.2)

N∑
j=1

xijλj ≤ Ti ∀i = 1 . . .M (3.3)

The cache size constraint (Equation 3.2) states that the cache size occupied by all

traffic classes assigned to all sites must not exceed the cache size of the site. The

capacity constraint (Equation 3.3) states that the load of all traffic classes assigned

to all sites should not exceed the capacity of the site.

– Eviction age equality constraint: The eviction age function, Tj(cij, λj) is defined at

load λj for traffic class j. When traffic class j is assigned to site i, its load can be

less than or equal to λj due to fractional assignments. Let the load of traffic class j

assigned to site i be λ′j ≤ λj. Then, the eviction age of traffic class j in site i is.

Tj(cij, λ′j) =
Tj(cij, λj)
λ′j/λj

=
Tj(cij, λj)

xij
= ρi
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The first equality is due to the fact that decreasing the load of a traffic class by

a factor increases the eviction age of that class by the same factor, since the rate of

evictions decreases by that factor. In the last equality, ρi is the eviction age of site

i which is also the eviction age of all traffic classes that are assigned to site i. The

eviction age equality constraint for all traffic classes at all sites is then given by

Tj(cij, λj) = ρixij ∀j(i) = 1 . . . N(M). (3.4)

As previously discussed, the eviction age equality constraint in Equation 3.4 estab-

lishes the condition under which traffic classes assigned to site i share the cache.

– Load assignment constraint: The load of a given traffic class can be fractionally

assigned across sites. This means that for some traffic class j, 50% of the load λj

could be assigned to site 1, 30% to site 2 and the remaining 20% to site 3, and so

on. The load assignment constraint ensures that all the load of each traffic class is

assigned to one or more sites.

M∑
i=1

xij = 1 ∀j = 1 . . . N (3.5)

– Non-negativity constraints: The output parameters ρi, cij and xij should be non-

negative.

ρi > 0 ∀i = 1 . . .M (3.6)

cij ≥ 0 ∀j = 1 . . . N (3.7)

xij ∈ [0, 1] ∀j(i) = 1 . . . N(M) (3.8)

Together, Equations 3.1-3.8 constitute the optimization model for midgress-aware

traffic provisioning OPT.
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3.1.3 Solving the optimization model OPT

We are given as inputs the cache size and capacity of each site. Further, we are

given the load, the miss rate curve (MRC) and the eviction age function for each

traffic class3. The complexity of solving the optimization model OPT proposed in

Section 3.1.2 is evaluated as follows. The objective function (Equation 3.1) is biconvex

since the load fraction xij is linear and the MRC Mj(cij) is convex. Equations 3.2-

3.3, 3.5-3.8 are affine constraints. The eviction age function Tj(cij) is convex and

the product term ρixij is bilinear. Equation 3.4 is a non-convex constraint because

the feasible set defined by this constraint is non-convex. Overall, the optimization

problem is non-convex and in general an NP-hard problem. We make a number

of transformations to convert the optimization problem to a mixed integer linear

program (MILP) as described in Appendix A, which in turn can be solved efficiently

using CPLEX.

3.2 Traffic provisioning heuristics

The optimization model OPT proposed in Section 3.1.2 is an NP-hard problem

and it can take several hours for a solver to obtain the exact optimal solution. A

faster but approximate solution is valuable for a large production CDN such as Aka-

mai that has hundreds of traffic classes, 1000+ clusters, with deployments in every

major metro region of the world. To that end, we propose a traffic provisioning

heuristic called local search that is fast and sufficiently accurate to be used in pro-

duction. Intuitively, our traffic provisioning heuristic is a “hill climbing” solution for

our optimization model in Section 3.1.2. We also consider a midgress-unaware traffic

provisioning algorithm called baseline fit that we use as a baseline to evaluate

3To efficiently compute the MRC and eviction age function for every traffic class, we use a
succinct space-time representation of the cacheability properties of a traffic class known as footprint
descriptors [107]. The projections in space and time of the footprint descriptor of a traffic class
yields the MRC and eviction age function respectively.
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the benefits of being midgress-aware. The baseline fit algorithm is similar to the

midgress-unaware algorithms currently used in production settings.

3.2.1 Midgress-unaware baseline

The midgress-unaware traffic provisioning algorithm called baseline fit (see Al-

gorithm 3) is based on consistent hashing, similar to the algorithms used in production

settings [81]. The algorithm takes as input the set of N traffic classes and the set of

M sites that are both hashed to points on a unit circle. The traffic classes are picked

in a random order and assigned to sites as follows. Each traffic class j is assigned

to the nearest site i on the unit circle in the clockwise direction. If the chosen site i

does not have enough capacity to host the entire load λj, then a first fit algorithm is

used, starting from the chosen site i, and continuing to subsequent sites on the unit

circle in the clockwise direction, until all traffic is assigned. The key point to note is

that baseline fit does not explicitly minimize the miss traffic, but rather it only

ensures that no site gets more load than its capacity. That is, it produces a feasible

solution for our model OPT by obeying Equations 3.2 - 3.8 but does not minimize

midgress.

Algorithm 3 Baseline fit algorithm
Input: N,M, λj , Ci, Ti
Output: Fraction of traffic class j assigned to site i, xij ,∀j(i) = 1 . . . N(M)
1: xij = 0
2: TCset = set of all traffic classes arranged in random order
3: Sset = set of all sites hashed to a unit circle
4: for all j ∈ TCset do
5: i = Site chosen by consistent hashing
6: if site i has remaining traffic capacity ≥ λj then
7: xij += 1
8: else
9: Assign traffic fraction λj using first fit starting from site i on the unit circle
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3.2.2 Midgress-aware local search

We propose a midgress-aware traffic provisioning algorithm called local search

(see Algorithm 4) that uses a hill climbing approach to solve the optimization model

OPT. It is designed to be fast but may not always produce the optimal solution.

The algorithm local search begins with a feasible assignment as determined by

the baseline fit traffic provisioning algorithm. The algorithm operates in rounds

where every traffic class is picked one at a time in each round. The traffic class that

is picked is reassigned in small increments of a fraction δ (0 < δ < 1) of its load to

the server that minimizes the midgress objective while maintaining feasibility. If a

round does not decrease the midgress traffic objective by at least a specified ε << 1,

the algorithm stops and outputs the final assignment.

Computing the midgress of a traffic assignment: The local search algorithm

requires an efficient way to compute the midgress traffic of each site, given a traffic

class assignment. A known technique for computing miss traffic of a site is footprint

descriptor calculus described in [107]. A footprint descriptor is an easily-computable

space-time description of a traffic class. Knowing the footprint descriptor of each

traffic class4 that is assigned to a site, we use the calculus to efficiently derive the

footprint descriptor for the traffic class mix, that in turn provides the MRC of the

traffic class mix, from which we derive the midgress of the traffic mix. Note that the

characteristics of a traffic class could change slowly over time, requiring the footprint

descriptor to be recomputed periodically.

4The footprint descriptor of each traffic class is recomputed periodically to account for changes
in the content request characteristics for that class, e.g., changes in the popularity and object size
distributions of Facebook images over time.
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Algorithm 4 Local search algorithm
Input: N,M, λj , Ci, Ti
Output: Fraction of traffic class j assigned to site i, xij ,∀j(i) = 1 . . . N(M)
1: Get feasible assignment using baseline fit algorithm
2: TCset = set of all traffic classes arranged in random order
3: Sset = set of all sites
4: while True do
5: mgcurr = midgress of current assignment
6: for all j ∈ TCset do
7: xij = 0 ∀i = 1 . . .M
8: λ′ = λj
9: while λ′ > 0 do

10: Sjset ⊆ Sset = set of all sites with remaining traffic capacity ≥ δλj
11: if Sjset 6= ∅ then
12: i = site in Sjset that gives the lowest overall midgress after assigning TC j
13: xij += δ
14: else
15: Assign load δλj using fractional first fit starting from a random site

16: λ′ −= δ

17: mgnew = midgress of new assignment
18: if mgcurr −mgnew < ε then
19: break

3.3 Experimental evaluation

A goal of our evaluation is to determine the potential midgress reduction that can

be obtained using our midgress-aware traffic provisioning methods. Using production

traces collected from a metro area of Akamai’s CDN, we compare the midgress of OPT

with that of baseline fit and local search in both metro-level traffic provisioning

and cluster-level traffic provisioning scenarios. We perform the evaluation in two

steps:

1) We evaluate metro-level traffic provisioning by viewing each cluster as a site.

The site is assumed to have cache size and capacity equal to the sum of the cache

sizes and capacities of all servers in that cluster. The output of metro-level traffic

provisioning is an assignment of traffic classes to clusters that minimizes the midgress

of the metro area.
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2) The output of metro-level traffic provisioning is the input to cluster-level traffic

provisioning. We evaluate cluster-level traffic provisioning by assigning traffic classes

to servers within a cluster and further optimizing the midgress performance at the

cluster-level.

Production traces: To perform our evaluation, we collect production traces from

all Akamai CDN servers from a metro area serving traffic for 25 traffic classes over

a period of 16 days. The characteristics of the traffic classes are listed in Table 3.3.

From Table 3.3, we see that, in this metro area, 9 traffic classes serve web content,

11 traffic classes serve media content and the remaining 5 traffic classes serve soft-

ware downloads. The traffic classes exhibit a wide variation in load (Gbps), arrival

rate (requests/sec), content footprint (in unique bytes), and number of objects. The

majority of the load is for media content at 47.3% followed by software downloads at

41.5% and web content at 11.2%. In terms of the unique bytes that are cached in the

metro area, the majority is again for media content at 60.9%, followed by 25.6% for

web content and 13.5% for software downloads.

Footprint descriptors described in [107] are periodically computed for all traffic

classes on the production CDN. We use these footprint descriptors to compute the

MRCs and the eviction age functions for the 25 traffic classes in Table 3.3, to be used

as inputs to our traffic provisioning algorithms.

Evaluation setup: To evaluate the traffic provisioning algorithms, we simulate a

small metro region with 10 clusters, each containing 10 servers5. The capacity of the

metro region is set so that the average load is 70% of capacity to reflect the load-to-

capacity ratio in a typical CDN. We evaluate the traffic provisioning algorithms at

different cache sizes per cluster of 1 TB, 5 TB, 10 TB, 20 TB, 40 TB and 50 TB.

For simplicity, we assume that every cluster in the metro area has equal capacity and

5While a metro region in a large CDN typically has much larger server deployments, we simulate
a scaled-down version to keep our experiments computationally tractable.
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Traffic
class id

Content
type

Load
(Gbps)

Arrival
rate
(req/s)

Unique
bytes
(TB)

Unique
objects
(million)

1 web 0.39 438.41 1.83 16.36
2 web 1.12 232.48 70.74 38.38
3 media 3.75 345.94 198.85 176.68
4 web 0.24 143.67 0.008 0.03
5 web 0.17 145.13 0.03 0.08
6 download 4.74 1338.91 28.16 19.55
7 web 0.30 851.73 6.21 70.23
8 web 0.58 1213.87 6.38 137.60
9 web 1.59 714.42 22.58 52.91
10 download 0.39 307.92 1.68 0.82
11 download 10.66 809.29 22.74 10.75
12 media 0.43 110.22 14.13 24.41
13 web 0.0013 136.32 0.04 3.58
14 media 7.54 93.01 30.55 2.90
15 media 7.22 89.28 30.14 2.86
16 media 6.04 75.14 30.38 2.89
17 media 0.37 139.23 12.41 26.59
18 web 2.12 935.76 83.42 93.54
19 media 0.35 134.87 24.48 25.12
20 download 1.36 276.63 3.12 2.07
21 media 0.08 9.94 7.31 6.43
22 media 0.90 214.53 43.48 77.90
23 media 0.44 48.28 28.53 26.83
24 media 0.38 78.09 35.25 55.06
25 download 6.99 1879.65 44.94 21.02

Table 3.3: Traffic class characteristics

cache size. Every server within a cluster is also assumed to have equal capacity and

cache size.

OPT is solved using CPLEX as part of the GAMS modeling language. We use a

macOS machine with a 3 GHz Intel Xeon processor with 10 cores and 128 GB RAM

for all our experiments. The GAMS program is set to run in parallel mode using 20

threads with a relative optimality gap of 1e-9 and a maximum run time of 40,000 s.

Given the complexity of the optimization model, the GAMS program almost always

runs for 40,000 s. At that point, the solver has converged to a solution that seldom

changes and achieves a relative gap of under 5% at smaller cluster cache sizes less
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than or equal to 10TB and a relative gap of under 10% at larger cache sizes. A single

run of baseline fit takes about 1 s and a single run of local search takes about

120 s.

3.3.1 Metro-level traffic provisioning

We evaluate OPT, baseline fit, and local search by computing the cache

miss rate of the entire 10-cluster metro area for different cache sizes. These three

algorithms each assign the set of 25 input traffic classes to the clusters in the metro

area. In the case of baseline fit and local search, we report the average cache

miss rate of 100 runs, where each run considers the traffic classes in a random order.

The 95% confidence intervals of the expected cache miss rates have a margin of error

of less than 0.4%.
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Figure 3.4: MRC of OPT, local search and baseline fit algorithms.

From Figure 3.4 we can see that OPT gives a 18.37% reduction in midgress on

average compared to the midgress-unaware baseline fit algorithm. This is because

OPT takes into account the impact on midgress while assigning traffic classes to

clusters in the metro area. This significant improvement in midgress makes the case

for implementing midgress-aware traffic provisioning algorithms in CDNs.
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From Figure 3.4, we also see that the midgress-aware heuristic, local search,

performs quite well and gives a 15.44% reduction in midgress on average compared

to baseline fit. The algorithm local search also performs fairly well compared

to OPT, with a modest 3.69% increase in midgress compared to OPT on average.

3.3.1.1 Understanding how traffic provisioning can impact midgress

In Figure 3.5, we plot the cache miss rate of the 25 traffic classes when they

are provisioned using OPT versus the midgress-unaware baseline fit, when the

cumulative cache size of clusters in the metro area is 100TB. In addition, we also plot

the average number of sites (over 100 different runs) that each traffic class is assigned

to in Figure 3.6. From these figures, we see that OPT reduces the cache miss rate

of 21 traffic classes when compared to baseline fit. In the case of traffic class 11,

OPT results in almost 97% reduction in miss rate when compared to baseline fit.

On the other hand, OPT increases the cache miss rate of four traffic classes, namely

traffic classes 4, 5, 13 and 19. By trading off the cache miss rates for these four traffic

classes, OPT is able to reduce the overall midgress. But why does OPT choose this

trade-off? There are three key insights that midgress-aware traffic provisioning takes

into account to optimize midgress that baseline fit does not.
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TB.
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1) In OPT’s solution, traffic classes that have higher load, higher footprint pressure

and greater MRC gradients get to occupy larger portions of the available cache space.

A traffic class has high footprint pressure if a large amount of unique content bytes

is requested in a short period of time. This is true for traffic classes 11, 14, 15, 25

and 16 that account for 66.04% of the total load. OPT assigns traffic class 11 to two

clusters because its load is greater than the capacity of a single cluster, resulting in

that traffic class occupying 6 TB in one cluster with a miss rate of 0.5% and 7 TB

in another cluster with a miss rate of nearly 0%. OPT also assigns an entire cluster

each to traffic classes 14, 15, 25 and 16.

2) OPT may split a traffic class and may assign it to multiple clusters if it has a

relatively flat MRC. This is true of traffic class 1 which has a relatively flat MRC and

is assigned to two clusters. By reducing its footprint pressure in each of its assigned

clusters, traffic class 1 is able to cede cache space to other traffic classes that are in

more need.

3) In OPT’s solution, traffic classes that have lower footprint pressure occupy

smaller portions of the available cache space. This is true for traffic classes 4, 5 and

13. It also happens to be the case that these three traffic classes have very low load
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among the traffic classes considered. Both these factors render a higher cache miss

rate relative to baseline fit that is footprint unaware. Note that low load alone

does not indicate that it will occupy a smaller portion of the cache. For instance,

traffic class 24 has moderate load but it has high footprint pressure and a greater

MRC gradient, and ends up occupying 4.2 TB in one cluster.

3.3.2 Cluster-level traffic provisioning

The goal of cluster-level traffic provisioning is to assign traffic classes to servers

such that the midgress of the cluster is minimized. In our evaluation, we take the

output of metro-level traffic provisioning from Section 3.3.1 that assigns traffic classes

to each cluster and treat them as the inputs to cluster-level traffic provisioning. In

this manner, we are able to understand the additional midgress reduction that is

achievable by performing optimization at the cluster level, given that the metro level

has already been optimized.

For cluster-level traffic provisioning, each traffic class defined at the metro-level

is typically split into multiple subclasses. The subclasses allow better finer-grained

allocation of traffic classes within a cluster. Traffic class 14 has very high load and

hence was assigned to a cluster all by itself (Figure 3.6) by OPT at the metro-level. We

considered that cluster for our evaluation of cluster-level traffic provisioning. Traffic

class 14 consisted of 66 traffic subclasses that must be assigned to the 10 servers

within a cluster, each server with a 1 TB cache.

OPT reduced the midgress for traffic class 14 by 31.26% after the metro-level

optimization, when compared to the midgress achieved by baseline fit. After using

OPT for cluster-level provisioning, the midgress for traffic class 14 reduced further by

14.26%. In aggregate, the overall reduction of the midgress due to both provisioning

steps of OPT is 41.07%, when compared to the baseline. Algorithm local search

provided nearly as much reduction as OPT. For instance, local search provided
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a midgress reduction of 35.49%, compared to the baseline. However, local search

was much faster and completed within 2 minutes, as opposed to the nearly 40,000 s

( 11 hours) taken by OPT.

3.3.3 Robustness to variations in cache management policy

So far, we have developed traffic provisioning algorithms that model an LRU cache

and evaluated the midgress reduction resulting from midgress-aware traffic provision-

ing when the sites also use LRU. The past decades have seen much academic research

on numerous cache management algorithms that admit and evict objects using some

combination of recency of access, frequency of access and object size to decrease cache

miss rates of individual caches (see Table 2 of [12]). We show that midgress-aware traf-

fic provisioning algorithms proposed in this work, that model an LRU cache, achieve

significant midgress reduction even when a CDN does not actually implement LRU

at its sites, although such reductions are smaller in magnitude than when a CDN

implements LRU.

We choose three typical algorithms from the literature for our evaluation. The first

is an LRU variant called second-hit-LRU (or, SH-LRU) where the object is admitted

to an LRU cache on second hit as means of filtering out “one-hit-wonder” objects that

are accessed once and never again. The second is segmented LRU (SLRU) [68] that

is a canonical representative of the family of algorithms that use both recency and

frequency in cache management decisions. Finally, we implement the Greed-Dual-

Size-Frequency (GDSF) [27] that is a representative of algorithms that use all three

of recency, frequency and size. Our evaluation uses the same cluster-level scenario

as described in Section 3.3.2, where the goal is to assign the 66 traffic subclasses of

traffic class 14 across 10 servers of size 1 TB each. First, we solve OPT that models

LRU to get the optimal traffic class assignment across all servers within the cluster.

The midgress of OPT’s assignment is then computed by simulating the different cache
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management algorithms using the request traces of the subclasses. For comparison,

we use the midgress-unaware baseline fit for traffic provisioning followed by a

trace-based simulation of the different cache management algorithms to provide a

midgress-unaware baseline. When LRU cache management is used, OPT reduces the

midgress by 13.3% when compared to baseline fit. In comparison, OPT reduces

the midgress by 7.78%, 8.45% and 7.76% for SH-LRU, SLRU and GDSF respectively.

The midgress reduction for other non-LRU algorithms is not as much as that for

LRU. However, the midgress reductions for other algorithms are still quite robust and

significant. The reason is that even when other factors are used for cache management

decisions, most reasonable algorithms still use recency of access in a very significant

way, and recency is well-captured in our OPT model. It is plausible that our OPT

model can be reformulated to capture other cache management policies besides LRU,

but it is not clear how to model the behavior of other algorithms in a constraint

satisfaction framework. Such an extension is a topic for future work.

3.4 Extensions of midgress-aware traffic provisioning

While OPT in Section 3.1.2 minimizes the midgress across a metro area, OPT

may assign certain traffic classes to only a single site. For example, from Figure 3.6,

we see that OPT assigns 22 out of 25 traffic classes only to one cluster. In that case,

a failure of that site could lead to severe degradation in performance for users in that

metro accessing that traffic class. In the case of site failure, those users would need

to be served from a cluster not located in their metro, leading to higher latencies.

Another issue is that even though overall miss traffic is reduced by OPT, certain

traffic classes may experience unacceptably high miss rates. As seen in Figure 3.5,

traffic classes 3, 13 and 24 have miss rates greater than 70%.

We propose two extensions of midgress-aware traffic provisioning that address the

above two issues. The first extension enforces a minimum number of sites that a
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traffic class must be assigned to and the second extension enforces a maximum cache

miss rate per traffic class.

Finally, all results presented until now are for shared caches. While partitioned

caches are not commonly used in production settings due to the overheads involved

in dynamically resizing those partitions, there is increasing interest in academia to

implement and evaluate the performance of partitioned caches [5,14,19,28,31,36,44,

63, 71, 73, 76, 100, 110, 121]. We propose a third extension to show that our traffic

provisioning approach can significantly reduce midgress even if the CDN were to use

partitioned caches.

3.4.1 Minimum redundancy guarantee

Enforcing a minimum redundancy in the optimization model is fairly straightfor-

ward. Let Mj be the minimum number of sites that traffic class j should be assigned

to. Mj is an integer ∈ [1,M ], where M is the total number of sites. Let yij be an

indicator variable that is set to 1 when xij > 0 and 0 otherwise. Then, the load

assignment constraint in Section 3.1.2 is appended to include the following minimum

redundancy constraints.

yij = dxije ∀ j = 1 . . . N (3.9)

M∑
i=1

yij >= Mj ∀ j = 1 . . . N (3.10)

yij ∈ {0, 1} (3.11)

Equations 3.9 and 3.10 ensure that traffic class j is assigned to at least Mj sites.

We call the modified optimization model OPT-M. The additional constraints are

affine and they do not increase the complexity of the optimization problem. OPT-M

can also be solved using CPLEX. Likewise, both local search and baseline fit
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can be modified to incorporate the redundancy constraint by simply ensuring that

each traffic class j is assigned to at least Mj sites in each (re-)provisioning step.

3.4.1.1 Experimental evaluation

We measure the reduction in midgress by OPT-M and the modified local search

when compared to the modified baseline fit, all of which include the minimum

redundancy constraint. We use the same evaluation parameters as Section 3.3.1

where the cache size of each cluster in the metro area is 10 TB. Figure 3.7 plots

the trade-off between minimum redundancy and cache miss rates of OPT-M, and

the modified versions of local search and baseline fit. We vary the minimum

required redundancy from 1 to 3. From Figure 3.7, we see that cache miss rates

increase for all three algorithms, resulting in an increased midgress and increased

bandwidth cost for the CDN. We also see that the cache miss rate of baseline

fit with minimum redundancy = 1 (resp. 2) is similar to the cache miss rate of

local search and OPT-M with minimum redundancy 2 (resp. 3). This shows that

midgress-aware traffic provisioning can provide the same midgress as baseline fit

with added redundancy.
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Figure 3.7: Increasing minimum redundancy increases the overall midgress of the
metro area.
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3.4.2 Maximum cache miss rate guarantee

In practice, CDN operators need to guarantee a maximum cache miss rate for

each traffic class. Let MRj be the maximum cache miss rate for traffic j. Then,

the optimization model in Section 3.1.2 can be easily extended to incorporate the

maximum cache miss rate guarantee.

M∑
i=1

xijmj(cij) ≤MRj ∀j = 1 . . . N (3.12)

Equation 3.12 states that the average miss rate of traffic class j across all M sites

should be at most MRj. This enforces the maximum cache miss rate guarantee for

traffic class j. We call the modified optimization model, OPT-MR. Setting MRj =

100% for all traffic classes j is equivalent to OPT in Section 3.1.2. Equation 3.12 is a

biconvex constraint and does not increase the complexity of the optimization model.

We modify the local search algorithm (Algorithm 4) to take into account the

maximum cache miss rate constraint per traffic class. We make two modifications.

First, the baseline fit algorithm in the first step does not always provide a feasible

solution when MRj < 100%. This is because baseline fit is midgress unaware.

Hence, we start with all traffic classes being unassigned. Second, the re-provisioning

step as part of the local search assigns a traffic class to a site only when the miss rate

guarantees of all traffic classes assigned to that site are not violated.

Infeasible solutions: OPT-MR can be infeasible in cases where certain traffic

classes fail to meet the maximum cache miss rate guarantee, MRj. For example,

consider the evaluation set up in Section 3.3.1 where the cache size of each cluster is

10 TB. From Figure 3.5, we see that traffic class 3 has a miss rate of 92.88%. The

lowest miss rate that traffic class 3 can possibly achieve at 10 TB is 91%. Hence, any

maximum cache miss rate target less than 91% cannot be achieved, rendering the

problem infeasible.
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3.4.2.1 Experimental evaluation

We choose three traffic classes 13, 23 and 24 that have high miss rates in OPT

and set their maximum cache miss rates to 70%. We evaluate the performance of

metro-level traffic provisioning with the maximum cache miss rate constraint under

the same conditions as in Section 3.3.1 where the cache size of each cluster is 10 TB.

OPT-MR returns a feasible solution. The overall miss rate of the metro area

with these constraints is 20.04%, a modest 3.24% increase in midgress compared to

OPT that has no maximum miss rate constraint. In the process, three traffic classes

experience a significant increase in their respective miss rates relative to OPT. The

miss rate of traffic class 2 increases from 50.12% to 65.85%, of traffic class 17 from

36.11% to 54.2% and of traffic class 21 from 61.22% to 68.01%. This is due to the fact

that both traffic classes 13 and 24 occupy more cache space with OPT-MR than they

do with OPT, so they meet their miss rate guarantee, despite traffic class 13 having

the lowest load and low footprint pressure, and traffic class 24 having low load.

We run local search with the maximum cache miss rate constraint 100 times

with different random orderings of the input traffic classes. Local search returns

a feasible solution 67% of the time indicating that the feasibility of local search

depends on the ordering of the traffic class inputs. For feasible assignments, local

search has an average miss rate of 21.69% which is about 8.23% more than that

of OPT-MR. Baseline fit is footprint-unaware and cannot guarantee a cache miss

rate performance.

3.4.3 Traffic provisioning in partitioned caches

In a partitioned cache, each traffic class is assigned to its own separate cache par-

tition and each partition performs evictions independently, i.e., each partition has its

own LRU list for eviction. As noted earlier, production CDNs do not typically im-

plement partitioned caches due to the significant overheads involved in implementing

71



and dynamically maintaining the partitions. However, we show that our optimization

model for midgress-aware traffic provisioning can be extended to work with parti-

tioned caches. More specifically, we answer the following questions in this section: 1)

Is it possible to model midgress-aware traffic provisioning for partitioned caches? 2)

Does our traffic provisioning approach for partitioned caches reduce the cache miss

rate when compared to a midgress-unaware baseline?, and 3) How does the cache

miss rate of midgress-aware traffic provisioning in partitioned caches compare with

that of midgress-aware traffic provisioning in shared caches?

3.4.3.1 Modeling and implementing traffic provisioning for partitioned

caches

With cache partitioning, every traffic class occupies a separate cache partition with

its own LRU list, assuming that the LRU eviction policy is used. Thus, the eviction

age of each traffic class can be different. This is unlike shared caches where all traffic

classes use an unpartitioned cache and hence have the same eviction age. Therefore,

the optimization model for midgress-aware traffic provisioning for partitioned caches

is the same as that of OPT (Section 3.1.2), except that we can remove the eviction

age equality constraint. Hence, Equations 3.1-3.3 and 3.5-3.8 accurately model the

constraints for optimizing midgress for partitioned caches. We call this modified

optimization algorithm as OPT-part.

Likewise, we can implement a baseline midgress-unaware algorithm for parti-

tioned caches that is similar to baseline fit (Algorithm 3). We call this algorithm

baseline fit-part and is based on consistent hashing. The algorithm takes as in-

put the set of N traffic classes and the set of M sites that are both hashed to points

on a unit circle. Each traffic class j is assigned to the nearest site i on the unit circle

in the clockwise direction. If the chosen site i does not have enough capacity to host

the entire load λj, then a first fit algorithm is used, starting from the chosen site i,
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and continuing to subsequent sites on the unit circle in the clockwise direction, until

all traffic is assigned. After all traffic class assignments are made, for each site we

determine the sizes of the partitions that host each traffic class assigned to it. To

compute the partition sizes, we use a known gradient descent algorithm [100] that

minimizes the total midgress of that site. The total midgress achieved by baseline

fit-part is obtained by adding the midgress across all M sites.

3.4.3.2 Experimental evaluation
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Figure 3.8: MRC of OPT and baseline fit on shared and partitioned caches.

We use production traces collected from a metro area in Akamai’s CDN to evaluate

the cache miss rates of partitioned caches at the metro-level for different cache sizes.

The traces are described in Section 3.3. We evaluate both baseline fit-part and

OPT-part on these traces and report the average cache miss rate of 100 runs. The

95% confidence intervals of the expected cache miss rates have a margin of error of

less than 0.4%.

As shown in Figure 3.8, we see that OPT-part reduces midgress when compared

to baseline fit-part by more than 14%, on average, across the different cache
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sizes. Thus midgress-aware traffic provisioning can significantly reduce the midgress

for partitioned caches in comparison with a midgress-unaware algorithm.

As comparison, in Figure 3.8, we also plot OPT and baseline fit that we de-

scribed for shared caches in Sections 3.1 and 3.2. The cache miss rate of OPT-part is

only 0.49% less than that of OPT, on average across the different cache sizes. Hence,

while OPT-part has the lowest cache miss rate, OPT has nearly the same miss rate

without the additional overhead of cache partitioning.

3.5 Related work

Traffic provisioning in CDNs has been studied in the context of distributing load

to servers in a CDN. However, the load balancing algorithms studied in this context

focus on ensuring that servers are not overloaded in terms of CPU, disk, and other

server resources and do not explicitly optimize for midgress when performing traffic

provisioning. Likewise, minimizing cache misses through better cache management

policies has a rich literature stretching several decades. However, we view cache

management as complementary to midgress-aware traffic provisioning. We review

relevant existing literature in these and other areas below.

Load balancing: Several load balancing algorithms have been proposed to improve

the end-user performance in web caching and content delivery systems. Request

redirection schemes at the network layer, based on DNS [18,56], and at the application

layer, based on URL rewriting or HTTP redirection [82], have been proposed to better

load balance traffic across multiple servers. Dynamic load balancing algorithms [21,

25,124] continuously measure the load on different servers and load balance end-user

requests to improve performance. Consistent-hashing and randomized load balancing

algorithms [69,70,88,89] have also been proposed to load balance end-user requests in

content delivery systems. As an extension to traditional load balancing, the authors

in [84] design load balancing algorithms that minimize the energy consumption of
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CDNs without affecting the end-user performance. Much of the above work are in

the context of routing user requests in real-time to servers that can serve the requested

traffic classes. But they can be adapted to our context of performing (offline) traffic

provisioning, a step that precedes request routing in a production CDN. However,

there is no prior work on explicitly optimizing midgress.

Cache management: There has been a significant amount of research on cache

management policies to minimize the miss rate of a cache [10,11,15,33–35,39,45,46,

48,50,53,55,59,64,65,74,83,86,94,95,98,102,112,122]. Some proposed caching poli-

cies include Adapt-Size [12], Cliffhanger [30], SLRU [68], TinyLFU [40], S4LRU [61],

CFLRU [96], ARC [87], LRU-S [104], LRU-K [94], and GDS [17]. Dynamically par-

titioning the cache to reduce miss rates has also been explored [5,14,19,28,31,36,44,

63, 71, 73, 76, 100, 110, 121]. However, production CDNs do not employ dynamically-

partitioned caches, since it introduces significant performance and operational over-

head to maintain partitions for hundreds of traffic classes. We view work on cache

management as a complementary technique to traffic provisioning, both with the goal

of midgress reduction.

Recent work on footprint descriptors [107] is focused on efficient techniques for

evaluating the miss traffic of an assignment of traffic classes to a server. We use

footprint descriptors for quickly assessing the midgress caused by a specific traffic

assignment, as well as for efficiently computing the MRC and eviction age function

of a large number of traffic classes. However, the work in [107] does not propose any

mechanisms for traffic provisioning to minimize midgress.

3.6 Conclusion

In this work, we propose midgress-aware traffic provisioning that explicitly mini-

mizes the midgress traffic of a CDN, while still ensuring that no server or cluster is

overloaded. Using extensive traces for 25 traffic classes from a metro area of Aka-
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mai’s CDN, we show that the midgress of a metro area can be reduced by 18.37%

when compared to a midgress-unaware baseline that is currently used in practice. We

propose a midgress-aware heuristic algorithm called local search that provisions

traffic classes to achieve a midgress reduction that is within 1.1% of the optimum,

and is very fast and well suited for production settings. We also show that using our

traffic provisioning algorithms at the cluster level results in significant reductions in

midgress. Given that a large CDN can have midgress of over 10Tbps, even a small

reduction in midgress can result in millions of dollars of savings per year. Our work

provides a strong case for implementing midgress-aware traffic provisioning in CDNs.

As part of our future work, we intend to deploy our traffic provisioning algorithms in

a production setting to evaluate its benefits.
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CHAPTER 4

ADAPTIVE CACHE MANAGEMENT USING
TTL-BASED CACHING

By caching and delivering content to millions of users around the world, CDNs

are an integral part of the Internet infrastructure. The major technical challenge

in designing caching algorithms for a modern CDN is adapting to heterogeneous,

bursty (correlations over time) and non-stationary/transient request statistics of the

different traffic classes served by a CDN. The traffic classes differ widely in terms

of the object size distributions and content access patterns. The popularity of the

content also varies by several orders of magnitude with some objects accessed millions

of times (e.g., an Apple iOS download), and other objects accessed once or twice (e.g.,

a photo in a Facebook gallery). This non-uniformity makes it difficult to guarantee

performance metrics such as a target hit rate that is desired by the CDN operator

and the content providers who use the CDN.

Request statistics clearly play a key role in determining the hit rate of a CDN

server. However, when request patterns vary rapidly across servers and time, a one-

size-fits-all approach provides inferior hit rate performance in a production CDN

setting. Further, manually tuning the caching algorithms for each individual server

to account for the varying request statistics is prohibitively expensive. Thus, our goal

is to devise self-tuning caching algorithms that can automatically learn and adapt

to the request traffic and provably achieve any feasible hit rate and cache size, even

when the request traffic is bursty and non-stationary.

A class of caching algorithms that has received much attention in the last decade

are TTL-based caching algorithms [10,11,36,47,52,66] that use a time-to-live (TTL)
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parameter to determine how long an object may remain in cache. Much is analytically

known about TTL caches when the traffic is assumed to follow the independent refer-

ence model (IRM) [10,47]. The cornerstone of such analyses is Fagin’s work [42] and

follow up work by Che [24] that provide a closed-form characteristic time approxima-

tion that relates the TTL value to the achieved hit rate and average cache size. The

characteristic time approximation is known to be accurate in cache simulations that

use synthetic IRM traffic and is commonly used in the design of caching algorithms

for that reason [13,48,49,52,57].

However, we show that the characteristic time approximation does not provide

performance guarantees for actual production CDN traffic that is neither stationary

nor respects IRM, similar to the observations made in [54, 79], among others. We

used an extensive 9-day request trace from a production server in Akamai’s CDN

and derived TTL values for multiple hit rate and cache size targets using Che’s

approximation. We then simulated a cache with those TTL values on the production

traces to derive the actual hit rate that was achieved. For a target hit rate of 60%,

we observed that a fixed-TTL algorithm that uses the TTL computed from Che’s

approximation achieved a hit rate of 68.23% whereas the dynamic TTL algorithms

proposed in this work achieve a hit rate of 59.36%. This difference between the target

hit rate and that achieved by fixed-TTL highlights the inaccuracy of the characteristic

time approximation in achieving performance targets on production traffic.

– Contributions: We make the following contributions in this work.

1) We propose two TTL-based algorithms: d-TTL (for “dynamic TTL”) and f-

TTL (for “filtering TTL”). d-TTL uses a single TTL parameter to achieve a target

hit rate. f-TTL uses two TTL parameters to achieve a target hit rate and a target

expected cache size, provided they are feasible. Rather than statically deriving the

required TTL values from the request statistics, our algorithms incrementally adapt

the TTL values after each request, using stochastic approximation.
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2) We implement both d-TTL and f-TTL algorithms and evaluate them using an

extensive 9-day trace consisting of more than 500 million requests from a production

Akamai CDN server. For a range of object hit rate targets, both d-TTL and f-TTL

converge to that target with an error of about 1.3%. For a range of byte hit rate

targets, both d-TTL and f-TTL converge to that target with an error that ranges

from 0.3% to 2.3%. In particular, f-TTL requires a cache that is 49%(resp. 39%)

smaller than d-TTL to achieve the same object hit rate(resp. byte hit rate).

3) Finally, from a practitioner’s perspective, this work has the potential to enable

new CDN pricing models. CDNs would like to charge content providers based on

guaranteed hit rate performance and the guaranteed caching resources that are used.

While desirable, such pricing models do not commonly exist, in part, because current

caching algorithms cannot provide such guarantees with low overhead. The proposed

algorithms are the first to provide a theoretical guarantee on hit rate for each content

provider, while controlling the cache space that they can use.

– Roadmap: The rest of this chapter is organized as follows. In Section 4.1, we discuss

two TTL-based algorithms namely d-TTL and f-TTL that achieve a target hit rate

and a target expected cache size. In Section 4.2, we describe how d-TTL and f-TTL

are implemented in practice. We evaluate the performance of the proposed TTL-

based algorithms in Section 4.3. Finally, we discuss some related work in Section 4.4

before concluding in Section 4.5.

4.1 TTL-based caching algorithms

A TTL-based caching algorithm works as follows. When a new object is requested,

it is placed in cache and associated with a time-to-live (TTL) value. If no new request

is received for that object, the TTL value is decremented in real-time and the object

is evicted when the TTL becomes zero. If a cached object is requested, a cache hit
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occurs and the TTL is reset1 to its original value. When the requested object is not

found in cache, a cache miss occurs. Consider T different types of content. The

objective of this work is to (asymptotically) achieve a target hit rate and a (feasible)

target cache size for each type t ∈ [T ]. To accurately model non-stationary traffic, we

allow the request traffic to be non-independent and non-stationary; the request traffic

can have Markovian dependence over time. The traffic comprises a mix of stationary

demands (statistics invariant over the timescale of interest), and non-stationary de-

mands (finitely many requests, or in general requests with an asymptotically vanishing

request rate). The complete model is described in [7].

4.1.1 d-TTL

The goal of the d-TTL algorithm is to adapt its TTL value to achieve a target

hit rate2 h∗t ∈ (0, 1) ∀t ∈ [T ]. d-TTL uses stochastic approximation to dynamically

increase the TTL when the current hit rate is below the target, and decrease the TTL

when the current hit rate is above the target. Let θt(l) be the TTL value after the

l-th request arrival for content type t. Then, if the object experiences a cache miss,

d-TTL increases the TTL to, θt(l+1) = θt(l)+η(l)(h∗t ), where η(l) is a decaying step

size of the form 1/lα and α is a constant. On the contrary, in the event of a cache

hit, the TTL decreases to θt(l + 1) = θt(l)− η(l)(1− h∗t ).

4.1.2 f-TTL

d-TTL achieves the target hit rate at the expense of caching rare and unpopular

recurring content for an extended period of time. This leads to an increase in cache

size without any significant contribution towards the cache hit rate. We present a

1There are other classes of TTL algorithms that do not reset the TTLs of objects on each request.
We only consider reset TTLs in this work.

2We consider object hit rates to illustrate the TTL algorithms. d-TTL and f-TTL easily extend
to byte hit rates as discussed in [7]
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second adaptive TTL algorithm called filtering TTL (f-TTL) that filters out rare and

unpopular content to achieve both a target expected cache size and a target hit rate.

Thus, f-TTL can achieve the same hit rate as d-TTL but at a smaller cache size.

4.1.2.1 Algorithm description

f-TTL implements a two-level caching algorithm. Let’s call the lower level cache

Cs and the higher level cache C. Both these caches store the entire content, i.e. the

content metadata such as the object id, object size, etc., and the actual content data.

In addition to these two caches, f-TTL maintains a shadow cache that only stores the

metadata of the content that is requested, for some period of time. We describe the

f-TTL algorithm by discussing its different caching states.

1) Cache miss. An incoming request experiences a cache miss when it is unavail-

able in both cache levels, Cs ∪C and its metadata is unavailable in the shadow cache.

In this case, the request is cached with a small TTL value in Cs and its metadata is

cached with a larger TTL value in the shadow cache.

2) Cache virtual hit. An incoming request experiences a cache virtual hit when

it is unavailable in both cache levels, Cs ∪ C but its metadata is available in the

shadow cache. This is an indication that f-TTL prematurely evicted the object from

Cs affecting the cache hit rate. The metadata is removed from the shadow cache and

the request is cached with a larger TTL value in C.

3) Cache hit. An incoming request experiences a cache hit when it is available in

either cache level, Cs or C. In this case, the request is cached with an updated TTL

value in C. Any existing copy in Cs or its metadata in the shadow cache is removed.

From the above caching states, it can be seen that f-TTL attempts to cache

popular content in the higher level cache for a longer duration and filters out rare

and infrequently accessed content from the lower level cache quickly. The shadow

cache helps promote semi-popular content to the higher level cache.
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4.1.2.2 Achieving the target cache size

Before we describe the TTL update rules, we introduce a new performance metric

called normalized cache size that is used by f-TTL to achieve the target expected

cache size. Given a cache size C and arrival rate λt for some content of type t, the

normalized cache size, st, is the cache size normalized by the arrival rate, i.e., st = C
λt

.

The normalized cache size can be thought of as the time it takes to fill up a cache

of size C when requests arrive at arrival rate λt. Hence, smaller (larger) the arrival

rate, larger (smaller) the normalized cache size.

The normalized cache size can also be thought of as the average time to eviction

of requests that reside in a cache of size C. To see why this is the case, let us consider

a request sequence where (adaptive) TTL value θt(l) is assigned to each request l

for content of type t. For simplicity, we assume that objects have unit size but the

argument easily extends to objects with variable sizes. Then, the instantaneous cache

size is the number of objects that have non-zero TTLs at that time instant. Given a

total time duration τ and total number of requests Lt of type t, it is easy to see that

the time average expected cache size C is

C =

∑L
l=1 θt(l)

τ
=

∑L
l=1 θt(l)

Lt
× Lt

τ
=

∑L
l=1 θt(l)

Lt
× λt.

From this we see that the normalized cache size st is,

st =
C

λt
=

∑L
l=1 θt(l)

Lt
.

Since st indicates the average time to eviction of all incoming requests in a cache

of size C, it can be used by f-TTL to achieve a target cache size.

4.1.2.3 TTL update rules

The goal of f-TTL is to adapt its TTL timers to achieve the dual targets of hit

rate h∗t and normalized cache size s∗t for content type t. We associate with each cache
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level a TTL value, θst (l) with the lower level cache Cs and θt(l) with both the higher

level cache C and the shadow cache. When an object of type t is requested, the TTL

values are updated based on the caching states as follows.

1) Cache miss. The requested object is not found in Cs∪C and the shadow cache.

This indicates that θt(l) needs to be increased to meet the target hit rate h∗t . The

update for θt(l) is the same as d-TTL, θt(l + 1) = θt(l) + η(l)(h∗t ).

In order to update θst (l), we need to estimate the normalized cache size at the

lth request arrival for content type t. Since the requested object is in none of the

caches, the normalized cache size estimate at the lth arrival is θst (l), the timer of

lower level cache that this request gets into. Hence, the update rule for θst (l) is

θst (l+ 1) = θst (l) + ηs(l)(s∗t − θst (l)) where ηs(l) is a decaying step size of the form 1/l.

2) Cache virtual hit. The requested object is not found in Cs∪C but its metadata is

in the shadow cache. This indicates that θt(l) needs to be increased to meet the target

hit rate h∗t . The update rule for θt(l) is the same as the cache miss scenario. However,

the update rule for θst (l) is different. During a cache virtual hit, f-TTL estimates the

normalized cache size at the lth request arrival as the timer corresponding to the

upper level cache C, θt(l), that this request gets into. Hence, the update rule for θt(l)

is θst (l + 1) = θst (l) + ηs(l)(s∗t − θt(l)).

3) Cache hit. The requested object is found in Cs ∪ C. This indicates that θt(l)

needs to be decreased similar to d-TTL. The update rule is θt(l+1) = θt(l)−η(l)(1−

h∗t ). The normalized cache size estimate at the lth request arrival during a cache hit

is θ(l) − φ where θ(l) is the timer corresponding to upper level cache and φ is the

remaining time for the object. In other words, θ(l) − φ is the smallest TTL of the

upper level cache to guarantee a cache hit on the lth arrival. Hence, the update rule

for θst (l) is θst (l + 1) = θst (l) + ηs(l)(s∗t − (θs(l)− φ)).

While the above description provides an intuitive understanding of f-TTL, the

simple update rules above do not take into account scenarios where neither the target
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hit rate nor the target normalized cache size are achieved even if either one of them

is feasible. The complete algorithm description with the necessary conditions for

convergence is discussed in [7]. The proofs of convergence for both d-TTL and f-TTL

algorithms are also presented in [7].

4.2 Implementation of d-TTL and f-TTL

One of the main practical challenges in implementing d-TTL and f-TTL is adapt-

ing θ and θs (TTL vectors corresponding to the higher and lower level caches for all

content types t ∈ [T ]) to achieve the desired hit rate and cache size in the presence

of unpredictable non-stationary traffic. We observe the following major changes in

practical settings. First, the arrival process in practice changes over time (e.g. day-

night variations) whereas our model assumes the arrival process for stationary traffic

is fixed. Second, in practice, the performance in finite time horizons is of particular

interest such as flash crowds in specific time windows. We now discuss some modifi-

cations we make to translate theory to practice and evaluate these modifications in

Section 4.3.

– Fixing the maximum TTL: The theoretical analyses of the TTL algorithms require

choosing a suitable parameter L as the maximum TTL value [7]. However, in practice,

we can choose an arbitrarily large value such that we let θ and θs explore a larger

space to achieve the desired hit rate in both d-TTL and f-TTL.

– Constant step sizes for θ and θs updates: d-TTL and f-TTL algorithms use decaying

step sizes η(l) and ηs(l) while adapting θ and θs. This is not ideal in practice where

the traffic composition is constantly changing, and we need θ and θs to capture those

variations. Therefore, we choose constant step sizes that capture the variability in

our production traces while evaluating the algorithms.

– Tuning cache size targets: In practice, f-TTL may not be able to achieve small cache

size targets in the presence of time varying and non-negligible non stationary traffic.
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In such cases, f-TTL uses the target cache size to induce filtering. For instance, when

there is a sudden surge of non-stationary content, θs can be aggressively reduced

by setting small cache size targets. This in turn filters out a lot of non-stationary

content while an appropriate increase in θ maintains the target hit rate. Hence, the

target cache size can be used as a tunable knob in CDNs to adaptively filter out

unpredictable non-stationary content. It should be noted that a target cache size of

0 while most aggressive, is not necessarily the best target. This is because, a target

cache size of 0, sets θs to 0 and essentially increases the θ to attain the target hit rate.

This may lead to an increase in the average cache size when compared to an f-TTL

implementation with non-zero target cache size. For example, in our experiments,

we observe that when we set a target hit rate to 40%, a non-zero target cache size

leads to an expected cache size that is nearly 15% less than the expected cache size

obtained when the target cache size is zero.

4.3 Experimental evaluation

We use an extensive data set containing access logs for content requested by users

that we collected from a production server serving predominantly web content in

Akamai’s CDN, over a period of 9 days. The content requests traces contain 504

million requests (resp., 165 TB) for 25 million distinct objects (resp., 15 TB). We

observe that the content popularity distribution exhibits a “long tail” with nearly

70% of the objects accessed only once. Further, we also see that 80% of the requests

are for 1% of the objects. This indicates the presence of a significant amount of non-

stationary traffic in the form of “one-hit-wonders” and rarely accessed content. We

use constant step sizes, η=1e-2 and ηs=1e-9, while adapting the values of θ and θs

respectively, in all our simulations. For f-TTL, we use a target cache size that is half

of what is required by d-TTL to achieve a certain hit rate.
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4.3.1 Hit rate performance of d-TTL and f-TTL

The performance of a caching algorithm is often measured by its hit rate curve

(HRC) that relates the cache size to the hit rate it achieves. We compare the HRCs

of d-TTL and f-TTL for object hit rates and byte hit rates and show that f-TTL

significantly outperforms d-TTL by filtering out the rarely-accessed non-stationary

content. The HRCs for object hit rates and byte hit rates are shown in Figures 4.1

and 4.2 respectively. Note that the y-axis is presented in log scale for clarity.
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Figure 4.1: Hit rate curve for object hit rates.
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Figure 4.2: Hit rate curve for byte hit rates.
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From Figure 4.1 we see that f-TTL always performs better than d-TTL. We find

that on average, f-TTL requires a cache that is 49% smaller than d-TTL to achieve

the same object hit rate. From 4.2, we see that, for a given byte hit rate, f-TTL

requires lesser cache space than d-TTL. On average, f-TTL requires a cache that

is 39% smaller than d-TTL to achieve the same byte hit rate. Further note that

achieving a specific byte hit rate value requires more cache size than achieving the

same value for object hit rate. For instance, the d-TTL algorithm requires a cache

size of 469 GB to achieve a 60% byte hit rate, whereas a 60% object hit rate is

achievable with a smaller cache size of 6 GB (Figure 4.1). This discrepancy is due

to the fact that popular objects in production traces tend to be small (10’s of KB)

when compared to unpopular objects that tend to be larger (100’s to 1000’s of MB).

4.3.2 Convergence of d-TTL and f-TTL

For the dynamic TTL algorithms to be useful in practice, they need to converge

to the target hit rate with low error. From Figures 4.3 and 4.4, we see that the 2

hour averaged object hit rates achieved by both d-TTL and f-TTL have a cumulative

error of less than 1.3% while achieving the target object hit rate, on average. We

also see that both d-TTL and f-TTL converge to the target hit rate quickly, which

illustrates that both d-TTL and f-TTL are able to adapt well to the dynamics of the

non-stationary traffic.

From Figures 4.5 and 4.6, we see that d-TTL has a cumulative error of less than

2.3% on average while achieving the target byte hit rate and f-TTL has a cumulative

error of less than 0.3%. Moreover, we see that both d-TTL and f-TTL tend to converge

to the target hit rate, which illustrates that both d-TTL and f-TTL are able to adapt

well to the dynamics of the input traffic. We also observe that the average byte hit

rates for both d-TTL and f-TTL have higher variability compared to object hit rates

(Figures 4.3 and 4.4), due to the the fact that unpopular content in our traces have
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Figure 4.3: Object hit rate convergence over time for d-TTL; target hit rate=60%.
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Figure 4.4: Object hit rate convergence over time for f-TTL; target hit rate=60%.

larger sizes, and the occurrence of non-stationary traffic can cause high variability in

the dynamics of the algorithm.

In general, we also see that d-TTL has lower variability for both object hit rate

and byte hit rate compared to f-TTL due to the fact that d-TTL does not have any

bound on the normalized cache size while achieving the target hit rate, while f-TTL

is constantly filtering out non-stationary objects to meet the target normalized cache

size while also achieving the target hit rate.
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Figure 4.5: Byte hit rate convergence over time for d-TTL; target hit rate=60%.
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Figure 4.6: Byte hit rate convergence over time for f-TTL; target hit rate=60%.

4.3.3 Accuracy of d-TTL and f-TTL

A key goal of the dynamic TTL algorithms (d-TTL and f-TTL) is to achieve

a target hit rate, even in the presence of bursty and non-stationary requests. We

evaluate the performance of both these algorithms by fixing the target hit rate and

comparing the hit rates achieved by d-TTL and f-TTL with caching algorithms such as

Fixed TTL (TTL-based caching algorithm that uses a constant TTL value) and LRU

(constant cache size), provisioned using Che’s approximation [24]. We only present

the results for object hit rates (OHR) in Table 4.1. Similar behavior is observed for

byte hit rates.
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Target Fixed TTL (Che’s) LRU (Che’s) d-TTL f-TTL
OHR
(%)

TTL (s) OHR
(%)

Size
(GB)

OHR
(%)

Size
(GB)

OHR
(%)

Size
(GB)

OHR
(%)

Size
(GB)

80 2784 83.29 217.11 84.65 316.81 78.72 97.67 78.55 55.08

70 554 75.81 51.88 78.37 77.78 69.21 21.89 69.14 11.07

60 161 68.23 16.79 71.64 25.79 59.36 6.00 59.36 2.96

50 51 60.23 5.82 64.18 9.2 49.46 1.76 49.47 0.86

40 12 50.28 1.68 54.29 2.68 39.56 0.44 39.66 0.20

Table 4.1: Comparison of target hit rate and average cache size achieved by d-TTL
and f-TTL with Fixed-TTL and LRU.

For this evaluation, we fix the target hit rates (column 1) and analytically compute

the TTL (characteristic time) and cache size using Che’s approximation (columns 2

and 6) on the request traces assuming Poisson traffic. We then measure the hit rate

and cache size of Fixed TTL (columns 3 and 4) using the TTL computed in column

2, and the hit rate of LRU (column 5) using the cache size computed in column

6. Finally, we compute the hit rate and cache size achieved by d-TTL and f-TTL

(columns 7-10) to achieve the target hit rates in column 1 and a target normalized

cache size that is 50% of that of d-TTL. We make the following conclusions from

Table 4.1.

1) The d-TTL and f-TTL algorithms meet the target hit rates with a small error

of 1.2% on average. This is in contrast to the Fixed TTL algorithm which has a high

error of 14.4% on average and LRU which has even higher error of 20.2% on average.

This shows that existing algorithms such as Fixed TTL and LRU are unable to meet

the target hit rates while using heuristics such as Che’s approximation, which cannot

account for non-stationary content.

2) The cache size required by d-TTL and f-TTL is 23.5% and 12% respectively, of

the cache size estimated by Che’s approximation and 35.8% and 18.3% respectively,

of the cache size achieved by the Fixed TTL algorithm, on average. This indicates
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that both LRU and the Fixed TTL algorithm, provisioned using Che’s approximation,

grossly overestimate the cache size requirements.

4.3.4 Sensitivity and robustness of d-TTL and f-TTL

We use constant step sizes while adapting the values of θ and θs in practical set-

tings for reasons discussed in Section 4.2. In this section, we evaluate the robustness

and sensitivity of d-TTL and f-TTL to the chosen step sizes. The robustness captures

the change in performance due to large changes in step size, whereas the sensitivity

captures the change due to small perturbations around a specific step size. For ease of

explanation, we only focus on two target object hit rates, 60% and 80% corresponding

to medium and high hit rates. The observations are similar for other target hit rates

and for byte hit rates.

Target Average OHR (%) Average cache size (GB) 5% outage fraction
OHR
(%)

η =
1e-1

η =
1e-2

η =
1e-3

η =
1e-1

η =
1e-2

η =
1e-3

η =
1e-1

η =
1e-2

η =
1e-3

60 59.35 59.36 59.17 9.03 6.00 5.41 0.01 0.01 0.05

80 79.13 78.72 77.69 150.56 97.67 75.27 0.07 0.11 0.23

Table 4.2: Impact of exponential changes in constant step size η on the performance
of d-TTL (robustness analysis of d-TTL).

Target Average OHR (%) Average cache size (GB) 5% outage fraction
OHR
(%)

η×
1.05

η η×
0.95

η×
1.05

η η×
0.95

η×
1.05

η η×
0.95

60 59.36 59.36 59.36 5.98 6.00 6.02 0.01 0.01 0.01

80 78.73 78.72 78.71 98.21 97.67 97.1 0.11 0.11 0.11

Table 4.3: Impact of linear changes in constant step size η = 0.01 on the performance
of d-TTL (sensitivity analysis of d-TTL).

Table 4.2 illustrates the robustness of d-TTL to exponential changes in the step

size η. For each target hit rate, we measure the average hit rate achieved by d-TTL,

the average cache size and the 5% outage fraction, for each value of step size. The
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Target Average OHR (%) Average cache size (GB) 5% outage fraction
OHR
(%)

ηs =
1e-8

ηs =
1e-9

ηs =
1e-10

ηs =
1e-8

ηs =
1e-9

ηs =
1e-10

ηs =
1e-8

ηs =
1e-9

ηs =
1e-10

60 59.36 59.36 59.36 5.46 2.96 1.88 0.01 0.01 0.02

80 78.65 78.55 78.47 89.52 55.08 43.34 0.12 0.14 0.17

Table 4.4: Impact of exponential changes in constant step size ηs on the performance
of f-TTL (robustness analysis of f-TTL).

Target Average OHR (%) Average cache size (GB) 5% outage fraction
OHR
(%)

ηs×
1.05

ηs ηs×
0.95

ηs×
1.05

ηs ηs×
0.95

ηs×
1.05

ηs ηs×
0.95

60 59.36 59.36 59.36 3.01 2.96 2.91 0.01 0.01 0.01

80 78.55 78.55 78.54 55.65 55.08 54.27 0.14 0.14 0.14

Table 4.5: Impact of linear changes in constant step size ηs = 1e-9 on the performance
of f-TTL (sensitivity analysis of f-TTL).

5% outage fraction is defined as the fraction of time the hit rate achieved by d-TTL

differs from the target hit rate by more than 5%.

From this table, we see that a step size of 0.01 offers the best trade-off among the

three parameters, namely average hit rate, average cache size and 5% outage fraction.

Table 4.3 illustrates the sensitivity of d-TTL to small changes in the step size. We

evaluate d-TTL at step sizes η = 0.01× (1± 0.05). We see that d-TTL is insensitive

to small changes in step size.

To evaluate the robustness and sensitivity of f-TTL, we fix the step size η = 0.01

to update θ and evaluate the performance of f-TTL at different step sizes, ηs, to

update θs. The results for robustness and sensitivity are shown in Tables 4.4 and 4.5

respectively. For f-TTL, we see that a step size of ηs=1e-9 offers the best tradeoff

among the different parameters namely average hit rate, average cache size and 5%

outage fraction. Like, d-TTL, f-TTL is insensitive to small changes in step size

parameter ηs.
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In Table 4.2 and Table 4.4, a large step size makes the d-TTL and f-TTL algo-

rithms more adaptive to the changes in traffic statistics. This results in reduced error

in the average OHR and reduced 5% outage fraction. However, during periods of high

burstiness, a large step size can lead to a rapid increase in the cache size required to

maintain the target hit rate. The opposite happens for small step sizes.

4.3.5 Effect of target normalized size on f-TTL

In the previous evaluations, f-TTL is implemented by setting a normalized cache

size target that is 50% of the normalized cache size of d-TTL. This helps f-TTL

achieve the same target hit rate as d-TTL but at half the expected cache size. In this

section, we evaluate the performance of f-TTL when we change the normalized cache

size target. Specifically, we measure the average hit rate and cache size achieved

by f-TTL when we set the target object hit rates to 60% and 80% and the target

normalized cache size to 45%, 50% (as in Section 4.3) and 55% of the normalized

cache size of d-TTL.

Target
OHR (%)

Normalized
cache size
target (%)

OHR
achieved
(%)

Cache size
achieved
(GB)

60
45 59.36 2.94
50 59.36 2.96
55 59.36 2.98

80
45 78.55 54.81
50 78.55 55.08
55 78.55 55.32

Table 4.6: Impact of normalized cache size target on the performance of f-TTL.

From Table 4.6, we see that with a target hit rate of 60%, f-TTL is able to achieve

the target hit rate with a small error of 0.64% in all three target normalized cache

size scenarios. Similarly, f-TTL is also able to achieve the target hit rate of 80% in

all three target normalized cache size scenarios with a slightly larger error of 1.45%.
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Both these scenarios show that f-TTL is able to the target hit rate at different target

normalized cache sizes with high accuracy.

We also measure the average cache size achieved by f-TTL in all three scenarios.

In the case of the 60% target hit rate, we see that f-TTL achieves a hit rate of 59.36%

with the smallest average cache size when the target normalized cache size of f-TTL is

45% of that of d-TTL and the largest average cache size when the target normalized

cache size of f-TTL is 55% of that of d-TTL. This shows that f-TTL more aggressively

filters out non-stationary content to achieve the target hit rate at smaller normalized

cache size targets. The opposite happens at higher target normalized cache sizes.

Similar behavior is observed when setting the target hit rate to 80%.

As discussed in Section 4.2, when a target normalized cache size is unachievable,

the target can instead be used to control the aggressiveness of f-TTL in filtering out

non-stationary content.

4.4 Related Work

Caching algorithms have been studied for decades in different contexts such as

CPU caches, memory caches, CDN caches and so on. We briefly review some related

prior work.

TTL-based caching: TTL caches have found their place in theory as a tool for

analyzing capacity based caches [36, 47, 52], starting from Fagin’s work [42] followed

by Che’s Approximation of LRU caches [24]. Recently, its generalizations [13,93] have

commented on its wider applicability. However, the generalizations hint towards the

need for more tailored approximations and show that the vanilla Che’s approxima-

tion can be inaccurate [93]. On the applications side, recent works have demonstrated

the use of TTL caches in utility maximization [36] and hit ratio maximization [11].

Specifically, in [36] the authors provide an online TTL adaptation algorithm high-

lighting the need for adaptive algorithms. However, unlike prior work, we propose
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the first adaptive TTL-based caching algorithms that provably achieve cache hit rate

and expected cache size targets in the presence of non-stationary traffic such as one-hit

wonders and traffic bursts.

Cache tuning and adaptation: Most existing adaptive caching algorithms require

careful parameter tuning to work in practice. There have been two main cache tuning

methods: (1) global search over parameters based on prediction models, e.g. [29,103],

and (2) simulation and parameter optimization based on shadow caches, e.g. [30].

The first method often fails in the presence of cache admission policies; whereas, the

second method typically assumes stationary arrival processes to work well. However,

with real traffic, static parameters are not desirable [87] and an adaptive/self-tuning

cache is necessary. The self-tuning heuristics include, e.g., ARC [87], CAR [6], PB-

LRU [126], which try to adapt cache partitions based on system dynamics. While

these tuning methods are meant to deal with non-stationary traffic, they lack theo-

retical guarantees unlike our work, where we provably achieve a target hit rate and a

feasible cache size by dynamically changing the TTLs of cached content.

4.5 Conclusion

In this work we propose TTL-based caching algorithms that can automatically

learn and adapt to the request traffic and provably achieve any feasible hit rate and

cache size. We present a theoretical justification for the use of two-level caches in

CDN settings where large amounts of non-stationary traffic can be filtered out to

conserve cache space while also achieving target hit rates. On the practical side, we

evaluate our TTL caching algorithms using traffic traces from a production Akamai

CDN server. The evaluation results show that our adaptive TTL algorithms can

achieve the target hit rate with high accuracy; further, the two-level TTL algorithm

can achieve the same target hit rate at a much smaller cache size.
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CHAPTER 5

ENERGY-EFFICIENT CACHING USING DISK
SHUTDOWN

CDNs deploy hundreds of thousands of servers around the world to cache and

serve web pages, videos, and other content to billions of users around the world at

low latency. While providing better performance in the form of fast downloads is

the primary goal of a CDN, energy minimization has become critical in the past few

years for two reasons. Deployed servers in data centers now account for more than

1.5% of the global power consumption [77], consuming more than mid-sized countries

such as Argentina, and growing at a rapid pace commensurate with the growth of the

Internet. With greater awareness of climate change, the CDN industry is increasingly

focused on making their systems more sustainable. For CDNs, reducing the energy

usage of server deployments is a major part of their sustainability goals.

A second motivator for the reduction of the energy usage of CDN servers is the

rising cost of energy. The operational expenditure (OPEX) of a CDN can be divided

into three broad categories: bandwidth cost, colocation cost and energy cost. Colo-

cation cost is the cost of the datacenter space and racks to host the servers. While

bandwidth costs have been the dominant factor in a CDN’s OPEX in the past, band-

width prices have fallen sharply each year in the past decades. The bandwidth cost

of delivering 1 MByte has fallen from $0.15 in 1998 to $0.00005 per MB today, a drop

of 1.8x per year. In stark contrast, the cost of energy has been rising over the past

decade [8]. Due to these long-term price dynamics, energy cost is now comparable

to the bandwidth cost. The cost structures at most data centers are such that the
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energy cost is nearly 30% of the OPEX and is expected to only rise further in this

decade.

– Disk shutdown in CDNs: In each server, there are several components that consume

energy. Energy consumed by the CPU, disks, fans, memory chips and motherboard

chipset account for most of the consumed energy. CDN server models vary widely

from each other. The number of disk drives per server is a model-specific parameter

and can vary from 2 to as high as 64. Across most production server models that

CDNs use, the average fraction of energy consumption attributed to the spinning

disks is estimated to range from 40% to 55%. Therefore, disk energy represents a

sizable chunk of the CDN’s energy consumption, making it the main focus of our

study.

The primary mechanism to save energy that we explore in our work is disk shut-

down. For hard disks, the two natural options for energy reduction are shutting down

disks entirely or reducing their rotational speed, the former providing more drastic

energy reduction than the latter. In most IT systems, disks store original data that

could be accessed at any time and shutting down disks means that the data is com-

pletely unavailable, an unacceptable outcome that must be avoided at all costs. In

fact, most server software would need to be re-designed significantly to handle the

unavailability of data from disk shutdowns. Therefore, disk shutdown has seldom

been explored or implemented in industry. However, disk shutdown is a viable energy

saving mechanism for a CDN because the disk cache of a CDN server only stores a

copy of the content that is stored persistently at the content provider’s origin servers.

Thus, the unavailability of a cached copy is easily rectified by retrieving it from a peer

server or origin. While this causes performance degradation for the user, it is less

severe than content unavailability. Thus, if disk shutdown provides significant energy

saving in exchange for a small performance degradation, that is an interesting possi-

bility from the standpoint of a CDN operator. Our work is focused on understanding
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this energy-performance tradeoff, allowing a CDN operator to choose an acceptable

operating regime in that tradeoff.

A complementary approach studied in the literature is turning off servers entirely

[23,78,80,84,111]. However, turning off servers has the disadvantage of complicating

network management in a global CDN. If servers are unreachable for extended periods

of time, they miss real-time reporting, software updates and control messages for that

duration. This may upend network management guarantees and operational practices

of the CDN platform. Thus, shutting down disks as proposed here, while the servers

are live and serving content, represents an attractive complementary option worth

exploring.

– Challenges: An important determinant of user-perceived performance is the cache

hit rate1. When disks are shut down, the content stored on them become unavailable,

leading to a decrease in the cache hit rate. To scope out the impact of disk shutdown

on performance, we first implemented a simple baseline scheme that shuts down disks

in proportion to the disk load, e.g., when the disks are loaded at x% of its I/O capacity,

we turn off roughly (100 - x)% of the disks chosen at random. The baseline scheme was

tested on a simulated CDN server with traffic logs from a live server in the Akamai

CDN. Figure 5.1 shows the hit rate for a server with the baseline disk shutdown

algorithm (labeled Load/Random/LRU) in comparison with hit rate for the same server

when all disks are active (labeled NOOFF). The observed 15-20% drop in cache hit

rate with disk shutdown would be unpalatable to the CDN operator for performance

reasons, even if the energy savings were significant. Our main challenge is to propose

algorithms that are smarter than the baseline scheme, so that the performance penalty

incurred to obtain energy savings is not steep.

– Contributions: We make the following contributions in this work.

1In this work, we consider the byte hit rate as we want to reduce the amount of cache miss traffic
sent to the origin server.
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Figure 5.1: Hit rate decreases significantly when disks are shut down using a simple
baseline scheme.

1) We show that unlike most enterprise class servers, CDN servers are able to save

energy through disk shutdown without major software redesign or major performance

degradation. We develop energy-efficient cache management schemes to address three

key questions.

- Cache sizing. How large a disk cache does a server need to hold the “working

set” of the content that is being accessed by users?

- Disk shutdown. Which disks must be shut down (or woken up) to realize the

cache size that is required?

- Content placement & eviction. Where should content be placed and what is to

be evicted if the cache is full?

2) We explore simple and implementable algorithms for cache sizing, disk shut-

down and content placement & eviction, to understand their impact on both energy

savings and cache hit rates. Using extensive traces from Akamai’s CDN servers, we

derive the energy-performance tradeoff for our algorithms. We show that our algo-

rithms achieve a 30% energy reduction in a single server with only 6.5% reduction in

the normalized server hit rate.
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3) The proposed algorithms provide a much better energy-performance in a cluster

as multiple servers might have copies of the same content for redundancy. Using

production traces, we show that our algorithms achieve a 30% energy reduction with

only a 3% reduction in the normalized cluster hit rate.

– Note: A key reason behind the effectiveness of our algorithms lies in the very

nature of how content on the Internet is accessed by users. As shown in Figure 5.2,

of the 25 million objects accessed on an Akamai CDN server over a period of 9 days,

over 16 million were “one-hit-wonders” accessed only once! In fact, only 6.6% of the

objects were accessed more than 10 times over the 9-day span. Further, as shown in

Figure 5.4, 80% of the requests are for 1% of the objects. Our algorithms migrate

the more popular content to a subset of disks within the server, allowing the other

disks to be shut down. As long as our algorithms place at least one copy of the small

fraction of popular objects on an active disk, the loss of the remaining “long tail” of

less popular content due to disk shutdown has only a modest impact on hit rates.
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Figure 5.2: Popularity of content accessed by users on a CDN server.

In summary, our work is the first to establish disk shutdown as a key mechanism

for energy savings in CDNs, paving the way for its future roll-out on the production

network.
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– Roadmap: The rest of this chapter is organized as follows. In Section 5.1, we describe

the typical cache management function of the edge server, and how we modify it to

be energy efficient. We also describe our evaluation methodology in this section.

The three main components of energy efficient cache management are cache sizing,

disk shutdown, and content placement & eviction. We describe and evaluate the

performance of these components in Sections 5.2, 5.3, and 5.4 respectively. The

evaluation is performed in the context of the hit rate of a single server. In Section 5.5,

we evaluate the different cache management schemes in the context of a cluster of

servers and show how the hit rates for an entire cluster differ from that of individual

servers. Finally, we review related work in Section 5.6 before concluding in Section

5.7.

5.1 Cache management schemes

We describe the cache management schemes that we propose, implement, and

study in our work.

5.1.1 A typical algorithm without disk shutdown

We describe a typical cache management scheme that is often used by CDNs that

we call NOOFF. NOOFF does not shut down disks and hence performs only content

placement and eviction. Each server has multiple disks. Each requested object that

is not already in cache is placed on a randomly-selected disk so that load and space

utilization are uniform across all disks. The entire cache space is part of one single

Least-Recently-Used (LRU) stack. Eviction occurs when the cache is more than 95%

full, at which time ∼5% of the least recently used bytes are evicted from cache.

We implement NOOFF to assess the hit rates that current CDN servers achieve

when no energy savings are in place and no disks are shut down. The hit rates of

the algorithms we propose for disk energy reduction must be viewed in relation to
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Cache Disk Content
Sizing Shutdown Placement & Eviction

Hybrid

(Load? &
storage
based)

Random? LRU?

(Random placement & LRU)
Fixed SLRU

(Segmented placement & LRU)
LRU-DS

LRU-ordered disk shutdown

Table 5.1: Algorithms for energy-efficient cache management. The starred algorithms
are simple options that we use as a baseline that we improve upon.

the hit rate of NOOFF. The decrease in the hit rate of an energy-efficient algorithm

in comparison to NOOFF is the performance penalty that is paid in exchange for the

energy savings. In particular, for our energy-efficient algorithms, we compute the

normalized hit rate which is simply the ratio of the algorithm’s hit rate and that of

NOOFF.

5.1.2 Energy-efficient cache management

Besides content placement and eviction, our energy-efficient cache management

schemes incorporate two other components (see Table 5.1). A cache sizing algorithm

determines the number of active disks required for storing and serving the current

working set of content that is being accessed by users. We describe our cache sizing

algorithm, Hybrid, in Section 5.2. Once cache sizing sets a target number of active

disks, a disk shutdown algorithm chooses the precise set of disks that must be shut

down or woken up. We study two algorithms, Random and Fixed, that we describe in

Section 5.3. Finally, we study content placement & eviction algorithms and compare

the baseline scheme of LRU with a sophisticated scheme of segmented placement and

LRU (SLRU) as shown in Table 5.1.

In the rest of the chapter, we represent our energy-efficient cache management so-

lutions as a triple, specifying what algorithm was used for cache sizing, disk shutdown,
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and content placement & eviction. We start out with the simple baseline solution of

Load/Random/LRU whose poor hit rate performance we outlined earlier Figure 5.1. We

progressively improve each of the three algorithms to show that Hybrid/Fixed/SLRU

outperforms other combinations and provides the best energy-performance tradeoffs.

5.1.3 An ideal energy-efficient variant of LRU

LRU is known to be an effective technique for content eviction, variants of which

are implemented in most real-world CDNs. We propose a simple extension of LRU

to incorporate disk shutdown which we call LRU-ordered disk shutdown (LRU-DS).

LRU-DS keeps content on disk as per the LRU ordering, i.e., the content on disk i

is less recently used than the content on disk i + 1 for all 1 ≤ i < n. When the

cache sizing algorithm requires k disks to be shut down, LRU-DS marks the k lowered

numbered disks as being inactive, i.e., the ones with content that was least recently

used are marked inactive. Likewise, when k disks need to be woken up, the higher

numbered disks are marked active, i.e., the disks that have the more recently accessed

content are marked active. If a requested object is present on a disk that is marked

active, that request is considered a cache hit. If a requested object is not present or

if it is present only on an inactive disk, that request is deemed a cache miss.

Note that LRU-DS is not an implementable algorithm as it requires the content

on both active and inactive disks to be always ordered in an LRU fashion. It is not

possible to maintain that property since inactive disks cannot be read or written

into. However, LRU-DS in combination with a cache sizing algorithm such as Hybrid

provides an idealized upper bound on hit rates that our algorithms can attempt to

reach. For this reason, we plot the energy-performance tradeoff of Hybrid/LRU-DS as

a point of comparison to the tradeoff achieved by our algorithms, though the former

may not be achievable by any implementable algorithm.
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5.1.4 Evaluation methodology

5.1.4.1 Content request traces

The extensive data set used in this work was collected from one of the server

clusters in Akamai’s CDN. The data set contains anonymized access logs for con-

tent requested by users. Each log line corresponds to a single request and contains a

timestamp, the requested URL (anonymized), object size, and bytes served for the re-

quest. The access logs were collected over a period of 9 days from a cluster containing

5 CDN servers. Each server has a disk configuration that is typical for deployed CDN

servers: 8 spinning disks with a capacity of 600GB each with a content cache. We

chose a busier cluster for our analysis to provide a conservative bound on the energy

savings. Disk load 2 is a function of the number and the amount of read and write

I/O operations that are being performed on the disk and is expressed as a fraction

of its I/O capacity3. The average disk load of the servers in our cluster was 39.4% of

capacity, this average includes both peak and off-peak periods. The average disk load

of a typical CDN server cluster tends to be lower than 20%, and is likely to provide an

even greater opportunity for energy savings from disk shutdown. The traffic served

in Gbps captured in our data set is shown in Figure 5.3. We can see that the cluster

has a short off-peak duration of about 6 hours each day.

Total requests 3 billion
Total bytes served 429 TB
Total distinct objects 162 million
Total distinct bytes served 67 TB

Table 5.2: Characteristics of content request traces from the Akamai cluster.

2See linux utility iostat for a description of how disk load is computed [2].

3We conservatively use 80% of the hardware-rated I/O capacity as our available I/O capacity in
our experiments.
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Figure 5.3: Content traffic served to users from our cluster (in Gbps), averaged hourly.
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Figure 5.4: A large fraction of the requests are for a small fraction of the objects.

Table 5.2 lists some of the characteristics of the content request traces used in this

work. As shown in Figure 5.2, the content popularity distribution exhibits a “long

tail” with nearly 70% of the objects accessed only once. Further, as in Figure 5.4,

80% of the requests are for 1% of the objects.
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Figure 5.5: The architectural components of a content cache that uses disk shutdown.

5.1.4.2 Cache simulator for disk shutdown

We evaluate our algorithms using a custom event-driven simulator. This simulator

simulates all the necessary hardware and functional details of a CDN server as shown

in Figure 5.5. The simulator mimics the content placement and eviction algorithms

used by the live CDN servers. Every incoming request is placed on one of the disks

and existing content is evicted from disks when necessary. In addition to the above

fundamental functionality, the simulator implements new architectural components,

the cache sizing and disk shutdown components. These components do not exist

presently in the live production CDN servers. The cache sizing component estimates

the number of active disks needed to store the working set of content that is currently

being accessed by users. The disk shutdown component chooses the precise set of

disks to be shut down or woken up. For each of these components, we implement

multiple algorithms described in Table 5.1. The simulator also carefully tracks the

I/O request rates that every disk receives. It plugs these I/O request statistics into

the disk power model outlined in Appendix B to compute per-disk, per-server and

cluster-wide energy consumption.

From the configuration provided, the simulator constructs the multi-layer cache

hierarchy within each server: a number of simulated disks of the given size, the filesys-
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tem buffer cache, and the web-server software’s hot-object memory cache. In addition

to a single-server environment, the simulator is also able to create a cluster of servers.

In this mode, it mimics the Internet Cache Protocol (ICP)-based [116] intra-cluster

content sharing among all the servers of a cluster, same as the mechanism used in

production servers. As its input, it accepts content access logs from live CDN servers

in the production network. It periodically outputs a rich set of metrics such as traffic

volumes, cache hit rates (broken down into the hit-rate seen at every cache hierar-

chy layer within the server and cluster hit rates when ICP is used). The simulator

was validated by replaying 9 days of a production cluster’s logs and matching the

simulator output metrics with the production cluster’s traffic and hit rate statistics.

5.2 Cache sizing algorithms

A cache sizing algorithm determines how many active disks are required for storing

and serving the current working set of content that is being accessed by users. The

number of disks that need to be active depends on the current incoming requests for

content, i.e., potentially more active disks are required when large volumes of content

are being accessed than during periods when access volumes are smaller.

A cache sizing algorithm must consider two different types of resource constraints.

First, each disk has an I/O capacity that determines the number of input/output

operations (IOPS) that it can sustain. We define disk load demand L as the amount

of disk IOPS required to serve the incoming content requests, expressed in the units

of the maximum IOPS that a single disk can support. For instance, if L = 6.5, then

the number of IOPS that need to be supported is 6.5 times that of the IOPS of a

single disk. Thus, we need to have at least dLe active disks to serve the content

requests, since otherwise the load of some active disk will exceed 100%, resulting in

very slow response times for retrieving content from disk. A second constraint is

the disk storage capacity that dictates how much content you can store in the disk.
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Shutting down too many disks results in a decrease in the active disk storage capacity,

resulting in an increase in cache misses, leading to poor performance. The goal of

the cache sizing algorithm is to determine the number of active disks, taking into

consideration both disk I/O and storage constraints.

Load-­‐based	
  cache	
  
size	
  estimator

Storage-­‐based	
  
cache	
  size	
  estimator

max

Disk  load
demand  L

Target  hit
rate  HRtarget

Number  of  
active  disks

Figure 5.6: The Hybrid cache sizing algorithm.

As shown in Figure 5.6, our cache-sizing algorithm takes as input the disk load

demand L that needs to be supported by the active disks and a target hit rate HRtarget

that must be sustained and computes the number of disks that must stay active. We

call our algorithm “Hybrid” as it uses two different estimators, a load-based cache

size estimator and a storage-based cache size estimator, and takes the maximum of

these two estimates. We describe each estimator below.

Load-based cache size estimator: Load-based sizing determines the number of

active disks using the disk load demand L that must be supported to serve the

incoming content requests. Specifically, it estimates that dLe disks need to be active.

In our trace-based simulations, at time t, we record the average disk load xt% of a

CDN server with n (active) disks and estimate the disk load demand L to equal xt
100
·n.

To provide more stability to the algorithm, the average disk load xt is computed as

the average of the instantaneous disk load values for all the disks during the time

interval [t − τl, t]. Note that the choice of τl presents a recency-stability tradeoff,

smaller values of τl could lead to more recent but spiky estimates, and larger τl could

lead to less recent but more stable estimates.
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Storage-based cache size estimator: Storage-based cache sizing uses the recent

content access sequence to predict how much cache storage is required to achieve a

target cache hit rate HRtarget. It performs the following two steps.

i) Compute the hit rate curve (HRC). The HRC relates cache size with hit rate.

Figure 5.7 shows an example HRC computed for a segment of our CDN content

access trace. Given a request sequence R = 〈r1, r2, · · · , rn〉, we first compute the

stack distance si [85] for each request ri, 1 ≤ i ≤ n. If the object requested by ri

was never requested before, its stack distance si is infinite. Otherwise, let j be the

largest integer such that j < i and rj is a request for the same object as ri, i.e., rj

is the previous request for the same object as ri. The stack distance of ri is simply

the number of unique bytes accessed in the request sequence 〈rj, · · · ri〉. The hit rate

for request sequence R and cache size C is computed by assuming that every request

r ∈ R that has stack distance less than or equal to C is a cache hit and every request

r′ ∈ R that has stack distance greater than C is a cache miss. This computation is

repeated for different values of C to obtain the HRC. A keen reader will note that

HRC is the hit rate achieved on request sequence R by an idealized cache of size C

that is maintained in LRU order.

ii) Given a target hit rate HRtarget, estimate the number of active disks required

to achieve that target using the HRC. The timeline is divided into segments of length

of τhrc hours. At the end of each time segment, a new HRC is computed by setting

the request sequence R to be all the requests received in that segment. The choice of

τhrc presents a tradeoff. Larger τhrc records more history but varies slowly with time

and smaller τhrc records lesser history but is more sensitive to time-varying traffic.

The variability in input traffic can be used to decide a suitable value for τhrc.

Once the HRC is computed, the “ideal” cache size estimate Cideal is the value

that corresponds to HRtarget in the HRC (cf. Figure 5.7). One key aspect of our

algorithms not modeled by the idealized LRU cache is that multiple copies of the
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same object may be stored on a server, albeit the copies must appear on different

disks within the server. Such object replication occurs when an object stored in a

currently inactive disk is accessed by a user, resulting in a new copy being created on

an active disk. When the first disk becomes active again, we may end up with multiple

copies of an object in the active disks. The degree of object replication depends on the

algorithms being used for disk shutdown. To account for this replication, we compute

a replication factor ρ which is simply the actual total bytes currently in cache divided

by the total unique bytes. The required cache size C is set to be equal to ρ× Cideal.

Thus, the number of active disks is min{dC/Cse, n} disks, where Cs is the storage

capacity of a single disk and n is the total number of disks in the server.

Example: Suppose that HRtarget = 75% and the HRC is as shown in Figure 5.7.

Cideal is 3000 GB requiring 5 active disks of 600 GB each. If ρ = 1.15, then C = 3450

GB, requiring an additional disk to account for the replication. Our storage-based

sizing algorithm recommends 6 active disks.

0

20

40

60

80

100

0 1000 2000 3000 4000 5000

Hi
t	
  r
at
e,
	
  %

Cache	
  size,	
  GB

Cideal

HRtarget

Figure 5.7: Hit rate curve (HRC) shows the relation between cache size and hit rate.

After the load-based and storage-based cache size estimates have been determined,

our Hybrid algorithm computes the maximum of the two estimates to satisfy both

the load and storage constraints.
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5.2.1 Experimental evaluation

We evaluate the performance of our cache sizing algorithm Hybrid, with two other

algorithms Load that uses only a load-based cache size estimator and Storage that

uses only a storage-based cache size estimator. We use the baseline algorithm of

Random for disk shutdown and LRU for content placement & eviction (cf., Table 5.1),

i.e., we pick the disks to be shut down (or woken up) randomly and we place new

objects on a random disk and use LRU eviction when the cache is full. We evaluate all

three sizing algorithms and NOOFF using our Akamai content access traces for a CDN

server that has n = 8 disks, each disk having capacity Cs = 600GB. We use τl = 60s

in the simulations. We set τhrc = 6 hrs to account for the day/night variations in the

traffic and we set HRtarget to equal the current hit rate of NOOFF.

In Figure 5.8, we see that Load/Random/LRU has an average hit rate that is nearly

15% lower than NOOFF, since the load-based scheme underestimates the need for cache

space and turns off more disks than it should during off-peak hours when the incoming

content request volume is low. The load-based scheme keeps only ∼2 disks (out of

the 8) active during off-peak hours, leading to a higher rate of eviction. We also

observe that the eviction age for the load-based cache sizing scheme is ∼2.5 times

lower than that of NOOFF. Thus, a load-based scheme alone does not provide good

hit rate performance, since cache sizing also depends on the actual content access

patterns that cause a given disk load. For instance, if the disk load was caused by

very few popular objects in cache, that implies that a smaller cache size with fewer

active disks is sufficient. However, if the same disk load was distributed over a large

number of less popular objects, more active disks are required to hold the working set.

Thus, we must consider the actual content access patterns to determine the number

of active disks.

In Figure 5.8, note that the Hybrid/Random/LRU has a higher cache hit rate

when compared to Load/Random/LRU, since Hybrid also accounts for the storage
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Figure 5.8: Comparing the hit rate performance of the different cache sizing algo-
rithms with the hit rate of NOOFF that does not shut down disks.

constraints. But the cache hit rate of the Hybrid/Random/LRU is still ∼3% lower

than the ideal target hit rate that was set to equal NOOFF. This discrepancy is in part

due to the inefficiency of random disk shutdown that could make frequently accessed

objects in the randomly-selected disks inactive. To remove this effect, we compare

the performance of Hybrid/LRU-DS with NOOFF. We see that Hybrid/LRU-DS has a

hit rate performance that is ∼1.5% less than NOOFF. This small difference indicates

that Hybrid is a good cache sizing algorithm that is able to closely match the target

hit rate of NOOFF.

What about storage-based only cache sizing? The hit rate of storage-based cache

sizing, Storage/Random/LRU, is nearly the same as using Hybrid/Random/LRU as

shown in Figure 5.8. However, the former has the drawback of occasionally overload-

ing the disks. The disk load occasionally goes over the 100% mark as highlighted in

Figure 5.9. To avoid such overloading, the hybrid cache sizing algorithm proposed

above should be used to account for both the load and storage constraints of the

server disks.
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Figure 5.9: The storage-based cache sizing algorithm occasionally overloads the disks,
since it does not factor in disk load. This deficiency can be corrected with a hybrid
scheme.

Concluding remark: The Hybrid algorithm works the best for cache sizing and

we use this algorithm as the default option in all our future experiments where we

investigate disk shutdown and content placement & eviction algorithms.

5.3 Disk shutdown algorithms

Once the cache sizing algorithm outputs a target number of disks that need to

be active, the disk shutdown algorithm decides precisely which disks should be shut

down (or woken up) to meet that target. Let dcountt be the number of active disks

at time t and suppose that the cache sizing algorithm produces a target dtargett of

active disks. Then, if dtargett > dcountt, the disk shutdown algorithm wakes up

|D| = dtargett − dcountt disks, where the set D is the set of all disks that need to

be woken up, and if dtargett < dcountt, the disk shutdown algorithm shuts down

|D| = dcountt−dtargett disks, where the set D is the set of all disks to be shut down.

There are a number of ways in which the set of disks D can be chosen and we review

two shutdown algorithms below.
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1) Random disk shutdown. Algorithm Random is a simple baseline scheme where

the required number of disks to be shut down (resp. woken up) are randomly selected

from among the active (resp. inactive) disks.

2) Fixed disk shutdown. The disks are ordered in sequence from 1 through n.

Algorithm Fixed shuts down disks in the increasing order starting from 1, i.e., if k

disks are to be made inactive the disks 1 to k are shut down. When the disks are

made active, they are woken up in the decreasing order, i.e., disk k is woken up,

followed by k − 1, and so on till disk 1.

The objects may get replicated on two or more disks within the same server in

both shutdown schemes. If an object that is currently accessed is on an inactive disk,

a new copy is made on an active disk. When both disks are active at a later time, we

have more than one copy of the object.

5.3.1 Experimental evaluation

We empirically evaluate the algorithms Random and Fixed by simulating them on

the CDN content request traces. In particular, we use Hybrid for cache sizing and

the baseline content placement & eviction algorithm of LRU with our two shutdown

algorithms. We also compare the energy-performance tradeoff of these two algorithms

with that of the idealized algorithm LRU-DS described in Section 5.1.3.

To explore different ranges for the energy-performance tradeoff, we use an internal

disk shutdown aggressiveness knob. The knob lowers the hit rate target HRtarget given

to the cache sizing algorithm with respect to NOOFF, and controls how aggressively

that algorithm turns disks off to save energy. In order to plot the tradeoff curve

between energy savings and the corresponding hit rates, we run the simulation five

times, each time with a higher aggressiveness than the previous run. In each run,

the hit rate target HRtarget is lowered in steps of 5%. This creates five scenarios of

gradually increasing energy savings.
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In Figure 5.10, we plot the energy-performance tradeoff for algorithms Random and

Fixed. For comparison, we also plot the tradeoff for the idealized algorithm LRU-DS.

Note that an algorithm that provides a larger hit rate for a given reduction in energy

can be deemed to be better. We see that Fixed offers a better energy-performance

tradeoff when compared to Random. For instance, for a 30% energy reduction, Random

has a normalized hit rate of 88%, while Fixed has a larger normalized hit rate of 91.5%

(recall that normalized hit rate is the actual hit rate divided by the hit rate of NOOFF).

The reasons for the superior hit rate performance of Fixed in comparison with Random

are two-fold.

1) As noted in Figure 5.4, 80% of requests are for a small fraction of 1% of popular

objects. In the case of Fixed, the popular objects that get accessed throughout the

day tend to get replicated on higher disks that are seldom ever shut down. Thus,

popular objects that account for almost all of the user requests are eventually always

available on an active higher disk in cache, even when the lower disks are shut down.

However, in the case of Random, there is a probability that copies of popular objects

are made inactive, since the disks are shut down randomly, generating cache misses

for future requests for them.

2) Random also has a greater replication factor ρ than Fixed. The reason is that

when Fixed replicates an object to a higher disk, more copies are not likely to be

needed since that copy is likely to be available at all times. However, Random could

continue to make more copies with some probability, since the existing copies could

be made inactive by the random choice of disks for shutdown. Figure 5.11, shows the

higher replication factor for Random in comparison with Fixed, for all five settings of

the disk shutdown aggressiveness knob. Higher replication factor means that fewer

unique objects are stored for a given cache size, resulting in a less efficient use of the

cache space.
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Figure 5.10 also plots the tradeoff for LRU-DS that shows a tradeoff that is better

than Fixed, for instance, a 30% energy savings can be had with a normalized hit rate

of 96%. This suggests that further improvements are possible, motivating our quest

for better content placement & eviction algorithms in Section 5.4.
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Figure 5.10: Fixed disk shutdown provides a better energy-performance tradeoff than
Random disk shutdown.
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Concluding remark: Fixed disk shutdown algorithm should be used to select disks

that need to be switched on and off since it offers a better energy-performance tradeoff.

We use Fixed as our default disk shutdown algorithm in our experimental results in

the future sections.

5.4 Content placement & eviction algorithms

Cache management schemes comprise content placement algorithms & eviction

algorithms that work together to manage the objects in cache. The cache sizing

algorithms and the disk shutdown algorithms described in Sections 5.2 and 5.3 control

the number of disks, and the actual disks that are shut down; but they have no control

over the placement of objects on those disks. Content placement algorithms choose

one among all the active disks in a server, to place the requested object on. Content

eviction algorithms select the objects to be evicted from active disks to make space

for new ones. In this section, we describe two algorithms for content placement &

eviction. We assume that Hybrid sizing and Fixed shutdown are used with the two

algorithms studied in this section.

1) Random object placement with LRU eviction (LRU). LRU is a baseline scheme

and all the algorithms evaluated in Section 5.3 used LRU. Each requested object is

placed on a randomly selected active disk. All objects are part of one LRU list.

During eviction, the least recently accessed objects on active disks are evicted until

enough cache space is reclaimed.

2) Segmented placement and LRU (SLRU). LRU is oblivious to the fixed order in

which disks are shut down. SLRU avoids the drawbacks of LRU by placing more popular

objects on higher numbered disks that are less likely to be shut down. Specifically,

SLRU divides the cache space into k equally sized segments, where segment 1 contains

the least popular objects and segment k contains the most popular objects. Every

incoming object is first placed in segment 1. Each subsequent request for that object
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migrates it one segment up, until it reaches segment k. Objects in each segment are

evicted independently using the LRU eviction policy. Hence, we have k LRU lists,

one for each segment. In this work, we assume that that the maximum number of

segments in a cache is the number of disks in the server, k ≤ n. Since the available

cache space in the server is reduced or increased at the granularity of a disk, k > n

provides no benefit from the perspective of disk energy savings.

5.4.1 Experimental evaluation

We empirically evaluate the hit rate performance of LRU and SLRU by performing

simulations using the CDN content request traces. In particular, as we experiment

with LRU and SLRU, we use Hybrid and Fixed as the cache sizing and disk shutdown

algorithms respectively. To explore different ranges for the energy-performance trade-

off, we use 5 different settings for the disk shutdown aggressiveness knob as before.

Recall that for higher values of the knob, Hybrid cache sizing will lower the target hit

rate HRtarget, resulting in fewer disks being active, saving more energy. As in prior

experiments, we set τl = 60s, τhrc = 6 hrs. Further, we simulate the simplest form

of SLRU that has k = 2 segments, i.e., there is a segment with the 4 higher-ordered

disks and a segment with the 4 lower-ordered disks,

From Figure 5.12, we see that SLRU has higher hit rate than LRU for any given

value of the energy reduction. For instance, for a 30% reduction in energy, SLRU has

a normalized hit rate of 93.5%, while LRU has a normalized hit rate of 91.5%. This

is due to the fact that SLRU is cognizant of the manner in which algorithm Fixed

shuts down disks and places popular objects accessed more than once in the higher

segment. Since the higher segment resides in the higher numbered disks, it is unlikely

to be shut down.
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5.4.2 Disk power cycles and impact on lifetimes

One of the major impacts on disk lifetime is the number of disk power cycles, in

other words the number of times the disk is switched off and switched on. Disks used

in current CDN servers are limited to anywhere from 7 to 35 in the number of disk

power cycles per day, given that servers are upgraded every 4-5 years. We measure

the average number of disk power cycles per day for all 5 simulations and see that

both LRU and SLRU have ∼2-4 disk transitions per day. This is within the bounds of

manufacturer specifications and hence disk shutdown is feasible without sacrificing

disk lifetimes.

Concluding remark: The Hybrid/Fixed/SLRU scheme provides the best energy-

performance tradeoff from the standpoint of a single server. In addition, the signifi-

cant energy savings are obtainable without significant impact on disk lifetimes.

80

85

90

95

100

0 10 20 30 40 50

No
rm

al
ize

d	
  
hi
t	
  r
at
e,
	
  %

Energy	
  reduction,	
  %

Hybrid/Fixed/LRU

Hybrid/Fixed/SLRU

Hybrid/LRU-­‐DS

Figure 5.12: Energy-performance tradeoff of content placement & eviction algorithms.

5.5 Understanding cluster hit rates

In a typical CDN cluster, popular objects are often stored in more than one server.

Algorithms such as consistent hashing [69,81] that replicate content within a cluster

were originally designed to better balance the load within the cluster. Here we study
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how disk shutdown interacts with load balancing and content replication within a

cluster by simulating an entire CDN server cluster consisting of 5 servers.

When the requested object is unavailable on the chosen server, due to disk shut-

down or otherwise, the server attempts to fetch a copy from a peer server within the

same cluster via ICP [116]. If no copy of the object is found within the cluster, the

server fetches it from the origin server over the WAN. While server cache hits are the

most desirable scenario, cluster hits also often provide adequate performance, since

latencies between servers in the same datacenter are quite small. Further, ICP trans-

fers within the same cluster incur no cost for the CDN, since such ICP traffic does

not exit the datacenter. The least desirable scenario is when the object experiences a

cluster miss, and the object will have to be fetched from a distant origin server over

the WAN. Such WAN traffic incurs additional bandwidth costs for the CDN. Thus,

the cluster hit rate that we study in this section is important both from a performance

and cost perspective.

5.5.1 Experimental evaluation

In this work, thus far, we have looked at cache hit rates within a server. This

section evaluates the energy-performance tradeoff from the standpoint of cluster hit

rates. To perform the evaluation, we ran cluster-wide simulations where every server

independently shuts down disks using one of the proposed cache management schemes:

Hybrid/Random/LRU, Hybrid/Fixed/LRU and Hybrid/Fixed/SLRU. For each cache

management scheme, we ran the simulation five times, each time with a higher disk

shutdown aggressiveness knob than the previous run. The normalized cluster hit rates

for the three cache management schemes are shown in Figure 5.13. We see that the

difference in the normalized cluster hit rates for the three cache management schemes

are not as significant as the differences in the (server) hit rates observed for these

schemes in Figures 5.10 and 5.12. From a cluster hit rate perspective, simple disk
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shutdown algorithms such as Hybrid/Random/LRU and Hybrid/Fixed/LRU provide

energy-performance tradeoffs that are comparable to Hybrid/Fixed/SLRU. This is

due to the following reasons: 1) since popular objects are replicated across servers,

a cluster miss occurs only when all the copies of an object within the cluster are

inaccessible, and 2) content placement and eviction are performed independently on

each server within a cluster. Hence, the probability that all the copies of an object

will be on inactive disks is now much smaller for all three cache management schemes.
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Figure 5.13: Energy-performance tradeoff of disk shutdown within a cluster.

We also compare the normalized cluster hit rate for Hybrid/Fixed/LRU with its

normalized (server) hit rate in Figure 5.14. We see that cluster hit rates have a better

energy-performance tradeoff when compared to single server hit rates. For instance,

for an energy reduction of 30%, the normalized cluster hit rate reduces by a mere

3%, in comparison with the normalized server hit rate that reduces by 6.5%. In this

case, the absolute hit rate reduction for the cluster hit rate and the server hit rate

were 2.5% and 5% respectively. Thus, shutting down disks to save energy has a much

smaller impact on cluster hit rates than server hit rates.

Concluding remark: For CDNs primarily concerned with maximizing cluster hit

rates to minimize bandwidth costs, our simple scheme Hybrid/Fixed/LRU is an attrac-
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Figure 5.14: Cluster hit rate provide a better energy-performance tradeoff because of
content replication across servers.

tive option, as it saves significant amounts of energy with only a modest performance

loss and a small implementation overhead. However, CDNs interested in maximizing

both server and cluster hit rates must invest in more sophisticated algorithms such

as Hybrid/Fixed/SLRU.

5.6 Related work

First we review work that reduce disk energy consumption by the use of multi-

speed disks that consume less energy by rotating at lower speeds at periods of low load.

The authors in [58] propose the use of multi-speed disks to reduce disk power con-

sumption, instead of shutting down disks. The rotation speed is chosen proportional

to the disk load. The work in [20] is focused on reducing the energy consumption

of disks in network servers that serve web traffic. The authors in this work, also

use multi-speed disks, to conserve energy while maintaining the server’s throughput.

Hibernator [125], is another work that uses multi-speed disks to reduce energy con-

sumption. This work is targeted at conserving disk energy in disk arrays that serve

transaction workloads. Our work differs from these approaches in that we consider
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typical CDN servers that are commodity hardware with fixed speed disks, and typi-

cal CDN workloads. Further, our approach saves additional energy by shutting down

disks entirely, an approach that is feasible for CDNs but not for other enterprise

networks that store original content.

Other work that attempt to switch disks to a lower power mode include [97]

where popular objects are migrated to a subset of disks so that the other disks can be

switched to a low-power mode without affecting the performance of the server. The

decision to switch disks to low-power modes is based on the incoming request rate.

In [16], the size of the front-end cache is optimized to reduce the energy consumption

of back-end disks in a storage system, while the front-end cache consumes power. The

cache size is estimated as being proportional to the disk load. However, in our CDN

context, we identify that the disk load alone is not a good indicator of the cache space

requirement. Complementary to our work, there is significant work on saving energy

in other components of the server such as CPU, including dynamic power scaling and

dynamic component deactivation [41,51,115,117].

Prior works also propose turning off servers entirely in the context of a data

center [23,78,80,111] and in the context of a CDN [84]. However, turning off servers

makes network management difficult in a global CDN. If servers are unreachable for

extended periods of time, they may miss real-time reporting, software updates and

control messages for the duration. This may upend some of the network management

guarantees and operational practices of the CDN platform. Therefore, shutting down

disks as proposed in this work, while the servers are still live and serving content,

represents an attractive alternative worth exploring.

5.7 Conclusion

Reducing the energy consumption of CDNs is an important problem, both from

the standpoint of sustainability and OPEX cost reduction. The energy consumed by

123



spinning disks constitute a significant portion of a CDN’s energy usage. Our work

explores the possibility of reducing the disk energy usage by shutting down disks,

a possibility that is particularly well-suited for CDNs since these disks do not store

original copies of the content. Our main contribution is developing and evaluating

algorithms for cache sizing, disk shutdown, and content placement & eviction that

allow disks to be shut down without significantly impacting cache hit rates and user-

perceived performance. We empirically evaluate the energy-performance tradeoff for

our algorithms using extensive request traces from the world’s largest CDN. We show

that it is feasible to obtain 30% disk energy savings with only a 6.5% reduction in

the normalized server hit rate and a mere 3% reduction in the normalized cluster hit

rate. This work establishes disk shutdown as a key mechanism for energy savings in

CDNs, making it a prime candidate for implementation in the production network.
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CHAPTER 6

SUMMARY AND FUTURE WORK

In this dissertation, we propose algorithms for traffic provisioning and cache man-

agement that enhance the performance and reduce the cost of content delivery. We

show that the proposed algorithms are easy to implement and evaluate them us-

ing production traces from Akamai’s CDN. Some of the proposed algorithms have

been implemented in a production setting and others are being evaluated for future

deployments. We summarize our contributions below.

– Traffic provisioning: Traffic provisioning is the process of deciding which traffic

classes are hosted in which set of servers across the CDN to maximize the cache hit rate

of the network. We propose footprint descriptors that are a succinct representation

of request traces that belong to different traffic classes. We show that footprint

descriptors accurately predict the effects of traffic mixing which is crucial for traffic

provisioning. Footprint descriptors are currently deployed in Akamai’s production

network to provision traffic across the network. We also propose optimization models

for traffic provisioning that minimize the midgress traffic. We show that midgress-

aware traffic provisioning can be easily deployed in production settings.

– Cache management: Given a stream of user requests sent to a cache server (or

cluster of servers), cache management is the process of deciding which objects enter

cache and which objects are evicted from cache, to maximize the cache hit rate.

We propose two adaptive TTL-based cache management algorithms, d-TTL and f-

TTL that adapt to non-stationary traffic and provably achieve a desired cache hit

rate and expected cache size. We also propose energy-efficient cache management
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algorithms using disk shutdown. We show that disk shutdown provides a good energy-

performance tradeoff and is well suited for CDN servers.

6.1 Future work

The algorithms proposed in this dissertation advance the state-of-the-art in traffic

provisioning and cache management to improve the performance of CDNs. But these

techniques merely scratch the surface of what needs to be done and there are several

directions that can be taken to further maximize performance. We list a few ideas

for future work.

6.1.1 Traffic provisioning of hierarchical caches

In this dissertation, we have focused on improving the performance of single level

caches either within a cluster or within an entire metro area. While some of our

proposed algorithms consider inter-server communication using ICP, we have not

considered a hierarchical network of servers which is common in many production

settings. Accurately modeling hierarchical cache networks that serve non-stationary

traffic can be extremely useful in understanding how traffic needs to be provisioned

across the entire deployed network to maximize cache hit rates. However, the main

roadblock is the fact that in a multi-level cache hierarchy, inferring the cache miss

traffic from the lower layer to the next higher layer is a hard problem. Our work

on footprint descriptors (Chapter 2) efficiently models the traffic in the lower most

layer. As future work, the footprint descriptor calculus could be extended to include

a “filter” operation where given the footprint descriptor of a request trace and some

cache of size C, the filter operator computes the footprint descriptor of the cache miss

traffic resulting from the cache of size C. Such a calculus could be used to compute

the “filtered” footprint descriptor for different hierarchical settings and could also be
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incorporated into the midgress-aware traffic provisioning model proposed in Chapter 3

to reduce midgress.

6.1.2 Modeling server provisioning

Traffic provisioning is typically constrained by the available resources such as

server storage capacities, network bandwidth, disk and CPU throughputs and so on.

In Chapter 3, we show how traffic provisioning can be modeled and evaluated to

minimize midgress. The “dual” of traffic provisioning is server provisioning. Server

provisioning is the problem of deciding how many and what configuration of servers

should be deployed to meet the performance requirements of traffic classes served by

a CDN while also minimizing the capital and operational expenditures (CAPEX and

OPEX). For example, one instance of server provisioning could be as follows. Given

N traffic classes with each traffic class having a maximum cache miss rate threshold

MRj, 1 ≤ j ≤ N , determine the minimum number of servers M with cache size C GB

and capacity T Gbps each, that are required to minimize the CAPEX + OPEX of

the CDN. The optimization model proposed in Chapter 3 could be easily extended to

model server provisioning. More complex server provisioning models could take into

account the types of hardware being used where different hardware models for a given

resource would present a cost-performance tradeoff. For example, while SSDs provide

fast content access when compared to spinning disks, they are much more expensive.

Hence a hybrid deployment of SSDs and spinning disks, that accounts for this tradeoff,

might make more sense. A good understanding of server provisioning helps CDNs

deploy and update infrastructure to sustain future traffic growth of existing traffic

classes and incorporate new classes of traffic.

6.1.3 Machine learning based caching

With the rapid rise in the amount of traffic being served to end users, the vari-

ety of content types and the amount of content footprint being accessed, there is an
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increasing need to develop smart and adaptive cache management algorithms that

require little to no human intervention in setting different parameter values such as

the minimum number of content accesses required for cache admission [81], minimum

object size required to cache the object [12] and so on. Traditional cache management

algorithms were not designed to be adaptive to such diverse workloads and hence do

not work well in such settings. Our work on TTL-based caching (Chapter 4) is a step

towards addressing this challenge. We show how to achieve feasible cache hit rate and

cache size targets for caches serving non-stationary and bursty traffic. More recently,

a promising technique to address this problem is to use machine learning based ap-

proaches to adaptively cache content to maximize hit rates [9, 32, 43,72,90,106]. For

instance, we show how cache admission could be modeled as a reinforcement learning

problem [75]. The proposed algorithm, RL-Cache, uses multiple object features such

as the object size, the frequency of access, the recency of access, and multiple combi-

nations of these features to train a reinforcement learning model to maximize object

hit rates. RL-Cache achieves high object hit rates when compared to other state-

of-the-art admission algorithms. But there is a lot more to be done. For example:

1) How do we jointly optimize cache admission and cache eviction to maximize hit

rates, 2) How do we implement and deploy on-line learning models in the edge server

without impacting throughput, and 3) How to auto-tune machine learning model

parameters in dynamic settings such as CDNs with little or no human intervention.
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APPENDIX A

SOLVING THE OPTIMIZATION MODEL FOR
MIDGRESS-AWARE TRAFFIC PROVISIONING

The optimization model for midgress-aware traffic provisioning described in Sec-

tion 3.1.2 is non-convex and hence an NP-hard problem to solve. We make a few

assumptions to transform the problem to a mixed integer linear program (MILP)

that can be solved using CPLEX.

A.1 Midgress-aware traffic provisioning as a MILP

At a high level, our goal is to transform every biconvex term (product of two

convex functions) in the original optimization model to bilinear terms that are a

product of one continuous term and one binary term. The bilinear terms so formed

can then be linearized to yield a MILP. The transformations are described in the

following subsections as we linearize all terms in the original non-convex problem.

We present the original non-convex terms first followed by the reformulations.

A.1.1 Objective function

The objective of midgress-aware traffic provisioning is to assign N traffic classes

to M sites such that the midgress traffic from all the sites is minimized.

Original formulation: The objective function in the original formulation is

min.
M∑
i=1

N∑
j=1

xijλjMj(cij).
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In the objective function, the load fraction xij is a linear term, and the MRC of

each traffic classMj(cij) where cij is the cache size occupied by traffic class j in site

i, is a convex function. The load of traffic class j, λj is a constant term.

MILP reformulation: We take the following steps to linearize the objective and in

the process add more linear constraints.

1) Load fraction xij can only take a discrete set of values. For some integer F ,

xij ∈ {0, 1
F
, 2
F
, . . . , F−1

F
, 1}. Hence, xij can be rewritten as xij =

∑F
f=1 x

b
ijf

F
, where xbijf

are binary variables.

2) The MRC of traffic class j, Mj(cij) can be represented by a piece-wise linear

approximation with K linear functions. Let ajk and bjk represent the coefficients

of the K linear functions that approximate the MRC of traffic class j. Let mij

be a non-zero variable representing the miss rate of traffic class j in site i. Then,

we replace Mj(cij) with mij in the objective and introduce K affine constraints

ajkcij + bjk ≤ mij, ∀ j(i)(k) = 1 . . . N(M)(K).

After these two transformations we have the intermediate objective function

min.
M∑
i=1

N∑
j=1

(∑F
f=1 x

b
ijf

F

)
mij

The final step is to linearize every bilinear product term in the objective, xbijfmij,

which is a product of a binary variable and a continuous variable. We use standard

McCormick envelope based linearization for this transformation by introducing a

new continuous variable zijf = xbijfmij, ∀ i(j)(f) = 1 . . .M(N)(F ). Putting it all

together, the linearized objective, the piecewise linear MRCs and the McCormick

envelope constraints are

min.
M∑
i=1

N∑
j=1

(∑F
f=1 zijf

F

)
(A.1)

ajkcij + bjk ≤ mij (A.2)
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zijf ≤ xbijf ∗mUB
ij (A.3)

zijf ≤ mij (A.4)

zijf ≥ mij − (1− xbijf )mUB
ij (A.5)

zijf ≥ 0 (A.6)

where, mUB
ij and mLB

ij are the upper and lower bounds of the cache miss rates of each

traffic class in each site.

After the transformations, Equation A.1 is the new linearized objective function.

In the process of linearizing the objective, we have added additional linear constraints,

Equation A.2 for the MRCs and Equations A.3-A.6 for the McCormick envelopes.

A.1.2 Resource constraints

Original formulation: The cache size and the capacity constraints from the original

model are as follows.

N∑
j=1

cij ≤ Ci ∀i = 1 . . .M

N∑
j=1

xijλj ≤ Ti ∀i = 1 . . .M

MILP reformulation: The cache size constraint remains unchanged in the MILP.

The capacity constraint is updated to incorporate the discrete set of values that the

load fraction xij is allowed to take.

N∑
j=1

cij ≤ Ci ∀i = 1 . . .M (A.7)

N∑
j=1

(∑F
f=1 x

b
ijf

F

)
λj ≤ Ti ∀i = 1 . . .M (A.8)
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A.1.3 Eviction age equality constraint

Original formulation: The eviction age equality constraint in the original model

is as follows.

Tj(cij, λj) = ρixij ∀j(i) = 1 . . . N(M)

The eviction age function Tj(cij, λj), where cij is the cache size occupied by traffic

class j in site i is convex, the eviction age of site i, ρi is linear and so is the load

fraction xij.

MILP reformulation: To simplify the linearization process, we rewrite the eviction

age constraint in the original formulation by introducing an intermediate variable tij.

The modified constraints are

tij = ρixij ∀j(i) = 1 . . . N(M) (A.9)

tij = Tj(cij, λj) ∀j(i) = 1 . . . N(M) (A.10)

We first linearize Equation A.9. We discretize xij to take on only F discrete values

as before. This gives us

tij = ρi

(∑F
f=1 x

b
ijf

F

)
.

Following the same steps as in Section A.1.1, we introduce a new variable t′ijf = ρix
b
ijf ,

and linearize the product using McCormick envelopes.

tij =

∑F
f=1 t

′
ijf

F
(A.11)

t′ijf ≤ xbijf ∗ ρUBi (A.12)

t′ijf ≤ ρi (A.13)

t′ijf ≥ ρij − (1− xbijf )ρUBi (A.14)

t′ijf ≥ 0 (A.15)
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where ρUBi and ρLBi are the upper and lower bounds of the eviction ages of site i

respectively.

We now linearize Equation A.10. We approximate the eviction age function

Tj(cij, λj) by a piece-wise linear function with L pieces. We model the piece-wise

linear function using variables that satisfy the special order set (SOS) of type 2 con-

straints. SOS type-2 variables are a set of consecutive variables in which no more

that two adjacent variables are non-zero. Let Γijl be SOS type-2 variables for each

piece l and every combination of traffic class j and site i. Then Equation A.10 can

be linearized as follows.

tij =
L∑
l=1

ΓijlT yjl (A.16)

cij =
L∑
l=1

ΓijlT xjl (A.17)

L∑
l=1

Γijl = 1 (A.18)

where T yjl are the Y coordinates of the eviction age function Tj(cij) at the L break-

points with X coordinates T xjl .

Putting it all together, Equations A.11-A.18 are the linearized eviction age equal-

ity constraints in the MILP.

A.1.4 Load assignment constraint

Original formulation: The load assignment in the original model is

M∑
i=1

xij = 1 ∀j = 1 . . . N

MILP reformulation: In the MILP reformulation, the load fraction xij is trans-

formed to take on a discrete set of values.
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M∑
i=1

(∑F
f=1 x

b
ijf

F

)
= 1 ∀j = 1 . . . N (A.19)

A.1.5 Non-negativity constraints

Original formulation: In the original formulation, the non-negativity constraints

apply to the set of output variables ρi, cij and xij as follows.

ρi > 0 ∀i = 1 . . .M

cij ≥ 0 ∀j = 1 . . . N

xij ∈ [0, 1] ∀j(i) = 1 . . . N(M)

MILP reformulation: In the transformed MILP, the non-negativity constraints

apply to the output variables and the intermediate variables introduced as part of

the transformations.

ρi > 0 ∀i = 1 . . .M (A.20)

cij ≥ 0 ∀j = 1 . . . N (A.21)

xbijf ∈ {0, 1} ∀ j(i) = 1 . . . N(M) (A.22)

mij ≥ 0 ∀ j(i) = 1 . . . N(M) (A.23)

zijf ≥ 0 ∀ j(i)(f) = 1 . . . N(M)(F ) (A.24)

tij ≥ 0 ∀j(i) = 1 . . . N(M) (A.25)

t′ijf ≥ 0 ∀ j(i)(f) = 1 . . . N(M)(F ) (A.26)

Γijl ≥ 0 ∀ j(i)(l) = 1 . . . N(M)(L) (A.27)

Now that we have linearized the objective and all the constraints in the original

problem, Equations A.1-A.8 and A.11-A.27 represent the transformed MILP that can

be solved using CPLEX.

134



APPENDIX B

DISK POWER MODEL

In the simulator, we used a power model similar to the 2-parameter disk-power

model described in Dempsey [123]. In this model, the energy consumed by the disk

is modeled as Etotal = Eidle + Eactive. The values of the two components of the total

energy were empirically determined as follows.

– Measurement of Eidle: We used a typical CDN server that comes equipped with a

power-supply unit that has a PMBus interface that allows us to query the server’s

power consumption at any time. We used the CDN server in the lab for disk power

measurement in which four of the disks had no files or directories. A script running

on this server queried the PMBus interface every 10 seconds to record a time-series

of server power. All the processes other than the bare minimum needed to keep

the server up were stopped. Then, the four disks were accessed for a duration of

time, then left idle for a duration of time, and then spun down using the SCSI stop

command. The time series of server power measurement collected during the time

allows us to identify Protation and Pelectronics. Since the disks in CDN servers never

get a chance to shut their electronics down, we use Protation + Pelectronics as Pidle,

which is used to compute Eidle. Further, in the manufacturer’s detailed data sheet,

we located the maximum observed power consumption of the disk model. We call

this Pmax. Pmax−Pidle gives Piomax, the maximum power that the disk’s I/O activity

can consume. These observations are listed below in Table B.1.

– Model for Eactive: Eactive is the sum of the products of Tactive and Pactive for all the

I/O operations, where Tactive is the time consumed by an I/O operation, and Pactive is

135



Component Power consumption (W)

Piomax 2.25
Pelectronics 0.75
Protation 3
Pmax 6

Table B.1: Disk power consumption.

the power consumption of that operation. In the typical CDN servers that we studied,

the disk I/O pattern caused by serving web traffic has a very narrow range of bytes

transferred per request. Over 85% of the I/O requests to the disks have transfer sizes

of less than 100KB. Since most transfer sizes are clustered in such a narrow band, we

do not create a generalized fine-grain model for Pactive covering a wide range of I/O

sizes, but assume that Pactive is narrowly clustered around a mean. Due to the low

variance property, Pactive can be said to scale linearly with Tactive.

We model Tactive as a function of four disk activity parameters collected at the

block layer. To create this model, we collected a large archive of disk statistics using

the linux iostat command. The archive contains data points from each machine in a

cluster of edge servers for 5 days. Each data point is of the form (read operations/sec,

average read size, write operations/sec, average write size, Tactive), each providing the

average of a 30 second observation period. The value of Pactive for every data point

in the archive was estimated as Pmax × Tactive/Ttotal, where Ttotal is the observation

period. Using linear regression, the 172,800 data points so collected were converted

to a power model, which expresses Tactive and Pactive as a piecewise linear function of

the four disk activity parameters.

Ideally, the power model should also address the energy consumed by disk spin-up

phase, which is easily obtained from measurement. But as we saw earlier, the number

of power cycles per day per disk is low (approximately 3). Therefore, this component
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has a minor impact on the total energy consumption, and is excluded from the power

model.
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