10,033 research outputs found

    Distributed classifier migration in XCS for classification of electroencephalographic signals

    Full text link
    This paper presents an investigation into combining migration strategies inspired by multi-deme Parallel Genetic Algorithms with the XCS Learning Classifier System to provide parallel and distributed classifier migration. Migrations occur between distributed XCS classifier sub-populations using classifiers ranked according to numerosity, fitness or randomly selected. The influence of the degree-of-connectivity introduced by Fully-Connected, Bi-directional Ring and Uni-directional Ring topologies is examined. Results indicate that classifier migration is an effective method for improving classification accuracy, improving learning speed and reducing final classifier population size, in the single-step classification of noisy, artefact-inclusive human electroencephalographic signals. The experimental results will be used as part of our larger research effort investigating the feasibility of using EEG signals as an interface to allow paralysed persons to control a powered wheelchair or other devices. © 2007 IEEE

    Quantifying the Impact of Parameter Tuning on Nature-Inspired Algorithms

    Full text link
    The problem of parameterization is often central to the effective deployment of nature-inspired algorithms. However, finding the optimal set of parameter values for a combination of problem instance and solution method is highly challenging, and few concrete guidelines exist on how and when such tuning may be performed. Previous work tends to either focus on a specific algorithm or use benchmark problems, and both of these restrictions limit the applicability of any findings. Here, we examine a number of different algorithms, and study them in a "problem agnostic" fashion (i.e., one that is not tied to specific instances) by considering their performance on fitness landscapes with varying characteristics. Using this approach, we make a number of observations on which algorithms may (or may not) benefit from tuning, and in which specific circumstances.Comment: 8 pages, 7 figures. Accepted at the European Conference on Artificial Life (ECAL) 2013, Taormina, Ital

    Embodied Evolution in Collective Robotics: A Review

    Get PDF
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl

    ParaDisEO-Based Design of Parallel and Distributed Evolutionary Algorithms

    Get PDF
    The original publication is available at www.springerlink.comInternational audienceParaDisEO is a framework dedicated to the design of parallel and distributed metaheuristics including local search methods and evolutionary algorithms. This paper focuses on the latter aspect. We present the three parallel and distributed models implemented in ParaDisEO and show how these can be exploited in a user-friendly, flexible and transparent way. These models can be deployed on distributed memory machines as well as on shared memory multi-processors, taking advantage of the shared memory in the latter case. In addition, we illustrate the instantiation of the models through two applications demonstrating the efficiency and robustness of the framework

    Using neutral cline decay to estimate contemporary dispersal: a generic tool and its application to a major crop pathogen

    Get PDF
    Dispersal is a key parameter of adaptation, invasion and persistence. Yet standard population genetics inference methods hardly distinguish it from drift and many species cannot be studied by direct mark-recapture methods. Here, we introduce a method using rates of change in cline shapes for neutral markers to estimate contemporary dispersal. We apply it to the devastating banana pest Mycosphaerella fijiensis, a wind-dispersed fungus for which a secondary contact zone had previously been detected using landscape genetics tools. By tracking the spatio-temporal frequency change of 15 microsatellite markers, we find that σ, the standard deviation of parent–offspring dispersal distances, is 1.2 km/generation1/2. The analysis is further shown robust to a large range of dispersal kernels. We conclude that combining landscape genetics approaches to detect breaks in allelic frequencies with analyses of changes in neutral genetic clines offers a powerful way to obtain ecologically relevant estimates of dispersal in many species

    Adaptive management of an active services network

    Get PDF
    The benefits of active services and networks cannot be realised unless the associated increase in system complexity can be efficiently managed. An adaptive management solution is required. Simulation results show that a distributed genetic algorithm, inspired by observations of bacterial communities, can offer many key management functions. The algorithm is fast and efficient, even when the demand for network services is rapidly varying
    corecore