1,367 research outputs found

    The Mid-Pleistocene Transition induced by delayed feedback and bistability

    Get PDF
    The Mid-Pleistocene Transition, the shift from 41 kyr to 100 kyr glacial-interglacial cycles that occurred roughly 1 Myr ago, is often considered as a change in internal climate dynamics. Here we revisit the model of Quaternary climate dynamics that was proposed by Saltzman and Maasch (1988). We show that it is quantitatively similar to a scalar equation for the ice dynamics only when combining the remaining components into a single delayed feedback term. The delay is the sum of the internal times scales of ocean transport and ice sheet dynamics, which is on the order of 10 kyr. We find that, in the absence of astronomical forcing, the delayed feedback leads to bistable behaviour, where stable large-amplitude oscillations of ice volume and an equilibrium coexist over a large range of values for the delay. We then apply astronomical forcing. We perform a systematic study to show how the system response depends on the forcing amplitude. We find that over a wide range of forcing amplitudes the forcing leads to a switch from small-scale oscillations of 41 kyr to large-amplitude oscillations of roughly 100 kyr without any change of other parameters. The transition in the forced model consistently occurs near the time of the Mid-Pleistocene Transition as observed in data records. This provides evidence that the MPT could have been primarily a forcing-induced switch between attractors of the internal dynamics. Small additional random disturbances make the forcing-induced transition near 800 kyr BP even more robust. We also find that the forced system forgets its initial history during the small-scale oscillations, in particular, nearby initial conditions converge prior to transitioning. In contrast to this, in the regime of large-amplitude oscillations, the oscillation phase is very sensitive to random perturbations, which has a strong effect on the timing of the deglaciation events

    Migration of the Antarctic Polar Front through the mid-Pleistocene transition: evidence and climatic implications

    No full text
    The Antarctic Polar Front is an important biogeochemical divider in the Southern Ocean. Laminated diatom mat deposits record episodes of massive flux of the diatom Thalassiothrix antarctica beneath the Antarctic Polar Front and provide a marker for tracking the migration of the Front through time. Ocean Drilling Program Sites 1091, 1093 and 1094 are the only deep piston cored record hitherto sampled from the sediments of the circumpolar biogenic opal belt. Mapping of diatom mat deposits between these sites indicates a glacial-interglacial front migration of up to 6 degrees of latitude in the early / mid Pleistocene. The mid Pleistocene transition marks a stepwise minimum 7 degree northward migration of the locus of the Polar Front sustained for about 450 kyr until an abrupt southward return to a locus similar to its modern position and further south than any mid-Pleistocene locus. This interval from a “900 ka event” that saw major cooling of the oceans and a ?13C minimum through to the 424 ka Mid-Brunhes Event at Termination V is also seemingly characterised by 1) sustained decreased carbonate in the subtropical south Atlantic, 2) reduced strength of Antarctic deep meridional circulation, 3) lower interglacial temperatures and lower interglacial atmospheric CO2 levels (by some 30 per mil) than those of the last 400 kyr, evidencing less complete deglaciation. This evidence is consistent with a prolonged period lasting 450 kyr of only partial ventilation of the deep ocean during interglacials and suggests that the mechanisms highlighted by recent hypotheses linking mid-latitude atmospheric conditions to the extent of deep ocean ventilation and carbon sequestration over glacial-interglacial cycles are likely in operation during the longer time scale characteristic of the Mid-Pleistocene Transition. The cooling that initiated the “900 ka event” may have been driven by minima in insolation amplitude related to eccentricity modulation of precession that also affected low latitude climates as marked by threshold changes in the African monsoon system. The major thresholds in earth system behaviour through the Mid-Pleistocene Transition were likely governed by an interplay of the 100 kyr and 400 kyr eccentricity modulation of precession

    Change in the North Atlantic circulation associated with the mid-Pleistocene transition

    Get PDF
    The southwestern Iberian margin is highly sensitive to changes in the distribution of North Atlantic currents and to the position of oceanic fronts. In this work, the evolution of oceanographic parameters from 812 to 530 ka (MIS20-MIS14) is studied based on the analysis of planktonic foraminifer assemblages from site IODP-U1385 (37 degrees 34.285' N, 10 degrees 7.562' W; 2585m b.s.l.). By comparing the obtained results with published records from other North Atlantic sites between 41 and 55 degrees N, basin-wide paleoceano-graphic conditions are reconstructed. Variations of assemblages dwelling in different water masses indicate a major change in the general North Atlantic circulation during MIS16, coinciding with the definite establishment of the 100 ky cyclicity associated with the mid-Pleistocene transition. At the surface, this change consisted in the redistribution of water masses, with the subsequent thermal variation, and occurred linked to the northwestward migration of the Arctic Front (AF), and the increase in the North Atlantic Deep Water (NADW) formation with respect to previous glacials. During glacials prior to MIS16, the NADW formation was very weak, which drastically slowed down the surface circulation; the AF was at a southerly position and the North Atlantic Current (NAC) diverted southeastwards, developing steep south-north, and east-west, thermal gradients and blocking the arrival of warm water, with associated moisture, to high latitudes. During MIS16, the increase in the meridional overturning circulation, in combination with the northwestward AF shift, allowed the arrival of the NAC to subpolar latitudes, multiplying the moisture availability for ice-sheet growth, which could have worked as a positive feedback to prolong the glacials towards 100 ky cycles.info:eu-repo/semantics/publishedVersio

    On the Cause of the Mid‐Pleistocene Transition

    Get PDF
    The Mid-Pleistocene Transition (MPT), where the Pleistocene glacial cycles changed from 41 to ∼100 kyr periodicity, is one of the most intriguing unsolved issues in the field of paleoclimatology. Over the course of over four decades of research, several different physical mechanisms have been proposed to explain the MPT, involving non-linear feedbacks between ice sheets and the global climate, the solid Earth, ocean circulation, and the carbon cycle. Here, we review these different mechanisms, comparing how each of them relates to the others, and to the currently available observational evidence. Based on this discussion, we identify the most important gaps in our current understanding of the MPT. We discuss how new model experiments, which focus on the quantitative differences between the different physical mechanisms, could help fill these gaps. The results of those experiments could help interpret available proxy evidence, as well as new evidence that is expected to become available

    On the Cause of the Mid-Pleistocene Transition

    Get PDF
    The Mid-Pleistocene Transition (MPT), where the Pleistocene glacial cycles changed from 41 to ∼100 kyr periodicity, is one of the most intriguing unsolved issues in the field of paleoclimatology. Over the course of over four decades of research, several different physical mechanisms have been proposed to explain the MPT, involving non-linear feedbacks between ice sheets and the global climate, the solid Earth, ocean circulation, and the carbon cycle. Here, we review these different mechanisms, comparing how each of them relates to the others, and to the currently available observational evidence. Based on this discussion, we identify the most important gaps in our current understanding of the MPT. We discuss how new model experiments, which focus on the quantitative differences between the different physical mechanisms, could help fill these gaps. The results of those experiments could help interpret available proxy evidence, as well as new evidence that is expected to become available

    Closure of the Bering Strait caused Mid-Pleistocene Transition cooling

    Get PDF
    This is the final version. Available from Springer Nature via the DOI in this record. Data availability: All data generated during this study supporting its findings are available within the paper and the supplementary information.The Mid-Pleistocene Transition (MPT) is characterised by cooling and lengthening glacial cycles from 600–1200 ka, thought to be driven by reductions in glacial CO2 in particular from ~900 ka onwards. Reduced high latitude upwelling, a process that retains CO2 within the deep ocean over glacials, could have aided drawdown but has so far not been constrained in either hemisphere over the MPT. Here, we find that reduced nutrient upwelling in the Bering Sea, and North Pacific Intermediate Water expansion, coincided with the MPT and became more persistent at ~900 ka. We propose reduced upwelling was controlled by expanding sea ice and North Pacific Intermediate Water formation, which may have been enhanced by closure of the Bering Strait. The regional extent of North Pacific Intermediate Water across the subarctic northwest Pacific would have contributed to lower atmospheric CO2 and global cooling during the MPT.Natural Environment Research Council (NERC)National Research Foundation of Kore

    Variable sequence of events during the past seven terminations in two deep-sea cores from the Southern Ocean

    Get PDF
    The relationships among internally consistent records of summer sea-surface temperature (SSST), winter sea ice (WSI), and diatomaceous stable isotopes were studied across seven terminations over the last 660 ka in sedimentary cores from ODP sites 1093 and 1094. The sequence of events at both sites indicates that SSST and WSI changes led the carbon and nitrogen isotopic changes in three Terminations (TI, TII and TVI) and followed them in the other four Terminations (TIII, TIV, TV and TVII). In both TIII and TIV, the leads and lags between the proxies were related to weak glacial mode, while in TV and TVII they were due to the influence of the mid-Pleistocene transition. We show that the sequence of events is not unique and does not follow the same pattern across terminations, implying that the processes that initiated climate change in the Southern Ocean has varied through time

    Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea.

    Get PDF
    Sea ice and associated feedback mechanisms play an important role for both long- and short-term climate change. Our ability to predict future sea ice extent, however, hinges on a greater understanding of past sea ice dynamics. Here we investigate sea ice changes in the eastern Bering Sea prior to, across, and after the Mid-Pleistocene transition (MPT). The sea ice record, based on the Arctic sea ice biomarker IP25 and related open water proxies from the International Ocean Discovery Program Site U1343, shows a substantial increase in sea ice extent across the MPT. The occurrence of late-glacial/deglacial sea ice maxima are consistent with sea ice/land ice hysteresis and land-glacier retreat via the temperature-precipitation feedback. We also identify interactions of sea ice with phytoplankton growth and ocean circulation patterns, which have important implications for glacial North Pacific Intermediate Water formation and potentially North Pacific abyssal carbon storage

    Mid-Pleistocene transition in glacial cycles explained by declining CO2and regolith removal

    Get PDF
    Variations in Earth’s orbit pace the glacial-interglacial cycles of the Quaternary, but the mechanisms that transform regional and seasonal variations in solar insolation into glacial-interglacial cycles are still elusive. Here, we present transient simulations of coevolution of climate, ice sheets, and carbon cycle over the past 3 million years. We show that a gradual lowering of atmospheric CO2 and regolith removal are essential to reproduce the evolution of climate variability over the Quaternary. The long-term CO2 decrease leads to the initiation of Northern Hemisphere glaciation and an increase in the amplitude of glacial-interglacial variations, while the combined effect of CO2 decline and regolith removal controls the timing of the transition from a 41,000- to 100,000-year world. Our results suggest that the current CO2 concentration is unprecedented over the past 3 million years and that global temperature never exceeded the preindustrial value by more than 2°C during the Quaternary

    Strengthening Atlantic inflow across the mid-pleistocene transition

    Get PDF
    The development of larger and longer lasting northern hemisphere ice sheets during the mid‐Pleistocene Transition (MPT) coincided with global cooling. Here, we show that surface waters of the north‐eastern Atlantic actually warmed across this interval (∼1.2–0.8 Ma), which we argue reflects an increase in the north‐eastward transport of heat and moisture via the North Atlantic Current (NAC) into the Nordic Seas (the Atlantic Inflow). We suggest that simultaneous cooling and warming along the north‐western and south‐eastern margins (respectively) of the NAC during Marine Isotope Stage 28 (∼995 ka) reflected the increasing persistence of northern ice sheets as Atlantic Inflow increased. This resulted in a diachronous shift from ∼40 to ∼100 kyr cyclicity across the North East (NE) Atlantic as the growing influence of northern ice sheets spread southwards; to the north‐west of the NAC the first “100 kyr” cycle preceded Termination 12 (∼960 ka), while on the south‐eastern margin of the NAC the transition occurred ∼100 kyr later. Exploratory climate model simulations suggest that increasing Atlantic Inflow at this time could have accelerated ice sheet growth because pre‐existing moderately sized ice sheets allowed the positive effect of increasing precipitation to outpace melting. In addition, we propose that the dependence of post‐MPT ice sheets on moisture transport via the Atlantic Inflow may ultimately contribute to their apparent vulnerability to insolation forcing once a critical size threshold is crossed and high latitude ice sheets become starved of a vital moisture source
    corecore