9 research outputs found

    Photometric stereo for strong specular highlights

    Full text link
    Photometric stereo (PS) is a fundamental technique in computer vision known to produce 3-D shape with high accuracy. The setting of PS is defined by using several input images of a static scene taken from one and the same camera position but under varying illumination. The vast majority of studies in this 3-D reconstruction method assume orthographic projection for the camera model. In addition, they mainly consider the Lambertian reflectance model as the way that light scatters at surfaces. So, providing reliable PS results from real world objects still remains a challenging task. We address 3-D reconstruction by PS using a more realistic set of assumptions combining for the first time the complete Blinn-Phong reflectance model and perspective projection. To this end, we will compare two different methods of incorporating the perspective projection into our model. Experiments are performed on both synthetic and real world images. Note that our real-world experiments do not benefit from laboratory conditions. The results show the high potential of our method even for complex real world applications such as medical endoscopy images which may include high amounts of specular highlights

    PS-FCN: A Flexible Learning Framework for Photometric Stereo

    Full text link
    This paper addresses the problem of photometric stereo for non-Lambertian surfaces. Existing approaches often adopt simplified reflectance models to make the problem more tractable, but this greatly hinders their applications on real-world objects. In this paper, we propose a deep fully convolutional network, called PS-FCN, that takes an arbitrary number of images of a static object captured under different light directions with a fixed camera as input, and predicts a normal map of the object in a fast feed-forward pass. Unlike the recently proposed learning based method, PS-FCN does not require a pre-defined set of light directions during training and testing, and can handle multiple images and light directions in an order-agnostic manner. Although we train PS-FCN on synthetic data, it can generalize well on real datasets. We further show that PS-FCN can be easily extended to handle the problem of uncalibrated photometric stereo.Extensive experiments on public real datasets show that PS-FCN outperforms existing approaches in calibrated photometric stereo, and promising results are achieved in uncalibrated scenario, clearly demonstrating its effectiveness.Comment: ECCV 2018: https://guanyingc.github.io/PS-FC

    Height from Photometric Ratio with Model-based Light Source Selection

    Get PDF
    In this paper, we present a photometric stereo algorithm for estimating surface height. We follow recent work that uses photometric ratios to obtain a linear formulation relating surface gradients and image intensity. Using smoothed finite difference approximations for the surface gradient, we are able to express surface height recovery as a linear least squares problem that is large but sparse. In order to make the method practically useful, we combine it with a model-based approach that excludes observations which deviate from the assumptions made by the image formation model. Despite its simplicity, we show that our algorithm provides surface height estimates of a high quality even for objects with highly non-Lambertian appearance. We evaluate the method on both synthetic images with ground truth and challenging real images that contain strong specular reflections and cast shadows

    Surface analysis and visualization from multi-light image collections

    Get PDF
    Multi-Light Image Collections (MLICs) are stacks of photos of a scene acquired with a fixed viewpoint and a varying surface illumination that provides large amounts of visual and geometric information. Over the last decades, a wide variety of methods have been devised to extract information from MLICs and have shown its use in different application domains to support daily activities. In this thesis, we present methods that leverage a MLICs for surface analysis and visualization. First, we provide background information: acquisition setup, light calibration and application areas where MLICs have been successfully used for the research of daily analysis work. Following, we discuss the use of MLIC for surface visualization and analysis and available tools used to support the analysis. Here, we discuss methods that strive to support the direct exploration of the captured MLIC, methods that generate relightable models from MLIC, non-photorealistic visualization methods that rely on MLIC, methods that estimate normal map from MLIC and we point out visualization tools used to do MLIC analysis. In chapter 3 we propose novel benchmark datasets (RealRTI, SynthRTI and SynthPS) that can be used to evaluate algorithms that rely on MLIC and discusses available benchmark for validation of photometric algorithms that can be also used to validate other MLIC-based algorithms. In chapter 4, we evaluate the performance of different photometric stereo algorithms using SynthPS for cultural heritage applications. RealRTI and SynthRTI have been used to evaluate the performance of (Neural)RTI method. Then, in chapter 5, we present a neural network-based RTI method, aka NeuralRTI, a framework for pixel-based encoding and relighting of RTI data. In this method using a simple autoencoder architecture, we show that it is possible to obtain a highly compressed representation that better preserves the original information and provides increased quality of virtual images relighted from novel directions, particularly in the case of challenging glossy materials. Finally, in chapter 6, we present a method for the detection of crack on the surface of paintings from multi-light image acquisitions and that can be used as well on single images and conclude our presentation

    Photometric stereo with applications in material classification

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    制約付き回帰に基づく照度差ステレオ

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 山﨑 俊彦, 東京大学教授, 相澤 清晴, 東京大学教授 池内 克史, 東京大学教授 佐藤 真一, 東京大学教授 佐藤 洋一, 東京大学教授 苗村 健University of Tokyo(東京大学
    corecore