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Abstract

Photometric stereo is an inverse problem of recovering surface normals of a scene from appearance
variations under different lightings. When the reflectance of a scene obeys a simple Lambertian
assumption, the problem is well-constrained and there is a very simple algorithm capable of recov-
ering the surface normals and albedos of the scene. However, the image formation process of the real
world scene involves more complex interactions between scene shape, reflectance and illumination,
making the problem more difficult.

Nearly all current approaches to this problem can be viewed as performing the standard regres-
sion analysis which finds the relationship between actual observation and unknown model parame-
ters (e.g., surface normals and unknown parameters of the image formation model) by minimizing
the residual between the observation and estimated model output. From this standpoint, the statis-
tical complexity of the photometric stereo problem can be discussed with regard to the behavior of
outliers deviated from the underlying model assumption, and its complexity i.e., the number and
non-linearity of parameters in the model. For instance, the Lambertian diffuse reflectance model
has only 3-DOF assuming the lightings are known a priori, and therefore less complex and easy to
be solved inversely. However, more stable outlier rejection techniques are required when the behav-
ior of non-Lambertian effects becomes more complex. On the other hand, some of non-Lambertian
effects can be considered as inliers with the complex reflectance model and the derivative image
formation model, however the increased complexity may make the inference difficult or even im-
possible. Thus, there is a constant struggle between model complexity and tractability.

This dissertation argues that new penalties and constraints applied to a simple (therefore mostly
linear) image formation model well formulate the photometric stereo problem of the non-Lambertian
scene. The dissertation begins by deriving optimal solutions to the sparse regression formulation of
the photometric stereo problem, where a sparsity penalty is applied to outliers of Lambertian dif-
fuse reflectance model to robustly neglect various non-Lambertian effects such as shadows, specular
highlights, and sensor noises.

Then, we develop a branch to handle the non-Lambertian diffuse reflections with sparse non-
diffusive outliers, where the inlier model can no longer be represented by a simple Lambertian
reflectance model. Additionally, we present that the assumption on BRDF that a diffuse component
is represented by a monotonic function of the surface normal and lighting dot-product, reasonably
resolves the non-linearity of BRDF in the regression, which dramatically reduces the complexity of
the problem. This function is constructed using a piecewise linear approximation, which is modeled
as latent variables embedded within a hierarchical Bayesian model such that we may accurately
compute the unknown surface normals while simultaneously separating diffuse from non-diffuse
components.

Finally, we challenge to recover the surface normals of general isotropic materials without as-
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suming any parametric BRDF nor special light configurations. A simple bivariate reflectance model
is derived from a non-linear but versatile sum-of-lobes representations of the isotropic BRDF. Then,
we prove that the non-linearity of the model is also canceled by assuming the monotonicity of the
BRDF which is commonly observed in most physically plausible BRDF. Approximating the regres-
sion function by a smooth, bivariate Bernstein polynomials, the unknown normal vector is separated
from the unknown inverse reflectance function, and then we may accurately compute the unknown
surface normals by solving a simple and efficient quadratic programming problem.

Thesis Supervisor: Kiyoharu Aizawa
Title: Professor
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Chapter 1

Introduction

Figure 1-1: Examples of applications using reconstructed 3D model. (Left) dynamic 3D reconstruc-
tion of a human actor. (Right) The 3D printing technology is used for both prototyping and dis-
tributed manufacturing with applications in architecture, industrial design, automotive, aerospace,
engineering, dental and medical industries, biotech (human tissue replacement), fashion,education,
geographic information systems, food, and many other fields.

1.1 3-D Reconstruction

3-D reconstruction, the process of capturing the shape and/or appearance of real-world objects has

drawn attention of researches in the computer vision area. The reconstructed 3-D information are

typically reused for computer graphics, architecture, industrial design, robotics, medical applica-

tions and many other fields. Furthermore, the 3-D printing becomes one of the most attractive

applications for taking advantages of reconstructed shape model (Fig. 1-1).

So far various kind of 3-D reconstruction techniques have been proposed to date, which are
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Figure 1-2: Examples of appearances under different illumination. Left and right images are cap-
tured under a point light source placed at different positions. The appearance varies with the material
and the shape of each object in the scene.

generally categorized into two approaches i.e., passive and active, depending on whether the sensor

actively emits the radiation which is directed toward the target or passively measures the energy

which are reflected from it.

The active approach measures the distance from the camera to the objects directly using active

infrared illumination. The most traditional sensors in this approach are perhaps laser range sensors

which have been widely used for both research and industrial applications. While reliable, their

prohibitively high cost and poor frame-rate (e.g., 0.1Hz) have limited their usage. Therefore, depth

sensors such as time-of-flight (ToF) and structured light sensors (e.g., Microsoft Kinect) have re-

cently been becoming popular alternatives to laser range sensors due to their low-price and high

frame rate.

On the other hand, the passive approach is also expressed as image-based approach since the

passive sensors such as digital cameras typically utilize 2-D images to reconstruct 3-D information

as human biological systems do. Two of most traditional and representative techniques in the passive

approach may be (multi-view) stereo [92, 95] and structure-from-motion [102] which reconstruct

a 3-D scene by multiple image correspondences and triangulation analogously to the human 3-D

perception system using the binocular disparity or the motion parallax. Those two approaches are

generally referred to as the geometric passive approach since they rely on the multi-view geometry

as a cue of reconstruction [50].

In contrast to the geometric approach, the photometric approach is another representative pas-

sive technique which explicitly models the natural light transport and inversely traces the image

formation to recover the surface structure. The light transport and its derivative image formation

involve the surface geometry (i.e., generally represented as a surface normal), illumination and re-
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Surface Plane 

Camera 

Light 1 

Light 2 

Light 3 

Figure 1-3: Typical setup of the image acquisition in the photometric stereo problem. Three and
more light sources independently illuminate the scene, where they are placed at different positions
with a sufficient distance from the target object to assume the directional lighting (we further discuss
about the lighting setup in Section 2.2.1).

flection on the object surface, so any change of them leads to different appearances. The typical

techniques in this approach are called by different names depending on whether the illumination is

static or dynamic. If the image is captured under a single light source or static natural illumination,

the reconstruction technique is called shape-from-shading [132]. When images are captured under

a variational illumination (i.e., generally multiple directional light sources as is shown in Fig. 1-2),

the technique is referred to as the photometric stereo [122], which is a main interest in this disser-

tation. While the image acquisition setup is simple, the shape-from-shading technique is generally

applicable to the scene whose reflectance is known (and often limited to Lambertian) since no ap-

pearance variation leads to the underdetermined problem. On the other hand, the image acquisition

setup of the photometric stereo is generally complicated. At least three different kinds of illumina-

tion are required to constrain the problem even with the simplest Lambertian scene [122] as shown
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(a) (b) (c) 

Figure 1-4: Examples of a surface reconstruction using the photometric stereo technique. (a) Images
are captured under varying illumination. (b) Surface normals are recovered by inversely solving the
image formation model. In this figure, the surface normal is mapped by color, where each channel
represent the each element of a three dimensional normal vector. (c) The surface mesh can be
recovered from the estimated surface normals by using existing mesh reconstruction techniques e.g.,
a poisson solver [4].

in Fig. 1-3. However, comparing with the shape-from-shading technique and the other 3-D recon-

struction techniques including the active approach, the estimation accuracy of the geometry and the

variation of available materials are very impressive (We show an example of the photometric stereo

result in Fig. 1-4).

We illustrate the analytical comparison among passive approaches (photometric and geometric)

and active approach in Fig. 1-5 and Table 1.1. The main advantage of the photometric approach

is that it can recover much more accurate high-frequency details than the geometric passive ap-

proach and the active approach. Triangulation-based stereo techniques in the geometric approach

on the other hand provide robust low frequency structure, but suffer from high frequency structure

due to inaccurate correspondences and quantization errors. Also, a depth map captured by a ToF

camera, the typical active sensor, has very low-resolution (e.g., 176×144 in Swiss Ranger SR4000)

and depth maps acquired by these sensors often contain unreliable areas where the scene contains

occluded regions or objects with low reflectivity. Secondly, since especially the photometric stereo

technique explicitly models the reflection of light, it is capable of handling wide variety of un-

textured and non-Lambertian surfaces. On the other hand, the multi-view stereo does not work for

those materials since it assumes that the appearances from different viewpoints are same. The scal-

ability of the technique is also very important factor for the 3-D reconstruction. While the active

depth sensors only work for a certain range of size or distance of the target, passive approaches usu-
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(b) Geometric passive approach (c) Photometric passive approach (a) Active approach 

Figure 1-5: Illustration of 3-D reconstruction approaches. (a) The active sensor (approach) emits the
infrared illumination and allocate the measured distances between the sensor and discrete surface
points to a 2-D image so called depth map. (b) The geometric passive approach finds the corre-
spondences over images, then recover the surface point using the triangulation (c) The photometric
passive approach recovers the surface normal of the scene by inversely solving the image formation
model which relates the illumination, the geometry and the reflection.

ally cover the range from micro to macro as long as the camera can well capture the radiance of the

scene. We should note that the photometric stereo has a large advantage in recovering microscopic

structures since the camera is static in the photometric stereo technique However, on the other hand

the triangulation for those kind of surfaces are very problematic since the stereo cameras can not

assure the enough base-lines for the triangulation. We should also note that the triangulation has

advantages in the macro scene since the control of lighting environment is very difficult in such kind

of scenes for the photometric stereo technique.

Several disadvantages of the photometric technique mainly lie in the image acquisition setting.

While other passive approaches and active sensors perform well under the ambient illumination1,

the photometric approach (especially, the photometric stereo) is generally disrupted under the am-

bient illumination. Furthermore, photometric approach usually requires high dynamic range (HDR)

image(s) to capture the reflections on dark to bright surfaces and therefore we need to capture the

same scene under varying exposure of the camera unlike other passive approaches and active sen-

sors. Another difficulty is caused by the calibration of lightings. In the photometric stereo, except

for uncalibrated photometric stereo problems such as [38], lightings must be known in advance (see

1Active sensors actually does not work in the scene with the strong ambient illumination such as the outdoor environ-
ment.
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Table 1.1: Comparison of pros. and cons. of shape reconstruction techniques.
Criterion Photometric approach Geometric approach Active Sensors

Shape Recovery normal depth depth
High Frequency Details yes no no

Spatial Resolution high high low
Camera 1+ fixed 2+ fixed or 1+ moving 1

Un-textured Region ok problematic ok
Calibration camera + lighting camera camera
Illumination important minor importance minor importance

Object Movement problematic problematic minor problematic
Non-Lambertian Surfaces possible challenging possible

Scalability yes yes no
Reflectance Recovery possible no no

Section 2.2.1 in details). Therefore, in addition to the camera calibration which is also required to

other passive approaches, the photometric stereo further requires a lighting calibration where the

position and the intensity of the emission of the light sources are estimated using some calibration

aperture.

In the next section, we will discuss about the photometric stereo problem which is a main interest

in this dissertation. We will then more precisely define the inverse problems we wish to solve

followed by detailed descriptions of several difficulties that are accompanied with these problems.

We will conclude by providing an outline of the remainder of this thesis.

1.2 Photometric Stereo as Regression Analysis

Photometric stereo is an inverse problem of recovering surface normals of a scene from appearance

variations under different lightings. Nearly all current approaches to the photometric stereo problem

can be viewed as performing the regression analysis which finds the relationship between actual

observation and unknown model parameters (i.e., surface normals and unknown parameters of the

image formation model) by minimizing the residual between the observation and estimated model

output. For instance, the Lambertian diffuse reflectance model has three degree of freedom (DOF)

(two for the unit surface normal vector and one for the surface albedo) assuming the lightings are

known a priori, and its derivative image formation model under i-th lighting is simply represented
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as 2

Ii = ρnT li = ρn1l
1
i + ρn2l

2
i + ρn3l

3
i = n′1l

1
i + n′2l

2
i + n′3l

3
i , (1.1)

where I is an irradiance reflected at the point on a surface whose unit normal vector is n ,

[n1 n2 n3]T , ρ is a surface albedo, l , [l1i l2i l3i ]
T is a normalized lighting vector and n′k ,

ρnk (k = 1, 2, 3). Given pairs of the observed intensity for a surface point and the lighting vector,

the Lambertian photometric stereo is equivalent to performing a linear regression analysis whose

regression function f = n′1x1 + n′2x2 + n′3x3 relates the dependent variable y , I to independent

variables [x1 x2 x3]T , [l1i l
2
i l

3
i ]
T . The unique and optimal solution exists when three and more

pairs are given and all of them obey the Lambertian image formation model [122] i.e., there exists

a four dimensional plane passing through the origin and all 4-D points of [x1 x2 x3 y]. However,

the image formation process of the real world scene involves more complex interactions between

scene shape, reflectance and illumination. In this situation, most widely used regression algorithm,

the least-squares fitting, suffers from the violation of the assumption underlying a regression model,

leading to a severely more complicated estimation task since there are now an infinite number of

solutions that could have produced the observed intensity I with equal likelihood.

We assume now that appearances of the target object can be approximated by a reflectance

function 3 which relates the observed intensity I at a given point on the object to the associated

surface normal n ∈ R3, the incoming lighting direction l ∈ R3, and the outgoing viewing direction

v ∈ R3 (fixed as v = [0, 0, 1]T in this dissertation), then the image formation model under i-th

lighting is described as

Ii = f(n, li,v,µ) + εi. (1.2)

Here µ is a vector of model parameters derived from the reflectance model and ε is an additive

corruption applied to the ideal reflectance4.

Suppose we are presented with m images that are captured under varying directional lighting

sources, the photometric stereo problem is to recover a normal vector as a part of unknown model

parameters and additive corruptions, which is equivalent to solving a regression analysis, where

the regression function f relates the dependent variable I to independent variables [n µ] in the

absence of corruptions ε. The most ubiquitous estimator used for this task is one that maximizes

2Here we assume a single, orthographic camera whose response curve is linear. However, the photometric stereo
problem can also be formulated under more general condition as will be discussed in Section 2.2.2.

3Note that BRDF including a Lambertian reflectance model is a special class of this function.
4In this thesis, we assume other phenomenon than local illumination such as global illumination, model outliers,

calibration errors and sensor noises are modeled by this term.
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the likelihood of the data, which is equivalent to the least-squares solution as

min
n,µ,ε

m∑
i=1

‖Ii − f(n, li,v,µ)− εi‖22, (1.3)

where ε ∈ Rn is a vector of additive corruptions. Note that the Lambertian photometric stereo

presented above is a special case of Eq. (1.3) where f = ρnT li and εi = 0 ∀i. The simultane-

ous estimation of n, µ and ε in Eq. (1.3) is generally intractable since there are multiple feasible

solutions (i.e., the number of unknown variables exceeds the number of independent equations).

A statistical remedity to this indeterminacy neglects uninfulential observations as outliers that al-

lows us to narrow the space of candidate solutions in a manner consistent with the image formation

model [41, 35, 88, 35, 39, 25]. However, in general this is not easy since we know of little prac-

tical method identifying outliers when the regression function is non-linear or a cause of outliers

is a mixture and/of multiple distributions derived from different phenomena e.g., shadows, sensor

noises, interreflections and so on.

Another issue is that approximating a surface reflectance with a specific parametric model in-

evitably limits the variations of target material its applications. From the statistical viewpoint, non-

parametric regression might be helpful for the analysis [40], which uses fewer assumptions about

the data (e.g., the inlier model is represented as a sum of continuous basis functions weighted by

coefficients). However, a critical issue to use the non-parametric representation in the photometric

stereo problem is that the complex interaction between scene shape, reflectance and illumination

is hard to be encoded in the nonparametric manner. Even if an appropriate model is constructed, a

large number of predictors that may interact with the surface normal nonlinearly, make the inference

difficult or even impossible without an alternative optimization scheme [9].

In response to the discussions above, the question is ”how can we resolve a constant struggle

between model complexity and tractability”, implying that increasing the flexibility and robustness

is required to handle wide variety of real scenes, however the complexity must be controlled to make

the problem tractable.

In this dissertation, the constrained regression analysis is explored for tackling these issues

in the photometric stereo problem. We show several results where some specific penalties or con-

straints applied to the least-squares regression analysis (Eq. (1.3)) (a) disambiguate multiple feasible

solution in the robust regression methods and (b) resolves the non-linearity of the problem, which

contributes to simplifying the non-linear least-squares problem into the constrained linear system.

8



Firstly, we prove that the minimization of a sparsity penalty applied to ε disambiguates the in-

finity of feasible solutions to Eq. (1.3), which is henceforth called photometric stereo using sparse

regression as [43]. In the sparse regression, we do not assume the specific distribution of ε instead

we assume its sparsity that the number of inlier data in observations is larger than one outliers.

Under the assumption, the regression analysis is formulated as finding a solution so that as much

as possible number of data is represented by the inlier regression model (i.e., the image forma-

tion model without additive corruptions). The derivative `0-norm minimization entails a difficult,

combinatorial optimization problem that must be efficiently solved. In Chapter 3, we consider two

alternatives to brute force exhaustive search: A relaxation replacing the discontinuous, non-convex

`0 norm with the convex surrogate `1 norm, and a simple hierarchical Bayesian approximation called

sparse Bayesian learning (SBL) [111].

Secondly, we prove that a specific monotonicity assumption of the non-linear reflectance model,

and its derived inverse representation of the image formation model can be used to separate the sur-

face normal from other unknown parameters in the model, which allows us to relax the non-linear,

non-parametric regression analysis to the linear system with the monotonicity constraint, leading

to efficient and stable inference. This theory is utilized to realize the system of ”non-linear diffuse

reflectance model” with ”sparse regression” in the Chapter 4 and quadratic formulation of simulta-

neous estimation of both surface normal end reflectance of general isotropic materials in Chapter 5.

Note that the constrained regression with a single predictor have recently been well explored, that

with multiple predictors are less explored and if any, estimating a multivariate regression func-

tion subject to shape restrictions with compact support is challenging and usually very time con-

suming [117]. Therefore, the selection of the basis functions for the non-parametric regression is

critically important. In Chapter 4, we take advantages of the simplicity of the piecewise linear

function, leading to a natural generalization of the Lambertian reflectance model while allowing us

to handle more general non-linear diffuse reflections where needed. In Chapter 5, we explore the

Bernstein polynomials approximation which naturally selects smooth functions with little compu-

tational effort unlike other non-parametric regression function (e.g., smoothing spline [15]) and the

shape-restricted regression function estimate is shown to be the solution of a quadratic programming

problem [19, 117]; making it computationally attractive.
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1.3 Thesis Outline

The reminder of this thesis is organized as follows. In Chapter 2 we derive the image forma-

tion model from the standpoint of radiometry and surveys the existing photometric stereo works.

In Chapter 3 we propose a sparse regression based robust photometric stereo algorithm and pro-

vide a detailed, comparative evaluation with other Lambertian based robust algorithms. Chapter 4

extends the sparse regression based approach to handle non-Lambertian diffuse reflections. Chap-

ter 5 switches the goal and provides a more general photometric stereo algorithm which works for

general isotropic materials. We finally conclude this thesis in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, we will provide a light transport analysis to derive a unified image formation model

underlying the photometric stereo problem. Then, a brief survey of existing photometric stereo

algorithms is provided as well as a typical setups or modeling of the camera, the illumination and

the reflectance. Finally, we close this chapter by summarizing the major symbols and assumptions

which will appear in the overall dissertation.

2.1 Image Formation Model

Understanding photometric stereo problem requires some basic knowledge about the physical light

transport process underlying the image formation. In this section, we will firstly provide a derivation

of the image formation model that explains how an image is generated in the complicated interaction

of the camera, illumination and surface geometry. Next we go into the simplified models that are

widely assumed within the photometric stereo literature since the rigorously physical light transport

model is too complex to trace inversely, leading to the intractable photometric stereo problem. This

section borrows heavily from Kurachi [64], which the reader may wish to reference for a more

comprehensive review of the radiometry.

We firstly review the definition of irradiance and radiance as illustrated in Fig. 2-1. In the

radiometry, the irradiance E(X) at a point X on a surface measures the temporal change of radiant

energy received on the local small region dA containing X , thus expressed as

E(X) =
dΦ

dA
, (2.1)
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Figure 2-1: Definition of irradiance and radiance. (a) The irradiance is the temporal change of the
flux which hits the differential surface area. (b)The radiance is the flux in a differential cone from a
differential area. (c) The irradiance at a surface point is a summation of incoming radiance directed
from all points on the hemisphere Ω, and outgoing radiance to ωo is a summation of the reflection
of all incident lightings to the direction.

where Φ is the radiant energy per time (called as flux). While irradiance does not depend on the

direction in which the light is coming, the radiance L(X,ωi) is the radiant power exiting from a

point X in a direction ω, which is described as

L(X,ω) =
d2Φ

dωdAcosθ
, (2.2)

where θ is the angle between surface normal and the incident lighting direction.

In real environments, incident radiance comes from light reflected off other objects as well

as light sources which emit the energy, which is called as indirect illumination. Therefore, the

irradiance at a surface point is computed by integrating the cosine weighted incident radiance in all

directions above the surface as

E(X) =

∫
Ω
Li(X,ωi)(n

Tωi)dωi. (2.3)

Here, n is the unit normal vector (i.e., nTωi = cosθ) and ωi is the incoming direction. Ω represents

a hemisphere above the surface at X on which the radiance over the set of directions to the source

are integrated. Multiplication by nTωi essentially undoes the projective foreshortening and thereby

accounts for the spreading out of flux coming in at an angle.
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Figure 2-2: Incoming and outgoing vectors in the spherical coordinate system.

Outgoing radiance at a surface point X directing to ωo involves integrating the reflection of

incoming radiance in all directions. Assuming that the light is reflected at the point where the light

is entered 1, the behavior of the reflection is modeled by a bidirectional reflectance distribution

function ρ(X,ωi, ωo) (BRDF), which determines how much light coming in from direction ωi is

reflected out in direction ωo as

Lr(x, ωo) =

∫
Ω
ρ(X,ωi, ωo)Li(X,ωi)(n

Tωi)dωi, (2.4)

A BRDF is defined as the ratio of a temporal variation of the outgoing radiance Lr(X,ωo) to one

of the surface irradiance at X as

ρ(X,ωo, ωi) =
d2Lr(X,ωo)

dLi(X,ωi)cosθdωi
, (2.5)

where Lr(X,ωo) is the out going radiance in the direction pointing at ωo. BRDF is typically defined

relative to the local coordinate system of a given point on a surface. Using spherical coordinates, the

direction of outgoing lightings are represented by two variables as ωi = (θi, φi) and ωo = (θo, φo)

as shown in Fig. 2-2. Therefore, Eq. (2.5) is expressed as a function of four variables in the spherical

coordinates i.e., ρ(X,ωo, ωi) = ρ(X, θi, φi, θo, φo). We note that the definition given in Eq. (2.5)

is abstract and an explicit representation for BRDF (e.g., Cook-Torrance model [29]) is usually

required to render the scene in the computer graphics area2. However, this is not the case of the

photometric stereo problem as we will further discuss in Section 2.2.3.

1In the natural environments, some of the incident light penetrates the object, bounces around below the surface, then
emerges at some different point. This phenomenon is called as subsurface scattering.

2Some of concrete representations of BRDF are shown in the Appendix 2.
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It is common observation that the physically plausible BRDFs commonly satisfy following

properties:

(a) Non-negativity: A BRDF is never negative, while it can get arbitrarily large.

(b) Bidirectionality: The value of a BRDF remains the same even if the incoming and out going

directions are exchanged.

(c) Energy conservation: The total power output computed by integrating the cosine-weighted

BRDF value in all directions on the hemisphere cannot exceed the power coming in from ωi.

Those properties perhaps less intuitive, since a BRDF is complex and high-dimensional. For-

tunately, we have a commonly used way of visualizing BRDF to fix the surface point x and the

incoming direction ωi, and consider the behavior of ρ as a function of only the outgoing direction

ωo. The typical illustration of BRDF is shown in Fig. 2-3. A BRDF is generally represented as a

lobe, that is the relative distribution of the surface reflection of light from the fixed direction. Highly

smooth surfaces (e.g., metallic) exhibit only the specular reflections that are represented by long thin

lobes centered near the mirror direction of ωo, while diffusive surfaces have more uniform BRDF

lobes (e.g., rubber). It is worth mentioning that the real BRDF has usually more complex struc-

tures where some of lobes are complicatedly mixed together because surfaces are neither perfectly

smooth nor entirely clean [23]. Furthermore, the peak in the distribution of reflected light is not

always in the specular direction (i.e., known as off-specular peak), leading to more complex image

formation model which is hard to trace inversely in the photometric stereo problem3. In Chapter 5

of this dissertation, we will tackle the photometric stereo problem where the surface reflectance is

represented by a sum of unknown lobes.

While Eq. (2.4) is useful for rendering scenes under known illumination environment, unfor-

tunately, however, inversely tracing incoming lightings in all directions is almost impossible since

this problem is highly ill-posed even with a simple BRDF such as Lambertian model [122]. There-

fore, simplified model of Eq. (2.4) is generally analyzed in the most photometric stereo literature.

Concretely, it is generally assumed that a direction ωi corresponds to the primary light source (e.g.,

a point light source placed in the scene) and the value of Li is the radiance emitted by the source

(i.e., no indirect illumination exists). Under these assumptions, Eq. (2.4) is simplified as

Lr(X,ωo) = ρ(X,ωi, ωo)Li(X,ωi)n
Tωi. (2.6)

3Though there are several causes that provide off-specular peaks, the most well-known phenomena is perhaps the
Fresnel effect [42].
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(a) Diffuse (b) Specular (c) Diffuse + Specular 

Figure 2-3: Examples of the BRDF lobe. The yellow shaded areas represent the radiance power
emitted from the center of the lobe as for a certain outcoming direction. Here we present three
typical types of lobes that express (a) diffuse reflection, (b) specular reflection, (c) specular plus
diffuse reflection.

Suppose the light source is modeled by the directional light4, the radiance emitted by the source

(Li) no longer depends on the position of surface point leading to the position-independent value of

Li(ωi). When we observe a surface point from a direction v where the incident light coming from

l is reflected on the surface, the radiance in outgoing direction (i.e., ωo = v) is computed as,

Lr(X,v) = ρ(X, θi, φi, θo, φo)Li(l)(n
T l). (2.7)

While Eq. (2.7) is much simpler than Eq. (2.4), the high dimensionality of the BRDF makes it

difficult to use the model in the photometric stereo problem. For simplifying the BRDF analysis

(and the formulation of the photometric stereo problem), a common assumption is that the BRDF

is invariant to rotations and reflections about the surface tangent plane, which is called as isotropic

BRDF. An isotropic BRDF is a function of three variables, that is ρ(X, θi, θo, ‖φi − φo‖) in the

spherical coordinate. On the other hand, the original four dimensional BRDF is distinctively called

as anisotropic BRDF (The examples of both isotropic and anisotropic material are shown in Fig. 2-

4). It is worth mentioning that a majority of materials in the real world such as plastic, polished

metal, paper, human skin, and most painted surfaces exhibit isotropic reflections, while the variation

of anisotropic materials is, if any, very limited (e.g., brushed or milled metal).

In the photometric stereo problem, we recover the normal of a surface point not from the radi-

ance but the intensity (or RGB color) values at a pixel in 2-D images recorded by a camera, therefore

we also need to consider how the camera capture radiometric information of the scene. In most cam-

4We will further discuss the light model in Section 2.2.1.
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(a) Isotropic (b) Anisotropic 

Figure 2-4: Examples of the isotropic and anisotropic material.

eras, there exists a nonlinear relationship between the image intensities output from the camera and

the scene radiance that enters the imaging system to compress the dynamic range of scenes and to

account for nonlinearities in display systems [70] as

I(X) = g(Lr(X,v)). (2.8)

Here I(X) is a pixel intensity corresponding to a surface point X , g is a non-linear function which

is generally called as radiometric response function of the camera.

Furthermore, the position of each pixel is defined on the image plane whose coordinate is differ-

ent from the object coordinate whose center is placed at the object, where the surface point X , the

surface normal, and the BRDF are defined. Therefore, we also need to define a mapping from 3-D

surface point onto the 2-D image plane π : R3 7→ R2 where a pixel on the image plane is projected

from X as [p q] = π(X). Considering this mapping, the image formation model is described as

follow,

I(p, q) = I(π(X)) = g(Lr(π(X),v)) = g
(
ρ(π(X), θi, θo, ‖φi − φo‖)Li(l)(nT l)

)
. (2.9)

A reasonable approximation of the mapping from 3-D coordinate onto the 2-D image plane

is the perspective projection model, where 3D points are mapped onto the 2D camera sensor by

dividing the first two coordinates by the third one. However, because of the nonlinearity of this

mapping, a simple orthographic projection is generally assumed in the photometric stereo problem,

where a 3-D surface point X = (x, y, z) is mapped onto a pixel at [p q] on the image plane as

[p q] = [x y]. In addition that, the radiometric camera response function is also commonly assumed

as a linear function i.e., g(Lr) = rLr, and the scale factor r is usually dropped without losing
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generality.

Finally, the image formation model under the linear response function and orthographic camera

model is constructed as follow,

Ĩ(p, q, l) = ρ̃(p, q, θi, θo, ‖φi − φo‖)(nT l). (2.10)

where Ĩ is an observed intensity that is normalized by the radiance power of the incident light i.e.,

Ĩ(p, q, l) = I(p, q)/Li(l) and ρ̃ is the BRDF defined on the image space.

We should note that the linear camera response function and orthographic camera model are not

necessary assumed in the photometric stereo literature. For example, Shi et al. [98] presented the

algorithm that automatically recover the unknown radiometric response function by using the color

profile which are obtained registered pixels across images. And Papadhimitri et al. [84] developed

the uncalibrated photometric stereo5 under the perspective projection camera model. While weaker

assumptions on the image formation model contributes to simplify the image acquisition process,

more complex image formation model leads to difficulties in handling wide variety of materials.

Actually, both [98] and [84] limit on objects whose reflections are models by a simple Lambertian

reflectance model6.

For simplifying following discussions, we henceforth express the normalized intensity Ĩ by

I and BRDF ρ̃ multiplied by nT l as f(n, l,v). Then, modeling any kind of corruptions that vio-

late Eq. (2.10) by ε (e.g., sensor noises, shadows, inter-reflections) leads the general image formation

model for the photometric stereo problem in this dissertation that is already presented in Eq. (1.2).

As we have already mentioned, the photometric stereo problem is to recover the surface nor-

mal of a point by inversely solving Eq. (1.2) given a collection of pairs of I and l. In the next

section, we will briefly review existing photometric stereo algorithms as well as show some typical

configurations of image acquisition setup.

2.2 Taxonomy of Photometric Stereo Algorithms

In this section, existing photometric stereo algorithms are categorized according to three fundamen-

tal components that differentiate the major algorithms: (1) the lighting setup, (2) the camera setup,

and (3) the reflectance modeling, where each component is further divided into some properties.
5In the literature of the photometric stereo, uncalibrated generally means that the lighting is unknown.
6Further discussions of the camera model assumption in the photometric stereo problem will be presented in Sec-

tion 2.2.2.
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Table 2.1: Summary of the lighting setup.

Typical Property Major Condition Minor Condition This Dissertation
Direction and Intensity known unknown known

Type parallel nonparallel parallel
Number of sources five+ three or four five+

Configuration random special random
Ambient illumination neglected considered neglected

Shadows neglected considered partially considered1

Inter-reflections neglected considered neglected
1 In Chapter 3 and Chapter 4 we reject shadows by using the robust sparse regression, however in Chap-

ter 5 we assume that shadows are removed in advance.

2.2.1 Lighting Setup

The lighting setup determines the illumination environment where images captured captured. As

for this component, the photometric stereo algorithms are generally categorized by responding to

these seven questions as shown in Table 2.1: (a) Calibrated or uncalibrated? (Are the direction and

intensity of a light source known or not?) (b) What is the type of light source? (which illumination

model is assumed for a light source?) (c) How many light sources are placed? (How many images

are captured under varying illumination?) (d) How is the configuration of light source? (Where each

light source is placed?) (e) How is the ambient illumination treated in the reconstruction? (f) How

are cast/attached shadows treated in the reconstruction?, and (g) How are interreflections treated in

the reconstruction?

(a) Prior information about the lighting direction and intensity

When the lighting directions and intensities are known, the problem is called as calibrated photo-

metric stereo problem (e.g., [122, 46, 9, 26, 55]). On the other hand, when no prior knowledge about

the illumination is available, the problem is generally called as uncalibrated photometric stereo

problem. Uncalibrated photometric stereo problem has been addressed with a variety of techniques

that make explicit or implicit use of the generalized bas-relief (GBR) ambiguity, where surface

normals of a Lambertian object can only be determined up to a linear ambiguity [51]. Therefore,

assuming the Lambertian surfaces, many researchers tackled the uncalibrated photometric stereo

problem as the disambiguation task of this GBR ambiguity [8, 98, 32, 6, 108, 135, 38, 104, 22, 84].

For instance, Alldrin et al. [8] solved the GBR ambiguity by minimizing the entropy of the

albedo distribution under the assumption that albedos are based on a few intensity values. A similar

approach is to group the normal-albedo distribution based on color appearance [98]. Different from
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surface plane surface plane 

(a) Distant light source (b) Near light source 

Figure 2-5: Two different behaviors of a point light source based on its distance from the surface.
(a) when a point light is placed distant enough from the surface, the point light is approximated as
a directional (parallel) light, where emitted radiance intensity and direction are constant over the
surface plane. (b) when a point light is placed nearby the surface, its emitted radiance intensity and
direction are varying over the surface plane.

a group of works which exploit the priors on surface albedos, some methods resolved the GBR

ambiguity by analyzing reflectance properties. For instance, specularities of glossy surfaces [32],

isotropy and reciprocity of the isotropic BRDF [6, 108], Helmholtz reciprocity principle[135], the

maxima of the Lambertian diffuse reflectance component [38] have been incorporated in this prob-

lem. Other than these strategies, shadows [104], inter-reflections [22] and perspective geometry [84]

have been used to resolve the GBR ambiguity.

While uncalibrated photometric stereo techniques are very practical since measuring the direc-

tion and intensity of light sources are time-consuming and often requires additional calibration ob-

ject, it is worth noting that they usually give less accurate estimation than the calibrated photometric

stereo techniques especially when the reflectance (or surface albedos) are spatially varying and more

complex than a simple Lambertian reflectance model even though some recent methods have tried

to handle general isotropic materials by analyzing the relationship between the intensity distribution

of an intensity profile [72] or using the half vector symmetry of the isotropic material[127].

(b) The type of light sources

Generally, each light source is assumed to be a directional (parallel) light in the photometric stereo

problem (e.g., [7, 8, 6, 46, 26, 124, 59]), which is practically realized by placing a point light very

far away the object i.e., the working distance of an illuminator to an object surface is more than five

times of the maximum dimension of the light emitting area [12].

Although that is a common case in the photometric stereo problem, there are some scenarios
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(a) Image acquisition setup (b) Recovered surface normal map 

Figure 2-6: Example of the surface geometry recovery using a screen illumination [5]. A nearly
planar scene is captured by a static camera under the illumination of a common computer screen.
Detailed surface geometry and reflectance are then recovered from them. Pictures here are from [5].

where the distant lighting assumption is invalid e.g., there is no place to largely distribute the light

sources in the indoor scenes. Therefore, there exist, if little, some photometric stereo algorithms

which assumed other types of the light source. For instance, a group of works tackled the photomet-

ric stereo problem in the situation that the light source is placed near the target object [62, 103, 63].

Since the incident angles at each scene point are different as shown in Fig. 2-5, the distribution

of radiance at every pixels (often called as a light field) need to be estimated in advance. Kim et

al. [62] modeled the light field of a near light source considering the incident intensity drop-off

passing along the light path, while Sun et al. [103] recovered the non-uniform radiance distribution

by making use of the distribution of light irradiance sampled from a flat reference surface. While it

makes the system more compact, the other benefit of the near light configuration is that the radiance

fall off in distance from the light source can be used as a cue to estimate depths in the scene [63].

Different from the near point light, recently screen lighting is attracting the attention due to its

practical setup (e.g., the ordinal computer screen is available). For instance, Aittala et al. [5] recov-

ered spatially-varying reflectance and small geometric variations utilizing portable laptop screen

for illumination. They displayed continuous Fourier basis illumination patterns windowed by a

Gaussian on the screen and the geometry and reflectance are estimated by inversely solving per-

pixel image formation model based on the reflectance lobes approximated as mixtures of Gaussian

(MoG) in the illumination screen’s domain.

(c) The number of light sources

Besides the shape-from-shading (SFS) which considers only one image [36], a minimum number of

light sources required to solve the photometric stereo problem is three (i.e., 1DOF albedo + 2DOF
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surface normal) for the Lambertian surfaces [122] and if the surface albedos are assumed to be

constant over pixels, the number is shrinked to two (i.e., 2DOF surface normal). However, those

requirements are easily disrupted in the presence of non-Lambertian corruptions such as shadows,

specularities and image noises. Therefore most photometric stereo algorithms postulate a larger

number of images is given to take account of the robust least-squares solution or apply a simple

thresholding to reject shadows or specularities (Detailed discussions about the robust approach are

presented in Section 1.2 and Section 2.2.3). There is, however, a particular situation where only

a small number of images are available, therefore some previous works have tried to achieve the

stable estimation even though only four images are given [28, 131, 14, 20]. Assuming that three of

four observations are represented by a Lambertian model, an outlier could be detected by checking

the consistency of all the possible triplets of lights [28, 131, 14]. More recently, Chandraker et

al. [20] have presented an iterative MRF formulation for detecting shadows and exploiting it as a

surface integration constraint. While effective, they still requires a minimum of four lights. On the

other hand, Hernández et al. [55] have recently proposed a 3-light Lambertian photometric stereo

algorithm in the presence of shadows and varying albedo (therefore there is at least 3DOF in the

model) by exploiting photometric stereo constraints with only two lights while imposing smooth

shape priors.

(d) The configuration of light sources

While a vast majority of photometric stereo algorithms assume that each light source is distributed

randomly on the hemisphere centered at the object, the configuration of the light sources, responding

to where each light source is placed at, affects the performance of the algorithm. For instance, Dr-

bohlav and Chantler [32] revealed that the optimal light configuration for the three-light calibrated

photometric stereo problem is an arbitrary orthogonal triplet which includes the constant slant so-

lution, and that for the calibrated photometric stereo with n > 3 light sources should be equally

spaced over 360/n degrees in its azimuth angle (i.e., uniform distribution), which is extended to the

optimal light configuration for the uncalibrated photometric stereo problem [56].

In addition, a special configuration of the light sources often provides additive information

which constraints the under-determined photometric stereo problem. For instance, it is known that a

ring light configuration where a scene is illuminated by directional lights located on a view centered

cone (See Fig. 2-7), resolves the ambiguity of the photometric stereo problem [7, 133, 21]. Alldrin

and Kriegman [7] presented that a circle of known light source is enough to detect the symmetry in

the emitted radiance function, which is possible to be used for recovering the azimuth angle of any
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(a) Random light configuration (b) Ring light configuration 

Figure 2-7: Illustration of the light configurations. (a) In the random light configuration, each light
source is placed at randomly above the surface. (b) On the other hand, in the ring light configuration,
each light source is placed on a circle whose center corresponds to the optical axis of the camera.

isotropic surfaces. Zhout et al. [133] exploited a ring-light configuration as a constraint in the uncal-

ibrated photometric stereo for a Lambertian scene, and this theory was extended by Chandraker et

al. [21] which recovered the surface geometry of general isotropic surfaces by incorporating the spa-

tial and temporal image derivatives of two differential pairs of light sources, at unknown positions

on a circle.

(e) The treatment of the ambient illumination

The majority of photometric stereo algorithms generally assume that images are captured in the

well-controlled dark room with a unique light source for each image acquisition. However, with-

out the dark room, a complete control of the ambient illumination is difficult, and there exists the

ambient illumination in the scene as shown in Fig. 2-8, leading to more complex image formation

model than one of the controlled illumination environment. So far, some researches have tackled the

photometric stereo problem under the ambient illumination [59, 58, 90, 97, 3, 130]. The simplest

strategy to handle ambient illumination is to model the ambient illumination as an additive constant

value in the image formation model (called as the perfect ambient illumination) and estimate the

value with the surface normal [59, 58].

Unfortunately, however, the perfect ambient illumination is rarely observed in the complex nat-

ural environment (e.g., outdoor scenes), therefore more complex modeling of the ambient illumi-

nation is required. Traditionally, Sato and Ikeuchi [90] applied the photometric stereo technique

to recover the geometry of outdoor scenes by separating specular and diffuse components as well

as sun and skylight contributions. Recently, Shen et al. [97] have presented a photometric stereo
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(b) Direct + ambient illumination (a) Only direct illumination 

Figure 2-8: Examples of the ambient illumination. Images are captured under (a) a directional
illumination with a fixed point light source, or (b) the ambient illumination in addition to the same
directional illumination.

algorithm which is capable of uncontrolled, internet images where general lighting is considered as

on a distant sphere represented by the spherical harmonics under the Lambertian assumption. While

the similar manner of the outdoor illumination modeling is also adopted in [123, 48], they are lim-

ited on the Lambertian scenes. Recently, Ackermann et al. [3] have proposed a photometric stereo

algorithm for general outdoor scenes. They modeled the solar illumination in the similar manner

with [90] and represented the non-Lambertian material as a combination of a few basis BRDFs in

the similar manner with Goldman et al. [46]. While photometric stereo algorithms under the ambi-

ent illumination often extend their applications, it is worth mentioning that the perfect separation of

the ambient illumination in outdoor images are still difficult especially when the surface is not repre-

sented by a simple Lambertian model and/or the indirect illumination complicatedly communicates

with the scene.

(f) The treatment of cast/attached shadows

In the natural scene, there observed two different kinds of shadow, that are called as attached shadow

and cast shadow [37]. An attached shadow occurs when a surface curves away from a light source

i.e., it appears where lTn ≤ 0. On the other hand, a cast shadow occur when a non-convex surface

blocks a light as illustrated in Fig. 2-9.

Both kinds of shadow generally violate the image formation model underlying the photometric

stereo problem. Therefore, a majority of the photometric stereo algorithms consider shadows as

outliers and perform shadow detection and removal techniques that are mainly categorized into two

classes: one uses the explicit shadow removal pre-processing before the surface normal estimation,

and others dynamically neglect shadows by applying robust regression methods such as RANdom

SAmple Consensus (RANSAC) [39].
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(a) Attached shadow (b) Cast shadow 

𝒏 

𝒍 

Figure 2-9: Illustration of attached and cast shadows. (a) An attached shadow appears where nT l ≤
0 and (b) a cast shadow appears where the incident light does not reach because it is blocked by
non-convex surfaces.

In the former class, the most traditional yet still widely used technique for avoiding the effects

of shadows is intensity thresholding because of its simplicity. To handle spatially varying albedo or

sensor saturations, some recent approaches incorporate classification methods for detecting shad-

ows [14, 11, 3], or exploit graph-based visibility estimation for the shadow removal [20].

Though RANSAC based robust approach [79, 54, 105] in the latter class is effective when the

number of observations are relatively small, it becomes computationally intractable with a large

number of images since a huge number of the random sampling is required to get the stable esti-

mation 7. On the other hand, Wu and Tang [126] have used an Expectation-Maximization approach

starting from the initial surface normal that are obtained from ratio images. Spatial constraints

are also exploited to effectively remove outliers. Tang et al. [109] use an Markov random field

(MRF) for imposing discontinuity preserving smoothness using belief propagation. A similar set-

ting has also been used in [125] where graph cuts is used for deriving the optimal solution. While

the MRF-based approaches preserve discontinuities, they tend to over-smooth the surface normal

map. Spatial information is also incorporated in filtering approaches [76, 129]. Miyazaki et al. [76]

use a filter-based method where an inaccurate surface normal is refined via the median estimate of

neighboring pixels. Yu et al. [129] propose a pixelwise scheme to find a maximum feasible subset

of Lambertian observations via a Big-M algorithm.

While most algorithms consider the shadows as corruptions (i.e., outliers in the image formation

model), some recent works positively take account of shadows for recovering surface geometry of

the complex material [26, 82] since shadows are generated from the radiometric interaction between

the geometry and the illumination, not affected by the reflections on the surface. For instance, Chung

7The RANSAC-based outlier rejection algorithms will be evaluated in Section 4.4.
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Figure 2-10: Example of interreflections in the scene. When the highly reflective surfaces are in-
cluded in the scene, the interreflection occurs between these surfaces. Different from other kinds of
global illumination (e.g., the ambient illumination), it can not be avoided how carefully the illumi-
nation environment is controlled (e.g., images are captured in the dark room).

and Jia [26] detected shadows using a Lambertian board placed behind the object, and estimated the

surface normal using cast shadows by accounting shadow boundaries. On the other hand, Okabe et

al. [82] encoded surface points via attached shadows observed under different light source directions

and then estimated surface normals on the basis of the similarity of the attached shadow codes.

(g) The treatment of interreflections

Even though the surface is illuminated by a single light source with no ambient illumination, inter-

reflections occur when concavity exists in the scene. Photometric stereo formulations usually do

not account for the existence of indirect lighting, thus, producing incorrect shape and reflectance

estimates in the presence of interreflections. For tackling this problem, some prior works have tried

to separate the interreflections from the direct lighting [33, 60, 80, 94, 67, 52]. For instance, as-

suming that the target objects have Lambertian surfaces of uniform color, Liao et al. [67] separated

the inter-reflection from observations by incorporating multi-spectral illumination. A different ap-

proach was proposed by Herbort et al. [52] that roughly reconstructs a surface with at first unknown

indirect reflections and then, refines the initial surface iteratively regarding interreflections.

2.2.2 Camera Setup

The camera setup determines how outgoing radiance from the surface is geometrically and radio-

metrically recorded on each pixel in the image plane of the optical sensor. As for this component,

the photometric stereo algorithms are generally categorized by responding to these five questions

as shown in Table 2.2: (a) What is the model of camera projection? (b) Is the camera radiometric
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Table 2.2: Summary of the camera setup.
Typical Property Major Condition Minor Condition This Dissertation
Projection Model orthographic perspective orthographic

Response Function known unknown known
Color Space gray-scale color gray-scale

Number of Cameras one two+ one

response function known? (c) Is the captured color image converted into a gray-scale? and (d) How

many cameras are used to capture images?

(a) The camera projection model

A majority of photometric stereo algorithms assume that the geometric projection from a 3-D sur-

face point onto a 2-D pixel in the image plane is modeled by the orthographic projection due to

its simplicity, which is practically equivalent to capturing the object near the center of the image

plane using a lens with a long (theoretically infinite) focal length to capture the scene. However, if

an object is placed near the object, the orthographic camera model becomes difficult to be realized.

For handling this situation, some recent algorithms have built the image formation model in the

photometric stereo problem based on the perspective projection of a pinhole camera [50] instead

of the orthographic camera projection, which relates a 3-D point to a 2-D pixel with the non-linear

projection [110, 59, 34, 75, 84] as illustrated in Fig. 2-11. The perspective camera model contributes

to make the system more compact [59] and often provide an additional information with the photo-

metric stereo problem. For instance, Higo et al. [59] presented a hand-held multi-view/photometric

stereo system where a near point light source is attached to a hand-held camera to add a photomet-

ric constraint to the multi-view stereo problem. On the other hand, Papadhimitri and Pavaro [84]

recently proved that the perspective projection model disambiguates the GBR ambiguity (See Sec-

tion 2.2.1) in the uncalibrated photometric stereo problem.

However, non-linearity in the perspective projection inevitably leads to a complex image forma-

tion model as shown in Eq. (2.9). Therefore, the perspective projection of a pinhole camera is hard

to be embedded in the plausible image formation model for the photometric stereo problem with

more complex BRDF than a simple Lambertian reflectance model, which makes the algorithm less

flexible about the target material.

(b) Prior information about the camera response function

The intensity/color values which are recorded on the image sensor is generally transformed in the

imaging process, that is modeled by a non-linear function called as a radiometric camera response
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(a) Orthographic projection  

Image plane 

∞ 

(b) Perspective projection  

Image plane 

𝑓 

Figure 2-11: Illustrations of the orthographic and the perspective camera models. Theoretically, the
orthographic projection of a pinhole camera is realized by using a lens whose focal length is infinity
However, practically, it is approximated by a telephoto lens.

function. We show examples non-linearly transformed images in Fig. 2-12. Here we perform a

basic gamma correction to the original image (γ = 1), where an image intensity I is replaced by Iγ .

Though the image formation model becomes incorrect without considering this non-linear trans-

formation, most photometric stereo algorithms assume the camera response function is linear by

following two options in the practical setups. One uses camera raw data which contains minimally

processed data from the image sensor before the non-linear transformation is applied. While its sim-

plicity, the raw data is available on limited and usually expensive single-lens reflex digital cameras.

The second option is to independently apply the radiometric camera calibration which estimates the

radiometric camera response function from images [47, 68, 66]. Once the camera response function

is estimated, the image is easily linearized using the inverse of the camera response function.

While effective, the radiometric calibration is not always possible since it involves an additional

data measurement. Therefore, some recent work has achieved the estimation of the surface normal

under the unknown camera response function[98, 77, 2]. However, we note that the estimation of

additional unknown variables (i.e., the radiometric camera response function) usually sacrifices the

model simplicity, and therefore the simultaneous estimation of the response function and the surface

normal of the object whose material is more complex than a Lambertian reflectance model is still

problematic.
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(a) 𝛾 = 1.0 (b) 𝛾 = 1/1.5 (c) 𝛾 = 1/2.0 (d) 𝛾 = 1/4.0 

Figure 2-12: Images under varying camera response functions. (a)-(d) We vary the image gamma
from 1.0 to 1/4.0, where an intensity value I is transformed to Iγ .

(c) Color space of the image

While the reflectance function and its derived imaging model for a material varies over wavelength,

a vast majority of the existing photometric stereo methods deal with gray-scale images since aver-

aging multi-spectral images increases the signal-to-noise ratio of input images, leading to the robust

estimation of the surface normal. However, some algorithms try to explicitly use color information

in the photometric stereo problem mainly for two reasons.

The first reason is to recover the BRDF of the scene in addition to the surface geometry [46, 9, 5].

For instance, Alldrin et al. [9] succeeded to render the image from a noble viewpoint using the non-

parametric representation of BRDF, where each cell in the BRDF matrix and the elevation angle of

the scene are alternatively estimated with known lightings and azimuth angles of the scene.

The second reason is to achieve the single-shot recovery of the geometry for handling the dy-

namic scene [31, 10, 44]. While the most traditional color-based photometric stereo assumes that

the materials in the scene have constant chromaticity, meaning that the spectral distribution of the

surface reflectance varies only by a uniform scale factor, Decker et al. [31] relaxed the constant chro-

maticity restriction, enabled by the addition of time multiplexing. However, this system requires at

least two additional frames of input to produce one frame of geometry, halving the temporal res-

olution of their results. On the other hand, Anderson et al. [10] avoided the time multiplexing by

presenting a novel calibration technique for multispectral photometric stereo that can be applied to

objects with multiple piecewise constant chromacities, and Fyffe et al. [44] also relaxed the con-

stant chromaticity restriction, by capturing images with a greater number of spectrally distinct color

channels. While effective, the current problem is the color-based photometric stereo often requires

more complex light calibration and assumes that the scene contains a small number of distinct chro-

maticities. Furthermore, the scene is mostly approximated by a Lambertian reflectance model.
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Figure 2-13: Results of multi-view photometric stereo algorithm [134]. Combining multi-view
information, the metric reconstruction of the complete surface geometry is achieved. These images
are from [134].

(d) Single-view or Multi-view

While images are generally captured by a single static camera in the photometric stereo problem,

two and more cameras are often used for recovering the surface normals. They are distinctively

called the multi-view photometric stereo algorithms [53, 116, 34, 128, 123, 134, 85].

The main advantage of the multi-view photometric stereo algorithms is that it enables the metric

reconstruction (recovery of the depth information) of the complete shape with a help of multi-view

geometry while the single view photometric stereo techniques recover the surface normals of the

front face. For example, Hernández et al. [53] used multi-view silhouette and shading cues to

recover the complete geometry of the target object lying on a turntable, and Yoshiyasu and Ya-

mazaki [128] extended this work to handle topologically complex object captured by a moving

single flash camera. Vlasic et al. [116] combined the photometric stereo problem with a binocular

stereo of perspective cameras to achieve the metric reconstruction even though its narrow baseline

does not allow to recover a full face of the target object. On the other hand, Wu et al. [123] and

Zhou et al. [134] successfully integrated multi-view stereo and the photometric stereo algorithms

to acquire the detailed and complete structure of the target object. While effective, the multi-view

photometric stereo problem generally requires the feature matching to merge recovered surface nor-

mals of cameras based on the multi-view geometry [50], leading to the time-consuming optimization

problem and the degeneration of the surface normal quality due to the quantization errors and/or in-
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correct feature matching. To tackle these difficulties, Park et al. [85] have recently presented a

framework to utilize the planar mesh parametrization where each 3-D surface point is projected on

to the 2-D space based on the 3-D to 2-D image warping algorithm. The key ingredient in the frame-

work is that they merge all viewpoints before the photometric stereo technique is applied, therefore

there is no apprehension of incorrect surface normal merging.

While the traditional multi-view photometric stereo techniques are capable of Lambertian sur-

faces, Zhou et al. [134] have recently proposed the multi-view photometric stereo algorithm for

handling objects spatially varying isotropic reflectance by constructing a sparse point cloud by the

structure-from-motion algorithm and propagating the depth information along with estimated iso-

depth contours. However, it is worth mentioning that the multi-view photometric stereo algorithms

are theoretically problematic when the appearance of the object is dramatically varying over view-

points and/or there is no texture on the surface since multi-view integration based on the multi-view

feature matching becomes prohibitedly difficult.

2.2.3 Reflectance modeling

Since Woodham [122] firstly introduced the photometric stereo technique for Lambertian scene, the

extension of its work to non-Lambertian materials has been a problems of significant interest. Pho-

tometric stereo approaches to dealing with non-Lambertian effects are mainly categorized into four

classes based on the way of reflectance modeling: (a) Lambertian photometric stereo with outlier

rejection, (b) example-based reflectance modeling, (c) reflectance modeling with non-Lambertian

BRDF, and (d) reflectance modeling with common BRDF properties.

Lambertian photometric stereo with outlier rejection

A large amount of photometric stereo algorithms recover surface normals of a scene via a simple

Lambertian reflectance modeling while non-Lambertian corruptions such as shadows and inter-

reflections are carefully detected and removed by various kind of corruption-specific algorithms or

as we have repeatedly mentioned in and Section 2.2.1. While each corruption is reasonably dis-

carded by those techniques, it will become computationally expensive to perform each algorithm

independently on real images where various corruptions are complicatedly intermingled. Therefore,

some approaches do not distinguish each corruption and reject them all as outliers. The most rea-

sonable strategy may come from RANdom SAmple Consensus (RANSAC) scheme [79, 54, 105],

which repeatedly and randomly take samples from observations to find the set of maximum Lam-

bertian inliers. While RANSAC scheme is effective when the number of observations are relatively
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small, it becomes computationally unstable and expensive with a large number of images as we have

already mentioned in Section 2.2.1. We remind that we have also already presented a plenty amount

of outlier rejection based algorithms in Section 2.2.1 as ones that robustly reject attached/cast shad-

ows [125, 109, 114, 126, 76, 129], therefore we recommend the reader to refer the section. In

addition to them, Wu et al. [124] have recently proposed the rank-minimization based approach

to decompose observations into the rank-3 Lambertian structure and non-Lambertian corruptions.

While the method is stable and theoretically capable of non-Lambertian corruptions such as specular

highlights, it is actually problematic in the presence of shadows and sensor satiations. More impor-

tantly, it is not guaranteed that the recovered low-rank matrix is derived from the rank-3 Lambertian

structure.

In summary, most algorithms which assume underlying Lambertian reflectance model are ro-

bust to various non-Lambertian corruptions by rejecting them outliers. Because of simplicity of the

model, some of them require neither the initialization nor the complex optimization that are usu-

ally required in algorithms which use complex non-Lambertian reflectance models. However, the

fundamental restriction is that if it were not for the dense Lambertian structure in observations, the

estimation is disrupted.

Example-based reflectance modeling

A few amount of photometric stereo algorithms are distinctively called example-based approach,

which take advantages of surface reflectance of objects with known shape, captured under the same

illumination environment with the target material.

The earliest example-based approach [101] requires a reference object whose material is exactly

same with that of target object and the reference object is required to be captured in the same

known lighting condition, which considerably limit the domain of capable materials. Recently,

Hertzmann et al. [57] have eased these restrictions to handle uncalibrated scene and spatially varying

materials by assuming that materials in natural world can be expressed as a small number of basis

materials. However, it still requires a couple of reference objects whose geometry is known.

Reflectance modeling with non-Lambertian BRDF

Unless using Lambertian reflectance model nor the reference objects, various model-based ap-

proaches are applicable, which arrange the parametric or non-parametric models of material re-

flectance and iteratively optimize either surface normals and model parameters. So far, various

physically inspired parametric models of the bidirectional reflectance distribution (BRDF) such as

Torrance-Sparrow [112] and Ward [118] have been used in photometric stereo problem to account
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for specularities [45, 27]. Materials without any Lambertian structure are reasonably addressed

in this approach, however, they are incapable of handling spatially varying materials since model

parameters are usually optimized over images.

Therefore, in recent years, there has been an emphasis on representing a target material with

a small number of fundamental materials (e.g.., two) to handle wide variety of spatially varying

materials [46, 9]. Goldman et al. [46] have approximated each fundamental material by the Ward

model [118] and both parameters in fundamental BRDFs and per-pixel weight maps are recovered

with surface normals. While effective, their method has restriction on the size of specular lobes

and shadows, and its complex and nonlinear structure requires careful tuning of model parameters

and initialization. More recently, Alldrin et al. [9] have introduced non-parametric representa-

tion of the fundamental material and simultaneously recovered geometry and BRDFs by bi-variate

approximations of isotropic reflectance functions, which increase computational stability. This al-

gorithm reduces some restrictions in [46], however it also requires shadow-free observations and

azimuth angle maps acquired in advance. While model-based approaches are potentially capable of

wide variety of materials, the high-dimensional ill-posed problem and complex optimization scheme

cause the instability and inefficiency of the estimation. This algorithm is later extended by [134] to

achieve the multi-view photometric stereo algorithm for non-Lambertian scenes as we have already

presented in Section 2.2.2.

To simplify the model and optimization, Shi et al. [99] proposed a compact biquadratic repre-

sentation of isotropic BRDF. While the work does not require any complex parameter tuning and

global optimization, however, it assumes that both high-frequency and shadowed observations are

removed.

Reflectance modeling with common BRDF properties

The last group in the non-Lambertian photometric stereo neither uses reference objects nor explic-

itly models material reflectance model, instead take advantages of properties of general reflectance

shared among real materials which are being revealed by comprehensive analysis [107, 23]. The

main advantage of using those shared properties is that the algorithms are capable of handling wide

varieties of scene since any parametric reflectance model is not required to solve the photomet-

ric stereo problem. One attractive property is isotropy and reciprocity symmetry which appears

in isotropic materials [74], which is widely exploited surface normal reconstruction [106, 7, 58].

Monotonicity constraints on general reflectance is also used in some works [58, 100]. Other than

these properties, radiance similarity [89], image deviates [21], diffusive maxima [38] and the half
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Table 2.3: Definitions of major symbols used in the dissertation.
Symbol Name
m Number of images
n Surface normal direction (unit vector)
l Incoming lighting direction (unit vector)
L Lighting matrix (L , [l1, · · · , lm])

v Outgoing viewing direction (generally fixed by [0 0 1]T )
I Image intensity (three channels of r,g,b values are converted into a gray-scale value)
o Intensity vector for a surface point (o , [I1, · · · , Im])

ρ Isotropic BRDF for 3 variables θi, θo, ‖φi − φo‖
f Reflectance function (f , ρ(θi, θo, ‖φi − φo‖)(nT l))
ε Corruption in the image formation model i.e., I = f + ε

vector symmetry of isotropic BRDF [127] are also exploited to add further constraint on the ill-

posed problem and increase the accuracy of surface normal recovery.

In summary, most algorithms in this category can recover surface normals of complex materials

even though there is no underlying Lambertian structure. Furthermore, sum of them can also recover

detailed material reflectance as well as the geometry of target. However, many algorithms in this

category require either/both an initial normal estimate which is usually recovered by Lambertian

photometric stereo, tuning of a large number of parameters and a complex non-linear optimization,

where even one of them may cause instability of the estimation. In addition, most of them are

incompetent for effects such as shadows and image noises which are not included in the model.

2.3 Definitions and Assumptions

Before stepping into the next chapter, we summarize the major symbols which will appear in this

dissertation in Table 2.3 and indicate the assumptions that we henceforth rely on in the dissertation:

1. Object is illuminated by a point light source at infinity from varying and known directions,

and no indirect light source exists.

2. The light entered a surface point is reflected out from the same point, without any transmission

or subsurface scattering.

3. Camera view is orthographic, and the radiometric response function is known (and linear).

4. Relative position between the camera and the object is fixed across all images.
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Chapter 3

Robust Lambertian Photometric Stereo

Using Sparse Regression

In this chapter, an alternative photometric stereo algorithm is presented, for stably and accurately

estimating the surface normals of a scene in the presence of various non-Lambertian effects.

In the photometric stereo literature, an algorithm is generally categorized into the robust ap-

proach when the surface normal and other model parameters are recovered using an estimator that

is robust to outliers. Given sufficient amount of inliers, algorithms in this approach potentially work

for any kind of outliers even when the data distribution of each corruption is unknown. There have

been many robust algorithms that assume a basic Lambertian model but augmented with outlier

detection for handling all non-Lambertian regions of the scene [73, 79, 129, 105, 124] (Details were

presented in Section 2.2.3). While this strategy is numerically stable and relatively insensitive to

initializations, it may be computationally expensive since a large number of images is required for

robust outlier rejection.

In this chapter and Chapter 4, we will prove a formulation of the photometric stereo prob-

lem based on the alternative robust regression technique called sparse regression, where a sparsity

penalty is applied to the corruption ε in the image formation model Eq. (1.2) to reasonably dis-

ambiguate the problem of estimating both surface normal and model corruptions simultaneously.

Though the concept of the sparse regression is general and not restricted by the form of the re-

gression function, there are many computational issues since its derivative optimization problem in-

cludes a difficult `0 minimization, which becomes almost intractable in the presence of non-linearity

on unknown variables. Therefore, in this chapter, we will begin by assuming a basic Lambertian
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BRDF in the image formation model and considering other non-Lambertian effects as outliers as

Ii = ρnT li + εi i = 1, · · · ,m. (3.1)

Given m observations, the goal is to recover ρ, n and εi by inversely solving Eq. (3.1).

For this purpose, a hierarchical Bayesian model is developed that automatically decomposes ob-

served appearances into a Lambertian diffuse component and a sparse, non-Lambertian component

for capturing shadows, specularities, and other corruptions. Optimization and inference is accom-

plished using a robust majorization-minimization technique akin to the popular EM algorithm, with

desirable convergence properties and quantifiable advantages over standard convex estimators.

Of course we do not know a priori where non-Lambertian appearances will be located, and thus

the overall estimation problem is underconstrained even with many available images. Thus, our hi-

erarchical Bayesian model attempts to maximize the number of observations that can be adequately

explained via the Lambertian diffuse reflectance function (the inlier model) while treating the re-

maining observations, including specularities, shadows, and sensor saturations, as non-Lambertian

elements with separate, unknown variances learned from the data (the outlier model). The parti-

tioning between inliers and outliers is estimated simultaneously with the normal vectors and surface

albedos using a principled variational Bayesian technique.

The proposed framework benefits from simple, efficient pixelwise optimization, which is eas-

ily amenable to parallel processing. Moreover it does not require the pre-processing of specu-

larities/shadows, careful initialization strategies, or typical smoothness constraints for both object

structure and reflectance, which can disrupt the recovery of fine details. Consequently, we do not

suffer from numerical instability even with relatively few input images (e.g., 20) and we do not have

difficulty handling spatially varying albedos with high-frequency structures. Extensive experiments

in Section 3.2 show that our implementation produces more stable, accurate, and efficient surface

normal estimates than other robust algorithms such as [79, 124].

3.1 Modeling Lambertian-based Image Formation with Outliers

Woodham et al. [122] revealed that the intensity I of a point in a Lambertian scene under a lighting

direction l ∈ R3 is expressed as follow,

I = ρ nT l, (3.2)
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Figure 3-1: Illustration of the image formation of Lambertian scenes. An observation matrix O is
composed of the rank-3 Lambertian matrix (D = NTL) and the non-Lambertian corruption matrix
E.

where ρ is the diffuse albedo, and n ∈ R3 is the surface normal at the point. This image formation

model is equivalent to the case where the BRDF is a constant value i.e., ρ(θi, θo, ‖φi − φo‖) = ρ.

We should note that the actual Lambertian reflectance model accounts the intensity of a light, which

is omitted here since it is assumed that the appearances are normalized by the intensity of lightings

as Eq. (2.10).

Givenm images with k , h×w pixels, we define an observation matrix by aligning each image

as a vector:

O , [(I1)| . . . |(Im)] ∈ Rk×m, (3.3)

where Ip , [Ip(1), ..., Ip(k)]T for p = 1, ...,m, and

Ip(j) = ρj n
T
j lp. (3.4)

Therefore, the observations in a Lambertian scene can be expressed via the rank-3 expression

O = NTL, (3.5)

where N = [ρ1n1 | . . . | ρknk] ∈ R3×k and L = [l1 | . . . | lm] ∈ R3×m. This rank-3 structure

of the Lambertian appearance is solid since it does not depend on neither the direction of incident

lighting nor the surface geometry. In real scenes, however, various effects beyond the Lambertian

formulation are observed, e.g., specularities, shadows, image noise and so on, which destroy the
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Lambertian rank-3 structure. In the robust approach, these effects are interpreted as additive cor-

ruptions E ∈ Rm×n applied to an otherwise ideal Lambertian scene leading to the image formation

model as

O = NTL+ E. (3.6)

Given observed images (O) and lighting directions (L), the goal is to recover surface normals (N ) as

a part of the Lambertian diffusive component (NTL) in the presence of non-Lambertian corruptions

(E). For reference, we illustrate the image formation of the Lambertian scene in Fig. 3-1.

3.1.1 Robust Photometric Stereo Using Sparse Regression

Eq. (3.6) is an under-constrained problem since the number of unknowns exceeds the number of lin-

ear equations i.e., assuming the varying surface albedos, the total unknown variables are 3k + mk

(i.e., 3k DOF in N and mk DOF in E). While most previous methods deal with corruptions by ap-

plying traditional outlier removal techniques assuming the type of them and then recovering surface

normals from the resulting purified Lambertian component [79, 129, 76], the distribution-dependent

approach is always in danger of removing inliers as well as outliers due to lack of prior knowledge

about the potential outlier distribution. Alternatively, we try to recover N without explicitly re-

moving corruptions in a separate step with a help of the sparse regression technique. An essential

ingredient is a sparsity penalty applied to E, whose minimization disambiguates the infinity of fea-

sible solutions to Eq. (3.6). This penalty quantifies the reasonable observation that non-Lambertian

effects emerge primarily in limited areas of each image. For example, specularities surround the

spot where the surface normal is oriented halfway between lighting and viewing directions, while

shadows are created only when LTN ≤ 0 (attached shadow) or when a non-convex surface blocks

the light (cast shadow). Strictly speaking, we assume that the optimal feasible solution to Eq. (3.6)

produces a sparse error matrix. Reflecting this assumption, our estimation problem can be formu-

lated as

min
N,E
‖E‖0 s.t. O = NTL+ E. (3.7)

Here, ‖ · ‖0 is an `0-norm penalty, which counts the number of non-zero entries in the matrix.

To reiterate, Eq. (3.7) builds on the assumption that images are captured under known lighting

conditions and any non-Lambertian corruptions have sparse structure. If these assumptions are not

true (e.g., because of imperfect lighting calibration, non-sparse specularities, etc.), then the hard

constraint in Eq. (3.7) is no longer appropriate. To compensate for more diffuse modeling errors,
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Figure 3-2: Illustration of the sparse regression. (a) `2-based regression gives inaccurate plane
fitting in 4-D space of [l1, l2, l3, I], however (b) `0-based regression successfully finds the plane by
reasonably neglecting outliers. (c) The Lambertian-based sparse regression is also illustrated as a
regression analysis in 2-D space of [nT l, I] whose regression function is represented as y = ρx. (d)
the soft constraint in Eq. (3.12) is considered as a margin where a data point is considered as lying
on the function”.

we relax the hard constraint via an additional model mismatch penalty giving

min
N,E
‖O −NTL− E‖22 + λ‖E‖0, (3.8)

where λ is a nonnegative trade off parameter balancing data fit with sparsity. Note that in the limit

as λ→ 0, the two problems are equivalent (the limit must be taken outside of the minimization).

Since Eq. (3.7) and Eq. (3.8) decouples, we can consider instead an equivalent series of separate,

pixel-wise optimizations problems of the canonical form

min
n,e
‖e‖0 s.t. I = LTn+ e, (3.9)

min
n,e
‖I − LTn− e‖22 + λ‖e‖0 . (3.10)

where the column vector I denotes an arbitrary transposed row of O, n is the associated unknown

normal vector, and e is the sparse error component i.e., e , [ε1, · · · , εm] (we have omitted pixel-

wise subscripts for simplicity). For intuitively understanding Eq. (3.10), we equivalently express it

in the similar manner with Eq. (1.3) as

min
n,e
‖e‖0 s.t. ∀i Ii = nT li + εi, (3.11)
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Figure 3-3: Illustration of 2-D plots with varying surface normal.

min
n,e

m∑
i=1

‖Ii − nT li − εi‖22 + λ‖e‖0 . (3.12)

What do these transformation tell as? To answer the question, we illustrate the concept the sparse

regression analysis in Fig. 3-2. As was mentioned in Section 1.2, the standard Lambertian photo-

metric stereo problem (without a `0 penalty) can be viewed as the regression analysis which finds

the relationship between observation I and unknown model parameters (n = [n′1, n
′
2, n
′
3]T ) by min-

imizing the sum of `2 residual between the observation and estimated model output f(l1, l2, l3) =

n′1l1 + n′2l2 + n′3l3. It is equivalent to finding a plane in the four dimensional space of l1, l2, l3,

I such that the sum of `2 distance between the plane and each 4-D plots [li1, l
i
2, l

i
3, Ii] is minimized

(See Fig. 3-2-(a)). On the other hand, solving Eq. (3.11) is equivalent to finding a plane such that as

much as possible 4-D plots [li1, l
i
2, l

i
3, Ii] are exactly lying on the regression plane (See Fig. 3-2-(b)).

In other words, the model parameters of the regression plane is estimated such that the number of

outliers (i.e., deviations from the regression model) is minimized, that is why this kind of regression

is called a sparse regression. It will make sense to state that Eq. (3.11) and Eq. (3.12) are also viewed

as a regression analysis to find the linear function of y = ρx in the 2-D space whose coordinates

are nT l and I (See Fig. 3-2-(c),(d)). Note that in this regression, both the slant of a linear function

ρ and the position of 2-D data [nT l, I] are varying over unknown variables. Here we can consider

that the soft constraint of Eq. (3.12) allows each 2-D plot of [nT l, I] not to exactly lying on the

linear function (the sparsity constraint is relaxed by a merging 1/
√
λ). The concrete examples of

2-D plots of [nT l, I] in the presence of some non-Lambertian corruptions are illustrated in Fig. 3-3.

We observe that if the surface normal is close to the ground truth, many samples are lying on the

estimated linear model (i.e., many observations are represented by a Lambertian model).

Eq. (3.9) and Eq. (3.10) entail difficult, combinatorial optimization problems that must be ef-
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ficiently solved at every pixel. Here we consider two alternatives to brute force exhaustive search.

First, in the machine learning and statistics literature, it is common to replace the discontinuous,

non-convex `0 norm with the convex surrogate `1 norm. (The `1 norm of a vector z is given by∑
i |zi|, which constitutes the tightest convex approximation to the `0 norm.) In certain situations

the resulting estimate will closely match the solution to Eq. (3.7) and/or Eq. (3.8); however, in the

context of photometric stereo this substitution may not always be adequate (see Section 3.1.4 for

more details). Secondly, we can apply a simple hierarchical Bayesian approximation to estimate n

while simultaneously accounting for e. This formulation, called SBL, is described in detail next.

3.1.2 Recovery of normals and corruptions via iterative reweighted `1 estimator

Recently, there has been growing interest in finding sparse signal representation from redundant

dictionaries solving

min
x
‖y − Φx‖22 + λ‖x‖0. (3.13)

Here, Φ is a matrix whose columns represent an overcomplete or redundant basis, x is a vector

of unknown coefficients to be learned, y is the signal vector, and λ is a trade-off parameter which

is balancing the diffuse and sparse terms. While an exhaustive search for the optimal solution

is prohibitively expensive, recently many sparse approximation algorithms have been proposed,

which rely on iterative reweighting schemes that produce more focal estimates as optimization

progress [18, 24, 30] (a comprehensive survey is conducted by Wipf and Nagarajan [119]). In

the iterative scheme, the (k + 1)-th iteration is given by,

x(k+1) → arg min
x

‖y − Φx‖22 + λ
∑
i

ω
(k)
i x2

i = W (k)ΦT
(
λI + ΦW (k)ΦT

)−1
y, (3.14)

whereW (k) is a diagonal weighting matrix from the k-th iteration with i-th diagonal element 1/ω
(k)
i

that is potentially a function of all x(1), · · · ,x(k). In the iterative reweighting schemes, different

methods are distinguished by the choice of ω(k), which determines the surrogate cost function for

enforcing sparsity that is being minimized. One such variant is presented by Candés et al. [18],

where an iterative `1 reweighting update rule of ωi is provided as

ω
(k+1)
i →

[
|x(k+1)
i |+ ε

]−1
, (3.15)
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where ε is generally chosen as a fixed (zero in our experiment). At a glance, the form of Eq. (3.10)

and Eq. (3.13) look different, however Eq. (3.13) can be derived from Eq. (3.10) defining Φ =

[LT I(m)], x = [nT eT ]T and y = I , where I(p) is a p dimensional identity matrix. Note

that since only the sparsity of e, not n should be enforced, the weighting matrix W is defined

as diag[Wn,We], where the weighting matrix for n is fixed as Wn , αI(3) (sufficiently large α

allows n not to be zero without penalty). In contrast, We , diag[ω−1] is a fully-parameterized,

diagonal matrix, where ω , [ω1, ..., ωk]
T is a non-negative vector of variances in one-to-one cor-

respondence with elements of e (sufficiently large ωi enforces the sparsity of xi). Then, the update

rules of n and e are now represented as follow

ω
(k+1)
i → |ε(k)

i |
−1, ∀i, W (k+1)

e = diag[ω(k+1)−1
], n(k+1)

e(k+1)

 →

 αL

W
(k+1)
e

(λI(m) + αLTL+W (k+1)
e

)−1
I. (3.16)

Note that only ωi and e need to be updated until the convergence and then a fixed point of e gives

n. These expressions require the calculation of a m×m inverse matrix, whose computational com-

plexity is proportional to m. Fortunately, the computation of inverse matrix becomes independent

from m by taking advantage of the matrix inversion lemma [113]. Recall that the Woodbury matrix

identity is represented as

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1, (3.17)

where A, U , C and V all denote matrices of the correct size. Comparing Eq. (3.16) and Eq. (3.17),

the matrix inversion lemma is applicable to Eq. (3.16) by associatingA = λI(m) +Γ
(k+1)
e , U = LT ,

C = αI(3) and V = L. Then update rules are transformed as

ω
(k+1)
i → |e(k)

i |
−1, ∀i, W (k+1)

e = diag[ω(k+1)−1
],

Ψ(k+1) →
(
λI(m) +W (k+1)

e

)−1
, n(k+1)

e(k+1)

 →

 αL

Γ
(k+1)
e

(Ψ(k+1) −Ψ(k+1)LT
(
α−1I(3) + LΨ(k+1)LT

)−1
)
.(3.18)

In these expressions, the cost of the matrix inversion changesO(m) toO(3) since
(
α−1I(3) + LΨ(k+1)LT

)
∈

R3×3. Note that the update of Ψ(k+1) ∈ Rm×m is not computationally expensive since both I(m)
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and Γ
(k+1)
e are diagonal matrices.

3.1.3 Recovery of normals and corruptions via SBL estimator

An alternative penalty emerges from a dual-space view [121] of sparse Bayesian learning(SBL) [111],

which is based on the notion of automatic relevance determination (ARD) [81]. SBL assumes the

standard Gaussian likelihood function for the first-level, diffuse errors giving

p(I|n, e) = N(I;LTn+ e, λI), (3.19)

We next apply an independent, zero-mean Gaussian prior distributions on both n and e:

p(n) = N(n;0,Σn), p(e) = N(e;0,Γ). (3.20)

Σn describes the prior variance of the unknown normal vector n as Σn = σ2
nI(3); they are fixed to

convey our lack of a priori certainty about n. Thus the prior on n will be relatively uninformative.

The values of σ2
n will be discussed further below. In contrast, Γ , diag[γ] is a fully-parameterized,

diagonal matrix, where γ , [γ1, . . . , γm+1]T is a non-negative vector of variances in one-to-one

correspondence with elements of e. A large variance γi indicates that the corresponding εi is free

to reflect the data, compensating for non-Lambertian effects (outliers), while a small or zero-valued

variance implies that the associated error term is constrained near zero (inliers).

Combining the likelihood and prior using Bayes’ rule leads to the posterior distribution p(n, e|I) ∝

p(I|n, e)p(n)p(e). To estimate n, we may further marginalize over e to give

p(n|I) =

∫
p(n, e|I)de = N(n;µ,Σ), (3.21)

with mean and covariance defined as

µ = ΣAT (Γ + λI)−1 I, (3.22)

Σ =
[
Σ−1
x +AT

(
Γ + λI(m)

)−1
A
]−1

.

Here, A = LT . We now have a convenient closed-form estimator for x given by the posterior mean.

The only issue then is the values for the unknown parameters Γ. Without prior knowledge as to the

locations of the sparse errors, the empirical Bayesian approach to learning Γ is to marginalize the
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full joint distribution over all unobserved random variables, in this case x and e, and then maximize

the resulting likelihood function with respect to Γ [111]. Equivalently, we will minimize

L(Γ) , − log

∫
p(I|n, e)p(n)p(e)dnde

≡ log |ΣI |+ ITΣ−1
I I (3.23)

with ΣI , AΣxA
T + Γ + λI(m),

with respect to Γ. While L(Γ) is non-convex, optimization can be accomplished by adapting a

majorization-minimization approach from [119] to the photometric stereo problem. This technique

essentially involves the construction of rigorous upper bounds (see below) on each of the two terms

in Eq. (3.23) using auxiliary variables z , [z1, . . . , zm+1]T and u , [u1, . . . , um+1]T (the EM

algorithm can be viewed as a special case). For fixed values of z and u, a closed form solution for

Γ exists. Likewise, for a fixed value of Γ, the auxiliary variables can be updated in closed form to

tighten the upper bound around the current Γ estimate.

While some details are omitted for brevity, using results from convex analysis it can be shown

that for all u ≥ 0,

log |Σy| = log |Γ|+ log
∣∣AΣxA

T + λI(m)

∣∣
+ log

∣∣∣Γ−1 +
(
AΣxA

T + λI(m)

)−1
∣∣∣

≤ log |Γ|+ log
∣∣AΣxA

T + λI(m)

∣∣
+
∑
i

ui
γi
− h∗(u)

≡
∑
i

(
ui
γi

+ log γi

)
− h∗(u), (3.24)

where h∗(z) denotes the concave conjugate function [16] of h(β) , log
∣∣∣diag[β] +

(
AΣxA

T + λI(m)

)−1
∣∣∣

and we have removed irrelevant factors independent from u or γ. It can be shown that equality (and

therefore the minimum of the right-hand side) is obtained in Eq. (3.24) if and only if

u = diag
[
Γ−1 +

(
AΣxA

T + λI(m)

)−1
]−1

. (3.25)
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In a somewhat related fashion, the second term in L(Γ) can be upper-bounded via

ITΣ−1
I I ≤ (I − z)T

(
AΣnA

T + λI(m)

)−1
(I − z)

+
∑
i

z2
i

γi
, (3.26)

which holds for all z, with equality if and only if

z = ΓΣ−1
I I. (3.27)

Now with z and u fixed, the overall upper bound on L(Γ) decouples and we can solve for each

γi individually by collecting the γ-dependent terms from Eq. (3.24) and Eq. (3.26), leading to the

problem

min
γi≥0

z2
i + ui
γi

+ log γi, (3.28)

which has a simple closed-form solution.

Combining all of the above, and using matrix inversion formula to produce numerically efficient

computations, produces update rules for the (k + 1)-th iteration given by

γ
(k+1)
i ←

(
z

(k)
i

)2
+ u

(k)
i , ∀i, Γ(k+1) = diag[γ(k+1)]

z(k+1) ← Γ(k+1)
(
S(k+1)

)−1
y (3.29)

u(k+1) ← diag
[
Γ(k+1) −

(
Γ(k+1)

)2 (
S(k+1)

)−1
]
,

where S(k+1) is computed via

S(k+1) = D −DA
[
Σ−1
x +ATDA

]−1
ATD

and D , (Γ(k+1) + λI(m))
−1. (3.30)

These expressions only require O(n) computations and are guaranteed to reduce L(Γ) until a fixed

point Γ∗ is reached. This value can then be plugged into Eq. (3.22) to estimate the unknown normal

vector and model parameters. We denote this point estimator as xsbl. Here it is worth noting that the

inverse matrix in Eq. (3.30) can also be efficiently computed by using the matrix inversion lemma

in the similar manner with Eq. (3.18). If the variances Γ∗ reflect the true profile of the sparse errors,

then xsbl will closely approximate the true surface normal. This claim will be quantified more
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explicitly in the next section.

We have thus far omitted details regarding the choice of λ, α and σ2
n. The first one can be

reasonably set according to our prior expectations regarding the magnitudes of diffuse modeling er-

rors, but in practice there is considerable flexibility here since some diffuse errors will be absorbed

into e. In contrast, we can realistically set α, σ2
n → ∞, which implies zero precision or no prior

information about the normal vectors and yet still leads to stable, convergent update rules. However

we have observed that on certain problems a smaller selection for α, σ2
n can lead to a modest im-

provement in performance, presumably because it has a regularizing effect that smoothes the cost

function and improves the convergence path of the update rules from Eq. (3.29) (perhaps counterin-

tuitively, in certain situations it does not alter the globally optimal solution as discussed below). It

is also possible to learn σ2
n using similar updates to those used for Γ, but this introduces additional

complexity and does not improve performance.

3.1.4 Analytical evaluation

Previously we discussed two tractable methods for solving Eq. (3.10): a convex `1-norm-based

relaxation and a hierarchical Bayesian model called SBL. This section briefly discusses comparative

theoretical properties of these approaches relevant to the photometric stereo problem. To facilitate

the analysis, here we consider the idealized case where there are no diffuse modeling errors, or that

λ is small. In this situation, the basic problem from Eq. (3.10) becomes

min
n,e
‖e‖0 s.t. I = LTn+ e, (3.31)

which represents the pixel-wise analog of Eq. (3.7). If the lighting directions and sparse errors are in

general position (meaning they are not arranged in an adversarial configuration with zero Lebesgue

measure), then it can be shown that the minimizer of Eq. (3.31) denoted n0 is guaranteed to be the

correct normal vector as long as the associated feasible error component e = I − LTn0 satisfies

‖e‖0 < m − 3. Therefore, a relevant benchmark for comparing photometric stereo algorithms

involves quantifying conditions whereby a candidate algorithm can correctly compute n0.

In this context, recent theoretical results have demonstrated that any minimizer n1 of the `1

relaxation approach will equivalently be a minimizer of Eq. (3.31) provided ‖e‖0 is sufficiently

small relative to a measure of the structure in columns of the lighting matrix LT [17]. Unfortunately

however, for typical photometric stereo problems the requisite equivalency conditions often do not
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hold (i.e., ‖e‖0 is required to be prohibitively small) both because of structure imposed by the

lighting geometry and implicit structure that emerges from the relatively small dimensionality of

the problem (meaning we do not benefit from asymptotic large deviation bounds that apply as m

becomes large). Fortunately, SBL offers the potential for improvement over `1 via the following

result.

Theorem: For all σ2
n > 0 (and assuming λ → 0), if Γ∗ is a global minimum of Eq. (3.23), then

the associated estimator nsbl will be a global minimum of Eq. (3.31). Moreover, for σ2
n sufficiently

large it follows that: (i) Any analogous locally minimizing SBL solution is achieved at an estimate

nsbl satisfying ‖I − LTnsbl‖0 ≤ m − 3, (ii) SBL can be implemented with a tractable decent

method such that convergence to a minimum (possibly local) that produces an nsbl estimator as

good or better than the global `1 solution is guaranteed, meaning ‖I −LTnsbl‖0 ≤ ‖I −LTn1‖0.

The proof is relatively straightforward and uses block-matrix inverse and determinant identities,

as well as ideas from [17], to extend SBL properties derived in [120] to problems in the form of

Eq. (3.31). We may thus conclude that SBL can enjoy the same theoretical guarantees as the `1

solution yet boosted by a huge potential advantage assuming that we are able to find the global

minimum of Eq. (3.23) (which will always produce an nsbl = n0, unlike `1). There are at least

two reasons why we might expect this to be possible based on insights drawn from [120]. First, as

discussed previously, LT will necessarily have some structure unlike, for example, high dimensional

random matrices. In this environment SBL performance is often vastly superior to `1 because it can

be shown to be implicitly based on an A-dependent sparsity penalty that can compensate, at least in

part, for structure in A = LT . Secondly, the sparse errors e will likely have substantially different

magnitudes depending on image and object properties (meaning the non-zero elements of e will not

all have the same magnitude), and it has been shown that in this condition SBL is more likely to

converge to the global minimum [120].

3.2 Experimental Results

In this section, we quantitatively evaluate our method on synthetic and real image data. All experi-

ments were performed on an Intel Core2 Duo E6400 (2.13GHz, single thread) machine with 4GB

RAM and were implemented in MATLAB. For the SBL- and `1-based methods we used λ = 1.0−6

in the synthetic experiments with no additive image noise and perfect lighting calibrations, and
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Figure 3-4: Corruptions in Caesar and Bunny datasets. We illustrate the frequency (%) (i.e., {The
number of corruptions appeared at a pixel}/{Total number of images} ) of (a) shadow, (b) specular-
ity and (c) shadow and specularity.

λ = 10−2 for the other cases. We set α = σ2
n = 106 for all experiments.

3.2.1 Datasets

In synthesic experiments, we generate 32-bit HDR gray-scale images of two objects called Bunny

(256×256) and Caesar (300×400) with foreground masks under different lighting conditions whose

directions are randomly selected from a hemisphere with the object placed at the center. Specular

reflections are attached using the Cook-Torrance reflectance model [29] 1 and cast/attached shadows

are synthesized under each lighting condition2. Note that when in use (as defined for each experi-

ment), the shadow mask is applied equivalently to all algorithms. To increase statistical reliability,

all experimental results are averaged over 20 different sets of 40 input images. The average ratio of

specularities in Bunny and Caesar are 8.4% and 11.6% and that of cast/attached shadows are 24.0%

and 27.8% respectively (See Fig. 3-4). To quantitatively evaluate the performance, we compute the

angular error between the recovered normal map and the ground truth. In this experiment, our meth-

1See details about the Cook-Torrance model in the Appendix B.
2Rendering the scene with cast shadows is actually not easy since they are the product of the complex interaction of

geometry and illumination in the scene. Fortunately, many free ray-tracing softwares are available and in this dissertation,
we used blender [1] software for synthesizing cast shadows.
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Figure 3-5: Recovery of surface normals from 40 images of Caesar (300×400) with explicit shadow
removal. (a) Input, (b) Ground truth, (c)-(j) Recovered surface normals and Error maps (in degrees).

ods via sparse regression are implemented by both SBL and a convex `1-norm based relaxation (L1).

We compare our methods with the R-PCA-based method proposed by Wu et al.[124] (using a fixed

trade off parameter) and the standard least squares (LS)-based Lambertian photometric stereo [122]

estimate obtained by solving

min
N
‖O −NTL‖22. (3.32)

The latter is equivalent to minimizing Eq. (3.8) with λ set to a large value. Note that the method

from [124] introduce the sparsity penalty applied to non-Lambertian corruptions, however these two

methods differ in the point that our method strictly constrains Lambertian rank-3 structure, while

the R-PCA-based method does not always recover exactly rank-3 Lambertian matrix.

3.2.2 Quantitative Evaluation with Synthetic Images

We begin with the evaluation of performance using the synthesized images, which has Lambertian

diffuse reflections along with non-Lambertian specularities and shadows.

We change experimental conditions with regard to the number of images, surface roughness

(i.e., the ratio of specularities), shadow removal (i.e., whether or not a shadow mask is used to
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remove zero-valued elements from the observed images), and the presence of additional Gaussian

noise. While the amount of cast/attached shadows are fixed to 24.0% and 27.8% of the number of

all the pixels, respectively, the percentage of specularities depends on the surface roughness param-

eter that is independently selected in each experiment.

Valid number of images for efficient recovery in the presence of specularities

In this experiment, we vary the number of images to estimate the minimum number required for

effective recovery when using the shadow mask with fixed surface roughness. The percentage of

specular pixels in Bunny and Caesar are 8.4% and 11.6%, respectively.

Once 40 images are generated for each dataset, the image subset is randomly subsampled with-

out replacement. The results are displayed in Table 3.2 and Fig. 3-5. We observe that the sparse-

regression-based methods are significantly more accurate than both R-PCA and LS. It is also clear

that SBL is more accurate than `1, although somewhat more expensive computationally.3 Note that,

although not feasible in general, when the number of images is only 5, the most accurate and ef-

ficient implementation for regression could be to just systematically test every subset of 3 images

(i.e., brute force search only requires 10 iterations at each pixel).

Robustness to shadows and image noise

We now evaluate the robustness of our method against corruptions; shadows and image noise. We

set two conditions for evaluating the effects of (i) shadows (fixed specularities, no shadow removal,

no image noise), (ii) additive Gaussian image noise (fixed specularities, explicit shadow removal,

varying amount of image noise). The ability to estimate surface normals without an explicit shadow

mask is important, since in practical situations shadow locations are not always easy to be deter-

mined a priori. The number of images is 40 in (ii) and varying from 5 to 40 in (i). We use Bunny

for evaluation, and the ratio of specularities is 8.4% in (i) and (ii), and image noise is 10% to 50%

in (ii). Image noise obeys a zero-mean iid Gaussian distribution with σ2 = 0.1.

The results are illustrated in Fig. 3-6, Fig. 3-7, Table 3.3 and Table 3.4. While performance of

each method degrades when additional corrupted pixels (outliers) contaminate the estimation pro-

cess, our sparse regression methods outperform both R-PCA and LS in accuracy and outperform

R-PCA in efficiency in the presence of shadows and noise. We observe that the performance of

3The SBL convergence rate can be slower with fewer images because of the increased problem difficulty. This explains
why the computation time may actually be shorter with more images.
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(a) Ground Truth (c) SBL (e) R-PCA (f) LS

(g) SBL (i) R-PCA (j) LS

(d) L1

(h) L1(b) Input

1.0

0.0

Figure 3-6: Recovery of surface normals from 40 images of Bunny(256 × 256) without explicit
shadow removal. (a) Input, (b) Ground truth, (c)-(j) Recovered surface normals and Error maps (in
degrees).

R-PCA degrades when a shadow mask is unavailable (i.e., the positions of missing entries are un-

known) while our sparse-regression based method automatically compensates for missing entries in

the estimation process.

We also observe that SBL is more accurate than `1 in all conditions with slight more expense

of computational effort. We further compare the results of SBL and `1 using the case where the

number of images is 5 without removing shadows. The error maps and the numbers of corruptions

per-pixel are displayed in Fig. 3-8. We observe that the `1 method typically suffer from shadows

while SBL can find the correct solution in most pixels as long as the number of corruptions is less

than 3, which is the theoretical limit when only 5 observations are given.

Sparseness of corruptions

While it does not often occur, our assumption that corruptions appear sparsely over images can be

violated in some situations, e.g., observations include wide-lobe specularities. In this experiment,

we examine how our approach is affected by the sparseness of corruptions by changing the width of

the specular lobe (i.e., percentage of specularities appeared in observations). Here, we use Bunny

dataset whose amount of specularities is varying from 10% to 60%, respectively, by appropriately

choosing the model parameter of Cook-Torrance reflectance model. In this experiment, we remove

shadows explicitly to factor out their effect.

The result is illustrated in Fig. 3-9. As expected, performance of both SBL and `1 degrades as
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(a) Ground Truth (c) SBL (e) R-PCA (f) LS

(g) SBL (i) R-PCA (j) LS

(d) L1

(h) L1(b) Input
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0.0

Figure 3-7: Recovery of surface normals from 40 images of Bunny with explicit shadow removal
and additive Gaussian noises (30%). (a) Input, (b) Ground truth, (c)-(j) Recovered surface normals
and Error maps (in degrees).
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Figure 3-8: Comparison between SBL and `1-based method. Error maps of (a) SBL and (b) L1 (in
degrees). The per-pixel number of (c) specularities, (d) shadows, (e) corruptions (The maximum is
5). These maps are illustrated based on one of twenty datasets.

the ratio of specular corruptions increases. However, even when the sparseness of outliers is diffi-

cult to be held, we observe that our sparse-regression based method still outperforms R-PCA and LS.

Comparison with RANSAC-based approaches

We also compared our approach with two different RANSAC-based methods. Here we use 40 im-

ages of Bunny dataset whose percentage of specular pixels is 8.4%. Shadows are removed and

images noises are not added in this experiment.

The first one is a photometric linearization approach [79], which converts an input image into the

ideal Lambertian image. It uses RANSAC for robustly identifying the basis images in the presence

of non-Lambertian corruptions. Once linearized images are acquired, the standard Lambertian-
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Figure 3-9: Experimental results of Bunny with varying amount of specularities. The x-axis and
y-axis indicate the ratio of specularities and the mean angular error of normal map.

based approach [122] is applied with known lightings to estimate surface normals. The second one

uses RANSAC more directly in Lambertian photometric stereo method like [54]. In this approach,

three images are randomly sampled for each position independently, and the surface normal and

albedo are estimated from them using Lambertian photometric stereo [122]. Then the Euclidean

distances between observations and predicted intensities are computed, and the number of inliers

whose distances are less than a threshold are counted. After the sampling process, the surface

normal and albedo with the maximum number of inliers are adopted.

The results are summarized in Table 3.5 and Table 3.6, respectively. We have also included

standard deviations in the tables for observing the estimation stability. We observe in Table 3.5

that although we use a large number of samples for RANSAC (e.g., 2000) for the photometric

linearization, this approach cannot always stably find the solution especially when the number of

images is large. On the other hand, our method is able to successfully and efficiently finds the

solution. We also observe in Table 3.6 that a large number of samples (e.g., 200) gives very accurate

estimation while it takes much time to compute it. The smaller number of samples gives more

efficient but less accurate estimation. When the number of samples is 20, the computational cost is

almost same as our SBL-based method, but the mean error is 50 times larger than ours, which also

demonstrates the effectiveness of the proposed method.

It is also crucial to emphasize that the RANSAC algorithm scales very poorly as the number of
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Table 3.1: Experimental results of Bunny with varying number of images.

No. of 

images 

Mean error (in degrees) Median error (in degrees) Elapsed time (sec) 

SBL L1 R-PCA LS SBL L1 R-PCA LS SBL L1 R-PCA LS 

5 6.0 6.0 15.3 7.0 4.7 4.3 10.7 4.8 46.5 13.6 15.7 4.6 

10 0.09 0.61 3.8 1.9 0.27 0.58 0.81 1.8 36.3 13.6 37.8 5.9 

15 0.076 0.16 0.21 1.6 0.052 0.13 0.19 1.6 26.8 13.1 55.1 6.3 

20 0.033 0.080 0.11 1.6 0.022 0.078 0.11 1.6 24.2 13.5 70.5 6.9 

25 0.018 0.055 0.084 1.6 0.010 0.048 0.069 1.6 23.1 14.1 86.0 7.6 

30 0.012 0.037 0.080 1.7 0.0048 0.032 0.065 1.7 23.1 14.2 121.0 8.4 

35 0.0057 0.023 0.098 1.6 0.0029 0.019 0.093 1.6 22.7 14.6 161.3 8.5 

40 0.0039 0.019 0.12 1.6 0.0020 0.015 0.12 1.6 22.6 15.0 200.7 9.4 

Table 3.2: Experimental results of Caesar with varying number of images.

Mean error (in degrees) Median error (in degrees) Elapsed time (sec) 

SBL L1 R-PCA LS SBL L1 R-PCA LS SBL L1 R-PCA LS 

6.2 6.0 26.2 7.4 4.73 4.63 31.0 4.97 106.4 34.2 45.8 15.9 

0.24 0.40 10.7 0.94 0.19 0.26 1.8 0.93 97.2 34.1 93.7 19.2 

0.044 0.11 2.6 0.77 0.047 0.083 0.14 0.76 67.0 31.4 153.3 22.0 

0.018 0.051 0.079 0.76 0.015 0.035 0.065 0.72 60.9 32.7 177.5 23.3 

0.011 0.034 0.068 0.76 0.0081 0.023 0.059 0.76 57.9 34.3 196.9 25.1 

0.0063 0.018 0.043 0.77 0.0082 0.018 0.043 0.77 58.1 33.2 231.7 27.7 

0.0045 0.012 0.036 0.78 0.0031 0.0084 0.033 0.80 58.4 34.5 259.2 29.4 

0.0031 0.0094 0.037 0.76 0.0019 0.0063 0.034 0.78 59.6 35.2 281.2 31.5 

inlier model parameters is increased. Simply put, a larger number of inlier random samples is re-

quired to robustly estimate a larger number of model parameters, and obtaining such inlier samples

becomes combinatorially more difficult in higher dimensions. Consequently, while RANSAC may

work reasonably well here recovering surface normals under a Lambertian diffusive model (where

the number of unknowns is effectively only 3), it will become intractable when using more complex

reflectance models, which is a central concern herein. In contrast, our method scales linearly in

the number of inlier parameters and can therefore be robustly expanded to handle non-Lambertian

parameterized reflectance functions with outliers, e.g., the general diffusive model detailed in Chap-

ter 4 or other more sophisticated extensions.

The comparison of `0 and `2 regressions

While the evaluation with average angular errors of recovered normal maps have indicated the out-

standing performance of our method to the photometric stereo problem, the reason why the sparse

regression outperforms least-squares regression in photometric stereo problem may not be intu-

itively understood. To clarify it, we randomly sampled a pixel from the overall image and visualized
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Table 3.3: Results of Bunny without shadow removal.

No. of 

images 

Mean error (in degrees) Median error (in degrees) Elapsed time (sec) 

SBL L1 R-PCA LS SBL L1 R-PCA LS SBL L1 R-PCA LS 

5 5.2 11.9 12.1 12.1 5.0 12.3 12.5 12.5 213.0 37.0 45.8 5.1 

10 2.8 5.6 10.9 10.9 2.3 5.6 11.3 11.3 98.9 33.0 93.7 6.0 

15 1.9 4.0 9.9 10.0 2.3 4.0 10.1 10.2 66.8 32.5 153.3 7.4 

20 1.2 2.7 9.4 9.5 1.0 2.7 9.6 9.6 52.9 30.0 177.5 7.6 

25 0.81 1.9 8.9 9.0 0.69 1.8 8.9 9.0 46.2 31.0 196.9 9.1 

30 0.62 1.6 9.0 9.1 0.61 1.5 8.9 8.9 41.1 32.0 231.7 9.4 

35 0.59 1.5 9.1 9.1 0.58 1.4 9.3 9.3 41.1 34.4 259.2 11.0 

40 0.53 1.2 8.8 8.9 0.58 1.2 9.0 9.1 39.4 33.3 281.2 10.7 

Table 3.4: Experimental results of Bunny with varying amount of additive Gaussian noises.

 Dens. of 

noises (%) 

Mean error (in degrees) Median error (in degrees) 

SBL L1 R-PCA LS SBL L1 R-PCA LS 

10 0.0079 0.040 0.16 3.3 0.0060 0.039 0.16 3.3 

20 0.021 0.11 0.79 4.4 0.019 0.099 0.80 4.3 

30 0.068 0.29 3.6 5.3 0.060 0.25 3.2 5.2 

40 0.21 0.70 9.8 6.2 0.18 0.63 9.9 6.1 

50 0.58 1.5 11.7 7.0 0.53 1.4 11.7 6.9 

plots [I,nT l] for each lighting direction and a linear regression function in Fig. 3-10. Here, blue

dots come from the estimated surface normal with LS(`2) / SBL(`0) and red dots come from the

ground truth surface normal. Overlapping the blue dots onto red dots means the recovered surface

normal is correct. We observe that while least-squares regression is easily disrupted by any cor-

ruptions beyond the Lambertian rule, SBL-based sparse regression robustly neglects the outliers.

3.2.3 Quantitative Evaluation with Inaccurate Lighting Directions

Other than specularities, shadows and image noises, calibration errors are also considered as corrup-

tions in the diffusive image formation model. However, unfortunately, this type of errors violates

our assumption that non-diffusive corruptions are sparse in observations. In this experiment, we

evaluate the robustness to modeling errors by using synthesized 40 Bunny images and incorrect

lighting directions (five degrees of angular error in random directions were added) to recover sur-

face normals. In addition, we also attempt to refine lighting directions by iteratively recovering

both surface normals and lighting directions based on the symmetrical structure of nT l. First, we

estimate surface normals using the given, errant lighting directions. Then, fixing recovered surface

normals, we update the lighting directions using a least squares fit. We continue this process iter-
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Table 3.5: Comparison with RANSAC based approach [79] with Bunny in dataset (A) (Number of
samples is 2000).

No. of 

Images 

Mean error  Median error  Standard deviation Elapsed time 

SBL [3] SBL [3] SBL [3] SBL [3] 

5 6.0 6.7 4.7 5.4 4.1 4.4 46.5 52.3 

10 0.09 0.74 0.27 0.38 0.35 1.4 36.3 544.0 

15 0.076 0.61 0.052 0.12 0.059 1.9 26.8 958.4 

20 0.033 0.70 0.022 0.058 0.027 1.2 24.2 1048.9 

25 0.018 1.0 0.010 0.063 0.020 2.6 23.1 1141.8 

30 0.012 2.3 0.0048 0.042 0.012 4.0 23.1 1227.8 

35 0.0057 3.2 0.0029 0.051 0.0064 9.2 22.7 1327.9 

40 0.0039 2.1 0.0020 0.046 0.0048 4.3 22.6 1430.4 

Table 3.6: Performance of RANSAC based approach [54] with Bunny in dataset (A) (Number of
images is 40).

No. of Samples Mean error Median error 
Standard 

deviation 

Elapsed 

time 

200 0.000019 7.9E-06 0.000027 283.0 

100 0.0035 7.6E-06 0.31 142.4 

80 0.0099 7.6E-06 0.70 115.2 

60 0.019 7.6E-06 0.98 86.0 

40 0.034 7.3E-06 1.2 57.9 

20 0.22 7.4E-06 3.4 29.8 

10 0.51 7.5E-06 5.0 15.6 

atively until convergence. The experimental results are illustrated in Fig. 3-11. We observe that

our method outperforms the other two methods even without refining the lighting directions; how-

ever, optimizing the lighting direction via a few iterations always improves the normal estimates.

(Although the exact optimal number of iterations may be difficult to determine, a single iteration

always has a substantial benefit).

3.2.4 Qualitative Evaluation with Real Images

We also evaluate our algorithm (only the SBL implementation) using real images.

We captured RAW images without gamma correction by Canon 30D camera with a 200 mm

telephotolens and set it 1.5 m far from target object. Lighting conditions are randomly selected

from a hemisphere whose radius is 1.5 m with the object placed at the center (therefore, the in-

tensity of each light source assumes to be constant). Since photometric stereo techniques recover

surface normals from the appearance variations, both dark and bright areas require to be preserved

in the image. To prevent clipping of bright and dark regions of the scene, we combined multiple
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Figure 3-10: Comparison between `2 and `0 regression. 2-D plots of (I,nT l) with recovered
surface normal are illustrated (blue plots). If blue and red (true) plots place at the same position, it
means the estimation is succeeded.

low dynamic range (LDR) images captured with different exposure into a single high dynamic range

(HDR) image. To eliminate ambient illumination (which is present even in a dark room to some

degree), we acquired ambient images by occluding the light source relative to the target object (i.e.,

we blocked the light source so that the target object was in shadow, so that only ambient light illu-

minated the object). Ambient images are subtracted from the target images for removing the effect

of ambient illumination. In addition to HDRI compositing, the estimation of lighting direction is

required before performing each algorithm. In this dissertation, we simply put a glossy sphere in

the same scene with the target object so that images of both calibration sphere and target object

are captured under the same illumination environment. Once the region of the perfect specularity

(i.e., mirror direction) is extracted, the lighting direction is calculated based on the radius of the

sphere and the distance between the region and the center of the calibration sphere. We show some

examples of LDR images captured under the dark room and images for the ambient/lighting cali-

bration in Fig. 3-12. We use a set of 25 images of Chocolate bear (261x421), and 40 images each of

Doraemon (269x420) and Fat guy (293x344). We evaluate the performance by visual inspection of

the output normal maps, elevation angle maps (orientations between normals and a view direction)

and azimuth angle maps (normal orientation on the x-y plane) that are illustrated in Fig. 4-10. We

observe that our method can estimate smoother and more reasonable normal maps in the presence

of a large amount of specularities.
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Figure 3-11: Experimental results of Bunny in dataset (A) under incorrect lighting directions to the
6-th iteration.

3.3 Conclusion

Herein we have demonstrated the superior performance of our sparse regression approach to photo-

metric stereo problem (especially for the Lambertian + sparse corruption scene) through extensive

analyses and experimentation. In particular, our method gives more accurate estimates of surface

normals than previous least squares and R-PCA approaches while remaining computationally com-

petitive. Regarding competing sparse regression techniques, SBL is both theoretically and em-

pirically superior to `1-based estimates but requires a modest increase in computational cost. A

limitation of the current algorithm is that we assume the diffusive component of the reflectance is

Lambertian. Therefore non-Lambertian diffusive objects or specularities whose lobe is consider-

ably large can potentially be problematic, although this affect is partially mitigated by the diffuse

and sparse error terms built into our model. Therefore, in the next chapter, we will follow the sparse

regression approach but extend the algorithm so that our model accepts non-Lambertian diffusive

components coupled with sparse corruptions to recover surface normals robustly across a wider

range of materials.
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Figure 3-12: Illustration of the HDRI acquisition and lighting calibration. (a) Images with varying
exposure are merged into the HDRI. (b) Ambient illumination is measured from an image that is
captured in the absence of the point light source and lighting direction is calibrated using a highly
reflective sphere.
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Figure 3-13: Experimental results with real datasets. We used three kind of datasets called Choco-
late bear (25 images with 261x421), Fat guy (40 images with 293x344) and Doraemon (40 images
with 269x420). (a) Example of input images. (b),(C) Recovered surface normals and close-up
views. (d) Elevation angles of recovered surface normals. (e) Azimuth angles of recovered surface
normals.
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Chapter 4

Robust Photometric Stereo using Sparse

Regression for General Diffuse Surfaces

Previously, we have argued that the sparse regression framework is particularly well-suited for find-

ing maximally sparse Lambertian observations in the presence of various kind of non-Lambertian

corruptions, demonstrating that it outperforms the state-of-the art robust algorithm for both synthetic

and real datasets. On the other hand, however, the limitation is that the performance is degraded in

the absence of dense, dominant Lambertian diffusive reflections in the observation.

In this chapter, we provide an extension of the Lambertian sparse regression based robust pho-

tometric stereo algorithm for stably and accurately estimating the surface normals of a scene in the

presence of dense, dominant non-Lambertian diffusive reflections. For this purpose, a hierarchi-

cal Bayesian model is developed that automatically decomposes observed appearances into a dense

diffuse component and a sparse, non-diffuse component for capturing shadows, specularities, and

other corruptions. In the similar manner with the previous chapter, optimization and inference is ac-

complished using a robust majorization-minimization technique akin to the popular EM algorithm,

with desirable convergence properties and quantifiable advantages over standard convex estimators.

However, simply introducing non-linear diffusive BRDF in the imaging model as Eq. (1.2)

poses a difficult optimization challenge due to discrete, combinatorial nature of `0-norm minimiza-

tion. For tackling this difficulty, we develop our diffuse component by assuming, in the absence

of non-diffuse corruptions, that pixelwise appearances are well-approximated by a monotonic (and

therefore invertible) function of the dot-product between the surface normal and the lighting direc-

tion. We may then consider the inverse representation of the image formation process, where the
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unknown normal vector is now separated from the unknown monotonic inverse reflectance func-

tion. By parameterizing the latter using a non-linear, nonparametric approximation (e.g., piecewise

linear approximation or smoothing splines), we obtain a set of linear equations in both the surface

normals and diffuse parameters, leading to simple, closed-form estimators. The method proposed in

this chapter tries to capitalize on both of Lambertian robust approach, and non-Lambertian model-

based approach which have been discussed in Section 2.2.3 in that it relaxes the often restrictive

Lambertian reflectance model in the robust approach by using a non-linear and non-parametric rep-

resentation of reflectances, while simultaneously performing robust estimation to avoid over-fitting.

More specifically, our sparsity penalty effectively rejects outliers while the inverse non-linear rep-

resentation of diffuse reflectances enables us to handle a wide variety of materials.

Note that although we mainly discuss about the piecewise linear function [115] as an approx-

imation of general diffuse reflections because of its simplicity and representational capability, the

other non-parametric representation is also applicable in our framework 1. However, in the con-

text of photometric stereo, the piecewise linear function is a natural extension of the Lambertian

reflectance model, which directly corresponds to the case where there is only one linear segment.

Later we will empirically demonstrate that additional piecewise linear diffuse segments (e.g., three)

can effectively represent many complex non-Lambertian reflections.

In summary, our non-Lambertian sparse regression analysis attempts to maximize the number

of observations that can be adequately explained via the piecewise linear inverse diffuse function

(the inlier model) while treating the remaining observations, including specularities, shadows, and

sensor saturations, as non-diffuse outliers with separate, unknown variances (the outlier model).

The partitioning between inliers and outliers is estimated simultaneously with the normal vectors

and model parameters using a principled variational Bayesian technique (i.e., SBL).

Even though the model is extended to the general diffuse reflections, the proposed framework

still benefits from simple, efficient pixelwise optimization, which is easily amenable to parallel

processing. We remind that we also rely on the following assumptions:

1. Relative position between the camera and the object is fixed across all images.

2. Object is illuminated by a point light source at infinity from varying and known directions.

3. Camera view is orthographic, and the radiometric response function is linear.

1In Appendix A, we discuss about the non-Lambertian diffuse modeling based on the penalized least-squares using
the B-spline approximation.
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4.1 Problem Statement

As has been presented in Section 2.1, reflections on the surface of real world objects can be encoded

by a BRDF, which relates the observed intensity I (outgoing radiance, strictly speaking) at a given

point on the object to the associated surface normal n ∈ R3, the incoming lighting direction l ∈ R3,

and the outgoing viewing direction v ∈ R3 via

I = f(n, l,v). (4.1)

The dichromatic reflectance model [96] states that if the scene is illuminated by a single dominant

point light source, the radiance is a linear combination of diffuse and specular reflectance via

I = fd(n, l) + fs(n, l,v). (4.2)

In practice, various additional effects are observed, including attached/cast shadows, image noise,

inter-reflections, and so on. We can interpret these effects as additive corruptions e applied to the

ideal scene leading to the image formation model giving

I = fd(n, l) + fs(n, l,v) + e. (4.3)

The photometric stereo assuming the dichromatic reflectance model is a problem to recover surface

normal n of a scene by inversely solving Eq. (5.1) from a collection of m observations under

the unknown set of parameters (fd, fs, e). Note that except for uncalibrated photometric stereo

problems such as [38] (See details in Section 2.2.1), l and v are usually known.

Chapter 3 and other early photometric stereo works [79, 124] assumed that the diffuse com-

ponent of observation is represented by Lambertian reflectance model (i.e., fd = ρnT l, where ρ

is a surface albedo) and discarded the non-Lambertian component fs + e as outliers. While the

Lambertian assumption is effective for a certain materials, this strong assumption on the reflectance

substantially limits the target objects. Instead, we introduce the general representation of the mate-

rial diffuse function to handle non-Lambertian diffuse materials as follow,

fd(n, l) = f(nT l), (4.4)

where we assume f(nT l) passes through the origin, that is f(0) = 0. Note that Lambertian image
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Figure 4-1: Illustration of the non-linear least-squares regression. Here we show 2-D plots of
[nT l, I] with different n and estimated underlying regression model. We observe that the sum
of residuals of the regression is minimized when the true surface normal is provided.

formation is a special case when f is a linear function. Then, we also merge fs and e as deviations

from the diffuse reflection and use the following imaging model,

I = Ĩ + e = f(nT l) + e. (4.5)

Here, Ĩ is the diffuse component of I . Our goal is to recover unknown surface normal n, diffuse

reflectance function f and non-diffuse corruptions e from a collection of lighting directions l and

associated appearances I . In other words from the least-squires regression analysis, the problem is

to estimate the surface normal as a part of unknowns in the regression model so that the sum of each

residual (i.e., distance between each data and the regression function) is minimized (See Fig. 4-1).

However, there are two critical issues which must be solved: (a) the coincidence of unknown

parameters n and f in the same term, and (b) an under-constrained problem since the number of

unknowns (equal to m+ 2 plus however many degrees of freedom are needed to describe f ) always

exceeds the number of equations (equal to the number of images m). We overcome these diffi-

culties by combining a convenient, piece-wise linear inverse representation of the imaging model

with a sparsity penalty applied through latent variables embedded in a robust hierarchical Bayesian

framework.
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Figure 4-2: Comparison of linear and non-linear regression. While (a) a standard Lambertian pho-
tometric stereo problem is considered as the regression analysis where a maximally feasible four di-
mensional plane is searched over the 4-D space whose coordinates are [x1, x2, x3, y] = [l1, l2, l3, I],
(b) the non-linear photometric stereo problem is considered as the regression analysis where both
the dimension of the search space and complexity of the regression function are increased.

4.2 Why is the Problem Difficult to Solve?

Before stepping in the proposed algorithm, we further explain why non-linear diffusive reflectance

model is difficult to be handled. Suppose we know that the diffuse reflectance component is approx-

imated by a 2-nd order polynomials passing though the origin as

f(nT l) = a2(nT l)2 + a1n
T l, (4.6)

where a2, a1 are model parameters. Merging Eq. (4.6) into Eq. (4.5) with n , [n′1 n
′
2 n
′
3] (See

details in Section 1.2), the image formation model is now expressed as

I = a2

(
n′1

2
l21 + n′2

2
l22 + n′3

2
l23 + 2n′1l1 + 2n′2l2 + 2n′3l3

)
+ a1

(
n′1l1 + n′2l2 + n′3l3

)
+ ε. (4.7)

Therefore, the regression analysis corresponding to Eq. (1.3) is now represented as follow,

min
n,a,ε

m∑
i=1

‖Ii − a2
(
n′1

2
li1

2
+ n′2

2
li2

2
+ n′3

2
li3

2
+ 2n′1l

i
1 + 2n′2l

i
2 + 2n′3l

i
3

)
− a1

(
n′1l

i
1 + n′2l

i
2 + n′3l

i
3

)
− εi‖22,

(4.8)

where a , [a2 a1]T . Apparently, the optimization of Eq. (4.8) is under-determined and non-

linear due to the coincidence of unknown parameters n and a, and the 2-nd order term of them

(In addition to increased number of unknowns, the underlying regression model is no longer plane
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in the high-dimensional space as shown in Fig. 4-2). Even though there are various non-linear

optimization techniques [91], no closed-form solution exist and careful initialization is required to

avoid the local minima. More seriously, there is almost no convenient solver to perform the sparse

(`0) regression on the non-linear problem. In the next section, we prove that the non-linearity of the

problem can be resolved by assuming the monotonicity of the diffuse BRDF, and difficult or even

intractable non-linear `2,`0-norm minimization problems are simplified into corresponding linear

problems.

4.3 Inverse Diffuse Reflectance Model

For simplicity, we first neglect the non-diffuse corruptions e in Eq. (4.5). Then, we assume the

monotonicity of the diffuse reflectance function like [58, 100] which provides the following con-

straint on the function under two different lighting directions l1 and l2,

nT li > n
T lj ↔ f(nT li) > f(nT lj). (4.9)

Under this assumption, the unique existence of the inverse function of f is guaranteed giving

f−1(Ĩ) = g(Ĩ) = nT l. (4.10)

Now that we assume only diffuse reflections appear in the scene, i.e., Ĩ = I , the following equation

is acquired,

nT l = g(I). (4.11)

We call Eq. (4.11) the inverse diffuse reflectance model. The fundamental advantage of this model

is that an unknown function g(I) and a surface normal n are separated, which contributes to the

simplicity of the problem. Eq. (4.11) suggests that the per-pixel collection of 2-D plot (Ii,nT li)

corresponding to i-th image must draw a monotonic inverse diffuse function g(I). While this rela-

tionship limits the solution space of both n and g, the problem is that there are still multiple feasible

solutions of a pair of n and g(I) as illustrated in Fig. 4-3, especially when m is small. To reduce

inherent ambiguity of the problem, we further assume a parametric model of the general inverse

diffuse function g(I).

Given that the left-hand-side of Eq. (4.11) is linear in the unknown normal vector n, for compu-
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Figure 4-3: We can draw different monotonic curves which interpolate 2-D plots (Ii,n
T li) derived

from (na) in (a) and (nb) in (b), which illustrates that there are multiple feasible solutions of a pair
of n and g(I) which satisfy the inverse diffuse reflectance model in Eq. (4.11).

tational simplicity we would like to impose similar linearity on the right-hand-side in our parameter-

ized representation of g(I). For this purpose, we then choose to express g(I) as a summation over

p fixed and known, non-linear basis functions gk(I) weighted by an unknown coefficient vector a,

leading to the representation

g(I) =

p∑
k=1

akgk(I). (4.12)

While non-linear in I , g(I) is clearly linear in a = [a1, . . . , ap]
T . Choices for each gk include

polynomial, Gaussian, logistic, and spline functions as well as many others.

4.3.1 Selection of Basis Function

The specific choice of gk is crucial in the non-parametric regression analysis [49] that explores a

relation ship between two variables i.e., I and nT l. We here choose to adopt a piecewise linear

representation [115]2 which is composed of multiple polylinear functions of the form

gk(I) =


0 (0 ≤ I < bk−1)

I − bk−1 (bk−1 ≤ I < bk)

bk − bk−1 (bk ≤ I)

(4.13)

2A possible alternative choice of the basis function is smoothing splines with B-spline curves, which will be discussed
in the Appendix A.
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Figure 4-4: The illustration of the piecewise linear function. We show the case when the number
of basis functions is three. (a) Each basis function is defined as a polylinear function which has
a breaking point, and (b) the piecewise linear function is defined as the summation of these basis
functions.

where each bk−1 denotes the point where the (k − 1)-th linear segment ends and the k-th segment

begins. See Fig. 4-4 for details. By construction, g(I) will be a continuous piecewise linear function,

meaning each adjoining linear segment connects to one another at the corresponding point bk−1,

regardless of the coefficients a. We also assume that b0 = 0, meaning g(I) will intersect the origin.

Remaining values of bk−1 are chosen such that each piecewise linear segment spans an equal-sized

bin over the range of I .

This choice of basis function leads to a natural generalization of the Lambertian reflectance

model, which is obtained when all elements of a are set to the same positive value. We thus pre-

serve preferable properties of the Lambertian model where appropriate, while still allowing us to

handle more general non-linear diffuse reflections where needed. In fact, even with p small, we may

nonetheless approximate a wide variety of non-linear functionals, with monotonicity ensured when-

ever a has all non-negative elements (while we do not strictly enforce non-negativity, our learning

procedure described in the following sections strongly disfavors any ak < 0). Here we should note

that our model relates to the recent bilinear BRDF model proposed by Romeiro and Zickler [87],

which is represented as a linear combination of non-negative basis functions learned through non-

negative matrix factorization of 100 materials in the MERL BRDF database [74]. However, there

are two different points. Firstly, our basis functions are learned directly from the data itself (i.e.,

linear segment ends in Eq. (4.13) are decided from samples at each pixel) while [87] learns basis
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functions from the external database. More importantly, we only model the diffusive component by

a simple linear function which contributes to the computationally efficiency and stability, while [87]

adapts basis functions represented as discretized two-dimensional matrices.

By substituting Eq. (5.7) into the inverse diffuse reflectance model, Eq. (4.11) becomes

nT l =

p∑
k=1

akgk(I). (4.14)

Collecting variations of observation at the same pixel under different lighting directions, the equa-

tions can be merged into following linear problem,

Ãx = 0, (4.15)

where x , [nx, ny, nz, a1, a2, . . . , ap]
T ∈ Rp+3, and nx, ny, nz are the three elements of the

surface normal. Ã ∈ Rm×(3+p) is a data matrix whose j-th row is given by

Ãj =[−ljx,−ljy,−ljz, b1 − b0,

. . . , bk−1 − bk−2, Ij − bk−1, 0, . . . , 0].
(4.16)

Here we assume bk−1 ≤ Ij < bk and ljx, l
j
y, l

j
z are three elements of the j-th lighting direction.

Without loss of generality, we may avoid the degenerate x = 0 solution to Eq. (4.15) by con-

straining
∑p

k=1 ak = 1. For this purpose we replace Ã by A where [0, 0, 0, 1, . . . , 1] is appended

as the (m + 1)-th row of Ã and we define y ∈ Rm+1 as a vector of all zeros except for a one as

the last element. Given the appearance variations (I1, I2, . . . , Im) under different known lighting

conditions (l1, l2, . . . , lm), the optimal surface normal (n) and model parameters (a1, a2, . . . , ap)

are recovered by solving the linear problem

min
x
‖W (Ax− y)‖22. (4.17)

Here W , diag[1, · · · , 1,∞] ∈ R(m+1)×(m+1) is a diagonal weighting matrix designed to strictly

enforce the constraint
∑p

k=1 ak = 1. Note that 2 + p linearly independent images are sufficient

for producing a unique solution to Eq. (4.17). We will refer to this photometric stereo method as

piecewise linear least-squares regression (PL-LS). In spite of its simplicity, PL-LS works for a wide

variety of non-Lambertian diffuse materials (see our experimental results in Section 4.4.2). The
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problem of course is that real images are frequently contaminated with various non-diffuse effects

as modeled in Eq. (4.5). The next section will focus on how to handle these corruptions within our

inverse diffuse reflectance model.

4.3.2 Piecewise Linear Sparse Regression with Non-Diffuse Corruptions

By introducing additive non-diffuse corruptions e′ in Eq. (4.14), the image formation model be-

comes

nT l =

p∑
k=1

akgk(I) + e′. (4.18)

Note that although the value of e′ in Eq. (4.18) is different from the e in Eq. (4.5), both factors

are directed at the same observations and thus serve the same overall purpose (see Fig. 5-3). The

standard least-squares based photometric stereo problem corresponding to Eq. (4.18) would involve

solving

min
x,e′
‖W (Ax+ e′ − y)‖22 s.t. e′(m+1) = 0, (4.19)

where e′ , [e′1, e
′
2, . . . , e

′
m+1]T ∈ Rm+1. Note that e′(m+1) must be set to zero to maintain the

constraint
∑p

k=1 ak = 1 (see details in Section 4.3.1).

Given observations I and lighting directions l, the ultimate goal is to recover surface normals

and model parameters x and non-diffuse corruptions e′. However, this is an under-constrained

problem since the number of unknowns p+ 2 +m will always exceeds the number of independent

equations m.

One solution to this ambiguity is to apply simple shadow/specular thresholding [46, 99] or a

color channel transformation [73] as a preprocessing step, to obtain an estimate of e′ and/or discard

outliers. However, these types of heuristics may discard useful information at times and come with

an additional computational expense. Moreover, graph-based approaches [125, 109, 114] and robust

algorithms [79, 124] do not naturally embed within our framework since they may conflict with our

inverse piecewise diffuse model and/or degrade the numerical stability.

As has been discussed in Chapter 3, we instead introduce a sparsity penalty applied to e′, whose

minimization disambiguates the infinity of feasible solutions to Eq. (4.18), meaning to perform the

sparse regression. Remind that without the inverse representation of diffuse function, it would be

almost impossible to perform the sparse regression analysis on the highly nonlinear image forma-

tion model. We also remind that this penalty quantifies the reasonable observation that objects in

the natural world exhibit dominant diffuse reflections while non-diffuse effects emerge primarily
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Figure 4-5: A 2-D point (nT li, Ii) can be represented by both the forward image formation model
(Ii = f(nT li) + ei) and the inverse image formation model (nT li = g(Ii) + e′i). The illustration
indicates that they are uniquely convertible if the reflectance function is monotonic.

in limited areas of its appearance. Strictly speaking, we assume that the optimal feasible solution

to Eq. (4.19) is acquired when the largest possible number of observations are lying on the piece-

wise linear diffuse reflectance function. Reflecting this assumption, our estimation problem can be

formulated as

min
x,e′
‖e′‖0 s.t. y = Ax+ e′, e′(m+1) = 0. (4.20)

Here, ‖ ·‖0 represents the `0-norm, which counts the number of non-zero entries in a vector. To reit-

erate, Eq. (4.20) builds on the assumption that images are captured under known lighting conditions

and any non-diffuse corruptions have sparse structure. If these assumptions are not true (e.g., be-

cause of imperfect lighting calibration, no dominant diffuse structure, etc.), then the hard constraint

in Eq. (4.20) is no longer appropriate. To compensate for more modeling errors, we relax the hard

constraint via an additional model mismatch penalty giving

min
x,e′
‖W (Ax+ e′ − y)‖2 + λ‖e′‖0 s.t. e′(m+1) = 0, (4.21)

where λ is a nonnegative trade-off parameter balancing data fit with sparsity. Note that in the

limit as λ → 0, problems (4.20) and (4.21) are equivalent (the limit must be taken outside of the
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minimization). Similarly to Eq. (3.10), Eq. (4.21) also entails a difficult, combinatorial optimization

problem that must be efficiently solved at every pixel. Here we only consider a hierarchical Bayesian

approximation to estimate x while simultaneously accounting for e′ since we have already revealed

that `1-based relaxation is not well appropriate for the photometric stereo problem in Chapter 3.

This formulation, a generalized version of sparse Bayesian learning (SBL) [111], is described in

detail next. We note that most of the derivation are common with the formulation of the Lambertian

sparse regression analysis, however there are some differences because there are large number of

parameters (x) in the piecewise linear model than a simple Lambertian model.

4.3.3 Recovery of Normals and Corruptions Via SBL

The derivation of the update rules of n and e′ in SBL has similar manner with one of the robust

Lambertian approach. We also assume the standard Gaussian likelihood function for the first-level,

diffuse errors giving

p(y|x, e′) = N(y;Ax+ e′, λW−1), (4.22)

Note that we define W−1 , diag[1, · · · , 1, 0] ∈ R(m+1)×(m+1). We next apply an independent,

zero-mean Gaussian prior distributions on both x and e′:

p(x) = N(x;0,Σx), p(e′) = N(e′;0,Γ). (4.23)

Σx describes the prior variance of the unknown normal vector n and model parameters a as Σx =

diag(σ2
nI(3), σ

2
aI(p)) where I(k) ∈ Rk×k is the identity matrix; they are fixed to convey our lack

of a priori certainty about x. Thus the prior on x will be relatively uninformative (however, it is

natural to assume the prior distribution of n and a independently). The values of σ2
n and σ2

a will

be discussed further below. In contrast, Γ , diag[γ] is a fully-parameterized, diagonal matrix,

where γ , [γ1, . . . , γm+1]T is a non-negative vector of variances in one-to-one correspondence

with elements of e′. A large variance γi indicates that the corresponding e′i is free to reflect the

data, compensating for non-diffuse effects (outliers), while a small or zero-valued variance implies

that the associated error term is constrained near zero (inliers). While we are ignorant of which

observations are outliers, γ(m+1) is fixed to be zero because of the constraint regarding e′(m+1)

in Eq. (4.21).

Combining the likelihood and prior using Bayes’ rule leads to the posterior distribution p(x, e′|y) ∝
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p(y|x, e′)p(x)p(e′). To estimate x, we may further marginalize over e′ to give

p(x|y) =

∫
p(x, e′|y)de′ = N(x;µ,Σ), (4.24)

with mean and covariance defined as

µ = ΣAT
(
Γ + λW−1

)−1
y, (4.25)

Σ =
[
Σ−1
x +AT

(
Γ + λW−1

)−1
A
]−1

.

With the same derivation in Section 3.1.3, the update rules for the (k + 1)-th iteration are given by

γ
(k+1)
i ←

(
z

(k)
i

)2
+ u

(k)
i ,∀i, Γ(k+1) = diag[γ(k+1)]

z(k+1) ← Γ(k+1)
(
S(k+1)

)−1
y (4.26)

u(k+1) ← diag
[
Γ(k+1) −

(
Γ(k+1)

)2 (
S(k+1)

)−1
]
,

where S(k+1) is computed via

S(k+1) = D −DA
[
Σ−1
x +ATDA

]−1
ATD

and D , (Γ(k+1) + λW−1)−1. (4.27)

These expressions only require O(n) computations and are guaranteed to reduce L(Γ) until a fixed

point Γ∗ is reached. This value can then be plugged into Eq. (4.25) to estimate the unknown normal

vector and model parameters. We denote this point estimator as xsbl. If the variances Γ∗ reflect

the true profile of the sparse errors, then xsbl will closely approximate the true surface normal.

This claim will be quantified more explicitly in the next section. We remind that the inverse matrix

in Eq. (3.30) can also be efficiently computed by using the matrix inversion lemma in the similar

manner with Eq. (3.18).

The choice of λ and σ2
n have been already presented in Section 3.1.3. Even if the image forma-

tion model is different from one in Chapter 3, the prior distribution of the surface normal n would

not be change. On the other hand, the optimal λ can be changed since the distribution of outlines

would change accompanied with the update of the image formation model, however actually the

sufficiently large value of λ is usually enough since the sparse regression framework generally does
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not differentiate the type of outliers. Therefore, it can be reasonably set according to our prior ex-

pectations regarding the magnitudes of diffuse modeling errors, but in practice there is considerable

flexibility here since some diffuse errors will be absorbed into e′.

However, we need to discuss the effects of σ2
a on our algorithm. Since the value of σ2

a regularizes

the shape of the piecewise linear function Eq. (4.13), smaller values will prevent the reverse of the

sign of each linear segment and enforce the monotonicity of the function. While too small of a σ2
a

may limit the generality of g(I), it can be proven that as σ2
a → 0 the model naturally reduces to a

simple, Lambertian form for the diffuse component. We will empirically determine an appropriate

value for σ2
a in Section 4.4.2.

4.4 Experimental Results

In this section, we quantitatively evaluate our method on synthetic and real image data. All experi-

ments were performed on an Intel Core2 Duo E6400 (2.13GHz, single thread) machine with 4GB

RAM and were implemented in MATLAB. For the SBL-based method we used λ = 1.0−6 in the

synthetic experiments with no additive image noise and perfect lighting calibrations (Section Sec-

tion 4.4.2), and λ = 10−2 for the other cases (Section 3.2.4). We set σ2
n = 106 for all experiments.

As for σ2
a, which can affect the solution when p > 1, we experimentally find the optimal value in

Section 4.4.2-(a).

4.4.1 Datasets

For quantitatively evaluating our method, four different datasets are used. We generate 32-bit HDR

images of two target scenes, Bunny (256× 256) and Caesar (300× 400), illuminated under random

directional lightings. We use a few different BRDF settings for rendering; (A) combination of Lafor-

tune diffuse reflection [65] and Cook-Torrance specularity3, and (B) MERL BRDF database [74]
4. Additionally, as the forth dataset, denoted (C), we record real images for qualitatively evaluating

our method in a practical scenario. For the datasets (A), (B), both cast shadows and attached shad-

ows are also rendered. To synthesize the cast shadow in the images rendered with MERL BRDF

database, we firstly generate the ”cast shadow mask” using the ray-tracing software [1]. Then, both

cast shadow mask and images rendered with MERL BRDF are merged.

3The details about these BRDF will be presented in Appendix B.
4A complete illustration of rendered images are given in Appendix C.
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Note that though light calibration is noise-free, and shadowed pixel intensities are exactly zero

in the synthesized datasets, some calibration errors and non-zero shadowed pixels exist in the real

data (C).

4.4.2 Performance Evaluation with p > 1

We begin by the case p > 1 since the piecewise linear model with p = 1 is equivalent to the

Lambertian reflectance model which has been already discussed in Chapter 3.

On the other hand, if the majority of observations are represented by non-linear diffuse reflec-

tions, then piecewise linear sparse regression with p > 1 basis functions or segments is expected

to be considerably more effective. In this experiment, we evaluate the p-functions piecewise sparse

linear regression to those complex objects by using the dataset (A) rendered with non-linear Lafor-

tune diffuse reflectance model [65] and Cook-Torrance Reflectance model, and (B) rendered with

one hundred BRDF functions from the MERL BRDF database [74].

Here, in addition to the SBL-based piecewise linear sparse regression (PL-SBL), we further

implement the method which is solving Eq. (4.17) (PL-LS). We compare our methods with the R-

PCA-based method [124] and a recent parametric non-Lambertian photometric stereo method with

biquadratic reflectance model [99], which reasonably represents the low-frequency of non-linear

reflectance though shadows and high-frequency observations must be removed in advance. The

biquadratic model is a approximated BRDF as follow,

I = α1(nT l)2(lTh)2 + α2(nT l)2(lTh) + α3(nT l)2

+ α4(nT l)(lTh)2 + α5(nT l)(lTh) + α6(nT l)

+ α7(lTh)2 + α8(lTh) + α9,

(4.28)

where h is a half vector directed at l + v and α , [α1, α2, . . . , α9] are model parameters. In the

implementation of [99], we used the non-shadowed pixels whose intensities are ranked below the

25%, and both surface normals and model parameters are iteratively updated initialized by the Lam-

bertian photometric stereo method. Note that, shadowed pixels are also rejected, but all observations

are taken into account in other methods.

Choosing σ2
a and p

Here we examine the choices for σ2
a and for the number of basis functions p in piecewise linear
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model by using dataset (B). Note that if p is large enough, we can essentially represent any com-

plex non-linear function, although we run the risk of over-fitting when m is too small. However,

we can always compensate to some extent via σ2
a, since regardless of p, for σ2

a sufficiently small

we approximate the standard Lambertian model with all linear segments having equal slope, and

therefore equal diffuse albedo.

In this experiment, we vary individually σ2
a and p to find the optimal parameters. The results are

illustrated in Fig. 4-6. Here, average angular errors in each normal map are further averaged over

100 materials. We observe that as expected, too small σ2
a deteriorates the performance, yet does not

affect the performance when the value is sufficiently large. Therefore, in the following experiments,

we fix σ2
a by 1.0. As for the number of basis functions, it appears that p = 3 is optimal in the case

of dataset (B).

We also illustrate per-material angular errors with different p in Fig. 4-7. We observe that

piecewise linear function with many basis functions, e.g., 6, works very well under the material

with narrow specular peaks, e.g., for (1) specular-white-phenolic and (4) gray-plastic, while it suf-

fers from over-fitting in polished metal with the broad specularity, e.g., for (82) silver-metallic paint

or materials with complex 2-lobe BRDF, e.g., (53) natural-209 and (83) ipswich-pine-221), where

we can hardly see the underlying monotone diffuse structure in observations.

Quantitative comparison with other methods

We evaluate of the performance of our method by a numerical comparison with other methods us-

ing datasets (A) and (B). Here, our methods (PL-SBL, PL-LS) are compared with the biquadratic

photometric stereo method by Shi et al. [99] (Biquadratic) and LS.

First, we use dataset (A) to verify that our inverse piecewise linear diffuse model reasonably

handles non-Lambertian diffuse reflections. In the Lafortune model [65], a general rotationally

symmetric diffuse component ρd is written as ρd = (nT l)k(nTv)k. Here k is a model parameter

which is fixed to 3.0 in our experiment. Note that specularities of dataset (A) are rendered with

Cook-Torrance model. Therefore we can consider dataset (A) as a combination of dominant general

diffuse reflections and sparse specular reflections.

The results are illustrated in Fig. 4-8 and Table 4.1. We present the results of PL-SBL with

p = 1 and p = 3, and PL-LS with p = 3. Note that PL-LS with p = 1 is exactly same with LS.

We observe that while non-Lambertian diffuse reflections degrade the performances of LS and PL-

SBL(p = 1), Biquadratic, PL-LS(p = 3) and PL-SBL(p = 3) work better since they are potentially

76



Table 4.1: Comparison among different methods with dataset (A).

No. of 

Images 

Mean error (in degrees) 

LS BQ 
PL-SBL 

(p=1) 

PL-LS 

(p=3) 

PL-SBL 

(p=3) 

5 4.9 6.9 5.4 25.1 6.0 

10 3.7 4.4 3.3 2.6 1.5 

15 3.7 3.5 3.5 1.4 0.80 

20 3.8 2.8 3.6 1.3 0.67 

25 3.8 2.2 3.6 1.3 0.58 

30 3.7 1.9 3.5 1.2 0.49 

35 3.8 1.7 3.6 1.2 0.47 

40 3.8 1.6 3.7 1.2 0.49 

capable of non-Lambertian reflections. We also observe that PL-SBL(p = 3) performs best since

the estimation of Biquadratic and PL-LS are disrupted by specularities which are not included in

each model while the sparsity penalty in PL-SBL(p = 3) reasonably neglects them as the model

outlier.

Secondly, we evaluated the performance of our method by using dataset (B). The results are

illustrated in Fig. 4-9. We observe that while SBL(p = 1) outperforms R-PCA and LS in most

of materials, the average angular errors are large for various complex materials. In contrast, PL-

SBL(p = 3) works better for those kind of objects since the piecewise linear function with several

basis functions can capture the nonlinearity of the non-Lambertian diffuse structure. We also ob-

serve that the Biquadratic model is the most effective method of all for dataset (B), however we

emphasize that our method achieves competitive performance even without heuristically filtering

high-frequency specularities. Consequently, on real images our approach produces qualitatively

superior results (see Section 3.2.4 below). Finally, we can see from the comparison between PL-

LS(p = 3) and PL-SBL(p = 3) that the sparsity penalty is also helpful for large p in our method,

which can reject specularities efficiently.

We also compare our method with others in the presence of shadows and image noises. The

results are illustrated in Table 4.2. We observe that our SBL-based methods still work under at-

tached/cast shadows and image noises in contrast that Biquadratic and least-squares-based methods

are easily disrupted by those corruptions.
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Figure 4-6: Experimental results of dataset (A) with different values of p and σ2
a. The results are

averaged over 100 different materials.
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Figure 4-7: Experimental results of dataset (B) under the different number of basis functions [74].
We aligned results in ascending order of mean angular error of PL-SBL(p = 3). Some rendered
images corresponding to each material ID are also illustrated. A complete illustration of rendered
images are shown in Appendix C.
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(a) Ground Truth (c) LS (e) PL-SBL (p=1) (f) PL-LS (p=3)

(h) LS (j) PL-SBL (p=1) (k) PL-LS (p=3)

(d) BQ

(i) BQ(b) Input

10.0

0.0
(l) PL-SBL (p=3)

(g) PL-SBL (p=3)

Figure 4-8: Recovery of surface normals from 40 images of Bunny in dataset (A) with explicit
shadow removal. (a) Input, (b) Ground truth, (c)-(l) Recovered surface normals and Error maps (in
degrees).
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Figure 4-9: Comparison among different methods with dataset (B). We aligned results in ascending
order of mean angular error of PL-SBL(p = 3). Some rendered images corresponding to each
material ID are also illustrated. A complete illustration of rendered images are shown in Appendix
C.
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Table 4.2: Experimental results of dataset (B) under the different kind of corruptions. This table
illustrates average angular errors of surface normals for 100 materials.

  

Mean error (in degrees) 

LS SBL (p=1) Biquadratic 
PL-LS 

(p=3) 

PL-SBL 

(p=3) 

w/o shadow and noise 13.9 8.9 2.9 4.4 4.1 

w/ shadow 14.3 7.7 44.0 28.0 10.5 

w/ noise 35.8 8.2 11.0 14.1 4.8 

4.4.3 Qualitative Evaluation with Real Images

We also evaluate our algorithm (PL-SBL) using real images (dataset (C)). The dataset (C) is ex-

actly same with ones in Section 3.2.4 (the detailed acquisition setup and calibration procedures are

presented in Section 3.2.4). We briefly remind that we have captured RAW images without gamma

correction by Canon 30D camera with a 200[mm] tele-photo lens and set it 1.5[m] far from target

object. Lighting conditions are randomly selected from a hemisphere whose radius is 1.5[m] with

the object placed at the center. For calibrating light sources, a glossy sphere was placed in the

scene. We use a set of 25 images of Chocolate bear (261× 421), and 40 images each of Doraemon

(269×420) and Fat guy (293×344). Note that in this experiment, we did not remove shadows from

images by zero-intensity thresholding since even shadowed pixels have non-zero values due to the

presence of slight ambient illumination, sensor satiations, low signal-to-noise ratio, inter-reflections

between the object and the floor and so on. Therefore, we sort all observations in increasing order

and use lowest 25% of observations for the low-intensity condition of Biquadratic (low). We also

applied the biquadratic reflectance model using all observations denoted as Biquadratic (all). We

evaluate the performance of PL-SBL by visual inspection of the output normal maps and recovered

surface meshes by a poisson solver [4], which recovers surface meshes from a gradient map.

The results are illustrated in Fig. 4-10. First, we observe that PL-SBL(p = 1, p = 3) succeeds

in efficiently rejecting specularities and estimating smoother and more reasonable normal maps.

While Biquadratic (low) has produced the highest performance in Section 4.4(b), it has substan-

tial difficulty with real images where calibration errors, shadowed pixels, and sensor saturations

are often mis-classified as low-frequency reflectance, leading to unpredictable errors in practice

(see Table 4.2). We note that increasing the threshold for shadow removal might solve this prob-

lem, but the optimal threshold selection remains hard and scene-dependent. Although including
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R-PCA LS Input PL-SBL (p = 1) PL-SBL (p = 3) Biquadratic (low) Biquadratic (all) 

Figure 4-10: Experimental results with real datasets (C). We used three kind of datasets called
Chocolate bear (25 images with 261 × 421), Fat guy (40 images with 293 × 344) and Doraemon
(40 images with 269 × 420). We show example of input images, recovered surface normals and
surface meshes (only for PL-SBL(p = 3)).

higher frequency observations may sometimes give better results by diluting low-frequency corrup-

tions with a larger number of samples (see Biquadratic (all)), accurate estimation still remains hard

since the simple biquadratic model has difficulty representing complex, non-linear high-frequency

observations (as is mentioned in [99]).

Second, we observe that reconstructed surface meshes by PL-SBL(p = 3) are more reasonable

than PL-SBL(p = 1) e.g., the stomach of fatguy recovered by PL-SBL(p = 1) is shaper than that

of PL-SBL(p = 3), though we can not make the further quantitative comparison due to the lack of

the ground truth. From those observations, we can say that our method is effective, especially when

p > 1, in the practical situation.

4.5 Conclusion

In this chapter, we have demonstrated that the spare regression analysis presented in Chapter 3 is

also performed on general, nonlinear diffuse reflectance model assuming the monotonicity of the

diffuse reflectance function. The inverse diffuse reflectance model and its derivative piecewise lin-

81



True (RGB) True (Gray) PL-SBL(p=8) PL-SBL(p=3) Biquadratic 

alum-bronze 

alumina-oxide 

aluminum 

Figure 4-11: Image synthesis under a novel lighting using recovered reflectance of metallic ob-
jects. First two columns show input RGB and gray-scale images and following three columns show
rendered images using recovered surface normal and reflectance function.

ear approximation of the diffuse reflectance function reasonably resolved the nonlinearity of the

problem and the difficult, and complex `0-minimization problem is efficiently solved by a simple,

hierarchical Bayesian approach called SBL in the quite similar manner with the Lambertian photo-

metric stereo problem that was discussed in Section 3.

Our extensive evaluation with both synthetic and real images indicated that our method works

even though the inlier reflectance model is not assumed to be Lambertian and in the presence of

various non-diffuse corruptions, as well as our method performs well on real images where the

shadow removal is not easy.

While we have presented in Chapter 3 and Chapter 4 that the robustness of sparse regression

analysis for the photometric stereo problem. The limitation of ”general diffuse or Lambertian” +

”sparse non-diffuse outliers” model is that the regression fails in the absence of the unique dominant

diffuse structure in observations. Therefore our method cannot potentially handle materials with

unknown, non-diffusive dominant structure e.g., materials with unknown BRDF where dominant

structure is rough specularities or 2-lobe BRDF which is represented by a sum of several functions
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whose dominant directions are unknown polyethylene and natural ones like fabrics. For instance,

metallic materials such as alum-bronze, alumina-oxide and aluminum in MERL BRDF database do

not have dense, dominant diffusive structure, therefore problematic in our framework. We illustrate

recovered reflectance functions by PL-SBL (p = 3,p = 8) and Biquadratic in Fig. 4-11. We observe

that our piecewise linear diffuse function can not capture the diffuse reflections since the appearance

of the metallic object is composed of sparse diffuse reflections and dense specular reflections. Note

that the biquadratic model [99] well represent low-frequency diffuse reflections since it removes

specular reflections before the regression analysis.

In the next chapter, we switch gears and examine how we can handle those those complex

materials.
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Chapter 5

Constrained Bivariate Regression for

General Isotropic Surfaces

Previously, we have argued that the sparse regression analysis reasonably neglects various kind

of artifacts which can not be represented by the inlier reflectance model. In addition, we have

argued that the sparse Bayesian learning (SBL) framework is particularly well-suited for finding

maximally sparse outliers, showing that it has stable and more focal estimate than a popular `1-

norm based relaxation. Furthermore, we also proved that even if the original image formation

model (i.e., underlying regression model) is non-linear (therefore almost intractable to perform the

sparse regression based on the `0 minimization.), the non-linearity can be resolved if the reflectance

function is reasonably assumed to be monotonic (therefore invertible) and its inverse representation

is linear. On the other hand, so far we have limited the form of reflectance function to be bivariate

i.e., reflectance of the target material is represented as a single lobe f(nTα), where its preferred

direction α is known (assumed to be the incident lighting vector in Chapter 3 and Chapter 4).

This chapter motivates a photometric stereo problem for accurately estimating the surface nor-

mals of a general isotropic scene whose reflectance lobe’s number and preferred directions are

unknown. For this purpose, we begin by representing general isotropic reflectance by using a con-

venient and flexible sum-of-lobe representation [23]. Then, we prove that if there is an additional

constraint on lobe’s preferred direction, pixelwise appearances are well-approximated by a bivari-

ate monotonic, smooth function of the dot-products between the surface normal and the lighting

direction, and between lighting and viewing directions. We may then consider the inverse repre-

sentation of the image formation process, where the unknown normal vector is now separated from
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𝒏 

(a) (b) 

lobe 1 

lobe 2 

lobe 3 

Figure 5-1: Illustration of k-lobe BRDF. The BRDF in the real world is generally composed of k
different reflectance lobes which are pointing at different preferred directions. In the illustration, a
k-lobe BRDF in (a) is a sum of three different basis BRDFs in (b).

the unknown monotonic inverse reflectance function. By parameterizing the latter using a Bernstein

polynomials [71], we obtain a set of constrained linear equations in both the surface normals and

reflectance parameters, leading to a simple, quadratic programming problem.

In similar to previous algorithms proposed in Chapter 3 and Chapter 4, the proposed framework

benefits from the efficient pixelwise optimization, which is easily amenable to parallel processing

and does not require typical smoothness constraints for both object structure and reflectance, which

can disrupt the recovery of fine details.

5.1 Photometric stereo using constrained bivariate regression

In this section, we formulate the photometric stereo as a constrained bivariate regression problem.

Henceforth we also rely on the following assumptions:

(1) relative position between the camera and the object is fixed across all images.

(2) object is illuminated by a point light source at infinity from varying and known directions.

(3) camera view is orthographic, and the radiometric response function is linear.

5.1.1 Problem Statement

As has been shown in Section 2.1, diverse appearances of real world objects can be encoded by a

BRDF (ρ), which relates the observed intensity I at a given point on the object to the associated

surface normal n ∈ R3, the incoming lighting direction l ∈ R3, and the outgoing viewing direction
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𝜶 

𝜃 

𝒗 
𝒍 

Figure 5-2: Illustration of the restriction on α. We assume that the preferred direction of each
basis BRDF is given by a unit vector lying on the plane spanned by incident lighting direction and
outgoing viewing direction. Introducing this constraint leads to 1-DOF representation of α (i.e.,
any α is represented by θ).

v ∈ R3 via

I = ρ(n, l,v) max (nT l, 0), (5.1)

where max (nT l, 0) accounts for attached shadows. We note that in this chapter, we do not assume

the existence of the additive corruption (ε in Eq. (1.2)) such as shadows and sensor noises for

simplifying the discussion. The photometric stereo problem that we tackle here is to recover the

surface normal n of a scene by inversely solving Eq. (5.1) from a collection of m observations

under different, known lighting conditions.

Recently, it has been revealed by Chandraker and Ramamoorthi [23] that an isotropic BRDF

consists of sum of lobes whose contribution to the reflected intensity decreases monotonically as

the surface normal deviates away from the direction where the reflectance lobe is concentrated

(i.e., referred to as a preferred direction). The semi-parametric model of isotropic BRDF that is

represented as a sum of K different univariate functions is presented as

ρ =
K∑
k=1

ρk(n
Tαk). (5.2)
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Here ρk are (unknown) non-linear functions, and αk (i.e., ||αk|| = 1) are called preferred direc-

tions, along which ρk are concentrated (A comprehensive illustration of k-lobe BRDF is shown

in Fig. 5-1). It is known that physically valid reflectance functions satisfy following requirements:

(L1) Monotonicity: ρk ′ > 0.

(L2) Non-negativity: ρk ≥ 0.

(L3) Passing thorough the origin: ρk(0) = 0.

It is shown that inversely solving Eq. (5.2) under known surface normals gives good estimation

of wide varieties of isotropic BRDF without suffering from the curse of dimensionality [23]. Un-

fortunately, however, directly solving Eq. (5.2) in the context of the photometric stereo problem is

prohibitively difficult since there are so many unknown parameters, as well as some of them are

coincident in the same term (i.e.,n,αk, ρk). Therefore, following this remark, the surface normal

has been recovered utilizing monotonicity of the reflectance function under the assumption that the

number of lobe is one and its preferred directions is known (e.g., lighting direction in [58] and

half vector in [9, 100]). While effective, these methods are highly disruptive when approximation

of lobes are incorrect or the reflectance function is composed of two or more lobes. Furthermore,

to our best knowledge, there is no work which has achieved the simultaneous estimation of both

azimuth and elevation angles by enforcing the monotonicity of the reflectance function whose pre-

ferred direction is different from the lighting vector (Note that [9, 100] assume the azimuth angle

of the surface normal is known). Although Alldrin et al. [9] proposed a photometric stereo method

which works for unknown lobes, they assume that the azimuth angle of the surface normal is known.

Instead, we only assume that the preferred direction (αk) of each function (ρk) is lying on the

plane spanned by a lighting direction l and a viewing direction v as

αk =
pkl+ qkv

||pkl+ qkv||
, (5.3)

where pk and qk are non-negative unknown values (i.e., pk ≥ 0 and qk ≥ 0). Note that the degree of

freedom of αk is actually one because ||αk|| = 1 (Illustration of this constraint is shown in Fig. 5-

2). We also note that this assumption does not violate most existing physically-based models as well

as measured isotropic BRDF (e.g., blue-fabric in MERL BRDF database [74] has two directions,

that are 4l + 3v and 3l + 4v as reported in [23]). Then, this assumption provides us following

important result.
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Theorem: Suppose there is no shadow at a surface point (i.e., ∀i nT li, lTi v ≥ 0 and Ii ≥ 0,

where i is the index of the light) and ρ(n, l,v) in Eq. (5.1) has a form of Eq. (5.2), whose pa-

rameters satisfy the requirements of physically valid BRDF (L1)-(L3) and Eq. (5.3). Then, it is

guaranteed that there exists at least one continuous bivariate function f(x, y) ∀x, y ∈ [0, 1], which

satisfies f ≥ 0, ∂f/∂x > 0, ∂f/∂y ≤ 0 and ∀i Ii = f(nT li, l
T
i v).

Proof : From Eq. (5.3), nTαk is transformed into

nTαk =
pkn

T l+ qkn
Tv√

p2
k + q2

k + 2pkqklTv
. (5.4)

Here we used ||l|| = ||v|| = 1. Eq. (5.4) illustrates that nTαk is non-decreasing for nT l with

fixed lTv and non-increasing for lTv with fixed nT l since p, q are non-negative constant values

and nTv is constant over different lightings. From (L1), it is guaranteed that each ρk(nTαk) is

also nondecreasing/non-increasing for nT l and lTv when either of them is fixed. Integrating these

results into Eq. (5.1) and Eq. (5.2), it is proved that I is monotonic increasing for nT l with fixed

lTv and non-increasing for lTv with fixed nT l, which implies we can always define continuous

functions f(x, y) which satisfy f ≥ 0, ∂f/∂x > 0, ∂f/∂y ≤ 0 and ∀i Ii = f(nT li, l
T
i v) since

Ii ≥ 0 and ∀i 0 ≤ nT li, lTi v ≤ 1.

We illustrate this theorem in Fig. 5-3-(a). We note that assuming f(x, y) is always passing through

the y-axis (i.e., f(0, y) = 0) does not limit any kind of isotropic BRDF represented by Eq. (5.1)

because I = nT lρ.

Following this theorem, we formulate the photometric stereo as a constrained bivariate regres-

sion problem whose goal is to recover a combination of an unknown surface normal n and a con-

tinuous bivariate function f from a collection of lighting directions li and associated appearances Ii

(i = 1, . . . ,m), which satisfies following equations and constraints,

Ii = f(nT li, l
T
i v) i = 1, . . . ,m, (5.5)

(L4) Monotonicity (x): ∂f/∂x > 0.

(L5) Monotonicity (y): ∂f/∂y ≤ 0.

(L6) Non-negativity: f ≥ 0.
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𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 = {𝒏𝑇𝒍𝑖 , 𝒍𝑖
𝑇𝒗, 𝐼𝑖} 

(a) (b) 

𝑧 = 𝑓(𝑥, 𝑦) 𝑥 = 𝑔(𝑦, 𝑧) 

1.0 1.0 1.0 1.0 

0.0 0.0 

Figure 5-3: (a) Collections of {x, y, z} = {nT l, lTv, I} are lying on a continuous function of
z = f(x, y) which satisfies ∂f/∂x > 0, ∂f/∂y ≤ 0 and f(0, y) = 0. (b) 3-d points lying on f
are also lying on a inverse function (x = g(y, z)). The illustration indicates that they are uniquely
convertible if ∀x ∂f/∂x > 0.

(L7) Passing through y-axis: f(0, y) = 0.

We call Eq. (5.5) the forward bivariate reflectance model. The major benefit of this problem for-

mulation is that we do not need to explicitly approximate the number of lobes K and their preferred

directions α, that means any kind of isotropic materials are tractable. However, there is a critical

issue which must be solved: the coincidence of unknown parameters n and f in the same term.

We overcome this difficulty by a convenient, inverse representation of the imaging model applied

through a constrained bivariate regression framework.

5.1.2 Inverse Bivariate Reflectance Model

Strict monotonicity of f(x, y) (L4) guarantees the unique existence of the function giving x =

g(y, f(x, y)) = g(y, z), which obeys following requirements:

(L8) Monotonicity (y): ∂g/∂y ≥ 0.

(L9) Monotonicity (z): ∂g/∂z > 0.

(L10) Non-negativity: g ≥ 0.

(L11) Passing through y-axis: g(y, 0) = 0.

The proof, which has been omitted for brevity, is obvious by seeing Fig. 5-3-(b). From the definition,
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each 3-d point of {x, y, z} = {nT li, lTi v, Ii}(i = 1, . . . ,m) lying on f is also lying on g as follow,

nT li = g(lTi v, Ii) i = 1, . . . ,m. (5.6)

In contradiction to Eq. (5.5), we call Eq. (5.6) the inverse bivariate reflectance model. Our goal is

now updated to recover the surface normal n and a continuous bivariate function g with some shape

restrictions (L8)-(L11). The fundamental advantage of Eq. (5.6) is that unknown variables of n and

g are separated, which contributes to simplifying the problem.

While constraints on g limit the solution space of Eq. (5.6), there are still multiple feasible

solutions of a pair of n and g since {lTi v, Ii} are sparsely distributed on the valid range of {y, z}.

To reduce inherent ambiguity of the problem, we further assume a parametric model of the inverse

bivariate reflectance function g(y, z). Given that the left-hand-side of Eq. (5.6) is linear in the

unknown normal vector n, for computational simplicity we would like to impose similar linearity

on the right-hand-side in our parameterized representation of g(lTv, I) (we have omitted subscripts

for simplicity). For this purpose, we then choose to express g(lTv, I) as a summation over p fixed

and known, non-linear basis functions gk(lTv, I) weighted by an unknown coefficient vector β,

leading to the representation

g(lTv, I) =

p∑
k=1

βkgk(l
Tv, I). (5.7)

While non-linear in lTv and I , g(lTv, I) is clearly linear in β , [β1, . . . , βp]
T . We need to choose

gk carefully since estimating a multivariate regression function subject to shape restrictions with

compact support is challenging and usually very time consuming [117]. The choice of gk will be

discussed later.

By substituting Eq. (5.13) into the inverse bivariate reflectance model, Eq. (5.6) becomes

nT li = βTG(lTi v, Ii) i = 1, . . . ,m, (5.8)

where G , [g1(lTi v, Ii), · · · , gp(lTi v, Ii)]T . Collecting variations of observation at the same pixel

under different lighting directions, Eq. (5.8) can be merged into following linear problem,

LTn = GTβ. (5.9)

91



Here, L , [l1, . . . , lm]. By merging unknown variables (n,β), this problem is transformed as

Px = [LT −GT ]x = 0, (5.10)

where x , [nx, ny, nz, β0, . . . , βp]
T and nx, ny, nz are the three elements of the surface normal.

Without loss of generality, we may avoid the degeneratex = 0 solution to Eq. (5.19) by constraining∑
i xi = 1, which implies cTx = 1 where c = [1, . . . , 1]T .

Given the appearance variations (I1, I2, . . . , Im) under different known lighting conditions (l1, l2, . . . , lm),

the optimal surface normal (n) and model parameters (β) are recovered by solving the constrained

linear problem,

min
x
||Px||22, s.t. (L8)− (L11), cTx = 1, (5.11)

where (L8)-(L11) are summarized as monotonicity, non-negativity and boundary condition of gk

where the concrete, mathematical form of the constraints are determined when we choose the basis

function gk. Here, it is worth mentioning that if all of the constraints in Eq. (5.11) are represented

by a linear form (e.g., Aβ = b or Aβ ≤ b), Eq. (5.11) is known to be considered as a standard

quadratic programming problem, where many convenient estimators have been proposed to date.

5.2 Selection of Basis Function

There has been increasing interest in estimating a multivariate regression function subject to vari-

ous constraints, such as nonnegativity, monotonicity, convexity and concavity among many others.

Performing such shape-restricted regression analysis is more challenging for multivariate indepen-

dent variables, therefore the literature about the topic is relatively scarce (we refer the reader to the

comprehensive survey about the shape restricted multi-variate regression by Wang [117]).

Here we adopt bivariate Bernstein polynomials [71], where the shape-restricted regression func-

tion estimate is shown to be the solution of a quadratic programming problem [19, 117]; making it

computationally attractive. Furthermore, the Bernstein polynomials approximation naturally selects

smooth functions with little computational effort unlike other non-parametric regression function

(e.g., smoothing spline [15]), which implicitly enforces the smoothness of BRDF like [9]. Bivariate
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Bernstein polynomials [71] are composed of multiple basis functions of the form,

bk1,k2(x1, x2, N1, N2) = bk1(x1, N1)bk2(x2, N2),

bki(xi, Ni) =

Ni

ki

xki(1− xi)Ni−ki (i = 1, 2),
(5.12)

where 0 ≤ xi ≤ 1 and Ni is the order of the polynomial as for xi, which will be chosen as a

function of the sample size m (e.g., Ni = o(mγ
i ) with γi > 0 suitably chosen via the popular V-fold

cross-validation method as shown in [117]). We illustrate the Bernstein basis function in the case

of {N1 = N2 = 2} in Fig. 5-4. We transform Ii(i = 1, . . . ,m) to lie in the unit [0, 1] via a simple

linear equation as Ii = Ii/max (I). Note that lTi v naturally lies in [0, 1] since we only consider

the case v = [0, 0, 1]T and lz > 0. Then, bivariate Bernstein polynomials approximation of g is

represented as,

x = g(y, z) = βTbNy ,Nz(y, z)

=

Ny∑
ky=0

Nz∑
kz=0

βky ,kzbky ,kz(y, z,Ny, Nz),
(5.13)

where bNy ,Nz , [b0,0, . . . , bNy ,Nz ]T ∈ R(Ny+1)(Nz+1)×1 andβ , [β0,0, . . . , βNy ,Nz ]T ∈ R(Ny+1)(Nz+1)×1.

Unlike the B-splines procedure (which may require quadratic constraints on the coefficients) [15],

shape restrictions (e.g., monotonicity, non-negativity) on Eq. (5.13) are easily encoded via linear

constraints, that is Aβ ≥ 0 and Cβ = 0, where A,C are shape restriction matrices. Follow-

ing [117], the shape restriction matrices required for our problem are defined as follows,

(1) Monotonicity: ∂g/∂y ≥ 0 and ∂g/∂z ≥ 0. (L8),(L9)

The first order partial derivatives of g with respect to y in Eq. (5.13) can be represented as

∂g(y, z)/∂y (5.14)

= Ny

Nz∑
kz=0

Ny−1∑
ky=0

(βky+1,kz
− βky,kz

)bky,kz
(y, z,Ny − 1, Nz).

Hence the non-decreasing constraint (i.e.∂g/∂y ≥ 0) is simply achieved by enforcing βky ,kz ≤

βky+1,kz for ky = 1, . . . , Ny−1. The non-decreasing constraint with respect to z (i.e.∂g/∂z ≥ 0) is

also achieved in the same manner. The restriction matrix for a linear constraint Amonoβ ≥ 0 is rep-
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Figure 5-4: 2-nd order Bernstein basis function.

resented as Amono = [ATyA
T
z ]T that is composed of sub-matrices Ay ∈ RNy(Nz+1)×(Ny+1)(Nz+1)

and Az ∈ RNz(Ny+1)×(Ny+1)(Nz+1), where Ar ensures the monotonicity of the function with re-

spect to r (The concrete form of the matrix is included in the supplementary). Note that the strict

monotonicity constraint ∂g/∂z > 0 is eased to ∂g/∂z ≥ 0 for computational simplicity. the restric-

tion matrix for ∂g/∂y ≥ 0 and ∂g/∂z ≥ 0 is represented as Am = [ATyA
T
z ]T which is composed

of sub-matrices Ay ∈ RNy(Nz+1)×(Ny+1)(Nz+1) and Az ∈ RNz(Ny+1)×(Ny+1)(Nz+1), where Ar en-

sures the monotonicity of the function with respect to r. The concrete form of each sub-matrix is

represented as follow,

Ay =



−1 0 . . . 0 1

−1 0 . . . 0 1

. . .

−1 0 . . . 0 1


. (5.15)
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Az =


B

B

. . .

B

 , B =


−1 1

−1 1

. . .

−1 1

 .

Note that there are Nz of 0 between −1 and 1 for each row of Ay. When we apply the retro-

reflection detection which was presented in Sec. 3 of our submission, we firstly use Ay to solve

the problem as described in Sec. 2.2 of our submission, and then we replace Ay in Eq. (5.15) by

A′y = −Ay to capture the retro-reflective behavior in the observation.

(2) Non-negativity: g ≥ 0. (L10)

From the definition in Eq. (5.12), it is easy to show that all Bernstein basis polynomials are non-

negative with respect to 0 ≤ y, z ≤ 1. Therefore, the non-negativity of g is guaranteed when

∀i βi ≥ 0. Henceforth, the restriction matrix for a linear constraint Anonnegβ ≥ 0 is as Anonneg ,

diag([1, . . . , 1]) ∈ R(Ny+1)(Nz+1)×(Ny+1)(Nz+1).

(3) Passing through y-axis: g(y, 0) = 0. (L11)

From the definition in Eq. (5.12), bky ,kz(y, 0) = 0 for all kz 6= 0. Therefore g(y, 0) =
∑Ny

ky=0 βky ,0bky ,0(y, 0, Ny, Nz)

becomes zero for all y when ∀ky βky ,0 = 0. This constraint is encoded via a linear constraint

Cβ = 0 where C ∈ R(Ny+1)(Nz+1)×(Ny+1)(Nz+1) , diag([1, 0, . . . , 1, 0, . . . , 1, . . .]) with Nz of 0

between 1.

5.2.1 Solution Method

By substituting Eq. (5.13) into the inverse bivariate reflectance model, Eq. (5.6) becomes

nT li = βTbNy ,Nz(lTi v, Ii) i = 1, . . . ,m, (5.16)

where coefficients of Bernstein polynomials (β) are restricted via following equations,

Aβ =

 Amono
Anonneg

β ≥ 0, Cβ = 0. (5.17)

Collecting variations of observation at the same pixel under different lighting directions, Eq. (5.16)
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can be merged into following linear problem,

LTn = BTβ. (5.18)

Here, B , [bNy ,Nz(lT1 v, I1), . . . , bNy ,Nz(lTmv, Im)] and L , [l1, . . . , lm]. By merging unknown

variables (n,β), this problem is transformed as

Px = [LT −BT ]x = 0, (5.19)

where x , [nx, ny, nz, β0,0, . . . , βNy ,Nz ]T and nx, ny, nz are the three elements of the surface

normal. Given the appearance variations (I1, I2, . . . , Im) under different known lighting conditions

(l1, l2, . . . , lm), the optimal surface normal (n) and model parameters (β) are recovered by solving

the constrained linear problem,

min
x
||Px||22, s.t. Ãx ≥ 0 and C̃x = 0, (5.20)

where Ã , [0 A] and C̃ ,

 cT
0 C

. Eq. (5.20) can be effectively solved by the general quadratic

programming since both equality and inequality constraints are expressed as the linear equation.

5.3 Handling Retro-reflective Materials

Our inverse bivariate reflectance model in Eq. (5.6) which is derived from the sum-of-lobe repre-

sentation of general isotropic BRDF [23] does not have the ability to represent the retro-reflective

behavior in the observations, which is the phenomenon of light rays striking a surface and being

redirected back to the source of light. We show an example of retro-reflective object in Fig. 5-5.

The main reason is because the sum-of-lobes model in [23] was originally proposed under the

assumption that both lighting and viewing directions are static, so the dependency on lTv was

not considered in the model. Therefore, our derived bivariate inverse model also has trouble with

handling retro-reflections which violates the monotonicity assumption for lTv (i.e., (L5) in our sub-

mission). To clarify this point, we categorized reflections into three classes i.e., diffuse, specular

(including off-specular reflection) and retro reflection as shown in Fig. 5-6-(a). A retro-reflection

provides smaller luminance as the difference between incident and ongoing directions increases
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Diffuse 

Specular 

Retro-reflection 

Figure 5-5: An example of the retro reflective object. (Left) Bicycle retroreflectors. Retroreflectors
are devices that operate by returning light back to the light source along the same light direction.
(Right) Illustration of reflectance lobes corresponding to (a) diffuse, (b) specular and (c) retro re-
flections.

(i.e., I ∝ lTv) in an opposite manner of other reflectance lobes. We confirm these phenomena

by using some representative materials in MERL BRDF database [74]. In Fig. 5-6, we illustrated

images which were rendered with BRDF of ipswich-pine-221, orange-paint and blue-fabric as ex-

amples of specular, diffuse and retro-reflective materials, respectively. In addition to them, plots of

(lTv,nT l, I) for fixed surface normal n and varying lightings l are illustrated by projecting them

onto lTv−nT l plane and expressing I using color (red plot has a large intensity). We observe that

only blue-fabric violates our assumption i.e., I is non-increasing for lTv, which coincides with the

observation that our naive method without retro-detection scheme had difficulty in blue-fabric as

shown in Sec. 4.2 of our submission.

If the reflectance of a target object obeys Eq. (5.2), our method reasonably recovers the sur-

face normal of the object by solving Eq. (5.20). However, one limitation of our method is that this
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assumption is not satisfied in the presence of retro-reflections which are often observed on rough

surfaces since Eq. (5.2) does not have the ability to represent this kind of reflections. In the presence

of retro-reflections, our surface normal estimation fails due to the violation of (L5) by the behavior

of retro-reflections that the power of reflections increases as lTv increases. While it may limit avail-

able materials, fortunately we have found that our method practically handles those retro-reflective

materials by simply reversing the direction of the monotonicity constraint on lTv in Eq. (5.20)

since the retro reflections does not affect the monotonicity for nT l while unify the direction of the

monotonicity for lTv over the BRDF space. The problem of course is that we do not know whether

the material is retro-reflective or not. To overcome this difficulty, we present a practical approach

to handle both non-retro-reflective and retro-reflective materials. The important observation is that

when we incorrectly constrain the problem, the regression is usually failed. Therefore, once we

got the regression outputs under both constrains, we can judge which constraint was optimal by

examining regression errors.

However, we have empirically found that comparing regression errors in Eq. (5.20) does not

work, instead we compute following linear regression error E for choosing the optimal solution:

ã = arg min
a

m∑
i=1

‖n̂T li − aIi‖22, (5.21)

E =
m∑
i=1

‖n̂T li − ãIi‖22. (5.22)

Here, n̂ is a recovered surface normal by solving Eq. (5.20) under the monotonicity constrain for

lTv in either of two directions. We simply choose the direction whose E is smaller than the other.

This strategy is very simple but very efficient as we will show in Section 5.4. Assuming that the

reflectance function as for fixed surface normal has one preferable monotonicity for lTv which

would give more accurate estimation of the surface normal, the problem is, as described in our

submission, how can we find the direction of monotonicity. We overcame this difficulty by three

steps: (a) estimating surface normals under both constraints, (b) computing regression errors with

recovered surface normals, (c) adopting the surface normal with smaller errors as the final estima-

tion. As we have mentioned, we have examined two kind of regression errors from Eq. (5.20)

and Eq. (5.22). In Fig. 5-7, we illustrate the regression results based on two constraints (i.e.,

∂g/∂y ≥ 0 or ∂g/∂y ≥ 0 in (L9) of our submission), where plots of (lTv, I,nT l) were over-

laid with reconstructed inverse reflectance function represented by Bernstein polynomials (each
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Figure 5-6: Illustration of 3-d plots of (lTv,nT l, I) for three types of reflections. (Top) Rendered
images of ipswich-pine-221 (specular), orange-paint (diffuse) and blue-fabric (retro-reflective).
(Bottom) 3-d plots of (lTv,nT l, I) which are projected onto the lTv − nT l space.

case is presented from two viewpoints). In addition, we also show regression errors from Eq. (5.20)

and Eq. (5.22) for each material and an angular error of surface normal at the bottom of plots. As

observed, regression errors from Eq. (15) do not work for determining the appropriate constraint in

blue-fabric since the flexible Bernstein polynomials were well fitted to observations even though the

constraint was not correct. On the other hand, the linear regression error from Eq. (5.22) reasonably

increased in both blue-fabric and ipswich-pine-221 when the constraint was incorrect. We observed

this relationship for most materials in MERL BRDF database, that is why we adopted the linear

regression error for our retro-reflection detection algorithm.

Note that this strategy is theoretically problematic in the case where both specularities and retro-

refections are simultaneously observed i.e., there is no monotonic variation of I in the lTv direction.

However, we also note that these case are merely observed in the natural world, and if any, our retro-

reflection detection algorithm still improves the result since there is usually one dominant reflection

which provides more appropriate constraint for the problem. Furthermore, our regression scheme

based on robust Bernstein polynomials usually suppresses the estimation errors caused by the non-

dominant reflections (those observations are supported by our experimental results using MERL

BRDF database [74] which will be shown in Section 5.4.2 and Appendix C.
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 R. Err = (0.82, 0.23), A. Err = 0.96  R. Err = (0.86, 0.92), A. Err = 1.06 
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Figure 5-7: Illustration of regression results based on different constraints on lTv. (a) ∂g/∂y ≥ 0
and (b) (∂g/∂y ≤ 0) using blue-fabric, and (c) ∂g/∂y ≥ 0 and (d) (∂g/∂y ≤ 0) using ipswich-
pine-225. Each 3-d plot (I, lTv,nT l) which were generated using recovered surface normal is
overlaid with the reconstructed inverse bivariate reflectance function. At the second plots for each
condition, we also overlaid the linear function fitted to recovered plots via a least-square regression.
In addition, we show regression errors (R. Err) from Eq. (5.20) and Eq. (5.22) respectively with an
angular error of recovered surface normal (A. Err).
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5.3.1 Recovery of Spatially Varying Reflectance

While our main interest is to recover the normal of a surface point accurately, its spatially varying

reflectance function can also be recovered once we got the converged surface normal estimation n∗.

We now consider the forward bivariate reflectance model Eq. (5.5) with the Bernstein polynomials

approximation giving

Ii = f(n∗T li, l
T
i v) = αTbNx,Ny(n∗T li, l

T
i v). (5.23)

Collecting equations under different lighting directions, they are integrated into the constrained

linear problem as

min
α
||I −B′α||22, s.t. A′α ≥ 0 and C ′α = 0, (5.24)

where B′ = [bNx,Ny(n∗T l1, l
T
1 v), . . . , bNx,Ny(n∗T lm, l

T
mv)], and A′, C ′ are shape restriction ma-

trices which are defined as for (L4)-(L7). Note that here we do not need to impose the sum constraint

on α (i.e.,
∑

i αi = 1). Once α is recovered, the observation under the arbitrary lighting direction

is given by solving Eq. (5.23).

We state that the perfect recovery of the reflectance is difficult by our method since we rely

on the per-pixel sampling (i.e., the reflectance function a surface point is independently recovered

from the appearance variations on the surface point). While it becomes less problematic with suf-

ficient number of samples (e.g., 300), merely observed phenomenon (e.g., highlight) is difficult to

be encoded in the reflectance function with smaller samples since the smoothing effect of Bernstein

polynomials robustly neglects outlier samples. However, we think it is not a critical limitation since

even in that case, most observations are treated as inliers and normals are accurately recovered. We

emphasize that our goal is to achieve pixel-wise and accurate normal recovery for various isotropic

materials. It is worth mentioning that once the surface geometry is acquired, we can apply existing

reflectance reconstruction techniques available under known geometry [23, 129].

5.4 Experimental Results

In this section, we evaluate our method on synthetic and real image data. All experiments were per-

formed on an Intel Core i7-2640M (2.80GHz, single thread) machine with 8GB RAM and were

implemented in MATLAB. For the quantitative evaluation, we generate 32-bit HDR images of

sphere (256 × 256) with foreground masks under different BRDF settings; (A) common physical
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Figure 5-8: Experimental results of dataset (A) with five different BRDF with varying frequencies
in observations.

or phenomenological BRDF (Cook-Torrance [29], Ward [118] , Lafortune [65], Oren-Nayar [83]

and Ashikhmin-Shirley [13]) and (B) measured MERL BRDF database [74]. Lighting directions

are randomly selected from a hemisphere with the object placed at the center. Additionally, for the

third dataset, denoted (C), we use real images for qualitatively evaluating our method in the practi-

cal situations. For each dataset, shadows are removed via simple thresholding like other works such

as [99]. Because ground truth surface normals are provided in dataset (A) and (B), we quantitatively

evaluate our method by the angular error between recovered normal map and the ground truth when

using these datasets.

5.4.1 Evaluation with Synthesized BRDF

We evaluate the performance using the synthesized images in dataset (A) generated under 100 dif-

ferent lightings using five common BRDF (detailed descriptions about each BRDF are presented in

Appendix 1).

Here we compare our method with the standard Lambertian-based photometric stereo [122](LS)

and a recent SBL-based robust approach [61] (SBL) (λ is fixed by 10−6), which separates the non-

Lambertian corruptions from observations via `0-based sparse regression. And our method is also

compared with a recent parametric non-Lambertian photometric stereo method with the biquadratic

reflectance model [99] (BQ). In this experiment, we fix (Ny, Nz) in Eq. (5.16) by (1, 5) to examine

the robustness of our method against those parameters.
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Figure 5-9: Experimental results of dataset (A) with varying number of images. For a fair evaluation,
we display the average number of non-shadowed pixels which join our algorithm on x-axis instead
of the number of images.

Evaluation with varying frequencies

We first evaluate our algorithm using observations with varying frequencies for presenting the flex-

ibility of our model comparing with models used in previous works (e.g., BQ[99]) which only work

for low-frequency reflectances. Here high-frequency specularities are discarded by using the non-

shadowed pixels whose intensities are ranked below the Tlow% (10 ≤ Tlow ≤ 100). The result

is illustrated in Fig. 5-8. In totally, we observe that our method outperforms other algorithms in

almost all frequencies (unfortunately, our method does not work when the number of images is very

small as will be discussed in following sentence) for Lafortune model, Ashikhmin-Shirley model

and Oren-Nayar model and performs competitively with SBL for Cook-Torrance and Ward model.

Interestingly, our model works well when all of the frequencies are included unlike other method

and also works for Oren-Nayar model which exhibit strong retro-reflective reflections due to our

simple lTv constraint selection strategy.

Valid number of input images

We also evaluate our algorithm using varying number of images to find the valid number required

for effective recovery. The results are displayed in Fig. 5-9. We observe that the minimum number
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Figure 5-10: Comparison with Shi et al. [100]. The values in the bracket is the angular errors (deg)
added into the azimuth angle map which is used in [100].

of images required to make the algorithm work is around 20 and more than 60 are required for the

stable reconstruction. While these values may be relatively large in the photometric stereo litera-

ture but our method is applicable of various materials thanks to the complex constrained bivariate

regression procedure.

Comparison with other monotonicity-based approach

In this section, we compared our method with recent elevation-angle estimation algorithm [100]

assuming the dominant specular lobe pointing at the half vector direction. Since [100] requires an

azimuth angle map as input while our method simultaneously recovers all elements in the normal,

we compare our algorithm with [100] by gradually adding estimation errors in the azimuth angle

map used as the input of [100]. The results are illustrated in Fig. 5-10. We observe that when

the true azimuth angle is given, [100] outperforms our method in Cook-Torrance and Ward dataset.

However, as the amount of errors increases, the differences become smaller and finally our method

outperforms [100]. As we expected, [100] does not work for Lafortune and Ashikhmin-Shirley

model since those model violate their assumption.

Evaluation of computational time

Here, we examine the computational time required for our computation. We tried various combina-

tions of Ny and Nz and m in Eq. (5.13) and solved our optimization problem Eq. (5.16) using lsqlin

function in Matlab. The evaluation results are illustrated in Fig. 5-11. Here we present a per-pixel
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Figure 5-11: Evaluation of computational time. We illustrate the per-pixel computational time for
each combination of the number of Bernstein basis functions and that of lightings.

computational time to solve one optimization problem. Therefore, the actual computational time is

twice as large as one in the figure since we apply our algorithm twice to distinguish retro-reflective

materials. We observe that the computational complexity depends on the number of basis functions

rather than the number of lightings.

5.4.2 Evaluation with Measured BRDF

Here we evaluate the performance of our method to the dataset (B). We generate images under 300

different lightings for 100 different materials from the MERL BRDF database [74] (shadows are also

removed in advance). In this experiment, our method is also compared with LS [122], SBL [61]

and BQ [99]. LS SBL and our method use all the frequencies in observations (i.e., Tlow = 100)

while only BQ is performed with both Tlow = 25 and Tlow = 100 since this model was originally

designed for representing the low-frequency observations. In this experiment, we fixed Ny = 3 and

Nz = 5 and performed our method with/without the retro-reflection detection algorithm described

in Section 5.3 to verify the effectiveness of this process.

The results are illustrated in Fig. 5-12. We observe that our method with our efficient retro-

reflection detection outperforms other algorithms for most of materials. While BQ (Tlow = 25)
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Figure 5-12: Comparison among different methods with dataset (B). We aligned results in ascending
order of mean angular error of our method with the retro-reflection detection algorithm. The details
of estimation results are presented in Appendix C.

is more effective for some materials, we emphasize that our method is capable of handling all

frequencies in observations due to our flexible reflectance model while BQ (Tlow = 100) does

not work for most of materials. We also observe that angular errors of our method without retro-

reflection detection are relatively large for materials which exhibit strong retro-reflections (e.g.,

MERL fabrics), which indicates that our retro-reflection detection algorithm works pretty well for

those materials. We note that average angular errors over 100 materials are 12.5 (LS), 6.2 (SBL),

13.1 (BQ, Tlow = 100), 1.7 (BQ, Tlow = 25), 2.4 (Ours w/o retro-reflection detection) and 1.2

(Ours w/ retro-reflection detection), respectively.

5.4.3 Qualitative Evaluation with Real Images

We also evaluate our algorithm using real images. We use three different datasets: a set of (a)

100 images of two-face, (b) 100 images of doraemon, and (c) 44 images of fatguy, (d) 112 images

of apple and (e) 102 images of gourd1 (these two datasets are from [9]). Note that shadows are

removed by a simple thresholding. We evaluate the performance by visual inspection of the output
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normal maps and recovered surface meshes by a poisson solver [4], which recovers surface meshes

from a gradient map. In addition, we also try the novel view synthesis using the shape and spatially

varying reflectance functions recovered from apple and gourd1 datasets, which have relatively large

number of images. We use 111 of 112 images of apple and 101 of 102 images of Gourd1 for the

shape and reflectance estimation, and then render the image from the viewpoint of the remained

image.

The results are illustrated in Fig. 5-13 and Fig. 5-14. By comparing our method with LS [122],

we observe that our method succeeded to estimate smoother and more reasonable normal maps and

surface meshes. We also observe that BQ (Tlow = 25) worked poor for those datasets since shadows

could not be completely removed by a simple thresholding, therefore the low-frequency component

in the observation was still corrupted. In contrast to that, our method performed well since our

method could account all observations without discarding the informative high-frequency compo-

nent which allows us to estimate the surface normal of the scene robustly. As shown in Fig. 5-14,

our algorithm reasonably synthesizes the novel view with small differences from real images even

though some narrow specular highlights are not successfully produced because of the insufficiency

of valid images as we have mentioned in Section 5.3.1.

5.5 Conclusion

In this chapter, we have proposed the constrained bivariate regression based photometric stereo

which works for various kind of isotropic surfaces by exploiting various conditions shared among

physically valid BRDF. Approximating the inverse bivariate reflectance function by convenient

Bernstein polynomials, we succeed to estimate the surface normal by solving standard quadratic

programming problems. Our detailed experimental results have shown the state-of-the-art perfor-

mance of our method for both synthetic and real data.

The current limitation is that we assume shadows or other corruptions (e.g., inter-reflections) are

discarded from images in advance, which may be impractical in real scenes. To ease this condition,

we are very interested in incorporating data cleansing scheme with sparse regression in the similar

manner with [61] to handle various kind of corruptions. Since our problem is described as linear

equations, it seems that this extension is not impossible. Details about the limitation of our algorithm

will be further discussed in the next chapter.
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BQ (𝑇𝑙𝑜𝑤 = 100) BQ (𝑇𝑙𝑜𝑤 = 25) Ours (w/ retro-reflection detection) 

Input 

Figure 5-13: Experimental results using real data (two-face, doraemon and fatguy). We illustrate
(a) input images, and normal maps recovered by (b) LS, (d) SBL, (f) BQ (Tlow = 100), (h) BQ
(Tlow = 25) and (j) Ours (with a retro-reflective detection). We also show surface meshes generated
from normal maps recovered by (c) LS, (e) SBL, (g) BQ (Tlow = 100), (i) BQ (Tlow = 25) and (k)
Ours (with a retro-reflective detection).
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(a) Input (b) LS (c) Ours 

(e) Real image (f) Ours (g) Real image (h) Ours 

Figure 5-14: Experimental results using real data (apple, gourd1 and chocolate bear). (a) We show
example of input images of each dataset, and recovered surface normals and surface meshes by (b)
LS and (c) our method. vel view synthesis with real datasets (C). (a,c) Images taken from the input
dataset and (b,d) images rendered using shapes and spatially varying reflectance functions recovered
by our method.
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Chapter 6

Conclusion

In this dissertation, mainly two types of the constrained regression analysis are explored for esti-

mating the surface normal from images captured under varying illumination under some challenging

situations of the photometric stereo problem. First, we presented that a sparse regression analysis

is well-suited for addressing various kind of model outliers that are simultaneously observed with

inlier reflections. While shadow, sensor noises, specular highlight appear independently in the im-

age, they are hard to represented by the low-order reflectance model such as Lambertian reflectance

model [122] due to its physically complex behavior. In Chapter 3, we have proved that the sparsity

penalty applied to the corruption in the image formation model of ”Lambertian diffuse reflection”

plus ”sparse outliers”, reasonably neglect outliers with unknown variance while estimating surface

normal. The sparse regression analysis is general, and possible to be performed on any photometric

stereo problem with more complex image formation model than a simple Lambertian-based one.

However, unfortunately, there is a computational difficulty for applying the sparse regression

on any non-linear modes that discontinuous and non-convex `0-norm of the regression error is hard

to be minimized when the residual is represented by a non-linear function, that is a case where the

inlier reflectance model is approximated by a non-linear parametric BRDF. To tackle this difficulty,

we have took advantage of the inverse representation of a non-linear BRDF, that resolves the non-

linearity of the problem assuming the monotonicity of the function on its independent variable.

In Chapter 4, we have demonstrated the performance of our sparse regression based photometric

stereo algorithm using various kind of datasets including both synthetic and real images, where

some of materials do not have dominant, dense Lambertian rank-3 structure.

Second, we have proved that explicating the inverse representation of the image formation model
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not only useful for applying the sparse regression to the general diffusive reflections, but also can

be used to separate the surface normal from other unknown parameters in BRDF whose number

of lobes and preferred directions are unknown. In Chapter 5, we have formulated the photometric

stereo problem for general, spatially varying isotropic surfaces as the constraint bivariate regression

analysis where inverse reflectance function is approximated by a convenient Bernstein polynomials.

We have proved that even though the number of lobes and their preferred directions are unknown,

the surface normal can be recovered by solving a quadratic programming problem without any prior

knowledge about the surface geometry like previous algorithm such as [9, 100]. In addition to

that, we have also shown that complex retro-reflective reflections are also accounted by our model

by utilizing the regression error for adaptively selecting the sufficient constraint for the regression

analysis.

We believe that findings in our dissertation should not be limited on the photometric stereo prob-

lems that we have shown in this dissertation. For instance, the sparse regression analysis can also

be performed on the general image formation model where BRDF is not limited on the diffusive

function. Actually, one of our future works is applying the sparsity penalty to the derivation of the

k-lobe BRDF presented in Chapter 5. Different from the regression analysis performed in Chap-

ter 4, we have to consider how to combine the sparse regression with the constrained least-squares

regression. However, we believe it is not impossible since all constraints are represented by a linear

form thanks to the convenient Bernstein basis approximation.

We are also interested in performing the constrained regression on the uncalibrated photometric

stereo problem, where lighting directions are unknown. Though our model is also affected by

the bas-relief ambiguity, and require additional prior knowledge on the reflectance to resolve it,

we believe that the inverse representation we have explored in this dissertation is still useful to

solve the uncalibrated photometric stereo problem for general isotropic surfaces, that is apparently

more difficult than most uncalibrated photometric stereo problems that were focused only on the

Lambertian scene.

The accurate reflectance recovery would be one another important future direction of our disser-

tation. Actually, we have achieved spatially varying reflectance recovery in Chapter 5, however the

reconstruction was imperfect since the high-frequency reflections were hard to be captured from the

limited number of samples observed at a single surface point. To chive the accurate reconstruction,

it may be inevitable to merge appearances over pixels. The problem is, however, gathering samples

from isolated pixels lead to the global optimization problem, which may destroy the benefit of effi-
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cient per-pixel optimization framework of our method. Since our algorithm can accurately recover

the surface normal from relatively smaller number of samples that are required for the SVBRDF

estimation, it can be possible to alternatively solve local photometric stereo problem and global

reflectance recovery problem for estimating both geometry and reflectance accurately.

A more specific direction for future work is to further analyze the optimal constraint selection

for handling retro-reflective analysis that arises in Chapter 5. As shown in that chapter, the retro-

reflective behavior is handled by reasonably changing the direction of the monotonicity constraint

for lTv. However, it requires to analyze the residuals of the regression analysis performed with two

different constraints independently, leading to the increase of computational cost. Performing the

regression analysis on both specular-reflective and retro-reflective materials without changing the

constraints on the problem is a very important challenge.

Finally, the technique in Chapter 5 presents one possible way to address general isotropic mate-

rials, but there are still numerous materials that exhibit more complex reflections than the isotropic

reflection (The full BRDF is actually four dimensional function, not three). Finding the solution

to handle general anisotropic materials will increase potential applications, including recognition,

industrial parts inspection, topological analysis, etc.
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Appendix A. Robust Photometric Stereo

using Penalized Least Squares

Abstract

In this appendix, the nonparametric regression-based photometric stereo method is proposed, which
does not explicitly assume the inverse reflectance model such as the piecewise linear model as
shown in Chapter 4. More strictly speaking, I approximate the inverse diffusive reflectance function
by the smooth spline function whose second derivatives are penalized by its smoothness.

A.1 Introduction

When we assume that the observation (I) is composed of dense diffusive component f(nT l) and

sparse non-diffusive corruptions (e), the appearance of a pixel is modeled as follow,

Ii = f(nT li) + ei. (A.1)

Assuming that the diffusive reflectance function (f(nT l)) is monotonic, the inverse representation

of Eq. (A.1) is

nT li = f−1(Ii) + e′i. (A.2)

In Section 4, we approximated f−1(Ii) as a set of successive linear subfunctions (piecewise linear

reflectance model) and our extensive discussions and experiments showed how reasonable they

were. However, one defect is that it requires explicitly fixed number of sub-functions. So the

important question is ”how can we find the way to recover surface normals without explicitly define

the form of inverse reflectance model?”. For responding to this question, we state that an well-

known nonparametric regression method called penalized least-squares regression may useful for

photometric stereo problem due to its linearity and simplicity.
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A.2 Penalized Least-squares for Photometric Stereo Problem

A.2.1 Penalized least-squares regression

Penalized least-squares regression [86] is a kind of nonparametric regression technique which finds

a smooth function balancing between fitting the data closely and avoiding excessive roughness or

rapid variation. Define xi as a variable and yi as the observation associated with xi, we can fit the

data using a nonparametric model as follows,

yi = f(xi) + e, (A.3)

where f is an unknown function that is assumed to be reasonably smooth, ei is an independent

error. Of course, the functional space of f(x) is so large that we can always find a function f

that interpolates the data points. In order to obtain an estimate that fits the data well and has some

degrees of smoothness, we can use the penalized least-squares method, which minimizes following

cost function,

E =
1

n

n∑
i=1

‖yi − f(xi)‖22 +

∫
f ′′(x)dx. (A.4)

This criterion trades off fidelity to the data (measured by the residual sum-of-squares) versus rough-

ness of the function (measured by the penalty term). As is well known that a class of functions

in the solution space is the cubic B- spline function (therefore it is also called as smoothing spline

regression). Defining internal spline knots on each xi and corresponding six external knots as

ξ1 = ξ2 = ξ3 = x1 and xn = ξn+4 = ξn+5 = ξn+6, the cost function Eq. (A.4) is now represented

as follows,

E = (y −Gβ)T (y −Gβ) + λβTKβ, (A.5)

where G is the cubic B-spline basis matrix (calculated by de Boor Cox equations), β is the coeffi-

cient matrix and K is the penalty matrix whose kij is defined as follow,

kij =

∫
d2Bi(x)

dx2

d2Bj(x)

dx2
dx. (A.6)

Note that since second derivatives of a cubic spline function is linear, the kij is easily calculated

from B-spline basis. From these representations, the hat matrix to minimize the cost function is

now estimated as follow,

H = G(GTG+ λK)−1GT , (A.7)

118



where λ is fixed by a very small value (10−10 in my experiment). Now, it provides estimates of the

function at x as

ŷ = Hy. (A.8)

The smoothing spline regression is convenient for the nonparametric photometric stereo problem

in two reasons. First, G and K only depend on x, not y, which means that if we assume x as ap-

pearance (I) and y as LTn (L is a lighting matrix), the hat matrix is described only by I . And the

second reason is that as is indicated by Eq. (A.8), the estimation of the function is linear to the ob-

servations (y), which enables us to easily extend nonparametric regression to sparse nonparametric

regression. The details are described in the following section.

A.2.2 `2 / `0 minimization for photometric stereo

As is already mentioned, we can consider LTn as y and I as x by comparing Eq. (A.3) with

Eq. (A.2), which means that if we fix the surface normal n, we can acquire a function f(I) which

smoothly interpolates a collection of 2-d plots (Ii,nT li). By using smoothing spline, the values of

f(I) for each lighting direction is estimated as follow,

ŷ = G(GTG+ λK)−1GTLTn. (A.9)

Note that the B-spline basis matrix B is calculated from a set of appearance I by using each I as

knots.

In the photometric stereo problem, the goal is to recover the surface normal n so that as many

as possible diffusive observations are lying on a unique, monotone function, which is expressed as

min
n
‖LTn−G(GTG+ λK)−1GTLTn‖22. (A.10)

This equation is transformed as,

min
n
‖An‖22, A , (En −G(GTG+ λK)−1GT )LT , (A.11)

where En ∈ Rn×n is an identity matrix. Assuming additive non-diffusive corruptions are included

in appearance (i.e.yi = ŷi + e′i), the sparse regression problem for photometric stereo is now de-
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scribed as follow,

min
n,e′
‖e′‖0. e′ = An. s.t. n′ 6= 0 (A.12)

This optimization problem is almost same with a piecewise linear case, so it could be solved by any

`0 optimization methods such as SBL.

A.2.3 Further constraints

Eq. (A.12) recovers the surface normal so that as many as possible observations are lying on the

smooth spline function. In contrast to the piecewise linear sparse regression which needs the num-

ber of sub-functions, Eq. (A.12) can handle all appearances simultaneously without dividing ob-

servations. However, unfortunately, smoothing spline regression has two unpleased properties. The

first is that it does not always pass the origin (0, 0) where most reflectance functions should be satis-

fied. And second is that, even though the sparse regression is applied to find the surface normal, the

smoothing spline function itself (Eq. (A.8)) is defined by `2 minimization. More intuitively speak-

ing, when we have the true surface normal and a set of ground truth plots (Ii, n
T li), we assume that

the diffusive reflectance function is the function where as much as possible ground truth plots are

lying on the function. However, it is not guaranteed that the function is lying on observations since

the fitting of smoothing function is based on `2 distance minimization penalized by its smoothness.

To overcome those problems, two further modifications are proposed; the first is adding constraint

that the function must pass the origin and the second is adding another sparse penalty to neglect

observations in finding smooth function.

To enforce the recovered function to pass the origin, a knot on (0, 0) is added to the data and fix

its distance from the function by zero in the SBL-based optimization process. Strictly speaking, we

modify the optimization as follow,

min
x,ẽ′
‖ẽ′‖0. ẽ′ = Ãx. s.t. n′ 6= 0 and e′0 = 0,

Ã = (En+1 −G(GTG+ λK)−1GT )

0 0

0 LT

 , (A.13)

where x = [0 nT ]T and ẽ is a vector which has an additional element to the top of e′.

In the second modification to find the smooth function by the `0 regression not by the `2 regres-
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sion, I introduce the additional sparse error vector as follow,

ŷ = H(y − e′′). (A.14)

Note that y − e′′ with non-zero elements in e′′ are used to recover the spline function instead of

y meaning that yi with non-zero ei is neglected in deciding the curve of smooth function, which

enables us to neglect outliers. Considering this modification, the problem is updated as

min
n,e′,e′′

‖e′‖0 + ‖We′′‖0

s.t. e′ = LTn− e′′ −G(GTG+ λK)−1GT (LTn− e′′)

s.t. n 6= 0.

(A.15)

W is the weighing matrix, which is set by the identity matrix in the experiment. When we com-

bine Eq. (A.13) and Eq. (A.15), the final nonparametric sparse regression-based photometric stereo

problem is formulated as follow,

min
n,ẽ′,e′′

‖ẽ′‖0 + ‖We′′‖0

s.t. ẽ′ = Ãx−Be′′, B = En+1 −G(GTG+ λK)−1GT

s.t. n 6= 0.

(A.16)

Note that a sum-constraint on this problem is used to avoid n = 0 as has been mentioned in Sec-

tion 4.3.1.

A.3 Experimental Results

In this section, the nonparametric regression-based photometric stereo methods are evaluated by

the synthesized bunny dataset (256x256 pixels, one hundred 32-bit HDR images rendered with

MERL BRDF functions). In this experiment, we focus on the per-pixel error analysis rather than

the per-image mean angular errors evaluation to see how each regression works for each material.

We compare the nonparametric regression-based photometric stereo methods from Eq. (A.11) (NL-

LS), Eq. (A.12) (NL-SBL) and Eq. (A.16) (NL-SBL (modified)) with our piecewise linear sparse

regression-based method (PL-SBL). In this experiment, we categorized 100 BRDFs into four classes

and extract representative materials of all i.e. (a) dense diffusive reflections e.g. yellow-paint and

121



Table 6.1: Experimental results of Bunny with eight different BRDFs.

    Angular error (in degrees) 

  Material name PL-SBL NL-LS NL-SBL 
NL-SBL 
(modified) 

1 yellow-paint 0.80 0.21 0.29 0.24 

2 white-diffuse-paint 0.66 0.35 0.43 0.32 

3 green-acrylic 2.0 3.6 4.2 4.0 

4 pink-fabric 2.3 1.3 1.6 0.85 

5 green-fabric 2.0 0.90 9.4 8.5 

6 polyethylene 6.6 4.81 5.3 4.0 

7 black-phenolic 1.4 0.71 23.5 7.9 

8 gold-metallic-paint 1.9 23.1 26.5 27.7 

  Ave. 2.2 4.4 8.9 6.7 

white-diffuse paint (b) dense diffusive reflections + sparse specularities e.g. green-acrylic (c) 2-lobe

materials e.g. pink-fabric, green-fabric and polyethylene (d) metallic materials (sparse diffusive +

dense specular) e.g. black-phenolic and gold-metallic-paint. In the experiment, observations with

non-zero values are only used in estimation. In PL-SBL, the number of sub-functions are fixed by

three and the deviation of line slants (σa) is fixed by 1.0.

The results are illustrated in Table 6.1 and Fig. 6-1. In Table 6.1, the angular errors for each

method and material are displayed and Fig. 6-1 shows recovered smooth functions and 2-d plots

(Ii,nT li) with ground truth green plots. Note that in this experiment, the observations are sampled

from the same pixel for each method and each material (i.e. [x, y] = [61, 80]). We observe that

non-parametric regression-based photometric stereo method (NL-LS, NL-SBL (modified)) works

better than PL-SBL for most non-metallic objects. It seems difficult to conclude whether `2 or `1

regression is better. In contrast that, we can clearly see that nonparametric methods have difficulty

in handling metallic objects while PL-SBL works much better than them. In metallic objects, there

is little (sparse) diffusive reflections and most appearances come from specularities. Unfortunately,

NL-LS or NL-SBL are over-fitted to those corruptions due to its high degree of freedom. In con-

trast that we believe the piecewise linear function can rather capture the sparse linear structure of

appearance in metallic scene due to its strong assumption of the local linearity. We also observe that

PL-SBL has larger robustness to corruptions such as additive noises.
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A.4 Conclusion

In this appendix, we presented nonparametric regression-based photometric methods which try to

represent the inverse diffusive reflectance function by nonparametric smooth B-spline function. The

new method is purely data-driven and solved by closed-form equations which can capture complex

diffusive structure of materials without any nonlinear optimization. Experimental results show that

these methods can recover more accurately than piece-wise linear function for materials with dense

diffusive structure. The current limitation of nonparametric regression-based photometric stereo is

the over-fitting to corruptions. For example, metallic objects are incapable by nonparametric method

due to its high degree of freedom while piecewise linear function can capture the sparse linear dif-

fusive structure appeared in low-frequency domain of metallic objects. From current experimental

results, we can say that the piecewise linear function is better than smooth B-spline function for

photometric stereo problem in average. It may be because not only the small number of parameters

of the piecewise linear function are favorable for avoiding over-fitting but also the partially linear

structure of the function can reasonably represent the reflectance of natural materials.
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(a) (b) (c) (d) (e) 
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(5) 

(6) 

(7) 

(8) 

Figure 6-1: (a) Input images (only one pixel is sampled in the experiments), (b)-(e) Recovered 2-d
plots (Ii,nT li) (blank circles), function (colored lines) of PL-SBL, NL-LS, NL-SBL and NL-SBL
(modified version) with ground truth 2-d plots (green circles).
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Appendix B: Details about common

parametric BRDFs

This appendix expands on the detailed description about the isotropic BRDF which were used for

rendering synthetic images in this dissertation. For further information of each BRDF, we recom-

mend readers to refer a recent survey by Montes and Urena [78]. We show examples of rendered

images with those BRDF in Fig. 6-2.

B.1 Cook-Torrance Model [29]

Cook-Torrance model represents the reflection using a combination of diffuse and specular parts as

ρ(n, l,v) =
kd
π

+ ksfS(n, l,v, λ1, µ1). (B.1)

Here kd and ks are model parameters representing the strength of diffuse and specular terms respec-

tively. fS is a nonlinear function which is represented as

fS(n, l,v, λ1, µ1) =
F (l,v, λ1)

π

D(n, l,v, µ1)G(n, l,v)

(nTv)(nT l)
, (B.2)

where F is the Fresnel factor,D is the microfacets distribution which is computed by the Beckmann

distribution function andG is the geometric attenuation factor, respectively. We use the sameD and

G in [29] and use the Schlick approximation of the Fresnel term (F ) [93] as follow:

F (l,v, λ1) = λ1 + (1− λ1)(1− lTh)5, (B.3)
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where λ is the reflection coefficient for light incoming parallel to the normal, and h is a half vector

as h = (l+ v)/|l+ v|.

In the Cook-Torrance model, the diffuse reflection is represented by a linear Lambertian re-

flection [122] and the specular reflection is modeled by a specular lobe which is pointing at the

normalized half vector (smaller roughness parameter µ1 provides narrower specular highlight) and

Fresnel effect, increasing the specular reflectivity as the surface turns away from the viewing direc-

tion. In this dissertation, we used kd = 0.9, ks = 0.1, λ = 0.2 and µ1 = 0.2, respectively.

B.2 Ward Model [118]

Ward model also represents the reflection in the same form of Eq. (B.1) in Cook-Torrance model,

however this model only extracts the microfacets distribution D in Eq. (B.2) for representing the

specular reflection as follow

fS(n, l,v, µ2) =
1

4πµ2
2

√
(nT l)(nTv)

exp

(
1

µ2
2

(
1− 1

nTh2

))
, (B.4)

where µ2 is the roughness parameter which determines the size of specular highlight (smaller rough-

ness parameter µ2 provides narrower specular highlight). In the Ward model, the diffuse reflection is

also represented by a linear Lambertian reflection [122]. In this dissertation, we used µ2 = 0.2. We

note that specular highlights rendered with Cook-Torrance and Ward BRDF are mainly distributed

in the high-frequency observations (i.e., observations with large intensities), therefore, effects of

those specularities are easily neglected by discarding input observations whose intensities are rela-

tively large (i.e., Tlow < 50% in Section 5.4.

B.3 Lafortune Model [65]

Lafortune model is one of the most multifunctional BRDF models which is able to represent the

data from real materials which have more than one lobe. In our experiment, we use this model to

represent the general diffuse reflection which is more complex than a simple Lambertian reflection

used in the Cook-Torrance and Ward BRDF.

As shown by Lin and Lee [69], a general rotationally symmetric diffuse component in the Lafor-

tune model is represented as

ρ(n, l,v) = (nT l)k(nTv)k, (B.5)
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where k is a model parameter which determines the non-linearity of the function. In this dissertation,

we rendered images with only diffuse component without off-specular component in the Lafortune

model to verify performance of each algorithm to handle complex non-linear diffuse reflections. In

this dissertation, we used k = 0.5.

B.4 Oren-Nayar Model [83]

Oren-Nayar model is derived from Lambertian model [122] to explain the view dependency of

the matte or rough surfaces with geometric optics. While this model and Oren-Nayar model both

represent non-Lambertian diffuse reflections, this model can represent retro-reflective behavior of

non-Lambertian diffusive objects unlike Lafortune BRDF.

The Oren-Nayar model is represented as follow

ρ(n, l,v) =
1

π
(A+Bmax (0, cos(φi − φo)) sinα tanβ) , (B.6)

where φi and φo are differential angles as for l and v respectively, and a, b, A and B are written as

a = max(cos−1(nT l), cos−1(nTv)) b = min(cos−1(nT l), cos−1(nTv)). (B.7)

and

A = 1− 0.5
α2

α2 + 0.33
B = 0.45

α2

α2 + 0.09
. (B.8)

Here, α determines the surface roughness and it is equivalent to the Lambertian model in the case

of α = 0. In this dissertation, we fixed the roughness parameter α by 0.5.

B.5 Ashikhmin-Shirley Model [13]

Ashikhmin-Shirely model is expressed as a weighted sum of the diffuse and specular term as

ρ(n, l,v) =
kd
π
fD(n, l,v) + ksfS(n, l,v, λ2, µ3). (B.9)
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Cook-Torrance Ward Lafortune Oren-Nayar Ashikhmin-Shirely

Figure 6-2: Examples of images rendered with five different BRDFs.

The non-linear diffuse term fD guarantees the reciprocity and energy conservation properties and is

written as

fD(n, l,v) =
28

23

(
1−

(
1− cos(nT l)

2

)5
)(

1−
(

1− cos(nTv)

2

)5
)
. (B.10)

The specular term uses the distribution over the half vector in the similar manner with Cook-

Torrance model [29] as

fS(n, l,v, λ2, µ3) =
F (l,v, λ2)

π

D(n, l,v, µ3)

8π(hT l) max(nT l,nTv)
, (B.11)

where F is the Schlick’s approximation of Fresnel term and D is a microfacet distribution function

described as

F (l,v, λ2) = (µ3 + 1)(nTh)µ3, (B.12)

where µ3 controls the roughness of the material which was fixed by 50.
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Appendix C: Details of Results Using

MERL BRDF Database

This appendix provides supplementary about our experiments using MERL BRDF database [74].

First, Fig. 6-3 illustrate synthesized images rendered with MERL BRDF database [74] which are

used in Section 4.4.2. We also show details of Fig. 5-12 in Section 5.4 about input images, re-

covered surface normal maps and corresponding error maps for 100 materials in alphabetical order

from Fig. 6-4 to Fig. 6-103. 3-d plots of (lTv,nT l, I) for three different surface normals which

were projected onto the lTv − nT l space are also illustrated, whose plots were colored by its in-

tensity. We have provided those information so that readers can examine how our method or other

methods performed on each material in Fig. 5-12.
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Figure 6-3: Bunny images rendered with MERL BRDF databased [74].
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Figure 6-4: The results of alum-bronze.
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Figure 6-5: The results of alumina-oxide.
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Figure 6-6: The results of aluminium.
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Figure 6-7: The results of aventurnine.
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Figure 6-8: The results of beige-fabric.
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Figure 6-9: The results of black-fabric.
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Figure 6-10: The results of black-obsidian.
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Figure 6-11: The results of black-oxidized-steel.
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Figure 6-12: The results of black-phenolic.
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Figure 6-13: The results of black-soft-plastic.
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Figure 6-14: The results of blue-acrylic.
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Figure 6-15: The results of blue-fabric.
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Figure 6-16: The results of blue-metallic-paint.
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Figure 6-17: The results of blue-metallic-paint2.

A
n

g
u

lar erro
rs (d

eg
) 

LS SBL BQ (𝑇𝑙𝑜𝑤 = 100) BQ (𝑇𝑙𝑜𝑤 = 25) Ours (w/o R-R detection) Ours (w/ R-R detection) 
0 

10 

𝐼 

𝒍𝑇𝒗 

𝒏
𝑇
𝒍 

(1) (2) (3) 

(1) (2) (3) 

Figure 6-18: The results of blue-rubber.
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Figure 6-19: The results of brass.
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Figure 6-20: The results of cherry-235.
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Figure 6-21: The results of chrome.
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Figure 6-22: The results of chrome-steel.
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Figure 6-23: The results of colonial-maple-223.
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Figure 6-24: The results of color-changing-paint1.
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Figure 6-25: The results of color-changing-paint2.
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Figure 6-26: The results of color-changing-paint3.
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Figure 6-27: The results of dark-blue-paint.
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Figure 6-28: The results of dark-red-paint.
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Figure 6-29: The results of dark-specular-fabric.
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Figure 6-30: The results of delrin.
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Figure 6-31: The results of fruitwood-241.
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Figure 6-32: The results of gold-metallic-paint.
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Figure 6-33: The results of gold-metallic-paint2.

A
n

g
u

lar erro
rs (d

eg
) 

LS SBL BQ (𝑇𝑙𝑜𝑤 = 100) BQ (𝑇𝑙𝑜𝑤 = 25) Ours (w/o R-R detection) Ours (w/ R-R detection) 
0 

10 

𝐼 

𝒍𝑇𝒗 

𝒏
𝑇
𝒍 

(1) (2) (3) 

(1) (2) (3) 

Figure 6-34: The results of gold-metallic-paint3.
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Figure 6-35: The results of gold-paint.
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Figure 6-36: The results of gray-plastic.
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Figure 6-37: The results of grease-covered-steel.
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Figure 6-38: The results of green-acrylic.
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Figure 6-39: The results of green-fabric.
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Figure 6-40: The results of green-latex.
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Figure 6-41: The results of green-metallic-paint.

A
n

g
u

lar erro
rs (d

eg
) 

LS SBL BQ (𝑇𝑙𝑜𝑤 = 100) BQ (𝑇𝑙𝑜𝑤 = 25) Ours (w/o R-R detection) Ours (w/ R-R detection) 
0 

10 

𝐼 

𝒍𝑇𝒗 

𝒏
𝑇
𝒍 

(1) (2) (3) 

(1) (2) (3) 

Figure 6-42: The results of green-metallic-paint2.
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Figure 6-43: The results of green-plastic.
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Figure 6-44: The results of hematite.
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Figure 6-45: The results of ipswich-pine-221.
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Figure 6-46: The results of light-brown-fabric.
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Figure 6-47: The results of light-red-paint.
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Figure 6-48: The results of maroon-plastic.
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Figure 6-49: The results of natural-209.
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Figure 6-50: The results of neoprene-rubber.
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Figure 6-51: The results of nickel.
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Figure 6-52: The results of nylon.

A
n

g
u

lar erro
rs (d

eg
) 

LS SBL BQ (𝑇𝑙𝑜𝑤 = 100) BQ (𝑇𝑙𝑜𝑤 = 25) Ours (w/o R-R detection) Ours (w/ R-R detection) 
0 

10 

𝐼 

𝒍𝑇𝒗 

𝒏
𝑇
𝒍 

(1) (2) (3) 

(1) (2) (3) 

Figure 6-53: The results of orange-paint.
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Figure 6-54: The results of pearl-paint.
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Figure 6-55: The results of pickled-oak-260.

143



A
n

g
u

lar erro
rs (d

eg
) 

LS SBL BQ (𝑇𝑙𝑜𝑤 = 100) BQ (𝑇𝑙𝑜𝑤 = 25) Ours (w/o R-R detection) Ours (w/ R-R detection) 
0 

10 

𝐼 

𝒍𝑇𝒗 

𝒏
𝑇
𝒍 

(1) (2) (3) 

(1) (2) (3) 

Figure 6-56: The results of pink-fabric.
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Figure 6-57: The results of pink-fabric2.
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Figure 6-58: The results of pink-felt.
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Figure 6-59: The results of pink-jasper.
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Figure 6-60: The results of pink-plastic.
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Figure 6-61: The results of polyethylene.
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Figure 6-62: The results of polyurethane-foam.
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Figure 6-63: The results of pure-rubber.
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Figure 6-64: The results of purple-paint.
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Figure 6-65: The results of pvc.
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Figure 6-66: The results of red-fabric.
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Figure 6-67: The results of red-fabric2.
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Figure 6-68: The results of red-metallic-paint.

A
n

g
u

lar erro
rs (d

eg
) 

LS SBL BQ (𝑇𝑙𝑜𝑤 = 100) BQ (𝑇𝑙𝑜𝑤 = 25) Ours (w/o R-R detection) Ours (w/ R-R detection) 
0 

10 

𝐼 

𝒍𝑇𝒗 

𝒏
𝑇
𝒍 

(1) (2) (3) 

(1) (2) (3) 

Figure 6-69: The results of red-phenolic.
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Figure 6-70: The results of red-plastic.
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Figure 6-71: The results of red-specular-plastic.
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Figure 6-72: The results of silicon-nitrade.
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Figure 6-73: The results of silver-metallic-paint.
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Figure 6-74: The results of silver-metallic-paint2.
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Figure 6-75: The results of silver-paint.
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Figure 6-76: The results of special-walnut-224.
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Figure 6-77: The results of specular-black-phenolic.
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Figure 6-78: The results of specular-blue-phenolic.
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Figure 6-79: The results of specular-green-phenolic.
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Figure 6-80: The results of specular-maroon-phenolic.
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Figure 6-81: The results of specular-orange-phenolic.
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Figure 6-82: The results of specular-red-phenolic.
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Figure 6-83: The results of specular-violet-phenolic.
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Figure 6-84: The results of specular-white-phenolic.
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Figure 6-85: The results of specular-yellow-phenolic.
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Figure 6-86: The results of ss440.
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Figure 6-87: The results of steel.
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Figure 6-88: The results of teflon.
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Figure 6-89: The results of tungsten-carbide.
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Figure 6-90: The results of two-layer-gold.
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Figure 6-91: The results of two-layer-silver.
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Figure 6-92: The results of violet-acrylic.
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Figure 6-93: The results of violet-rubber.

A
n

g
u

lar erro
rs (d

eg
) 

LS SBL BQ (𝑇𝑙𝑜𝑤 = 100) BQ (𝑇𝑙𝑜𝑤 = 25) Ours (w/o R-R detection) Ours (w/ R-R detection) 
0 

10 

𝐼 

𝒍𝑇𝒗 

𝒏
𝑇
𝒍 

(1) (2) (3) 

(1) (2) (3) 

Figure 6-94: The results of white-acrylic.
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Figure 6-95: The results of white-diffuse-bball.
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Figure 6-96: The results of white-fabric.
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Figure 6-97: The results of white-fabric2.
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Figure 6-98: The results of white-marble.
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Figure 6-99: The results of white-paint.
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Figure 6-100: The results of yellow-matte-plastic.
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Figure 6-101: The results of yellow-paint.
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Figure 6-102: The results of yellow-phenolic.
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Figure 6-103: The results of yellow-plastic.
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