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Height from Photometric Ratio with Model-based Light Source Selection

William Smith, Fufu Fang

Department of Computer Science, University of York, York, UK

Abstract

In this paper, we present a photometric stereo algorithm for estimating surface height. We follow recent work that

uses photometric ratios to obtain a linear formulation relating surface gradients and image intensity. Using smoothed

finite difference approximations for the surface gradient, we are able to express surface height recovery as a linear

least squares problem that is large but sparse. In order to make the method practically useful, we combine it with a

model-based approach that excludes observations which deviate from the assumptions made by the image formation

model. Despite its simplicity, we show that our algorithm provides surface height estimates of a high quality even for

objects with highly non-Lambertian appearance. We evaluate the method on both synthetic images with ground truth

and challenging real images that contain strong specular reflections and cast shadows.

Keywords: photometric stereo, surface integration, non-Lambertian reflectance, albedo estimation

1. Introduction

Photometric stereo has a long history in computer vi-

sion [1]. In recent years it has begun to find practical ap-

plication in areas such as face recognition [2, 3], object

capture [4, 5], medical imaging [6] and surface texture

classification [7]. Photometric stereo uses the intensity

of reflected light under varying illumination direction

to infer the orientation and reflectance properties of a

surface. Usually, the only reflectance property that is

estimated is the diffuse albedo, although more exotic

experimental setups allow estimation of additional re-

flectance properties such as specular albedo [8], surface

roughness [9] and index of refraction [10].

The advantages of photometric stereo are well

known: observations are dense (measurements are made

at every pixel and resolution is limited only by the res-

olution of the camera); it can be applied to smooth sur-

faces devoid of matchable features; estimated surfaces

can be relit since both shape and reflectance proper-

ties are estimated; and it is able to recover fine scale

surface detail. However, surface orientation is only

a 2.5D shape representation and the estimated normal

field must be integrated in order to recover surface depth

or used to refine a 3D mesh captured using other cues

[11]. Often, modelling errors mean that the estimated
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surface normals are subject to low frequency bias lead-

ing to distortion in the 3D surface and low global ac-

curacy. Also, photometric methods are usually much

more demanding in data capture terms and also in their

requirement for controlled conditions.

Despite sustained research effort on the topic, many

methods are surprisingly still heavily based on the orig-

inal approach proposed by Woodham [1]. One of the

reasons for this is that Woodham’s least squares solution

“averages out” errors due to inaccurate assumptions or

model inaccuracies. This leads to robust performance

even in the presence of significant deviations from the

assumptions of Lambertian reflectance with no shadows

or specularities, or when there are errors in the light

source directions and intensities.

A popular class of approaches that has arisen in the

past decade are based on selecting a subset of observed

intensities for each pixel [12, 13, 14, 15]. We refer to

these as selection-based approaches. The idea is to ex-

clude observations that are believed to deviate from the

modelling assumptions made by the algorithm, for ex-

ample by excluding shadowed pixels. This transforms

the photometric stereo problem into one of labelling

pixels according to photometric phenomena. These ap-

proaches are motivated by the fact that greater than

three observations leads to redundancy which can be

exploited by exclusion of noisy data. Almost all of

these selection-based approaches rely on ad hoc heuris-
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tics that require careful tuning of parameters.

1.1. Related work

The photometric stereo literature is large and here we

review only the most relevant work, including selection-

based techniques, alternative lighting models and meth-

ods that make use of photometric ratios.

The classical approach of Woodham [1] uses each

observation to construct a linear equation based on the

Lambertian equation (neglecting self shadows). The re-

sulting system of equations is solved in a least squares

sense. Hence, a minimum of three observations at each

pixel are required to recover the surface normal scaled

by the albedo. Woodham’s algorithm does not take

shadows and highlights into account, they are treated

as noise. In practice, this is a strong assumption and it

is difficult to image many objects without encountering

shadows or highlights. Hence, three image photometric

stereo is very sensitive to noise.

Using more than three images results in an overdeter-

mined system and greater robustness to noise. However,

systematic noise caused by specularities, shadows, light

source attenuation or even a non-linear camera lead to

systematic bias in the surface estimates. Since the sys-

tem of equations at each pixel is independent, Wood-

ham’s algorithm also imposes no constraints on surface

smoothness or integrability.

The classical approach to this problem is to incorpo-

rate smoothness or integrability priors into an energy

term expressed as a function of the field of surface nor-

mals [16, 17, 18, 19, 20]. The drawback of such ap-

proaches is that these constraints are only softly satisfied

and the result is dependent upon the weight assigned to

each prior. There have been some attempts to incorpo-

rate photometric constraints into the surface integration

process. For example, Chandraker et al. [21] use cast

shadows to impose inequality constraints on the surface

height estimates.

Selection-based photometric stereo. Barsky and Petrou

[12] presented the first selection-based photometric

stereo algorithm. Their idea was to use the minimal

set of images for which there is redundancy (i.e. four

images). A threshold on the reconstruction error using

the four image photometric stereo result is used to label

pixels where it is believed one observation in the input

quadruple is corrupted by the presence of a shadow or

specularity. The presence of a highlight is detected us-

ing one of two methods. One method is to check if the

chromatic distance between the estimated diffuse albedo

and the colour of the light sources is above a threshold.

Another method is to check if the recovered surface nor-

mal could cause specular reflection based on the view-

ing direction of the camera and the light source direc-

tion, i.e. it is close to the perfect specular configuration.

If the quadruple does not contain a highlight, it must

contain a shadow.

Sun et al. [13] suggested a hierarchical selection

strategy for eliminating highlights and shadows. Their

method requires images under six illumination condi-

tions and can recover diffuse albedo and surface nor-

mals for non-Lambertian surfaces. They first order the

observations for a pixel in descending order of bright-

ness. They then check if the first observation contains a

highlight, and if the fifth and the sixth observations con-

tain shadows. Highlight and shadow detection is done

in the same way as Barsky and Petrou [12].

Hernández et al. [15] proposed a three image pho-

tometric stereo algorithm that is robust to shadowing.

Their method makes the assumption that for a surface

patch, only one pixel from the input triplet is affected

by shadow. They use a segmentation algorithm to de-

tect shadowed regions. For the segmented shadowed re-

gions, albedo and surface normal estimates are obtained

using only the remaining two observations with integra-

bility being used to resolve the resulting ambiguity.

A number of approaches can be viewed as outlier re-

moval. Miyazaki et al. [22] compute surface normals

from all possible observation triplets and then compute

the median direction as a robust estimate of the surface

normal. Yu et al. [23] propose an algorithm based on

the maximum feasible subset framework. The idea is

to select the maximum subset of observations that sat-

isfy the Lambertian constraint. Mukaigawa et al. [24]

used a random sampling approach to eliminate non-

Lambertian observations. These approaches are related

to our selection strategy, in the sense that we also detect

and remove outliers. The difference is that our notion of

outliers is based on deviation from predicted appearance

using an initial (possibly naive) model whereas theirs

are based on statistical analysis of the input data.

Ikehata et al. [14] posed the problem of selection as

imposing sparsity on a Lambertian error matrix. How-

ever, strictly imposing sparsity leads to a non-convex

optimisation problem. While not selection per se, Higo

et al. [25] use the idea of “consensus” in photometric

stereo. Namely, observations merely reduce the size of

the solution space for a given surface normal. This al-

lows them to use very general models, making relatively

weak assumptions about reflectance and camera proper-

ties. However, their approach is data-heavy, requiring

very large numbers of images to build a sufficient con-

sensus on the correct normal direction. Moreover, cast
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shadows cannot be modelled and act as noise in the con-

sensus process.

Rather than make per pixel observation selections,

recently, Argyriou et al. [26] tackled the problem of

choosing the globally optimal configuration of light

source directions. The idea is that for a class of objects,

e.g. faces, there is likely to be a configuration of light

sources that minimises the number of shadowed obser-

vations over the whole image set on average. They pose

the problem of searching for the lighting configuration

as one of sparse optimisation.

Alternative illumination models. When a surface is lit

by a point source (and assuming no inter-reflections),

shadowing is a binary function, i.e. a point on the sur-

face is either lit or it is shadowed. Under a continuous

field of illumination, this is not the case as some portion

of the illumination may be visible and observations need

not be selected and excluded in a binary fashion. The

analogue of shadowing under continuous illumination

is occlusion, where part of the local upper hemisphere

is occluded by other parts of the surface.

The special case of a uniform (i.e. ambient) contin-

uous field of illumination was studied by Prados et al.

[27] who demonstrated that shading under such illumi-

nation can be ambiguous. Allowing arbitrary illumi-

nation but neglecting occlusions, the most general ap-

proach is due to Basri et al. [28]. They use a spherical

harmonic model of Lambertian appearance to develop

a photometric stereo algorithm for complex illumina-

tion environments. More recently, such a setting has

been considered in a single image, shape-from-shading

setting. For example, Huang and Smith [29] provide a

linear approach for shape recovery under a first order

spherical harmonic lighting model.

Rather than considering natural illumination environ-

ments, Ma et al. [8] developed a variant of photometric

stereo which operates under continuous linear gradient

illumination fields. They pose surface normal recovery

as estimation of the centre of mass of the reflectance

lobe. To achieve this, they compute the first moment

of the reflectance function by integration with a linear

gradient in each direction of the coordinate system. Al-

though they do not model occlusions, their approach

degrades gracefully with increasing occlusion. In fact,

their method estimates the “bent normal” direction often

used in graphics (the mean unoccluded direction).

Another relaxation of assumptions is to allow near-

field (i.e. local) lights. Here, the attenuation with dis-

tance must be modelled. Recently, Papadhimitri and

Favaro[30] showed that uncalibrated near-field photo-

metric stereo suffers from reduced ambiguities in com-

parison to the distant case.

Photometric Ratios. The idea of using ratios between

photometric measurements to aid surface analysis was

first proposed by Davis and Soderblom [31]. In contrast

to most later work, they used intensity measurements

from a single image. By finding profiles with assumed

equal topographic and albedo variations, they take ratios

to cancel out surface reflectivities.

The use of ratios between images under two different

illumination conditions was first proposed by McEwen

[32] in the context of remote sensing. Lee and Brady

[33] were the first to exploit the resulting constraint in

a computer vision context. Specifically, they took ratios

between observations from different viewpoints leading

to an equation in one of the components of the surface

gradient. They use this to estimate depth which they

subsequently combine with depth estimates from binoc-

ular stereo. This was followed by another hybrid photo-

metric/geometric shape estimation method from Wolff

and Angelopoulou [34]. Instead of computing depth

from photometric measurements, they use photometric

ratios to derive invariants that improve the robustness of

stereo matching. In a similar vein, both Lee and Kuo

[35] and Wu et al. [36] use photometric ratios to elim-

inate albedo from their image formation model. How-

ever, they do not exploit the linearisation in depth and

instead estimate surface normals.

Like Davis and Soderblom [31], Zhao and Chellappa

[37] also use ratios extracted from a single image. In

this case it is between symmetric points on bilaterally

symmetric surfaces (specifically, faces). As for the two

image case, this leads to an expression that is indepen-

dent of albedo and linear in terms of surface gradients.

This allows them to obtain a ratio from a single im-

age and hence to use the constraint for single image

shape-from-shading. Wöhler and Hafezi [38] introduce

a ratio-based error term into a classical variational ap-

proach to photometric surface estimation. This leads to

an iterative scheme in which surface gradients are re-

covered independently of the unknown albedo.

The advantage of photometric ratios is that they lead

to linear equations in depth. Other linearisations of

shading-based error terms have also been used in single

image shape-from-shading. This was first proposed by

Pentland [39] who used a local Taylor expansion of the

reflectance function to provide linear equations in the

surface gradients. This was extended by Tsai and Shah

[40] who solve directly for surface height by substitut-

ing in numerical approximations to the surface gradi-

ents. This leads to a highly efficient and practical algo-

rithm. An alternative manipulation of the Lambertian
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reflectance equation was proposed in Ecker and Jep-

son’s [41] polynomial shape-from-shading algorithm.

Here, the non-linear normalisation factor in the surface

normal is removed by working with the square of the

intensity. This leads to an optimisation problem con-

taining the squares of the surface gradients which they

solve using homotopy solvers or via SDP relaxations.

Recently, there has been renewed interest in exploit-

ing ratios for photometric stereo, led by Mecca and

coworkers [42, 43, 44, 45, 46]. Their line of work uses

photometric ratios to construct PDEs for which they can

prove well-posedness and solve using upwind or semi-

Lagrangian schemes. Initially they considered the clas-

sical photometric stereo set up of orthographic viewer

and distant point light sources [43], proving the unique-

ness of the two image case in the presence of boundary

conditions. This was extended to a practically useful sit-

uation [42] by considering cast shadows in three image

photometric stereo. In shadow regions, a shadowed ob-

servation is given zero weight (it is assumed that at least

two observations are unshadowed), allowing the surface

to be recovered in spite of the missing data. However,

the shadow weights assume that a cast shadow has zero

intensity so this does not represent a robust selection

strategy. The same weighting strategy was extended to

perspective viewing [44]. More recently, the case of

near-field illumination [45] has been considered.

While these methods target mathematical well-

posedness and minimal solutions, they have a number

of practical drawbacks. First, they assume a Lamber-

tian reflectance model but do not incorporate a robust

observation selection procedure. For this reason, the

methods are evaluated on either synthetic data or real

images that do not contain shadows or significant spec-

ularities. Second, since all of these methods are vari-

ational, they require boundary conditions to be known

(or estimated using photometric stereo with stricter as-

sumptions). Third, they consider either minimal (e.g.

two or three image) setups or place restrictions on the

positioning of lights (e.g. requiring the illuminant to be

at the optical centre [45]).

There have been two attempts to use image ratios for

photometric stereo in a non-Lambertian setting. Chan-

draker et al. [47] propose a differential photometric

stereo framework in which ratios with a frontally or

ambiently lit image are used to cancel dependence on

albedo. Their approach is quite general and works with

any isotropic reflectance model. The state of the art in

this direction is recent work in which Mecca et al. [46]

work with very general assumptions (arbitrary attenu-

ation models, general light positions, non-Lambertian

reflectance) to achieve very high quality reconstructions

from specular reflections.

1.2. Contributions

In this paper we make a number of novel contribu-

tions that lead to a practically useful and robust pho-

tometric stereo algorithm. Our approach combines the

robustness of selection-based approaches with the at-

tractive properties of solving in the surface height do-

main via photometric ratios. Our first contribution is

to propose a model-based approach to observation se-

lection. The idea is to obtain an initial estimate of the

surface normals and albedo using any existing photo-

metric stereo algorithm. This estimate is used to pre-

dict the appearance of the object under the illumination

conditions originally observed. Noisy observations that

deviate from the model assumptions can then be auto-

matically detected and removed via a robust estimate of

the noise variance.

Our second contribution is to incorporate this selec-

tion strategy into a photometric stereo algorithm based

on photometric ratios. This approach allows us to solve

directly for surface height, whilst still only requiring the

solution of a large (sparse) linear system of equations.

We are not the first to observe that photometric ratios

lead to linear equations in depth, nor are we the first to

exploit them for photometric stereo. We use the same

orthographic, Lambertian ratio model as in [43]. How-

ever, we believe that this is the first work to use photo-

metric ratios in the context of energy minimisation.

Taken together, these contributions lead to an ap-

proach that we believe is the first practically useful

height-from-photometric ratio algorithm, i.e. which is

applicable to images of real objects exhibiting non-

Lambertian appearance. This enables us to recover high

quality depth maps from datasets with an arbitrary num-

ber of images in a manner that is highly tolerant to cor-

ruption by shadows and specularities. Compared to pre-

vious attempts to use photometric ratios for height re-

covery, our approach is simpler and more efficient, be-

ing based on discrete approximations to the surface gra-

dients and posing the problem as a large system of linear

equations. In addition, we propose a robust method for

computing per-pixel albedo from the valid observations

using simple linear regression. This combination of ro-

bust performance on real world, noisy images with com-

putational efficiency provides a method of real practical

utility. We demonstrate this in our experimental eval-

uation by including results on objects with highly non-

Lambertian appearance and severe shadowing. More-

over, we compare our approach to state of the art algo-

rithms and show a quantitative improvement in perfor-
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mance, particularly with respect to the accuracy of the

recovered height map.

1.3. Paper organisation

In Section 2 we begin by reviewing relevant theory

from the photometric stereo literature. In particular, the

least squares approach and the notion of photometric ra-

tios, leading to linear equations in the surface gradients.

In Section 3 we present our model-based selection strat-

egy for excluding unreliable observations. In Section 4

we show how to use the photometric ratio equations to

build a large, sparse linear system of equations for pho-

tometric stereo. In Section 5 we present experimental

results including quantitative comparison to the state-

of-the-art and qualitative reconstructions on challeng-

ing images containing both cast shadows and specular

reflections.

2. Preliminaries

We assume that a surface with smooth (i.e. C2 contin-

uous) height function z(x, y) is viewed orthographically.

We observe the surface K times under varying illumina-

tion and in the kth image the observed image intensity

is denoted ik(x, y). In each image, we assume that the

surface is lit by a distant point light source with direc-

tion and intensity given by the vector sk ∈ R
3 for image

k = 1 . . .K.

A diffuse Lambertian surface reflects incident light

equally in all directions. Hence, the observed intensity

depends only on the foreshortening of the light source

with respect to the surface normal n:

i = max(0, ρn · s), (1)

where ρ ∈ [0, 1] is the diffuse albedo (intrinsic reflec-

tivity of the surface). Clamping to zero simulates the

effect of self shadow (i.e. where the angle between sur-

face normal and light source exceeds 90◦). Hence, an

observation of a Lambertian surface provides an equa-

tion that is linear in the scaled surface normal (ρn) for

incident angles between 0◦ and 90◦.

2.1. Least squares photometric stereo

This linear relationship was exploited in the original

photometric stereo algorithm of Woodham [1]. His idea

was to use observations with calibrated light sources

(i.e. where sk are known) to form a system of linear

equations that is solved in a least squares sense. Since

the scaled surface normal has three degrees of freedom,

a minimum of three observations are required. More-

over, the sk must be linearly independent. If more than

three observations are available, the system is overdeter-

mined and the least squares solution becomes increas-

ingly robust to Gaussian noise.

The observed intensities for a pixel (x, y) observed

under K different illumination directions can be stacked

to form the observation vector i(x, y) ∈ R
K . The light

source vectors sk can also be stacked to form the illu-

mination matrix S ∈ R
K×3. The scaled surface normal

vector can be found by solving the linear least squares

problem:

m(x, y) = argmin
x

‖Sx − i(x, y)‖2. (2)

The estimated albedo is given by the length of the vec-

tor: ρ(x, y) = ‖m(x, y)‖ and the estimated surface nor-

mal by the normalised vector: n(x, y) =
m(x,y)

ρ(x,y)
. Such a

linear system is built and solved independently for each

pixel.

Woodham’s approach is optimal in the sense that it

minimises the average reillumination error under the

Lambertian model. However, the accuracy of the esti-

mated surface normals and diffuse albedo values breaks

down in the presence of systematic deviations from the

model. There are two particularly problematic such de-

viations. The first are cast shadows. These are a non-

local effect where remote parts of the surface block the

light source from reaching a point on the surface. The

result is an intensity close to zero (inter-reflections, am-

bient light and noise mean that the intensity is rarely

exactly zero). The second is additive specular reflec-

tion. This is a local effect for shiny surfaces occurring

when the viewer, surface normal and light source are

close to the perfect specular configuration. This leads

to an intensity much greater than predicted by the Lam-

bertian model. Since the approach is based on linear

least squares and is therefore not robust, the result is

strongly affected by these outlying observations. Fi-

nally, using all observations also neglects the effect of

self-shadowing, i.e. it ignores the fact that Equation 1 is

only piecewise linear.

2.2. Photometric Ratio

Classical photometric stereo solves for the surface

normal at each pixel independently. There are two dis-

advantages to this approach. First, the recovered nor-

mals may not correspond to a physically-realisable sur-

face, that is to say the surface normals may not satisfy

the integrability condition. Second, if the ultimate goal

is to recover surface height then the normals must be

integrated into a surface. Performing this as a two step

process means that errors accumulate over the two steps.
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An alternative is to solve directly for surface height.

To do this, the problem must be posed in terms of sur-

face height. This idea is not new and has recently gained

popularity with a number of methods [42, 43, 44, 45, 46,

47] exploiting the simplified relationship between sur-

face height and image intensity that arises when photo-

metric ratios are taken.

The surface normals and surface height are related via

the surface gradients, p = ∂xz and q = ∂yz:

n =

[

−p − q 1
]T

√

p2 + q2 + 1
. (3)

Substituting surface gradients into the Lambertian pho-

tometric stereo equations above leads to a non-linear

system of equations. However, consider two non-

shadowed observations under illumination directions s

and t:

i1 = ρ
−s1 p − s2q + s3
√

p2 + q2 + 1
, i2 = ρ

−t1 p − t2q + t3
√

p2 + q2 + 1
. (4)

By taking ratios between the two images, the non-linear

term in the surface gradients cancels out, as does the

albedo:
i1

i2
=
−s1 p − s2q + s3

−t1 p − t2q + t3
. (5)

Rearranging leads to a linear equation in the surface gra-

dients that is independent of albedo:

(i2s1 − i1t1)p + (i2s2 − i1t2)q = i2s3 − i1t3. (6)

This formulation was derived by Mecca and Falcone

[43]. In a photometric stereo setting, each pair of im-

ages provides one such equation per pixel. Given the ad-

vantages over Woodham’s original expression in terms

of surface normals, it is surprising that this formulation

has not been adopted as standard in the photometric

stereo literature. Later, by taking finite difference ap-

proximations to the surface gradient, we use this expres-

sion to pose photometric stereo as a large sparse sys-

tem of linear equations in terms of the unknown surface

heights.

3. Model-based observation selection

The goal of selection-based photometric stereo is to

detect and exclude observations that are believed to

deviate from the modelling assumptions. We take a

model-based approach to this problem. By this, we

mean that we use a model of image formation (namely

Lambertian with self shadowing and varying albedo) to

predict appearance. We use errors between predicted

and observed appearance to perform a statistical test

to separate inliers (observations fitting our model) from

outliers (those deviating from the model, e.g. shadows

or specularities).

We begin by assuming that we have to hand an initial

estimate of the surface normals and albedo. We denote

these ñ(x, y) and ρ̃(x, y) respectively. In our experimen-

tal results, these are either provided by Woodham’s least

squares approach applied to all observations or, in the

case of light stage data, estimated using spherical gra-

dient photometric stereo [8] on a set of images under

spherical gradient illumination.

Observations that do adhere to our modelling as-

sumptions are expected to differ from the predicted in-

tensity by only an additive noise term:

max(0, ρ̃(x, y)ñ(x, y) · sk) = ik(x, y) + ǫ, (7)

where ǫ ∼ Norm[0, σ2] is the noise term which we as-

sume is normally distributed with zero mean and vari-

ance σ2 and accounts for error in ñ and ρ̃. Under this

assumption, we expect the difference between observed

and predicted intensities to follow a normal distribution:

max(0, ρ̃(x, y)ñ(x, y) · sk)− ik(x, y) ∼ Norm[0, σ2
k]. (8)

Observations that deviate from our modelling assump-

tion, i.e. those that are shadowed or are specular high-

lights, will not differ from predicted intensity by addi-

tive, zero mean noise. Our idea is to estimate the vari-

ance of the noise and use this to perform a Z-test to ex-

clude unreliable observations. We begin by robustly es-

timating the standard deviation of the noise for the kth

image via the median absolute deviation:

MADk = median
x,y

(|max(0, ρ̃(x, y)ñ(x, y) · sk) − ik(x, y)|).

(9)

Note that since we expect the differences to come from

a zero mean distribution, we do not need to subtract an

estimated mean value. Our estimate of the standard de-

viation is now given by:

σk ≈ 1.4826 MADk. (10)

For each observation, we now compute a Z-score:

Zx,y,k =
max(0, ρ̃(x, y)ñ(x, y) · sk) − ik(x, y)

σk

. (11)

Finally, observations whose absolute Z-score is greater

than a threshold are excluded as unreliable. In addi-

tion to the Z-score criterion, we also make sure that

selected observations are not self-shadowed. Since
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these values lie outside the linear region of the Lam-

bertian reflectance function, they do not adhere to the

assumptions made in Equation 6 and cannot be used

in the height-from-photometric ratio method in the fol-

lowing section. Self-shadowed pixels are those where

ñ(x, y) · sk ≤ 0.

The selection strategy above does not guarantee that

there will be any valid observations for a pixel. This

may lead to the linear system being under constrained

during height estimation. Hence, for such pixels we

force the selection of a minimum of three observations.

To do this, we sort the observations by their absolute

Z-score and pick values in ascending order, excluding

self-shadowed observations and those already chosen.

We continue this process until all pixels have at least

three observations.

4. Height from photometric ratio

Suppose that the set of valid observations (i.e. those

chosen by our selection procedure) at pixel (x, y) is de-

noted V(x, y). We wish to solve the following minimi-

sation problem:

min
z

∑

x,y

∑

j,k∈V(x,y)

‖
(

ik(x, y)s j,1 − i j(x, y)sk,1

)

∂xz(x, y)+
(

ik(x, y)s j,2 − i j(x, y)sk,2

)

∂yz(x, y)−

ik(x, y)s j,3 + i j(x, y)sk,3‖
2.

(12)

The surface is observed K times in total. This means

that there may be a maximum of K(K+1)/2 unique and

valid pairs of observations for a pixel. In practice, we

use only K pairs obtained by a single cycle through the

valid observations for a pixel.

The surface gradients can be approximated numeri-

cally from the discretised surface height function using

finite differences. The central difference approximation

to the first derivative in the horizontal direction can be

obtained by convolution with the kernel [−1 0 1] (as-

suming unit spacing of the pixel grid). Note that higher

order approximations to the surface derivatives could in

principle be used [48] with a potential improvement in

accuracy for surfaces in which an assumption of local

planarity is poor.

To reduce sensitivity to noise and improve robust-

ness, the depth values are first smoothed using a centre-

weighted kernel approximating a Gaussian with stan-

dard deviation 0.6. By associativity of the convolution

operator we can pre-convolve the finite difference and

smoothing kernels leading to the following kernels for

computing the surface gradients in the horizontal and

vertical directions:

∂xz ≈ z∗
1
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(13)

At boundary pixels, or when using a binary mask to

exclude background pixels, not all neighbours may be

available for a given pixel. In this case, we use un-

smoothed central differences (where both horizontal or

vertical neighbours are available) or, where only a sin-

gle neighbour is available, single forward/backward dif-

ferences. Substituting these expressions into Equation 6

therefore leads to a linear equation with between 3 and 8

unknown values of z (depending on which combination

of numerical gradient approximations are used). Hence,

we can solve Equation 12 using linear least squares.

Suppose our image contains N pixels of interest (i.e.

pixels that are part of the foreground mask) then we

write the unknown height values as the vector z ∈ R
N .

Substituting the discrete gradient approximations into

Equation 12 and rewriting in matrix form, we can ex-

press our objective as:

min
z
‖Az − b‖2. (14)

Differentiating and setting equal to zero leads to the lin-

ear system

Az = b, (15)

where A has N columns and a maximum of NK rows.

Each row of A evaluates the left hand side of Equation

6 by selecting the appropriate elements from the vector

of height values to approximate the appropriate surface

gradients. The vector b contains the corresponding right

hand side constant values. Although A is very large, it

is also sparse. Each row has at most 8 non-zero values.

In order to resolve the unknown constant of integration

(i.e. applying an arbitrary offset to z does not affect its

orthographic images), we fix the height of one pixel to

zero.

Efficient methods for solving large sparse systems

such as Equation 15 are available and we use the method

of Davis [49]. This starts by computing the QR decom-

position of AP = QR, where P is a fill-reducing per-

mutation for A. For efficiency, we avoid calculating Q

explicitly, and compute c = QT b directly during factori-

sation. Also, we compute the “economy-size” R with

only N rows. To find z we then solve the smaller linear

least squares problem Rz = c.

4.1. Albedo Estimation

Equation 6 is independent of albedo. Hence, the ap-

proach described above recovers surface height without

7
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Figure 1: Mask generation example. An input image (a) is compared

to its predicted Lambertian appearance (b). A normal distribution is

robustly fitted to the distribution of errors (d) and a Z-test used to

generate a binary observation mask (c).

providing any information about albedo. Computing

albedo amounts to a simple inverse rendering problem.

However, as above, we must only use selected observa-

tions for which we believe our modelling assumptions

are valid.

We begin by computing the surface normals of the

recovered surface height function. To do so, we ap-

ply Equation 13 to the estimated surface height func-

tion (using appropriate alternatives for pixels with fewer

than 8 neighbours) to approximate the surface gradients.

We substitute these estimates into Equation 3 to provide

our estimated field of surface normals n(x, y).

We seek the albedo estimate that minimises the

squared difference between predicted and observed in-

tensity for those observations that were selected. Hence,

we wish to solve the following minimisation problem at

each pixel:

min
ρ(x,y)

∑

k∈V(x,y)

‖ρ(x, y)n(x, y) · sk − ik(x, y)‖2. (16)

The solution to this problem is obtained in closed form

by simple linear regression:

ρ(x, y) =

∑

k∈V(x,y) n(x, y) · skik(x, y)
∑

k∈V(x,y)(n(x, y) · sk)2
. (17)

5. Experiments

In this section we present results of applying our al-

gorithm to three datasets, two previously available and

one collected for this study. We experiment with two

different algorithms for providing the initial surface nor-

mal and albedo estimates: Woodham’s least squares ap-

proach and the recent spherical gradient photometric

stereo algorithm of Ma et al. [8].

5.1. Selection strategy

We begin in Figure 1 by demonstrating our process

of observation selection. We compute the difference be-

tween an input image (a) and a Lambertian rendering

(a) (b) (c) (d) (e)

Figure 2: Synthetic data used in quantitative evaluation. (a) Lamber-

tian rendering of ground truth shape. (b) Albedo map. (c)-(e) 3 of the

40 input images.

(a) Ground truth (b) Proposed (c) Woodham [1] (d) Ikehata et al. [14]

Figure 3: Comparison of estimated surface height maps (b-d) against

ground truth (a). In the case of (c) and (d), surface height is obtained

by integrating estimated normals using [48].

(b) under the same illumination conditions, computed

using surface normal and albedo estimates provided by

a naive algorithm such as Woodham’s. The distribu-

tion of errors is shown as a histogram in (d). It is clear

that most of the errors can be approximated by a normal

distribution. We show our robust estimate of this distri-

bution in red. Outlying errors can be identified as not

adhering to our model assumptions. In this example,

the large negative tail in the histogram corresponds to

the specular highlight (in which the predicted intensity

is much smaller than the observed). We perform a Z-test

using this distribution and also label pixels computed as

being self shadows in the predicted image. This allows

us to generate an observation mask (c) which is used

subsequently to select pairs of intensities for photomet-

ric shape estimation.

5.2. Quantitative comparison

In order to provide quantitative evaluation, we use

two synthetic datasets. From a ground truth depth map,

we compute surface normals (Figure 2(a)). We also gen-

erate a textured albedo map (Figure 2(b)). We then ren-

der 40 images using the Blinn-Phong reflectance model

with a shininess parameter of 75 and the same lighting

directions as in [14]. This provides images with strong
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Bunny Mozart
P
P
P
P
P

P
PP

Method

No. images
10 15 20 25 30 35 40 10 15 20 25 30 35 40

[1]
53.72 ± 1.67 52.27 ± 1.68 52.70 ± 0.96 52.79 ± 0.85 52.69 ± 0.53 52.72 ± 0.24 52.65 20.60 ± 0.88 20.14 ± 1.11 20.29 ± 0.49 20.10 ± 0.48 20.02 ± 0.34 19.76 ± 0.18 19.83

5.19 ± 3.33 4.44 ± 2.89 3.01 ± 1.08 2.78 ± 0.96 2.99 ± 1.04 3.40 ± 0.72 3.25 4.50 ± 2.32 3.62 ± 1.49 3.95 ± 1.17 3.27 ± 0.96 3.33 ± 0.81 3.29 ± 0.62 3.18

[14]
47.46 ± 3.44 46.25 ± 3.32 45.45 ± 3.86 46.10 ± 2.76 46.41 ± 1.37 47.24 ± 1.08 47.41 16.48 ± 1.60 16.02 ± 1.79 16.80 ± 1.30 16.09 ± 1.33 16.24 ± 1.00 16.67 ± 0.73 16.57

2.21 ± 3.96 0.82 ± 1.85 0.80 ± 0.76 0.05 ± 0.46 0.40 ± 0.51 0.20 ± 0.33 0.18 4.97 ± 4.77 0.96 ± 2.01 1.01 ± 1.89 1.48 ± 1.34 0.79 ± 1.44 1.09 ± 0.90 1.13

HfPR-[1]
45.31 ± 6.40 46.07 ± 2.76 48.77 ± 2.57 48.81 ± 2.05 50.01 ± 2.03 49.21 ± 1.18 49.67 16.59 ± 2.16 16.04 ± 1.98 16.28 ± 1.98 16.08 ± 1.99 14.98 ± 1.63 15.61 ± 2.20 15.62

6.08 ± 3.87 4.16 ± 3.37 3.93 ± 1.50 2.95 ± 0.91 3.74 ± 0.98 3.66 ± 0.86 3.07 7.11 ± 3.61 6.27 ± 2.72 5.94 ± 2.55 6.33 ± 2.62 6.18 ± 1.94 5.57 ± 1.43 4.49

HfPR-[14]
49.93 ± 2.12e7 43.57 ± 40.21 42.88 ± 7.07 45.16 ± 5.53 42.68 ± 3.16 40.90 ± 2.84 39.69 15.67 ± 2.00 13.01 ± 2.18 14.91 ± 1.68 12.58 ± 2.40 12.18 ± 2.10 14.06 ± 3.29 11.48

5.84 ± 2.75 1.75 ± 1.72 1.95 ± 0.70 1.43 ± 0.65 1.72 ± 0.42 1.69 ± 0.49 1.58 4.88 ± 3.46 4.14 ± 1.59 5.03 ± 2.02 4.90 ± 1.71 4.87 ± 1.76 4.33 ± 1.15 4.08

HfPR-[50]
22.49 ± 11.13 0.85 ± 7.16 0.82 ± 0.66 0.54 ± 0.33 0.76 ± 0.29 0.76 ± 0.20 0.56 4.31 ± 4.35 4.26 ± 2.87 4.60 ± 1.90 5.33 ± 1.90 4.92 ± 1.83 4.55 ± 1.66 4.31

2.84 ± 1.12 0.70 ± 0.89 0.61 ± 0.21 0.49 ± 0.12 0.50 ± 0.09 0.50 ± 0.06 0.45 3.89 ± 2.03 3.37 ± 1.33 2.58 ± 0.85 3.19 ± 0.85 2.99 ± 0.63 3.03 ± 0.58 2.81

Table 1: Quantitative results for varying numbers of input images. For each method and number of input images we show the RMSE height map

error in pixels (first row) followed by median angular error of surface normals in degrees (second row). For fewer than 40 images, we repeat the

experiment multiple times, each time using a randomly selected subset of the appropriate size. We show the median error and median absolute

deviation over all trials.

Bunny Mozart

❍
❍
❍

❍
❍

Method

Noise
5% 10% 15% 20% 25% 30% 50% 5% 10% 15% 20% 25% 30% 50%

[1]
52.64 ± 0.00 52.63 ± 0.01 52.62 ± 0.01 52.62 ± 0.01 52.60 ± 0.01 52.59 ± 0.01 52.54 ± 0.02 19.83 ± 0.00 19.82 ± 0.00 19.81 ± 0.00 19.81 ± 0.01 19.80 ± 0.01 19.80 ± 0.01 19.77 ± 0.01

3.50 ± 0.00 3.70 ± 0.00 3.88 ± 0.01 4.04 ± 0.01 4.17 ± 0.01 4.30 ± 0.01 4.76 ± 0.01 3.32 ± 0.00 3.46 ± 0.00 3.59 ± 0.01 3.72 ± 0.01 3.84 ± 0.01 3.95 ± 0.01 4.38 ± 0.01

[14]
46.71 ± 0.20 46.20 ± 0.15 46.07 ± 0.11 46.01 ± 0.25 46.13 ± 0.14 46.34 ± 0.09 47.33 ± 0.13 16.40 ± 0.04 16.32 ± 0.04 16.24 ± 0.04 16.16 ± 0.06 16.18 ± 0.06 16.20 ± 0.12 16.34 ± 0.05

0.14 ± 0.01 0.09 ± 0.01 0.11 ± 0.01 0.19 ± 0.01 0.34 ± 0.01 0.50 ± 0.01 1.49 ± 0.01 0.63 ± 0.00 0.61 ± 0.00 0.60 ± 0.00 0.62 ± 0.00 0.66 ± 0.00 0.74 ± 0.00 1.78 ± 0.02

HfPR-[1]
50.25 ± 1.02 50.88 ± 1.18 50.89 ± 0.73 51.12 ± 1.33 50.84 ± 0.91 50.58 ± 1.08 52.11 ± 0.93 16.44 ± 1.14 16.01 ± 1.35 16.58 ± 1.35 17.31 ± 0.88 17.34 ± 0.94 17.60 ± 1.34 18.06 ± 0.82

3.32 ± 1.02 2.98 ± 0.74 3.35 ± 0.56 3.94 ± 0.61 4.70 ± 0.72 5.13 ± 0.75 6.16 ± 1.05 6.15 ± 1.39 5.99 ± 1.44 5.09 ± 1.52 6.12 ± 1.10 5.32 ± 1.51 5.82 ± 1.44 5.75 ± 0.97

HfPR-[14]
41.16 ± 1.96 42.56 ± 1.47 44.31 ± 1.29 45.31 ± 0.91 46.05 ± 0.80 46.48 ± 0.52 49.02 ± 0.43 12.67 ± 1.04 12.59 ± 1.38 13.44 ± 1.15 13.58 ± 0.72 13.89 ± 0.68 13.82 ± 0.90 15.83 ± 0.65

1.36 ± 0.15 1.88 ± 0.22 2.08 ± 0.17 2.50 ± 0.16 2.87 ± 0.18 3.41 ± 0.19 4.81 ± 0.39 3.90 ± 0.86 3.94 ± 0.52 4.38 ± 0.56 4.64 ± 0.55 4.84 ± 0.64 5.06 ± 0.64 5.13 ± 0.50

HfPR-[50]
12.54 ± 1.48 22.61 ± 1.90 31.78 ± 1.28 38.00 ± 0.99 41.24 ± 0.92 44.25 ± 0.91 48.81 ± 0.37 5.86 ± 1.29 7.44 ± 0.97 8.55 ± 1.03 9.65 ± 0.70 10.57 ± 0.81 11.63 ± 1.02 15.01 ± 0.58

0.86 ± 0.05 1.23 ± 0.09 1.58 ± 0.12 2.16 ± 0.22 2.61 ± 0.23 3.11 ± 0.23 4.87 ± 0.36 3.66 ± 0.55 3.96 ± 0.61 4.36 ± 0.70 4.85 ± 0.59 4.63 ± 0.77 5.08 ± 0.76 5.23 ± 0.47

Table 2: Quantitative results for varying levels of additive noise. Errors are presented in the same way as in Table 1.

specular reflections. We then apply our algorithm, pro-

viding surface height and albedo estimates. We also ap-

ply the algorithms of Woodham [1] and Ikehata et al.

[14], providing surface normal estimates which we in-

tegrate into a surface height map using a state-of-the-art

surface integration method [48].

In Figure 3 we show estimated surfaces in a novel

view. Here, we use all 40 images. The surface recov-

ered by the proposed method is almost indistinguish-

able from ground truth, whereas the integrated surfaces

from [1] and [14] are significantly distorted (in partic-

ular, the large gradients at the edge of the objects have

been overly smoothed).

Next, in Table 1 we provide quantitative results when

the number of input images is varied between 10 and

40. We compute two errors. First, the median angular

difference between ground truth and estimated surface

normals. For the proposed method, surface normals are

computed from the estimated height map. Second, the

root mean square error between ground truth and esti-

mated surface height. To account for the constant of

integration, we subtract the mean value from all height

maps before computing this error. We experiment with

three different guide normals for our selection method:

those provided by the least squares method of Wood-

ham (referred to as HfPR-[1]), Ikehata et al. (referred to

as HfPR-[14]) and a robust version of the least squares

method using RANSAC (referred to as HfPR-[50]).

The state of the art method [14] is optimal in terms of

the accuracy of the estimated surface normals in all but

three cases. However, when the normals are integrated

into a height map, the accuracy of the recovered surface

is far inferior to estimating surface height directly using

our method HfPR-[50]. In many cases, even when we
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use Woodham guide normals (HfPR-[1]) we still obtain

a more accurate surface than [14].

In Table 2 we repeat the 40 image experiment but in-

troduce additive noise in the same manner as [14]. We

observe the same effect that, even in the presence of

noise, our method yields the most accurate height map

in all but one case.

5.3. Qualitative evaluation

In this section we provide qualitative results on three

different datasets exhibiting different sources of system-

atic noise. For each dataset (in Figures 4, 6 and 7), we

show an example input image in the first column, a ro-

tated view of the recovered surface in the second col-

umn, a colourised representation (R = nx+1

2
, G =

ny+1

2

and B =
nz+1

2
) of the surface normals of the recovered

surface in the third column and the estimated albedo

map in the fourth column.

Shadowed images. We begin in Figure 4 by showing re-

sults on the Harvard dataset [51]. This dataset was col-

lected for the purpose of evaluating shape-from-shading

algorithms. For this reason, the objects have approxi-

mately uniform albedo and reflectance is primarily dif-

fuse. However, the images include strong cast shadows

that lead to artefacts in the output of naive algorithms.

Each object is captured under 20 different illumination

conditions.

The recovered surfaces are both globally accurate

whilst also containing finescale detail. We emphasise

that our method recovers these height maps directly, i.e.

the step of integrating normals into a height map is not

required. Estimated albedo is uniform for much of the

surface, as would be expected. Bright patches corre-

spond to concave regions where inter-reflections raise

the observed intensity above that predicted by a model

with only direct lighting.

Our selection strategy ensures that shadowed obser-

vations have not corrupted the surface in shadowed re-

gions. In Figure 5 we show a region in which many of

the input images contain cast shadows. Woodham’s al-

gorithm (re-rendered surface normals shown top right)

leads to corruption of the surface normals. Shadowed

regions are being explained by adjusting the surface

normal directions. On the other hand, our result (re-

rendered surface shown bottom right) contains no shad-

owing artefacts.

Specular images. To evaluate performance on highly

specular objects, in Figure 6 we show results for the

UCSD reflectance database [52]. This database is chal-

lenging because the objects were selected for their

Figure 5: Close up of a reconstruction in a heavily shadowed region.

On the right we show reilluminations of the recovered surface with

frontal lighting. Top right: naive result using Woodham’s approach.

Note that the surface normals are corrupted by cast shadows. Bottom

right: our result. Our estimated surface contains no artefacts due to

shadowing.

highly non-Lambertian reflectance properties. Indeed,

they were originally used for the purposes of reflectance

estimation. The dataset contains high dynamic range

images which are necessary to capture the order of

magnitude difference in brightness between diffuse and

specular reflections for these objects.

Note that despite dramatic deviations from our mod-

elling assumptions, we are able to recover smooth

height fields and normal maps that are both globally sta-

ble yet contain finescale detail. The object in the third

row demonstrates an interesting failure case. The albedo

in the lower, right of centre segment of the gourd has a

diffuse albedo close to zero. The useful observations in

this region are the specularities and a non-Lambertian

photometric stereo algorithm would be required to re-

cover meaningful shape. Nevertheless, since our algo-

rithm solves globally for the surface height, the height

estimates surrounding the region impose constraints that

lead to a reasonable interpolation over this area.

Shadowed and specular images. For our final experi-

ments, in Figure 7 we show results on a dataset that

we collected in our own lightstage [53]. The objects

were chosen as they exhibit both specular reflection and

contain cast shadows. The objects are also highly com-

plex containing finescale shape and albedo variations

as well as both smooth and abrupt changes in surface

gradient. We captured 18 images with varying illumi-

nation for each object. In this case, the initial shape

and albedo estimates are provided by the spherical gra-

dient photometric stereo algorithm of Ma et al. [8]. The

bias in this algorithm is different to the results of Wood-
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Input Image Recovered surface Normal Map Albedo Map

Figure 4: Qualitative results for the Harvard dataset [51]. Input images (col. 1) contain numerous cast shadows. Col. 2 shows reconstructed

surfaces in a novel view. Col. 3 shows the surface normals of the reconstructed surface and col. 4 the albedo map.

ham’s algorithm. Albedo estimates are corrupted by

ambient occlusion and surface normal estimates in oc-

cluded regions are biased towards the “bent normal” di-

rection. Note that despite the complexity of the object

shape and appearance, we are still able to recover sta-

ble height estimates with no visible corruption caused

by non-Lambertian effects.

6. Conclusions

We have presented a photometric stereo algorithm

that combines model-based selection with solving for

surface height via photometric ratios. Our approach

has a number of attractive properties. The selection al-

gorithm is robust to any source of noise causing non-
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Input Image Recovered surface Normal Map Albedo Map

Figure 6: Qualitative results for the UCSD dataset [52]. Input images (col. 1) contain strong specular reflections. Col. 2 shows reconstructed

surfaces in a novel view. Col. 3 shows the surface normals of the reconstructed surface and col. 4 the albedo map.

Gaussian deviations from the expected intensity. Our

experimental results show that this is useful for detect-

ing shadowed and specular observations. By solving in

the surface height domain, we guarantee an integrable

solution. Moreover, surface normals at each pixel are

no longer independent since the surface gradients de-

pend on surface height at neighbouring pixels. This in-

troduces non-local constraints and improves robustness.

Finally, our method requires only a single parameter.

Even this, the threshold parameter, is a dimensionless

quantity (indicating the number of standard deviations

of noise that we will consider as valid observations) and

is therefore easy to set (we used the same value in all of

our experimental results). This means that our method

does not require tuning to a particular dataset.

There are a number of avenues for future work. Con-

cerning the selection strategy, we currently make selec-

tions independently across images and then use a single

cycle through the selections to form pairs. It may be bet-

ter to define a criterion for a good pair and make selec-

tions pairwise. We would also like to experiment with

weighting pairs to improve robustness. Our selection

strategy is currently based on a very simple statistical

test. In future, we intend to consider more appropriate

directional distributions for uncertainty in the surface

normal direction and use this to rigorously define the

probability distribution for an observation. Moreover,

our selection relies on a reliable initial estimate. If this

is systematically biased, then the selections themselves

are biased. Hence, in future we will explore whether

selection and reconstruction can be combined without

relying on an initial reconstruction.

Concerning height recovery from photometric ratios,

Equation 6 can be made invariant to ambient illumina-

tion by introducing a third image. Specifically, the idea

is to take ratios of differences between images so that

the ambient term is cancelled. Although this makes the

method more general, it would also be more sensitive

to noise. We also believe that robustness could be im-

proved by introducing priors such as smoothness into

Equation 12. In low albedo regions where all observa-

tions are noisy, it may be better to rely on smooth inter-

polation from more reliably reconstructed regions.

Reproducible Research

A Matlab implementation of our algorithm and the

synthetic datasets used are available from http://

www-users.cs.york.ac.uk/~wsmith/HfPR.
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Input Image Recovered surface Normal Map Albedo Map

Figure 7: Qualitative results for our own data collected in a lightstage. Input images (col. 1) contain both cast shadows and strong specular

reflections. Col. 2 shows reconstructed surfaces in a novel view. Col. 3 shows the surface normals of the reconstructed surface and col. 4 the

albedo map.
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