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Abstract

Multi-Light Image Collections (MLICs) are stacks of photos of a scene acquired with a
fixed viewpoint and a varying surface illumination that provides large amounts of visual
and geometric information. Over the last decades, a wide variety of methods have been
devised to extract information from MLICs and have shown its use in different application
domains to support daily activities. In this thesis, we present methods that leverage a
MLICs for surface analysis and visualization.

First, we provide background information: acquisition setup, light calibration and ap-
plication areas where MLICs have been successfully used for the research of daily analysis
work. Following, we discuss the use of MLIC for surface visualization and analysis and
available tools used to support the analysis. Here, we discuss methods that strive to sup-
port the direct exploration of the captured MLIC, methods that generate relightable models
from MLIC, non-photorealistic visualization methods that rely on MLIC, methods that es-
timate normal map from MLIC and we point out visualization tools used to do MLIC
analysis.

In chapter 3 we propose novel benchmark datasets (RealRTI, SynthRTI and SynthPS)
that can be used to evaluate algorithms that rely on MLIC and discusses available bench-
mark for validation of photometric algorithms that can be also used to validate other
MLIC-based algorithms. In chapter 4, we evaluate the performance of different photo-
metric stereo algorithms using SynthPS for cultural heritage applications. RealRTI and
SynthRTI have been used to evaluate the performance of (Neural)RTI method.

Then, in chapter 5, we present a neural network-based RTI method, aka NeuralRTI,
a framework for pixel-based encoding and relighting of RTI data. In this method using a
simple autoencoder architecture, we show that it is possible to obtain a highly compressed
representation that better preserves the original information and provides increased quality
of virtual images relighted from novel directions, particularly in the case of challenging
glossy materials.

Finally, in chapter 6, we present a method for the detection of crack on the surface
of paintings from multi-light image acquisitions and that can be used as well on single
images and conclude our presentation.
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Preface

THis dissertation is submitted in fulfillment of the requirements for the degree of Doc-
tor of Philosophy at the University of Verona. The thesis presents methods that
rely on Multi-Light Image Collections (MLICs) for surface analysis and visual-

ization. The first chapter introduces background knowledge: acquisition, light calibration
and applications of MLICs. The second chapter presents the use of MLICs for surface vi-
sualization and analysis [106]; it has been appeared in Computer Graphics Forum (CGF).
The third chapter presents a novel real (RealRTI) and synthetic (SynthRTI and SynthPS)
MLIC benchmark datasets. The RealRTI is acquired using light domes and a free-form
acquisition setup. Whereas, SynthRTI and SynthPS are generated with Physically-Based
rendering (PBR) techniques. SynthRTI and RealRTI have been used to validate the per-
formance of the NeuralRTI method [38]. The fourth chapter evaluates the performance of
selected photometric stereo methods using SynthPS dataset for cultural heritage applica-
tions that can be used to derive suggestions or even guidelines for the practical reconstruc-
tion of normal maps and surfaces from MLIC data; it has been appeared in Eurographics
Workshop on Graphics and Cultural Heritage 2020 (EG GCH 2020). The fifth chapter
discusses a novel neural network-based Reflectance Transformation Imaging (NeuralRTI)
method that is used to compress and relight MLICs (RTI) dataset. This work [38] has been
presented at Computer Graphics International (CGI) 2020 conference and published in
The Visual Computer (TVC) journal. Finally, the last chapter presents the Convolutional
Neural Network-based method for the detection of crack from the surface of painting [37].
This work has appeared in a EG GCH 2019.
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Introduction

A set of images contains more information about the scene than a single image. If the
image set is structured by systematic changes to illumination direction, the characteristics
of objects in the scene may be inferred. This set of images referred as Multi-Light Im-
age Collections (MLICs) [43] or Reflectance Transformation Imaging (RTI) Stacks [87].
MLICs are an effective means to gather detailed information on the shape and appearance
of objects. The basic idea of the approach is to visually characterize objects by capturing
multiple images of the surface of interest from a fixed point of view, changing the illumi-
nation direction at each shot. Such a collection of samples, typically arranged in image
stacks, provides massive amounts of visual data that can be analyzed to extract information
and knowledge on the shape and appearance of a surface.

The tremendous improvement of quality and price of controllable lighting and digi-
tal photography has made the acquisition of high-resolution MLICs practical and afford-
able using many different physical setups. As a result, a wide variety of applications are
using MLICs as a major means to non-destructively gather information on scenes and
objects at many scales, as well as to provide users with useful visualization tools for ob-
ject analysis. These applications benefit from an array of computational tools that have
been devised in different domains, such as feature detection and enhancement [43], recon-
struction of normal and 3D shapes [2, 154], extraction of surface appearance and material
behavior [35, 151], illustrative visualization, [53, 80], BRDF fitting [93] and creation of
relightable images [38, 81].

In this thesis, we present methods that exploit MLICs to perform surface analysis and
visualization task, propose a method which creates a relightable image from MLICS, us-
ing neural network, and method for the detection of crack from the surface of painting
based on MLICs and convolutional neural networks. We start by providing structured
background information of MLIC. Following, we discuss how MLIC can be used for sur-
face visualization and analysis, and what are the available visualizations tools to perform
analysis. Then, we present a novel MLIC benchmark dataset, neural network-based Re-
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flectance Transformation Imaging (RTI) method and a method that detects crack from the
surface of paintings exploiting MLIC.

The first chapter provides background information on Multi-light image collections.
Here, we discuss different acquisition setup, categorizing them into two main categories.
Then, we discuss different light calibration techniques. Some of the techniques for vi-
sualizing and analyzing MLICs can indeed work without any other information than the
captured images. However, most of the visualization and analysis methods assume that
some information is available on camera and lights. We conclude Chapter 1 by discussing
application areas where MLICs have been successfully used for the research of daily anal-
ysis work.

According to a recent survey [106] MLIC can be used for surface analysis and vi-
sualization and plays the main role in supporting daily activities in different application
domains. These roles are usually supported using different MLIC visualization tools. In
chapter 2, we discuss the use of MLIC for surface visualization and analysis and avail-
able tools used to support the analysis. To be specific, we discuss methods that strive to
support the direct exploration of the captured MLIC, methods that generate relightable
models from MLIC, non-photorealistic visualization methods that rely on MLIC, normal
maps and visualization tools used to do MLIC analysis.

One of the challenges in the Multi-Light Image Collections (MLIC) community, is the
lack of benchmarks for evaluation. Usually, MLIC based methods evaluated using spe-
cific homemade datasets or a few publicly available benchmark (for example DiLiGent,
[132]). The main problem of these types of a benchmark is that they are not representa-
tive of those typically captured in the real-world applications (e.g. quasi-planar surfaces
made of heterogeneous materials with a wide range of metallic and specular behaviors and
non-uniform materials) of MLIC acquisition. Thus, the availability of specific benchmarks
for different surface analysis tasks will be fundamental to validate methods and develop
guidelines for the use of MLIC visualization software in different domains. To this end,
in chapter 3 we propose benchmarks that can be used to evaluate algorithms that rely on
MLIC. And in chapter 4, we evaluate the performance of different photometric stereo al-
gorithms using SynthPS for cultural heritage applications.

Reflectance Transformation Imaging [40, 81, 87] is a popular computational photogra-
phy technique, allowing the capture of rich representations of surfaces including geometric
details and local reflective behavior of materials. This method is widely used in the cul-
tural heritage and material science domains to characterize relieved surfaces. In chapter 5,
we propose a neural network-based RTI method, aka NeuralRTI, a framework for pixel-
based encoding and relighting of RTI data. In this method using a simple autoencoder
architecture, we show that it is possible to obtain a highly compressed representation that
better preserves the original information and provides increased quality of virtual images
relighted from novel directions, particularly in the case of challenging glossy materials.

Cracks represent an imminent danger for painted surfaces that needs to be alerted be-
fore degenerating into more severe aging effects, such as color loss. Automatic detection
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of cracks from painted surfaces’ images would be therefore extremely useful for art con-
servators; however, classical image processing solutions are not effective to detect them,
distinguish them from other lines or surface characteristics. A possible solution to improve
the quality of crack detection exploits Multi-Light Image Collections (MLICs). Hence, in
chapter 6 we present a method for the detection of crack on the surface of paintings from
multi-light image acquisitions and that can be used as well on single images. The proposed
method is based on a processing pipeline able to automatically identify crack regions in
single and multi-light images. The pipeline is based on a (multi-light) edge detection and
a Convolutional Neural Network-based labeling of image patches around edges.

To summarize, the main contributions of this thesis are:

• It provides structured MLIC background information: acquisition, light calibration,
applications and visualization tools.

• It provides a structured presentation of MLIC for surface visualization and analy-
sis. It presents methods that support the direct exploration of the captured MLIC,
methods that generate a fused single-image from MLIC, methods that generate a
relightable model from MLIC and non-photorealistic visualization techniques that
rely on MLIC.

• It proposes a novel real (RealRTI) and synthetic (SynthRTI and SynthPS) MLIC
benchmark datasets that can be used for validation of MLIC-related algorithms (for
instance: photometric stereo, Reflectance Transformation Imaging (RTI), image re-
lighting, material classification).

• It evaluates the performance of different photometric stereo algorithms using a novel
dataset (SynthPS) for cultural heritage applications.

• It proposes a neural network-based Reflectance Transformation Imaging (RTI) method,
aka NeuralRTI, a framework for pixel-based encoding and relighting of RTI data and
evaluate its performance using RealRTI and SynthRTI benchmarks.

• Finally, it presents a pipeline for the detection of crack on the surface of paintings
from multi-light image acquisitions and that can be used as well on single images.
The method is based on single or multi-light edge detection and on a custom Convo-
lutional Neural Network able to classify image patches around edge points as crack
or non-crack, trained on MLIC data.
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CHAPTER1
Background

Multi-Light Image Collections (MLICs) are sets of photos of a scene acquired from the
same fixed viewpoint but with varying lighting conditions. These sets of images contain
more information about the scene than one image alone. The motivation for acquiring
these sets of images comes from the assumption that by structuring the sets of images
changing an illumination direction, it is possible to infer the characteristics of objects in
the scene and to visually characterize them. MLICs are commonly acquired in several
practical applications for surface analysis and visualization. We present an overview of
them in Section:1.3), but, first, we give in Section 1.1 some technical background on their
acquisition and calibration. To capture multiple images of a surface requires a specific
setup procedure integrated with general-purpose equipment such as a digital camera, light
source, based on the individual objective and requirement. Usually, once the acquisition
process is finished, the relative position of the light for the acquired object surface is esti-
mated and saved for further use.

1.1 Acquisitions setups

So far, several multi-light acquisition setups, with different cost requirements, dimensions
and running environments geared around material appearance measurement (photometric
stereo, relighting, shape reconstruction, BRDF measurement) have been introduced. These
setups differ for several features, but, generally speaking, they can be classified into a free-
from and light dome. The first is based on a single light source moved around the object,
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Chapter 1. Background

typically manually and the second uses multiple light sources placed into a fixed structure
(e.g. light dome).

1.1.1 Free-form acquisition

The free-form acquisition, as we can guess from the name, it is the form of acquisition
where the light source moves freely, not fixed to a specific position. In this type of acquisi-
tion, usually, we have one light source but to acquire MLIC, the light source moves around
the scene in such a way that the object is lit by light from different directions. Several
free-form acquisition setups have been introduced so far, with different cost requirements,
and objectives. As the light source position is not constrained, this type of setup allows
an arbitrary and potentially dense direction sampling, but methods to estimate light direc-
tions in the camera space are mandatory for subsequent image processing. Special targets
inserted in the scene are thus necessary and are the features characterizing the different
approaches proposed together with the light source employed (see figure1.5). In the past,
various, this type of acquisitions with a little difference have been presented by different
researchers.

Masselus et al. [83] presented an acquisition setup, to captures the reflectance field of
an object using a free-moving, hand-held light source. This setup contains a digital cam-
era, fixed during acquisition, a hand-held light source, and four diffuse white spheres for
light calibration (see Figure:1.1). Winnemöller et al [153] proposed an acquisition setup
similar to [83] with minor modifications to record fixed viewpoint reflectance fields by
waving a light source around the scene. Similarly, Chen et al [19] proposed an acquisition
setup targeted to estimate mesostructure for shiny samples from observations of specular
reflections from a hand waved light source. In this setup, Jenoptik ProgRes C14 digital
camera, a 5Watt Luxeon Star white LED as point light source, a checkerboard, and four
specular spheres to estimate the light source position are used.

Figure 1.1: An handheld light acquisition setup by Masselus, et al. [83]
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Figure 1.2: An acquisition setup by Ren et al. [123]

Giachetti et al [48] presented a free-form hand-held setup to obtain shape and appear-
ance information of captured surfaces, as well as to derive compact relightable represen-
tations of them. The acquisition setup consists of a stationary DSLR digital camera, a
hand-held light source, some calibration targets (a Lambertian white background/frame
and four black reflective spheres), and the object being acquired positioned on a planar
support perpendicular to the camera axis. Goldman et al. [51] proposed a setup for micro-
scopic acquisition to investigate archaeological textiles by utilizing micro-RTI technique.

Ren et al.[123] introduced an acquisition setup to acquire appearance information of a
surface using a deep learning approach. In this setup reflective spheres are placed near the
target scene to recover the light source position. A point light source and linear light source
composed of 12 LEDs are used to light the scenes. Besides, to constrain light movement
to a 2D, the glass panel is placed above the scene to keep the light source in contact with
the glass (see Figure:1.2).

Several issues related to the planning of handheld light MLIC captures have been ad-
dressed by Dellepiane et al. [30]. Here the authors extended the acquisition setup used to
generate relightable images (PTM) from photographs to large objects which in turn solve
issues related to the size of the object and conditions of acquisitions. They studied the
degradation of the quality of the PTMs concerning the number and position of lights used
to acquire the PTM. To simplify the manual light placements, they also developed a soft-
ware tool, called PTM Planner which let define the properties of the "virtual" light dome
to visually check its correctness and to automatically generate the coordinates for the light
placements.

1.1.2 Light domes

In contrast to the free-from setup, the most effective and widely used technique is a dome,
acrylic hemisphere, based acquisition technique. Unlike the hand-held acquisition setup,
in the dome-based acquisition, both the light and camera are placed in a fixed position
(camera mounting point and the lamp positions are fixed). Thus, leads to higher stability
and precision. Due to its nature of the setup, Dome based acquisition has many advantages,
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including speed of acquisition, accuracy, and repeatability. But it has also limitations, in
particular, the maximum object size, cost, portability, and difficulty of adapting to the site
topography.

Several dome solutions have been introduced so far, with different cost requirements,
dimensions and running environments [20, 24, 52, 97]. Malzbender et al. [81] built a
hemispherical device with 50 light sources (see Figure 1.4(a)), suitable for sampling small
objects (nearly 15 cm.). It is a 90 cm diameter black plastic hemisphere, with fifty evenly
distributed strobe lights mounted such that they illuminate the hemispheric dome’s interior.
The digital camera is positioned at the top of the hemisphere and photographs the subject
through a viewport cut in the dome. The same authors propose also a second setup (Figure
1.4(b)), designed for larger objects. Here, a 90 degrees arc 1.50m in diameter is mounted
with 12 strobe lights facing towards the center of the arc. One end of the arc is connected
to a circular bearing race in the shape of a torus. This allows the arc to spin in a 360
degrees circle around the bearing race.

Palma et al. [97] introduced a flexible dome solution composed by four aluminum
shells that can easily be assembled and disassembled to simplify the transport. It has 116
cold white LEDs and an overhead high-resolution reflex camera. The dome is computer-
controlled to allow a completely automatic acquisition by synchronizing the switching
on/off each LED with the shutter of the camera. Pitard et al. [111] designed a multi-
view dome solution for the case of quality inspection of small objects. In this solution,
they focused on the upper dome of the spherical structure using only a single camera for
gathering and processing reflectance transformation imaging.

Hameeuw [52] proposed a portable dome solution extremely easy to use. It is almost a
one-click solution that can provide a straightforward RTI acquisition pipeline. The dome
is equipped with a 5 million pixel camera or 29 million monochromatic sensors; it mounts
260 white LED light sources around an 80cm diameter dome. The main design purpose is
to make it easy to assemble/disassemble the dome in less than half an hour. This require-
ment makes it operable both in museum collections and other in-situ scenarios. Recently,
other domes have been presented that use both visible and invisible light wavelengths. One
example is the micro-dome with multispectral RTI capability presented by the RICH team
[72], [147]. It is equipped with 228 different LED light sources. Those LEDs are divided
into five different spectra: ultraviolet (365 nm), blue (460 nm), red (523 nm), green (623
nm), and infrared (850 nm). A 28 megapixels monochromatic sensor is mounted on top of
the dome.

Recently, Ciortan et al. [24] introduced a novel dome solution using low-cost hardware
and reasonable portability making it suitable for both lab and on-site acquisitions. It is
equipped with 156 multi-spectral LEDs evenly distributed across 52 light positions over a
60cm diameter hemisphere. The light sources cover 5 bands: two narrows in the ultraviolet
(centered at 395nm) and infrared (centered at 850nm) regions and one broad in the visible
to collect the RGB signals of the Nikon D810 DSLR, a camera with the infrared cut-
off filter removed. Besides, it also includes a user-friendly interface to control light and
camera. The acquisition setup of Ciortan et al. is shown in figure 1.3.

4



1.2. Light Calibration

Figure 1.3: A multispectral light-dome based acquisition setup by Ciortan et al. [24]

(a) (b)

Figure 1.4: Malzabender etal acquistion setup [81]. a) PTM acquistion dome. b) PTM
acquistion arc.(photos: hp labs taken from [30])

1.2 Light Calibration

The relative positions and orientations of the individual components to the object sur-
face, as well as device-specific characteristics, are important for the accurate acquisition
of geometry and reflectance [151]. As a consequence, there is a need for geometric cali-
bration, using certain known calibration objects or possibly also objects with the unknown
shape(see Figure:1.5), that allows obtaining a geometric relationship between the involved
illuminants, imaging sensors and the object surface during the acquisition.

The calibration of real illumination is a well-known topic in Computer Vision, and,
specifically, in the Photometric Stereo (PS) field [2]. While some methods try to implicitly
consider real light sources within the particular PS framework [102, 160], others are more
focused on the explicit calibration of various lighting properties. Some methods make
assumptions on the light form factor, e.g., near point light [3] or linear light source [144]
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and try to exploit the illuminated scene to extract the light position and direction. For
instance, Ahmad et al. [3] exploit diffused maxima regions in the framed model and derive
from them the light directions. Others perform calibration by sampling light on calibration
targets of known shape and albedo (e.g., reflective spheres or diffuse targets). Corsini et al.
[27] use high-dynamic-range images of two reflective balls to acquire the spatially-varying
illumination of a real-world scene, and it focuses more on the environment light effect
rather than on the computation of a per-pixel light direction and intensity. Ackermann
et al. [1] present a study and validation through error statistics of both a forward and
backward geometric point light source calibration by using sets of different numbers of
reflective spheres. Although it proposes a very simple and robust way to compute light
direction, it considers a point light model without considering non-uniform light intensity.

Other methods strongly rely on a specific, fixed light form factor (e.g., LED light [104,
159], and model the intensity with the corresponding fall-off due to both distance and angle
to the light principal axis. Xie et al. [159] also consider vignetting effects. Unfortunately,
those methods do not apply to the case of a general variable illumination due to non-ideal
lamps or lenses. Giachetti et al. [48] presents a novel light calibration technique. In their
approach, they use multiple spheres to estimate a light direction field and use measures on
a planar white target to estimate the intensity of each light ray, infilling missing data with
a low-degree interpolation, thus reconstructing an approximation of the entire light field
illuminating the scene. Some works thus try to cope with non-uniform intensity without
imposing an analytical light model [5, 140]: they use a flat reference object with known
albedo to sample an arbitrary lighting vector field and to calibrate it using a flat-fielding
approach. They don’t use polynomial interpolation, but they exploit measured spatially
varying intensities to compensate for the input images and to convert the problem into
a standard collimated case. Differently, from Giachetti et al. [48], they require different
acquisitions for the calibration step and the actual capture; this is possible only with a fixed
light configuration, but it does not apply to a more general free-form, hand-held multi-light
acquisition.

McDonald [79] employed three different calibration methods. The first method em-
ployed for determining the lamp coordinates was to take images of the shadow cast onto
graph paper by a vertical steel pin when illuminated by each light(figure:1.5 first image).
The two-dimensional coordinates of the tip of the shadow can be determined simply by in-
spection of the image, and trigonometry applied. The second method, which they believe
gives a more precise determination of the lamp coordinates, close-range photogrammetry
was employed, with the aid of the Vision Measurement System (VMS). To apply VMS
to measure the lamp coordinates in the dome, retro-reflective targets were stuck onto four
well-defined positions around each of the 64 flash lamps, and a photogrammetric project
was undertaken. The third one is the method that realizes using the flash themselves as a
recognizable target (Figure:1.5 2nd and 3rd images).

1.3 Applications

MLIC techniques have been mixed and matched to solve several problems in a variety of
application domains, and they have been also integrated into user-friendly software tools
(section 2.6) aimed at supporting both visualization and analysis.

The visual analysis of MLICs is at the basis of several applications and tasks, ranging
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Figure 1.5: Example of calibration objects. The first three calibration objects used by
McDonald [79] and last one the calibration object used by Giachetti et al. [48]

from pure visualization to geometric analysis [108]. In the sequel, we provide a structured
overview of the areas where MLICs have been successfully used for daily visualization and
analysis work. Table 1.1 presents a schematic view of the distribution of the techniques
presented in chapter 2 to the main application domains they are employed in.

1.3.1 Cultural Heritage
Cultural Heritage (CH) appears, by far, to be the application domain where MLICs are
more popular. This is due to both the versatility of the capturing approach (capable of
working at a large number of scales) and the large quantity of information that can be
gathered about object surfaces by using relatively low-cost equipment. Moreover, using
moving lights fits well with traditional CH analysis means, and it is thus well received by
CH experts. Nowadays MLIC based acquisition is considered a well-assessed digitization
method in CH, and specific surveys and tutorials have been dedicated to them [88, 148].

Since their introduction, relightable images based on MLICs (section 2.3) have been
used for the analysis of CH objects like tablets, statues [36, 45, 81, 87, 89, 129], paint-
ings [95, 116], coins [97, 116], and manuscripts [150]. The interactive relighting is partic-
ularly appreciated by CH experts as it also enables the simulation of the typical raking light
surface inspection [110]. Another common practice in the CH community is related to the
use of illustrative enhancements (Sec.2.4), such as Diffuse gain, Specular enhancement,
and Unsharp masking, to intensify the detail perception on tablets [53, 98], petroglyphs or
written stones [91, 145], mural graffiti [28], coins [67], or, generally, metallic alloys [78].
In this context, a major research need is the enhancement of legibility and readability of
written texts or engraved symbols [40], and the processing of MLICs can lead to the ex-
traction of meaningful lines and inscriptions on tablets [11, 100]. Further, an advanced
application to automatically recover line drawings of inscriptions has been demonstrated
on a collection of Mesopotamian clay cones [52]. The combination of the surface penetra-
tion given by the infrared light together with the non-photorealistic exaggeration facilitated
by the multi-directional light images has proven effective for recovering invisible texts of
the Dead Sea Scrolls [15], where the deterioration of the parchment caused its blending
with the black iron-gall ink. Furthermore, by using RBF interpolation (section 2.1), the
raking light analysis is enabled, and certain engravings around the margins of the lamina
gain more visibility.

Another application of MLICs coveted by the CH end-users is the visualization of the
dynamic interplay between light and the complex surfaces of artworks characterized by
heterogeneous optical behaviors. In a recent work [44], the authors manage to trace back
the original visual impression of mosaic tesserae and early prints by unmixing the glossy
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details from the diffuse component as a result of fitting the light transport function formu-
lated as a polynomial (section 2.3). In this manner, they obtain a layered representation of
the artwork’s reflectance. Moreover, to allow the end-users to customize the digital sur-
rogate according to their artistic view, the gloss layer is enhanced in a non-photorealistic
fashion (section 2.4) and generated synthetically according to a Phong reflection model.
Through the user input, parameters such as the degree of shininess, diffusiveness, and spec-
ularities can be interactively modified to render different degrees of glossiness. The sepa-
ration of the specular component has been proposed as well by Macdonald [78] as a way to
improve the quality of CH object relighting. The importance of the specular reconstruction
for the visualization of relighted paintings’ surface is demonstrated also by Thanikachalam
et al. [142], where the method based on the reconstruction of light transport matrix with
a compressive sensing approach (section 2.3) preserves the visual richness of paintings
and allows for the visualization of how the specular behavior migrates over the painting’s
surface. Pitard et al. [112] show that a better interactive relighting model could not only
improve the quality of the specular component on a jewel visualization but also allows for
a better understanding of texture relief on a wall painting.

The analysis of the rich data in MLICs has given promising results in revealing the
manufacturing techniques of a craftsman or the painting style of an artist. This applica-
tion is especially relevant for reclaiming information of unknown or unstudied heritage, as
well as very old or lost-and-found historical objects. Newman [92], based on the specular
enhancement visualizations (section 2.4), distinguishes between three types of negative
profiles (incisions and striations) in the creation and finishing of archaeological bone ar-
tifacts from El Zotz assemblage. At the same time, Artal and Klausmeyer [6] propose a
method that uses non-photorealistic enhancements and feature maps in the case of Greek
red-figure vases (section 2.4) to guide the end-user in distinguishing between various types
of decoration lines with positive profiles, as well as their order of application at the fab-
rication moment. Similarly, others spot different orientation patterns in the clay molding
process of Execration Egyptian statuettes made of unbaked clay [146]. Analogously, in
painted items, it is possible to render the relief and orientations of the brushstrokes related
to a style or an artist. In addition, many methods aim at detecting particular pigments
through direct local MLIC interpolation in the light space (section 2.1), by mixing the
multispectral data into a single false-color visualization [147, 148] (section 2.2), or by di-
rectly analyzing histograms of the per-pixel reflection maps (section 2.1). In this context,
MLICs have also been used to recover lost pigments and to revive faded colorings by us-
ing non-photorealistic renderings [146]. Finally, fibers in historical textiles with different
materials and patterns of decay can be visually detected by using magnified multi-light
images under UV radiation [51] (section 2.2).

MLICs can be maneuvered as a measurement tool in assessing the conservation con-
dition of CH materials. For instance, single image visualization and non-photorealistic
enhancements based on MLICs of coins [67] indicate the need for material cleaning and
show whether a conservation treatment was applied successfully or not. Similarly, the in-
corporation of profile measurements on an exaggerated shaded view of manuscripts has
been shown to provide useful visual annotation concerning the analyzed documents and
their medium [147]. In addition to single image visualizations and dramatic enhance-
ments, by deriving feature maps that target crack formation, Manfredi et al. [82] propose
a quantitative approach for monitoring damages in paintings. With a resembling underly-
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ing procedure, MacDonald [79] measured the extent of cracks in a fresco at the National
Gallery of London.

1.3.2 Natural Sciences

MLICs are a well-recognized imaging technique for natural sciences as well [88]. In
biology, MLIC-based relightable image models (section. 2.3) are used to support animal
species identification [55], while MLIC-based image fusion (section. 2.2) is used for detail
visualization of leaves or flowers [43, 121, 167]. Non-photorealistic visualization methods
combined with feature extraction have also been successfully used for the visual analysis
of biological surfaces [149] and leaf venations [165]. In paleontology, MLIC visualiza-
tion methods have mainly two functionalities: detail visualization and whitening. The low
visibility of images of fossils is hampering visual analysis. Mostly, this factor comes due
to low color contrast and a corroded relief. To solve this problem, the classic RTI frame-
work is often used to illustrate subtle features from fossils, assisting in discovering hidden
details [54]. MLIC data are used not only to create interactively relightable images of the
fossils [80, 81] (section 2.3), but also to simulate fossil whitening, a task performed to
get information regarding their morphology. Normally, this task is done manually using
various techniques such as an airbrush or chemical agent (ammonium chloride). Hammer
and Spocova [54] show that this can be done digitally using MLIC-based photorealistic
visualization, with competitive performance to traditional more invasive techniques. En-
hancements like edge detection have been used as well to increase the perception of fossil
structures [100].

1.3.3 Industry

In industrial manufacturing, the inspection of an object’s surface is often performed to
control whether the final product meets predefined tolerances. In recent years, major ef-
forts have been made to replace, wherever possible, manual or physical testing with a
virtual visual inspection. MLIC visualization is emerging as a promising solution since
it allows for the reliable acquisition of materials, their high-quality visualization, and an
exchange of that information for industrial monitoring and design [157]. Enhanced sin-
gle image visualization based on MLICs can be used to better understand the structure
of mechanical parts [121]. Pitard et al. [113, 114] have used a MLIC photorealistic visu-
alization technique for the detection and the analysis of visual anomalies on challenging
metallic surfaces. This technique is derived from DMD [111] (section 2.3), and automates
the visual inspection by introducing a rotation-invariant representation of the reflectance
characteristics of the inspected surface. Smith and Stamp [135] also use MLIC based pho-
torealistic visualization technique for quality inspection of textured ceramic tiles, while
Rump et al. [126] employed MLICs visualization for metallic car paint inspection and de-
sign. In the context of quality control and investigation of electronic reliability, MLICs
captured with the Scanning Electron Microscope (SEM) [99] are used to produce mean-
ingful visualization of micro-and nano-details on the surface of electronic circuits; Pintus
et al. [109] demonstrate an application to the visualization of damaged solid-state electron
devices.
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1.3.4 Underwater inspection
An image-based surface analysis in the underwater environment is a difficult task, due
to factors such as water clarity/turbidity, excessive algae, and other participating media.
This highly affects the light phenomena, and usually results in dark, low contrast, and
bluish tone-image. A specialized approach of MLICs applied to that type of environment
has been proposed by Selmo et al. [130]. Authors use RTI to study underwater CH ob-
jects, e.g. details from historic shipwrecks. They also perform a study on the effects of
turbidity on relighting quality. Another issue in underwater MLIC processing is related to
light refraction effects. Fan et al. [42] propose a flat refractive model to cope with this phe-
nomenon by computing the mapping of virtual and real points; they can remove distortions
in underwater acquisitions both for 3D reconstruction and MLIC visualization.

1.3.5 Medical imaging
The application of MLICs in the area of medical science strives to increase the readability
of medical images. It is mostly used in the type of examination where the internal organ
such as the esophagus, stomach, and upper part of the small intestine is visually inspected,
often in real-time during examinations [25, 103]. This is typically achieved by modify-
ing existing instruments (e.g., endoscopes [39]) to perform multi-light acquisitions, and
by fusing several images to help in visualization. The typical approach is to reconstruct
normal and remove highlights in the visualization [103]. By using a simple MLIC capture
with few light sources and single image enhanced visualization it is possible to assist doc-
tors in the understanding of the 3D structure of anatomical parts in endoscopic views [121].
MLIC analysis is also used for the 3D reconstruction of different organs. For instance, Lv
et al. [76] used Photometric Stereo to retrieve the shape of a tongue, which is used for an
accurate diagnosis. To support visualization, the reconstructed organ is mapped with the
surface albedo. MLIC-based visualization is also used in dermatology, which often uses
interactive visual inspection to support diagnostic tasks. In this area, a photorealistic visu-
alization with fitted relightable models (section 2.3) has been proposed for pigment lesion
analysis [139], or to find biomarkers for early skin cancer detection [138]. Sun et al. [139]
have shown that MLIC-based non-photorealistic enhancement (section 2.4) can generate
an efficiently encoded and reasonably complete representation of skin appearance, which
assists in the analysis and diagnosis of pigmented skin lesions.

1.4 Summary

To sum up, in this chapter we have discussed the different contexts of MLIC. We started
by discussing how MLIC can be acquired, what are the different acquisition setup pro-
tocols utilized by the MLIC community, categorizing them into a free-form and light
dome. Then, we have discussed different existing, MLIC-based, light calibration tech-
niques (which is fundamental information for most MLIC based algorithms). Finally, we
have discussed in detail the application areas where MLIC is used to support daily activ-
ities. The areas include cultural heritage, natural science, industry, underwater inspection
and medical imaging.
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Cultural Heritage Natural Sciences Industry Underwater Medical
Imaging

Direct ex-
ploration
(Sec. 2.1)

Interpretation/Monitoring [47];
Dissemination/Inspection [47,
116, 129].

Single-
image data
fusion
(Sec. 2.2)

Enhanced perception [24, 28];
Showing the invisible [24, 146,
147, 150]; Pigments [28, 146,
147, 150].

Enhanced percep-
tion [43, 121, 167];
Automatic illustra-
tion [43, 121, 167];
Dissemination/In-
spection [43].

Enhanced
percep-
tion [121].

Endoscopy [121];
Shape and
reflectance
analy-
sis [138,
139].

Relightable
images
(Sec. 2.3)

Surface defects [79]; Material
characterization [78]; Interpre-
tation/Monitoring [51, 88, 92];
Dissemination/Inspection [36,
44, 51, 79, 81, 88, 97, 112,
142].

Enhanced per-
ception [81, 88];
Species iden-
tification/Inter-
pretation [55];
Dissemination/In-
spection [81, 88].

Surface
Quality
Inspec-
tion [111,
112, 135].

Shape and
reflectance
analy-
sis [138,
139].

Non-
photorealistic
enhance-
ments
(Sec. 2.4)

Enhanced perception [15, 28,
40, 53, 81, 87, 91, 95, 98, 145];
Showing the invisible [15, 91];
Pigments [28, 47]; Surface de-
fects [95]; Interpretation/Mon-
itoring [6, 15, 40, 67, 92,
146, 147]; Dissemination/In-
spection [6, 40, 67, 81, 87, 89,
95, 98, 145, 147]

Enhanced percep-
tion [54, 80, 81];
Automatic illustra-
tion [54]; Species
identification/Inter-
pretation [55]; Dis-
semination/Inspec-
tion [54, 80, 81].

Enhanced
percep-
tion [130].

Table 1.1: Techniques vs Major Application Domains. For each class of MLIC anal-
ysis and visualization methods, the major use cases for each application domain are
presented.
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CHAPTER2
Multi-Light Image Collections for Surface

Visualization and Analysis

Multi-Light Image Collections (MLICs) contain plenty of information that can provide
large amounts of visual and geometric data if extracted properly. Over the past decades,
a wide variety of methods have been devised to extract information from MLICs. In this
chapter, we focus on those techniques from the point of view of the data and interaction
means that they make available to users for analysis and visualization.

In Section one, we present methods that strives to support the direct exploration of
the captured MLIC (Section 2.1). These techniques typically exploit a light-space pa-
rameterization to offer a user-interface to browse the input dataset, eventually performing
interpolation to provide continuity of motion, or to simulate in-between lighting config-
urations. Little processing or enhancements are applied in these techniques, which are
mostly used as components of larger data exploration systems. Minimal calibration is re-
quired here, most of the time, limited to an approximation of the spatial configuration of
lights. In section two, we present group of techniques that generates a fused single-image
(Section 2.2) that maximizes for each output pixel the amount of information present in
the input MLIC. This is generally done by an optimization process, and the resulting im-
age is static, and not used in interactive settings. User interaction is typically limited to
changing parameters to guide the detail enhancement process. Moreover, many of them
can be applied without the knowledge of the illumination pattern, thus limiting calibration
needs.

In section three, we present techniques used to generate relightable models. These
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techniques typically rely on, at least approximately, calibrated data, and compute per-pixel
representations that can be exploited at visualization time to generate novel illumination
patterns. A method in this class, possibly the most popular one, constructs fitted repre-
sentations that approximate the light transport function, or perform a light matrix domain
fitting (Section 2.3). A user interface is generally provided to control the simulation of
novel lighting, which is used in exploration applications (e.g., using simulated raking lights
to enhance particular features). In contrast to the direct exploration methods, the lighting
used during the interactive task is not limited to be an interpolation of the ones used for
the acquisition.

In section four, we present non-photorealistic visualization techniques. These tech-
niques help in gaining insight on objects through visual effects (Section 2.4). These meth-
ods are rarely applied for enhancing specific aspects of the raw images (e.g., color discon-
tinuities and color frequencies at different levels of resolution), while, most often, they are
combined with relightable image methods to support an improved visual interpretation of
the scene of interest in an interactive setting.

In section five, we present different photometric stereo algorithms. A method focused
on estimating the surface normal given MLICS. Finally, we present available interactive
MLIC-based visualization tools used to perform MLIC analysis.

2.1 Direct exploration of acquired data

Direct exploration approaches aim at providing a framework to browse original data, by
performing little processing except, eventually, for the computation of in-between images
to simulate a continuous sampling of the light space. One of the main challenges is the
need for dealing with large amounts of data at exploration time.

In the case of original image navigation, no processing is needed on the image stack,
so the only issue is how to offer interactive access to the displayed images, which is done
either by a simple discrete selector or by finding the nearest neighbor in a continuous
interface for specifying the light position [79].

2.1.1 (PCA-compressed) Radial Basis Function
In the direct interpolation scenario, Radial Basis Functions (RBF) [14] interpolation has
been typically used to produce a relighted image with a new virtual light from the MLIC
stack [47]. Given the N images corresponding to the closest neighbors of the new light
direction, RBF interpolation is achieved by computing the parameters that define a sum of
N radial functions. The reflectance I is expressed as:

I
(
~l
)
=

N∑
i=1

αie
‖~l−~li‖2

R2 (2.1)

where αi is estimated per pixel by solving a least-squares problem.
A recent objective and subjective evaluation have shown, in particular, how RBF inter-

polation is capable of better visualizing the behavior of complex materials for in-between
views with respect to classic fitting approaches [105] (Fig. 2.1). However, the need to
access large amounts of data makes the method very computation and memory-intensive.
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Figure 2.1: Direct interpolation. For each row, here we show (from left to right): one
of the original images in the MLIC; PTM-based rendering (section 2.3): HSH-based
rendering (section 2.3); RBF rendering. RBF interpolation is capable of visualizing
better novel virtual light directions, compared to classic methods. Courtesy of Pintus
et al. [105].

For this reason, it has been combined with compression approaches. Since the extraction
of a set of basis has been demonstrated to work well to approximate the appearance [129],
Ponchio et al. [116], in particular, proposes a relighting method based on a simple bilinear
interpolation. In the pre-processing step, they create a novel relighting with RBF by using
novel light directions that form a regular grid in the light direction space. Then, they com-
bine this information with a per-pixel compression strategy based on Principal Component
Analysis (PCA). At exploration time, they perform relighting from a novel light direction
by applying bilinear interpolation to the pre-computed grid, and by selecting the final color
from the compact PCA basis. Their data encoding is extremely suitable for online relight-
ing, and a WebGL based interactive viewer has been realized that exploits the combination
of those two techniques. Finally, another interesting thing is that PCA components can be
stored in byte planes, and compressed as JPEG images to support compact relightable data
exchange [116].
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2.1.2 Visualization and Analysis

Direct exploration approaches are the least sensitive to calibration and raw data quality
(e.g., for original data viewing without interpolation, the visual quality is simply the same
as the capture sensor). For this reason, these techniques have been successfully employed
in many application domains (e.g., Cultural Heritage - CH, Sec. 1.3), and they prove very
suitable to directly treat complex materials with behavior that is difficult to model [47].
Original data visualization, and to a lesser extent interpolated data, is capable of reproduc-
ing both high-frequency components (e.g., highlights) of the reflectance field, and global
effects, such as cast shadows and interreflections, that allow users to appreciate and un-
derstand the geometry at a meso/macro level. With an extremely dense acquisition, and a
continuous light selection interface coupled with nearest-neighbor interpolation, the user
can naturally select the original image to display, and interactively simulate controlled
illumination. Direct exploration of the original images may be, however, difficult for vi-
sualizing massive image collections in remote settings. Moreover, the Graphical User
Interface (GUI) for selecting a light is efficient only for regular acquisitions (e.g., domes),
which offer a natural 2D parameterization. Further, the lack of continuity may make the
perception of details difficult, as it is not possible, in most practical cases, to exploit motion
parallax. Compression techniques combined with interpolation [116]) allow for simulating
more flexible scenarios, including, for instance, moving a raking light, which is one of the
classical methods used in real-world surface analysis and inspection. While the simulated
continuous light motion may improve perception through motion parallax cues, it may also
produce artifacts for cast shadows and highlights, especially if the sampling is not dense.
Thus, some authors [47] have proposed to let users interactively tune the locality of the
interpolation, but this approach is far from optimal.

2.2 Single-image data fusion

While direct exploration strives to provide direct access to all the individual images com-
posing the MLIC, single-image fusion approaches have the goal to maximize the infor-
mation that can be conveyed in a single static image. Often the performed data fusion
produces physically inconsistent or impossible images but serves to increase the amount
of shape information (less often appearance) presented in a single view of the object.

The most straightforward way, and classic way, to extract a single image that con-
veys object surface information from a MLIC is the albedo visualization. This is a light-
independent view of the low-frequency (typically constant), spatially-varying BRDF across
the surface [2, 24, 154]. Since the albedo removes highlights or other high-frequency ef-
fects that might disturb the underlying content in the visualization, this approach is often
used for objects where pigment information is important (e.g., think of a painting inspec-
tion). However, a large amount of information about small, fine surface details is contained
in the high-frequency part of that signal and is completely lost. Motivated by artistic tech-
niques, which bring-out fine-scale details, while at the same time preserving the global ob-
ject shape, several methods perform a multi-scale analysis of the MLIC signal at different
spatial resolutions and frequencies, and then reconstruct an enhanced image that combines
detailed information at each scale across all the input images. Fattal et al. [43] decompose
each image in a MLIC into a series of detailed images plus a base image. The detailed
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(a) MLIC composed of three images

(b) Two enhanced results

Figure 2.2: Single-image data fusion. The input data consists in a 3 image MLIC (2.2a).
The multi-scale approach of Fattal et al. [43] has been applied and two possible results
have been obtained with different parameter configurations (2.2b). The enhanced view
on the left locally highlights details and flattens the global appearance of the object,
while the result on the right implicitly uses some shadows to increase detail perception.
Courtesy of Fattal et al. [43].

images are the differences between two bilaterally filtered versions at consecutive scales,
while the base image encodes the low-frequency shading. The final visualization is built
by a weighted sum of those contributions. Fig. 2.2 shows both an input 3 images MLIC
and two possible results given different parameters, which drive the image fusion. One en-
hanced version makes the local finest details pop up, but flattens the global appearance of
the object, while the other output implicitly uses some shadows (no shadow map has been
explicitly extracted though) to augment the global perception of the object geometry. Since
some high-frequency signals are generated by phenomena that are not related to local sur-
face topology, or, in other terms, to real details or surface features (e.g., globally cast shad-
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(a) A car engine (original vs enhanced

(b) A flower plant (original vs enhanced

Figure 2.3: Single-image data fusion for illustrative visualization. Some MLIC-based
fusion methods are capable of enhancing visual information in complex shapes, e.g.,
mechanical parts (2.3a), and of removing texture data through a digital visual ab-
straction that still preserves important features across the viewed surface ((a))(2.3b).
Courtesy of Raskar et al. [121].

ows), some algorithms integrate this approach with an additional step of shadow detection
and removal [167]. Other works exploit shadows cast by multi-light acquisitions to clas-
sify spatial changes among those caused by spatially-varying materials across the surface,
rather than depth discontinuities [121]. They use that information to build a single image
visualization, which superimposes a stylized rendering on a processed version of the orig-
inal input MLIC that removes unnecessary details while increasing the three-dimensional
perception. This results in a final toon-like visualization, which highlights boundaries be-
tween the various shapes in the framed scene. Fig. 2.3 shows how this kind of illustrative
technique has been employed to highlight the boundaries of complex shapes (Fig. 2.3a)
and to remove texture data that contains less information through an abstraction strategy
that preserves important features across the viewed surface. In this approach, an interac-
tively controllable ”degree of abstraction” parameter controls the number of local details
that can be removed (Fig. 2.3). When MLIC acquisition is performed also in a colored
or even multi- or hyper-spectral framework [28], it is possible to exploit not only detailed
information from the varying light position/direction but also from shading-independent
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wavelength response across visible and invisible spectra. Once light-position-dependent
components have been fused, the multi-spectral signals can be combined to produce false
color visualizations, which fuse per-pixel contributions into a single image with high-
lighted details and main polychrome regions [147]. In this context, a common strategy
to visualize high-dimensional chromatic data is to perform false-color PCA visualization.
This data-reduction approach computed on a multi-spectral MLIC proved to be very pow-
erful in significantly increasing the legibility of almost-faded details on the surface [146]
and subsurface layers (e.g., underdrawings in paintings or manuscripts [150]), which are
completely invisible in the original photographs.

2.2.1 Visualization and analysis
The combination, through a data fusion process, of all the MLIC information in a single
image has the inherent disadvantage that some information is lost, interactive browsing
is no more possible, and motion parallax cannot be exploited. On the other hand, the
data-fusion process produces images that convey much more readable information than
any single image in the MLIC. Compared to a photorealistic visualization by using direct
exploration (Sec. 2.1), single image methods are capable of revealing both tiny surface
texture elements and patterns, and global shape features (e.g., depth discontinuities in
cluttered/complex environments), which are otherwise poorly visible or completely in-
visible in the photorealistic version or the original images. Since they try to emphasize
geometrical features and to convey a visualization with a high level of abstraction, these
techniques can provide useful insights into the nature of the real material appearance. For
these depicting capabilities and their efficiency, these data fusion methods are employed
for several tasks. Examples include visualization of surface texture and cracks in rock [43],
fur visualization [43, 167], as well as venation and texture enhancement in botanic visual
inspection [43, 121, 167]. When multi- or hyper-spectral capture is available, the shading-
independent response to several different wavelengths can be used to enhance small poorly
visible inscriptions (e.g., incisions on stones) [28, 146], to visualize abundance maps of
pigments across the acquired object [28, 147, 150], or to improve the visibility of faded
inks in old written text [147]; moreover geometrical structures and irregularities under the
surface layer (e.g., pictorial layer visualization) can be made visible together with geomet-
rical gradients. Moreover, these methods may produce a meaningful visualization even
with a small amount of input data (e.g., 3−4 images). For this reason, they have also been
used for the enhancement of images during dynamic capture. Most of the approaches,
moreover, do not require a camera and light calibration, since they perform the analysis
just starting from the intensity changes in the image stack. The fact that they analyze
multiple images at once makes them more effective than single-image enhancements or
exaggerated shading techniques directly applied to 3D geometry [43]. They are employed
to display scenes with low-contrast depth edges, and complex geometries such as mechan-
ical parts (Fig. 2.3) or medical data (e.g., in endoscopy [121]). Besides, during the visu-
alization, the user has only to tune a small number of parameters to interactively weight
the contribution of various surface behavior components (e.g., weights of base and detail
signals [43], amount of detail enhancement [167], or degree of abstraction). Single image
approaches are also very suitable for storage and communication purposes in the context
of web-based visualization platforms, since they exhibit a compact and compressed repre-
sentation, and are very appropriate for printing. The limitation to static visualization may
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be an interesting area of future work, since multi-image data fusion might be used in the
context of real-time exploration methods, e.g., by fusing only subsets of images near the
currently, interactively determined, focus light, or by exploiting a globally fused field in
combination with other methods to improve shape and detail perception while performing
relighting or other interactive tasks.

2.3 Relightable images

While single-image data-fusion mostly focuses on static visualization, offering the pos-
sibility of dynamically relighting the models is at the core of relightable model based
approaches, which analyze the MLIC to learn the relation between measured images and
incident illumination, and synthesize it in a relighting model. This set of methods, re-
lightable images strives to directly model the reflectance field, without separating shape
and material contribution. The techniques require, in addition to the MLIC, metadata with
information on camera and light parameters to reason on the relation between measured
reflectance and incoming light direction and intensity.

2.3.1 Polynomial Texture Maps
The seminal insight behind relightable images, introduced by Malzbender et al. [81] in
terms of Polynomial Texture Maps (PTMs), was to replace classical multi-light process-
ing based on Photometric Stereo [154] with a more flexible interpolation-based approach,
which transforms the high amount of data in RTI image stacks into a compact multi-
layered representation focused on approximating the measured appearance as a function
of light direction. The method is based on a per-pixel bi-quadratic polynomial interpola-
tion of the image stack producing a spatially varying reflectance I as a function of the light
direction:

L (u, v, lu, lv) = a0(u, v)l
2
u + a1(u, v)l

2
v + a2(u, v)lu

+ a3(u, v)lu + a4(u, v)lv + a5(u, v)
(2.2)

where lu, lv , are projections of the normalized light vector into the local texture coordinate
system. Given n+1 images, the best fit at each pixel is computed using singular value
decomposition (SVD) to solve the system of equations for a0 − a5:
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At each pixel, given the six parameters (a0 − a5) computed from data fitting, and a
light direction ~l, the reflectance is computed as:

I
(
~l
)
= a0~l

2
u + a1~l

2
v + a2~lu~lv + a3~lu + a4~lv + a5 (2.4)
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This method was the basis of the development of the RTI framework. A drawback of
the quadratic model is that it captures only the low-frequency reflectance behavior, and it is
not capable of reproducing high-frequency effects like specularities and shadows. The use
of high order polynomials has been also tested [164], where third-order coefficients have
been used, increasing the quality of the relighted images at the expense of increased os-
cillations in case of unreliable data. High-frequency effects may also act as outliers in the
fitting process, damaging the accuracy of the reconstruction. For this reason, robust fitting
methods(robust PTM [36], accelerated guided robust matte-model fitting [107]) have been
successfully proposed. Robust PTM explicitly deals with highlights and shadows. This
version lays its foundation on the assumption that the matte component is inlier whereas
the specular and shadow components of the surfaces are outliers based on the solution
which comes from robust regression, Least Median of Squares (LMS). It extended PTM
in two ways: (1) First, the least-squares(LS) regression for the underlying matte model is
replaced by a robust regression, the LMS method [124]. By utilizing the LMS, which gen-
erates outliers "on a silver platter", without any intervention the regression process robust
to outliers. This means that only a majority of the n pixel values obtained at each pixel
need be matte, with specularities and shadows automatically identified as outliers.; (2) Sec-
ondly, it furthers adds, an additional, interpolation level by modeling the part of in-sample
pixel values that are not completely explained by the matte PTM model via a Radial Basis
Function (RBF) interpolation. The RBF model takes care of features such as specularities
and shadows that change abruptly with lighting direction. Robust PTM, start off by replac-
ing the variable of polynomial function (equation 2.2) with (lu, lv, lw, l

2
u, luv, 1) where w

=
√
1− u2 − v2. Then it solves the model in a robust version, using LMS, with the upshot

that both the shadows and specularities are identified automatically without the need for
any thresholds.

Fornaro et al. [44] employ a PTM to model the matte signal and compute the distance
between that matte function and the intensity of each pixel for all lighting directions. The
average of those distances is considered a measure of the pixel glossiness and used to add
a Phong based shading component to the rendering. This method is less general than the
previous approaches since it makes the implicit assumption that the object is a reflective
surface. Similarly, in the method proposed by Macdonald [78, 79] the matte model is
used to extract the albedo and the normals (Fig. 2.5). Specularities are then obtained in the
following way: first, the specular quotients are calculated as the ratio of the actual intensity
divided by the Lambertian intensity, then a modified Lorentzian function is fitted on them
(figure 2.5). The method, however, has not been used to interactively render images with
arbitrary light directions.

2.3.2 Hemispherical Harmonics
Similar to the Fourier series, spherical harmonics are a good set of basis to describe func-
tions on the surface of a sphere, and low order sets of those bases are typically used in
modeling low-frequency reflectance, e.g., applied in photometric stereo scenarios [8]. In
typical MLIC acquisition setups, the incident light at any surface point is defined on the
upper hemisphere only, and full spherical representation is not needed. For this reason, the
hemispherical basis defined from the shifted associated Legendre polynomials [41] has
been introduced to represent image irradiance [88].

Hemispherical Harmonics(HSH) components are expressed as functions of the angles
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for azimuth ϕ and co-latitude θ over the hemisphere in terms of lu and lv:

ϕ = (lv, lu) and θ = acos

(√
1− lu2 − lu2

)
(2.5)

The basis functions Hm
l (θ, ϕ) which are orthogonal over the two-dimensional support[

0, π2
]
× [0, π] with respect to both l and m, are defined as:

Hm
l (θ, ϕ) =


√
2k̃ml cos(mϕ)p̃ml (cos θ), if m > 0
√
2k̃ml sin(−mϕ)p̃ml (cos θ), ifm < 0

k̃0l p̃
0
l (cos θ), ifm = 0

(2.6)

where p̃ml are the associated Legendre Polynomials pml shifted from the sphere to the
hemisphere and kml are the corresponding normalization factors.

The per-pixel reflectance is computed as:

I
(
~l
)
=

n−1∑
l=0

l∑
m=−l

αml H
m
l

(
~l
)

(2.7)

where Hm
l are the hemispherical harmonic (HSH) basis functions defined in equation 2.6.

To create relightable images from a captured dataset, the projection of the images onto
the elements of the basis up to a maximal order is estimated. Typically, the maximal order
used is 1 (4 coefficients), 2 (9 coefficients), or 3 (16 coefficients). It has been proved that
good results are obtained with sixteen coefficients per-pixel [77], which consist of four
first-order, five second-order and seven third-order terms.

Relightable images encoded with HSH coefficients are also currently used in differ-
ent application domains and are supported by RTI viewers (section 2.6). HSH fitting is
generally preferred to PTM since it captures better high-frequency reflectance behaviors.
However, the analysis performed by Zhang and Drew [164] shows that, with a similar
number of coefficients, polynomial and HSH coefficients provide similar results.

2.3.3 Discrete Modal Decomposition
Discrete Modal Decomposition (DMD) has also been proposed to generate a continuous
model of the local reflection. The DMD method is based on a projection on the modal
bases, which are composed of elementary forms that take their origin from a structural
dynamic problem. Pitard et al. [111, 112] adopt this technique for modeling angular com-
ponents of the local reflectance by devising new modal shapes called Reflectance Modal
Basis (RMB) from the set of images based on the Discrete Modal decomposition. They
model the surface reflectance function, f , as the sum of a linear combination of the modal
vectors and the residue of the decomposition Rn, which can be expressed as:

f(θv, ϕu)(θi, ϕi) =

n∑
k=1

λk (θv, ϕu) Qk(θi, ϕi) +Rn (2.8)
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Figure 2.4: Light Transport Matrix Reconstruction. The first row shows a series of
ground truth images of a light transport matrix column which is not included in the
input data used to produce the relightable image model. The second row is the same
matrix columns reconstructed by using a trained relighting Neural Network. Courtesy
of Ren et al. [123].

where the modal coefficients λk can be obtained as the projection of the vector of measured
luminance L onto each mode (Qk, k=1,...n, where n is the number of modes) of the non-
orthonormal basis.

A comparative analysis with other fitting techniques has shown that the DMD is well
suited for approximating the complex physical behavior of light reflections, especially for
shiny reflective surfaces [111, 112].

2.3.4 Deep learning approaches
An (artificial)neural network (aka deep learning) is a powerful learning algorithm inspired
by how the brain works. Convolutional Neural Network (CNN) is a variant of Neural
Network that lays its foundation, mainly, on the convolution operation. Over the past few
years, this method has been successfully adopted to solve problems related to appearance
measurement and analysis (to estimate reflectance map and to create relightable images)
and an effective result has been obtained [59, 122, 123, 162].
In contrast to the methods that recover the relighted image independently per pixel CNN
based global methods have been also proposed. Unlike the methods mentioned above, this
method considered the general problem of image relighting and not classical RTI setting.

Xu et al. [162] have proposed a method to learn the behavior for entire image patches
using specialized Convolutional Neural Networks (CNNs). Two networks are trained, one
to select optimal light sampling (that, therefore, is then fixed with a certain tolerance), and
the other to relight the scene given a novel light direction. The method can reasonably
model global effects (e.g., shadows and interreflections) and complex materials (general
isotropic) with an extremely small number of images compared to state-of-the-art tech-
niques (e.g., only 5 images). However, the rendering of global high-frequency behaviors,
such as sharp cast shadow boundaries, remains a challenging issue. That is the reason why
that approach is more suitable (and can obtain good error metrics) when environmental
light is provided rather than a directional light.

Another deep learning relighting method is the one proposed by ren et al. [123]. This
method bypass reconstruction by directly modeling the scene’s light transport function.
Assuming distant illumination, the light transport function, also called basis function,
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T (x, ω), maps incident illumination from direction ω to outgoing radiance at pixel x (to-
wards the camera), and allows for the scene to be rendered under novel distant lighting
as:

I(x) =

∫
L
T (x, ω)L(ω)dω, (2.9)

where L(ω) is the radiance of the incident illumination from direction ω.
The light transport function can be sampled by capturing images under different light-

ing conditions; for example, an image of the scene under a single directional light from
direction ωj , yields the sample:Ij(·) = T (·, ωj). Image-based relighting methods use a
set of such samples, (Ij , ωj) | j = 1, 2, ..., k, to reproduce scene appearance, In, under
a novel light, ωn. In the deep learning relighting approach, aka Relight-Net, light trans-
port is formulated as discrete samples of continuous light transport function and estimated
using neural networks.

Given a set of k images of the scene, I1, I2, ...Ik, captured under predefined directional
lights, ω1, ω2, ..., ωk respectively the reconstructed image, In, that would be produced by
a novel directional light, ωn, via a relighting function, φ(·) is:

In = φ(ωn; I1, ω1; I2, ω2; ...; Ik, ωk)

= φ(ωn, S1, ..., Sk)
(2.10)

where S = Sj = (Ij , ωj) and ωj is a 2D light direction. usually, Sj is a 5-channel input
per-sample.

Xu et al.[162] modeled the relighting function, φ(·) , as a deep convolutional neu-
ral network (CNN) referred as Relight-Net. The Relight-Net trained using a large syn-
thetic dataset consisting of procedurally generated shapes rendered with complex spatially-
varying BRDFs and demonstrated that it can reconstruct high-frequency light transport
effects like specularities and cast shadows.

2.3.5 Visualization and analysis
This class of relightable models is very general and easy to apply. By avoiding to solve
the complex problems of separating shape from material contributions, and of modeling
complex light transports, these methods can, in principle, provide visually realistic approx-
imations while interactively controlling a virtual light. Similar to the local interpolation
methods (section 2.1), this class of fitting techniques can be used to simulate interactive
lighting or raking light. The user is provided with a simple interface element to select a vir-
tual light source (typically a Gaussian sphere projected in 2D), and the visualization algo-
rithm uses the parameters of the fitted analytic model to transform that light direction input
in the proper relighted image; besides, the user might pan and zoom, and select regions
of interest within the relightable image. In addition to simple interpolation, moreover,
more complex modifications can be made to the illumination, including spatially-varying
intensity and direction control.

Due to the rich viewing experience that this approach provides, this is the most used
approach in a wide range of visualization and analysis tasks. Interactive relighting controls
allow viewers to better understand object morphology in terms of meso- (e.g., local sur-
face bumps, roughness, superficial patterns) and macro-structures (e.g., global curvature,
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convexity and concavity cues) by using an interface that mimics the typical real-world
inspection (e.g., with a raking light). This fact makes them a good virtual alternative to
real-world inspection under controlled light for surface quality control in many fields from
CH study and inspection, criminal forensics, art conservation, and paleontology [88], to
micro-mechanics, biomedicine, and horology.

In most cases, however, only the low-frequency behavior is sufficiently accurate for
typical acquisition sampling rates (i.e., hundreds of images). A full model in terms of ge-
ometry and material is more amenable to produce physically-valid relighting; such meth-
ods are only computable for specific classes of objects, but relightable images are more
generally applicable and have been shown to help in understanding how different optical
features as matte nature or glossiness, and generally heterogeneous materials, are dis-
tributed across the object, as well as to visually highlight surface grain/granularity, dam-
ages, weathering patterns, erosion, and general decay.

All the various methods, based on attempting to directly map, through a small set of
parameters, the changes in perceived color to change in illumination direction, tend to
exhibit visual artifacts due to the global interpolation in the light space. To overcome
this issue, LTM-based methods and CNN-based methods strive to learn more informa-
tion on global transport. In principle, LTM-based methods are capable of producing an
extremely accurate relighting, with anisotropic, transparent and highly complex local be-
havior of materials and global illumination effects (figure 2.4). Unfortunately, while they
meet these goals, LTM approaches pose several problems in terms of capture complexity,
and memory occupancy for both storage and communication issues. In terms of capture,
to avoid hallucinations, a very high-frequency MLIC should be employed. Moreover, the
size of the typical reconstructed light transport function for each pixel is about 200k sam-
ples [142], so, even for small images, the representation tends to pose very hard problems
in terms of storage, transmission, and computation required to meet interactive rates dur-
ing relighting. The use of neural networks [123], trained for each specific dataset, tries to
cope with this problem, by producing a relatively small model with a tractable memory
footprint and fast relighting performance. However, the methods proposed so far tend to
produce hallucinations, and are, therefore, not very appropriate to visual inspection tasks.

For these reasons, the most employed methods in practice are still those based on
low-frequency fitting (e.g., PTM, HSH). These representations are easy to compute and
to compress, eventually exploiting available image-based encoding (e.g. JPEG) to com-
press the various layers, leading to straightforward incorporation in web tools and mobile
devices (section 2.6). In these tools, visualization is often integrated with more complex
knowledge organization and representation software, and within systems for the annota-
tion of specific sets of objects, e.g., in the arts and humanities fields. Some of those tools
allow the user to link comments and annotate the relightable images during the visualiza-
tion experience [44], and export or store this information as metadata. This opens the way
for collaborative visualization environments.

2.4 Non-photorealistic enhancements

Relightable image models are often combined with illustrative techniques, to improve the
understanding of scenes beyond what is possible by sticking to photorealistic approaches.
Differently from static methods, which extract single images that convey an enhanced view
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Figure 2.5: Layered models. This class of models combines a matte model with a spec-
ular/shadow layer to better render complex materials. In this figure, we show several
layers that are modeled from MLIC data: (1st row, left to right) surface normals, matte
albedo; (2nd row, left to right), the specular quotient (the ratio between specular and
diffuse intensities), and the specular color. Courtesy of MacDonald [79].

of the object (already seen in section 2.2), the methods described here focus on interactive-
rate solutions that modify the employed representations, or that post-process the generated
images.

The most popular strategies to improve surface detail readability in real-time relighting
applications are the Diffuse Gain [15, 40, 54, 130, 145] and the Specular enhancement ap-
proaches [6, 15, 40]. The Diffuse Gain has been presented for the first time by Malzbender
et al. [81]. The main idea is to apply a transformation to the fitting parameters of the matte
model function (in their case, the six PTM parameters). By non-linearly changing those
luminance coefficients, they are capable of increasing the visual perception of the curva-
ture of the surface response to light direction variations. That transformation is designed
to maintain the same per-pixel normal field. This reflectance-based contrast improvement,
together with the dynamically moving light position, proved to be an efficient and fast
way for aided morphology inspection and the visualization of surface subtleties not dis-
cernible to the naked eye [89, 130, 145]. Having an underlying normal vector field, all
types of materials can be visualized by adding a specular component to their analytical or
data-driven BRDF function. This is an old and widely used technique, due to its simplic-
ity, efficiency and effectiveness in enhancing meso and micro structures across the object
surface [87, 89], to better discern object content [91, 130, 145]; figure 2.6 is an example
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of how those exaggerated shading can reveal not only shape content but also semantic in-
formation about how the object has been manufactured [146]. The most simple specular
model consists in a combination of a specular color ks and a non-linear (typically expo-
nential) function driven by a roughness parameter α. During the visualization, the user
can easily tune those parameters in real-time [80] while dynamically changing the light
source to even extreme conditions, up to raking light [67], to obtain the desired effect and
to highlight different shape properties and features [54]. The Specular Enhancement can
be used together with the color information blended with it [53], or in a visualization that
removes the albedo or generally the chromatic information, by displaying only the reflec-
tivity component, and by focusing only on the amplification of slope perception [28, 145].

Besides those two ways of enhancing relightable image visualizations, which are of
paramount importance for visual details inspection, other techniques are less used, al-
though equally effective for the task. One consists in applying unsharp masking to the
luminance field [15, 130]. Others exploit a light that is not constrained to have a unit
norm, and goes beyond that physically acceptable condition, and perform light extrapo-
lation [54, 95]. This non-photorealistic representation provides a more ”oblique”, raking
light, and higher image contrast. Of course, by enabling virtual relighting, one can also
increase the number of virtual lights. This can be used to increase object readability by au-
tomatically choosing the appropriate set of lights that augments details perception. Palma
et al. [98] present a multi-lighting detail enhancement that, given a single light direction
selected by the user, computes a virtual lighting environment that aims at increasing the
local contrast across the image. This is a non-photorealistic method because that virtual
lighting is not feasible and reproducible in the real world due to the high number of lights,
the very localized contribution (or support volume) of each light (which is not physically
plausible), and the real-world interreflections which would ruin the original enhancement
purpose by smoothing out the desired sharpening effect.

To enrich the quality of the visualization enhancement, the aforementioned interac-
tive techniques are typically combined with the real-time normal enhancement mode [80]
to increase granularity and sharpness in the final visualization. Other approaches con-
sist in directly applying the same rationale of unsharp masking [98], or a simple contrast
enhancement operator [47], to the normal vector field.

2.4.1 Visualization and analysis

With the same purpose as the methods seen in section 2.2, non-photorealistic enhancement
is aimed at producing a visualization that increases details perception. Similar to single-
image data-fusion methods, many of the approaches are specially devoted to highlighting
microfeatures (e.g., roughness) and mesostructures/patterns across the object surface, and
mostly focus on shape rather than material enhancement. Unlike single-image data-fusion
methods, however, most of the illustrative techniques are interactive and tightly coupled
with both a dynamic relighting, and, in some cases (e.g., Diffuse Gain, Specular enhance-
ment, and Unsharp Masking) even with real-time MLIC acquisition and enhancement [80].
Direct interactive control of parameters is generally used to tune various contributions of
different appearance layers. Since most of the methods can be applied to the data stored in
classic relightable image formats, the same advantages in terms of portability, compression
and communication described in section 2.3 are valid here as well.
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Figure 2.6: Non-photorealistic enhancement. Exaggerated shading helps in the visual-
ization of the finest object details. Here, for instance, directions of smoothing marks
across the surface have been highlighted by this non-photorealistic way of display
MLIC-derived data. Courtesy of Van et al. [146].

Many of the non-photorealistic techniques focus more on the shape than on the appear-
ance. For this reason, many of them rely on the computation of normals from MLIC to
convey shape information, which does not apply to all imaged scenes. When this is pos-
sible, those non-photorealistic enhancements have proved to be successful in highlighting
hardly visible features (e.g., poorly visible inscriptions [53]). In some cases, to high-
light geometrical details, the appearance is even changed on purpose, e.g., when applying
specular enhancement on completely matte objects to emphasize surface finish, so opti-
cal material interpretation is not applicable and misleading. Further, some visualization
techniques consider the color or appearance information as a cluttering element, and they
remove that to bring the wanted details to light [91]. This is true also in the cases where
the appearance/color information is not removed but rather exploited; the multi-spectral
signal is used to produce false-color images that, rather than containing information about
the optical behavior of the surface, make it visible underlying shapes and features [147].
Since the scope of non-photorealistic methods is the enhanced visualization of semantic
structures and details across the surface, visualization is not so dependent on an accu-
rate light/camera calibration, since, generally, small scale calibration errors do not change
much the overall information content of the imaged scene. Unlike the methods in sec-
tion 2.3, illustrative techniques are thus more robust to acquisition noise and inaccurate,
relaxed computation of light, camera, and radiometric parameters. Due to the combination
of a compact data format, the user-friendly interface, the robustness to noise or poor cal-
ibration, and the effectiveness of those illustrative techniques, this group of methods are
the most used ones in a large number of daily applications (section 1.3).
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2.5 Normal estimation

Photometric Stereo(PS) is a shape reconstruction technique that relies on multi-light image
collections. It is a technique targeted for estimating the surface normal, surface orientation,
of an object given MLICs, a set of images relighted from different directions of illumina-
tions. It was first introduced by Woodham [154] and assumes only a Lambertian surface.
Since then, a lot of work targeted to extend the original idea to surfaces with general
reflectance properties and improving the precision has been done. In recent years, in addi-
tion to the classical techniques, (deep)neural network-based photometric stereo approach
is being emerged [17, 18, 57, 128, 141].

2.5.1 Photometric Stereo(PS) approaches

Most of the existing methods for photometric stereo [101, 131] assume a simplified re-
flectance model, such as the Lambertian model for its simplicity. However, this assump-
tion doesn’t work since most of the real-world objects are non-Lambertian. Thus, many
photometric stereo algorithms have been developed to deal with non-Lambertian materi-
als. The most popular ones are based on outlier rejection and the use of the Lambertian
model for the remaining inliers. Within this category, various methods have been proposed
that rely on different principles, such as RANSAC [90], median values [85], expectation-
maximization [156], sparse Bayesian regression [62], Least Median of Squares [36, 107],
Low-rank matrix completion and recovery [155], or Sparse Regression [63].

Unlike outlier rejection methods, methods based on a sophisticated (analytical) re-
flectance model fit a model to all observations. This is achieved by solving complex opti-
mization problems. Many sophisticated analytical reflectance models have been proposed
to approximate the behavior of non-Lambertian materials, including the Torrance-Sparrow
model [46], Ward model [22], Cook-Torrance model [125], etc. The downside of these
types of methods is that they can only handle limited classes of material. On the other
hand, example based methods typically require an example object with known surface
normal, shape and reflectance, to be placed in the scene. Usually, this requirement limits
its practical use, so other approaches employ a dictionary of BRDFs to render virtual ex-
amples that guide the normal estimation problem. To this end, Hui and Sankaranarayanan
[58] proposed a BRDF dictionary to render virtual spheres without using a real exam-
ple object. Learning based methods estimate mappings from measured intensities under
known (or unknown) lighting to surface normals by using machine learning tools or deep
learning techniques[17, 18, 61]. Deep learning is a powerful learning method inspired by
how the brain works. Convolutional or Fully-Connected Neural Network based methods
have recently replaced traditional PS techniques. To mention, Santo et al. [128] proposed
a deep fully-connected neural network, called Deep Photometric Stereo Network (DPSN),
to learn the mapping between reflectance observations and surface normals in a per-pixel
manner given a fixed number of observations captured under a pre-defined set of light di-
rections. In this work, for each image point of the object, all its observations and light di-
rections are concatenated to form a fixed-length vector, which is fed into a fully-connected
network to regress a single normal vector. The weakness of this work arises from the as-
sumption that the light directions are pre-defined and remain the same between training
and prediction phases, which in turn limits its practical use. Chen et al. proposed two
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different methods based on convolutional neural networks [17, 18]. The first method [18]
proposes a flexible fully convolutional network, called PS-FCN, for estimating a normal
map of an object. The network consists of three components, namely a shared-weight fea-
ture extractor for extracting feature representations from the input images, a fusion layer
for aggregating features from multiple input images, and a normal regression network for
inferring the normal map. The second method proposes a two-stage model named Self-
calibrating Deep Photometric Stereo Networks (SDPS-Net). The first stage of SDPS-Net,
denoted as Lighting Calibration Network (LCNet), takes an arbitrary number of images
as input and estimates their corresponding light directions and intensities. The second
stage denoted as Normal Estimation Network (NENet), estimates a surface normal map
of a scene based on the lighting conditions estimated by LCNet and the input images. In
both cases, to simulate real-world, complex non-Lambertian surfaces they trained their
model on synthetic datasets created using shapes from the blobby shape dataset [64] and
the sculpture shape dataset [152], and BRDFs from the MERL BRDF dataset [84]. An-
other Neural Network based method, which has demonstrated the possibility of recovering
normals better than traditional methods, is the one proposed by Ikehata [60]. This network
accepts an arbitrary number of input images, merges them into the intermediate represen-
tation called observation map which has a fixed shape, and then regresses the normal map.
This network can directly learn the relationships between the photometric stereo input and
surface normals of a scene. For a detailed and up-to-date survey please refer to Shi et
al. [132].

2.6 Interactive visual inspection tools

Several interactive MLIC-based visualization tools have been described in the literature,
and a few of them have been made publicly available and are actively maintained. Some
of them are generically applied to datasets captured with different cameras and lighting
setups, while others are used to visualize only data acquired by a specific acquisition device
(e.g., a light dome) and/or pre-computed versions of the relighted image [79, 147]. While
some of them allow for visualization on the web or portable devices [97, 116], others are
developed considering only desktop applications with fully resident data. A summary of
the major available tools is shown in Table. 2.1.

The most popular application is RTI viewer (figure 2.7a). It has been primarily devel-
oped by the ISTI/CNR Visual Computing Laboratory and is financed and distributed now
by Cultural Heritage Imaging [20]. Complete credits and executable codes can be found
at the CHI website. This tool allows for the visualization of relightable image files stored
on the local file system and remote files through HTTP. It features a visible virtual torch,
which allows the user to perform photorealistic image relighting based on PTM or HSH
(section 2.3), and includes several non-photorealistic enhancements (section 2.4), includ-
ing specular enhancement and image unsharp masking. Due to its free availability and
ease of use, together with the CHI [20] capture software, it is widely utilized in different
areas of a study presented in section 1.3. Another desktop application tool, but mainly
used in image processing research works, is APTool [49] (figure. 2.7b). This tool allows
for interactive exploration of raw MLIC data using RBF interpolation; it also creates re-
lightable images by using PTM or HSH and extracts and visualizes feature maps. It can
also interactively show per-pixel interpolated reflectance maps. This tool has been used in

30



2.6. Interactive visual inspection tools

Tool Access Visualization Platform
RTIViewer
[20]

Public Photorealistic relighting (PTM, HSH);
Specular enhancement; Diffuse gain;
Normal, Image & coeff unsharp mask

Desktop

APTool
[49]

Private Photorealistic relighting (PTM, HSH, RBF);
Normal/Albedo Maps; Appearance profile
vis.

Desktop

PLDViewer
[69]

Private Photorealistic relighting;
(Exaggerated)Shading; Curvature; Sketch

Desktop

ImageViewer
[79]

Private Original images; Outline, albedo and normal
map; Specular components; Low-frequency
fitting (PTM, HSH)

Desktop

WebRTIViewer
[96]

Public Photorealistic relighting (PTM, HSH); Web

Relight-viewer
[117]

Public Photorealistic relighting (PTM, HSH, RBF,
Bilinear)

Web

PLDWebViewer
[69]

Public Photorealistic relighting; (Exaggerated)
Shading; Curvature; Sketch

Web

DigitalMateriality Viewer
[32]

Public Photorealistic relighting; Specular
enhancements

Web

Table 2.1: Tools. Major MLIC-based visualization software tools described in the litera-
ture.

CH for the study of various objects such as coins, rock art, statues, and paintings [24, 47].
A multi-functionality application tool called PLDviewer (Portable Light Dome viewer)
has been developed at KU Leuven [69], based on a full processing framework [147]. This
tool accepts as input proprietary compressed file generated with a specific dome device
and an undisclosed processing pipeline. It provides interactive relighting (photorealistic
visualization), 3D model construction, and non-photorealistic visualization. The first can
be performed with the help of two virtual light sources with tunable intensity (figure 2.7f).
The viewer supports several rendering modes, e.g. albedo and ambient, and allows for
multi-spectral visualizations in five spectral bands (i.e., Infrared, Red, Green, Blue, and
UltraViolet). Six views of an object are shown in the interface for full 3D object cre-
ation, and the user can interactively visualize one at a time by switching between different
views using arrow-keys. In addition, this tool allows for performing non-photorealistic
enhancement (section 2.4) such as curvature coloring, exaggerated shading, and sketch-
ing. Furthermore, it allows for displaying the map of the response to the set of lights
on single pixels (reflection maps) and local histograms. This tool is mainly developed
for CH applications but can be extended to other application domains. The desktop vi-
sualization tool presented by MacDonald [79] (ImageViewer, figure 2.7e) is capable of
displaying original photographic images and different kinds of modified renderings with
the same lighting. Unlike RTIViewer, APTool, and PLDViewer this tool does not support
interactive relighting. Several tools have been proposed also for web-based visualization
of relightable images. WebRTIViewer [96] is a web-based multi-light visualization tool
that allows for the visualization of the relightable images created using PTM or HSH in a
standard web page, without the installation of any plugin and with a recent web-browser.
PLDWebviewer is the web-based counterpart of the PLDViewer with similar functionality.
Other web-based tools have been developed by the University of Basel [32]. In particular,
the Digital Materiality Viewer (figure 2.7d) allows for interactive relighting and glossy
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enhancement, as described by Fornaro et al. [44]. Relight [117] is a library to create and
view (on the web) relightable images (RTI), which supports the encodings described by
Ponchio et al. [116]. The library can be used to create relightable images based on PTM,
HSH, and RBF, and exploits different compression and color-coding options. The visual-
ization methods feature both an OpenGL Javascript library for RTI rendering on the web,
which can be used to create web pages with single or multiple relightable images, and the
Relight Viewer, a multiresolution viewer with a toolbar controlling a few basic options
(figure 2.7c).
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2.6. Interactive visual inspection tools

(a) RTIViewer (b) apTool

(c) Relight Viewer (d) Digital Materiality Viewer

(e) ImageViewer (f) PLDViewer

Figure 2.7: Screenshots of visualization tools: (2.7a) RTIViewer [20], the most popular
solution for relightable image visualization; (2.7b) apTool, a research tool developed
by University of Verona [49]; (2.7c) Relight Viewer, a tool part of a powerful library
developed at ISTI/CNR Pisa [117]; (2.7d) Digital Materiality Viewer application de-
veloped at the Digital Humanity Labs (University of Basel) [32]; (2.7e) GUI of desktop
visualization tools described by MacDonald [79] (this tool does not allow interactive
relighting); (2.7f) PLDViewer GUI, which handles dense acquisition realized with the
Portable Light dome [69].
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CHAPTER3
Novel Multi-Light Image Collections for RTI

and Photometric Stereo benchmarking

One of the challenge in the Multi-Light Image Collections (MLIC) community, specifi-
cally that relies on single view and wavelength MLIC data, is the lack of benchmarks to
evaluate data processing tools on the kind of surfaces typically captured in real-world ap-
plications (e.g. quasi-planar surfaces made of heterogeneous materials with a wide range
of metallic and specular behaviors). Relighting algorithms are typically tested on a few
homemade acquisitions not publicly available. Whereas photometric stereo algorithm (re-
covering surface normals), nowadays, widely, tested on the only available public bench-
mark, DiLiGent, [132]. This benchmark could be used as well to test relighting quality.
However, the images included are not representative of those typically captured in the
real-world applications of MLIC acquisition.

Relightable images and Photometric Stereo algorithms are used mainly to analyze sur-
faces with limited depth, possibly made of challenging and heterogeneous materials. The
performances of the different methods proposed are likely to vary with the shape complex-
ity and the material properties. It would be, therefore, useful, to evaluate the algorithms
on images of this kind, possibly with accurate lighting and controlled features.

In this chapter, we first present three novel MLIC benchmark datasets: one composed
of acquired images (RealRTI) and two composed of synthetic images (SyntRTI and Syn-
thPS) generated with Physically-Based Rendering techniques (PBR).

RealRTI is generated using 12 real cultural heritage objects, while SyntRTI and Syn-
thPS are created from scanned 3D models of 5 cultural heritage objects with different
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materials and materials distributions assigned. These datasets can be used for validation
of MLIC-related algorithms (for instance: Photometric Stereo, Reflectance Transforma-
tion Imaging (RTI) relighting, material classification). SynthRTI and RealRTI have been
used to evaluate the quality of neural network-based RTI method NeuralRTI, described in
Chapter 5 [38]. SynthPS have been used for the evaluation of photometric stereo algo-
rithms for cultural heritage usage, described in chapter 4.

3.1 MLIC benchmarks dataset

3.1.1 RealRTI
RealRTI is a dataset made of real MLIC acquisitions, made with devices and protocols
typically used in the MLIC acquisition (see section 1.1). This dataset is composed of 12
multi-light image collections (cropped and resized to allow a fast processing/evaluation)
acquired with light domes(using a setup of Ciortan et al. [24] and Pintus et al. [105]) or
handheld RTI protocols(using a setup of Giachetti et al. [48]) on surfaces with different
shape and material complexity. The items imaged are: (1) a wooden painted door (hand-
held acquisition, 60 light directions), (2) a fresco (dome acquisition, 47 lights), (3,4) two
painted icons (handheld 63 and 72 lights), (5,6) two paintings on canvas (handheld, 49
lights and dome, 48 lights), impressions on the plaster of a leaf (7) and a shell (8) (light
dome, 48 lights), (9,10) two coins (both with a light dome, 48 lights), (11,12) two metal-
lic statues (dome, 48 lights and handheld, 54 lights). This set allows testing relight on
different materials (matte, specular, metallic) and shapes with different geometric com-
plexity(see figure 3.1).

The RealRTI dataset can be accessed at the following URL: https://github.
com/Univr-RTI/RealRTI.

3.1.2 SynthRTI
SynthRTI is a collection of 51 multi-light image collections simulated by using the Blender
Cycles rendering engine. It is divided into two subsets: SingleMaterial, featuring 24 cap-
tures of three surfaces with 8 different materials assigned (figure 3.2), and MultiMaterial,
with 27 captures of the same three surfaces with 9 material combinations, as shown in fig-
ure 4.8. Each collection is subdivided into two sets of images, corresponding to two sets
of light directions. The first is called Dome and corresponds to a classical multi-ring light
dome solution with 49 directional lights placed in concentric rings in the lx, ly plane at 5
different elevation values (10,30,50,70,90 degrees). The second is called Test and includes
20 light directions at 4 intermediate elevation values (20,40,60,80). The idea is to use the
classic dome acquisition to create the relightable images and evaluate the quality of the
results using the test dataset. Figure 3.3 shows the Blender viewport with the simulated
dome (left) and the light directions of the Dome and Test acquisition setups, represented
in the lx, ly plane

The three geometric models used to build the dataset are bas-reliefs with different
depths. The first is a nearly-flat surface, actually the 3D scan of an oil on canvas painting by
W. Turner, performed by R.M. Navarro and found on SketchFab (https://sketchfab.com).
The second is the scan of a cuneiform tablet from Colgate University. The third is the scan
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3.1. MLIC benchmarks dataset

Figure 3.1: Sample images of the RealRTI dataset representing the 12 different surfaces
captured.

Figure 3.2: Sample images of the bas-relief object with the 8 materials assigned.

of relief in marble "The dance of the Muses on Helicon" by G. C. Freund, digitized by G.
Marchal. All the models are distributed under the Creative Commons 4.0 license.

For the single-material collections, we used 8 sets of Cycles PBR parameters, to sim-
ulate matte, plastic and metallic behaviors and material with subsurface scattering. These
sets are reported in Table 3.1. We rendered small images (320 × 320) with 8 bits depth.
The MultiMaterial subset is created assigning different tints and material properties to dif-
ferent regions of the three geometric models. We created 9 material combinations from
8 base diffuse/specular/metallic behaviors (Table 3.2) and 16 tints. The use of multiple
materials may create problems in algorithms using global stats of the sampled reflectance
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# material base color metal spec rough subs. R
1 matte white 0.8,0.8,0.8 0 0 0
2 plastic 0.8,0.8,0.8 0 1 0.4
3 plastic rough 0.8,0.8,0.8 0 1 0.5
4 plastic rough2 .25,.25,.25 0 1 0.6
5 plastic black .25,.25,.25 0 1 0.4
6 metal smooth 0.8,0.8,0.8 1 0 0.5
7 metal rough 0.8,0.8,0.8 1 0 0.7
8 subsurface 0.5,0.5,0.5 0 1 0.5 1,0.2,0.1

Table 3.1: Parameters of the Cycles principled BSDF model used to create the 8 materials
of the SynthRTI, single material dataset.

Figure 3.3: Left, the virtual camera/lights configuration in the Blender viewport. We used
directional (sun) lights. Right, the distribution of the light directions in the simulated
dome subset (blue squares) and for the test evaluation (red dots).
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r1 r2 r3 r4 r5 r6 r7 r8
metal 0 1 1 1 0 0 0 0
roughness 1 0.4 0.5 0.6 0.5 0.6 0.7 0.8
specularity 0 1 1 1 1 0 0 1

Table 3.2: The combination of metallic, specularity and roughness indexes used in the
SynthRTI, MultiMaterial dataset.

to create mappings for dimensionality reduction.

SynthRTI can be exploited not only to test RTI relighting approaches but also to evalu-
ate Photometric Stereo methods, as the rendering engine can output normal maps, as well
as shadow and specularity maps for each image (see Figure 3.5). Ground truth normal
maps and shadow maps are publicly released with the SynthRTI distribution, which can be
accessed at the following URL: https://github.com/Univr-RTI/SynthRTI.

3.1.3 SynthPS: image collections and tasks
SynthPS is a set of multi-light image collections synthetically rendered with the physically-
based reflectance models of the Blender Cycles engine. Each collection is rendered with
77 directional lights placed in concentric rings in the lx, ly plane at 9 different elevation
values (10,20,30,40,50,60,70,80,90 degrees). Figure 3.9 shows the full set of light direc-
tions used. Lights are exactly directional and no ambient light is employed. The camera
model is orthographic, the size of the rendered images is 320 × 320, and the depth is 16
bits linearly mapped. SynthPS is composed of two subsets: Single-material, i.e., all the
items are created using constant materials; MultiMaterial, i.e., all the items (different from
those used in the Single-material case) are textured with captured spatially-varying albedo
and subdivided in patches with different roughness.

The Single material dataset has been created using the same geometric models used
to create SynthRTI(Figure 3.6, top). For these renderings, we have set an orthographic
camera looking at the object surfaces, removed the ambient illumination, and rendered
the set of images with the 77 directional lights. For each model, we created 9 collections
of images assigning 9 different uniform materials to the surfaces. The assigned materials
simulate matte, plastic and metallic behaviors with varying gray achromatic albedo and
roughness and material with subsurface scattering (subsurface parameter set to 0.5 and
radii 1.0,0.2,0.1 in the blender PBR settings). These sets are reported in Table 3.3. This al-
lows us to compare the performances of the PS methods when specific material features are
changed, e.g., albedo, roughness, subsurface scattering. It is also possible to understand
how the methods are robust to shape variations, locally by plotting error as a function of
the normal/view angle, by globally comparing the results on the different objects of dif-
ferent complexity. One way to evaluate the object complexity is to evaluate the amount
of shadow created on the different images that can be evaluated on the related rendering
pass. For the three untextured objects, the total percentages of shadowed pixels in the 77
images are 0.20%, 23.88%, 16.68%, respectively. Figure 3.7 shows example renderings
of the same object with the assigned 9 uniform materials, illuminated from the same light
direction.

39

https://github.com/Univr-RTI/SynthRTI


Chapter 3. Novel Multi-Light Image Collections for RTI and Photometric
Stereo benchmarking

Figure 3.4: Sample images of the cuneiform tablet with combinations of materials as-
signed

Figure 3.5: Rendered multi-light image collections (a) come with associated normal maps
(b) that can be used for Photometric Stereo algorithms evaluation, shadow maps (c),
that can be used for shadow detection testing and specularity maps (d)
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# material albedo metal spec rough subs
1 matte white (MW) 0.8 0 0 0
2 white plastic smooth (PLA_WS) 0.8 0 1 0.4
3 white plastic (PLA_W) 0.8 0 1 0.5
4 white plastic rough (PLA_WR) 0.8 0 1 0.6
5 gray plastic (PLA_G) 0.5 0 1 0.5
6 dark plastic (PLA_D) 0.2 0 1 0.5
7 metal smooth (MET_S) 0.8 1 0 0.5
8 metal rough (MET_R) 0.8 1 0 0.7
9 subsurface (SUB) 0.5 0 1 0.5 *

Table 3.3: Parameters of the Cycles principled BSDF model used to create the 9 materials
of the SynthPS, single material dataset.

Figure 3.6: Geometrical models used to create the SynthRTI and SynthPS datasets. Top
left: untextured models used for the SynthRTI(SingleMaterial and MultiMaterial) ren-
derings and SynthPS SingleMaterial renderings. Bottom right: textured models used
for the SynthPS MultiMaterial renderings.

The MultiMaterial dataset has been created with two different textured geometric mod-
els of CH items downloaded from SketchFab as well(https://sketchfab.com).
All three have been digitized by G. Marchal and distributed under the Creative Com-
mons 4.0 license. The first is the reconstruction of The lion of Goddess Ishtar, from
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Nye Carlsberg Glyptotek. The second is an 11th century, sandstone, Lintel, Kapilapura
from Angkor, Cambodia,11th century, from Musée du Cinquantenaire (Brussels, Bel-
gium). For these models, we kept the original texture as the diffuse texture in the ma-
terial settings and then used the Voronoi Texture node of Blender to define a spatial pat-
tern used to map different roughness values for the material in different patches, ranging
from 0.4 to 0.7 (see Figure 3.8). The SynthPS dataset can be accessed at the following
URL:https://github.com/Univr-RTI/SynthPS.

Figure 3.7: Sample images of the same CH object with the assigned 9 materials and lit by
the same illumination direction.

3.1.4 Synthetic MLIC creation
To create the Multi-Light Image Collections(SynthRTI and SynthPS), we used a specific
Blender script(plugin) allowing the automatic creation of light configurations from text
files with light directions information and the automatic rendering of image sequences.
Images are rendered with Blender Cycles engine, and all the solutions available in Blender
for image quantization and tone mapping can be applied to simulate different acquisition
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Figure 3.8: Left: the Voronoi texture associated with the assigned roughness. Center,
right: two renderings with different directional lights of the surface with the albedo
texture and the regional roughnesses.

Figure 3.9: Dome light configuration used for SynthPS benchmarking. Top: symmetric
domes, from left, 10 light ring at 50 deg. elevation, 28, 49 and 77 directions domes.
Bottom: asymmetric configuration created by removing lights from right in the 49
lights dome. From left: original, 46 lights, 40 lights, 31 lights represented in the lx, ly
plane.

and preprocessing methods.
For SynthRTI we simulated standard 8-bits preprocessed images as those generated by

standard digital cameras, but corresponding raw images with 16 or 32 bits encoding could
be generated as well. Whereas for SynthPS we simulated standard 16-bits preprocessed
image. Figure 3.10 shows the plugin used to generate renderings.

The key features of the plugin are the following:
• Use of exactly directional lights, with sets of lights loaded from .lp files (use of point

or spotlights could be applied to evaluate calibration issues).
• Loop over material parameters: this feature allows the generation of rendered ob-

jects of different materials within specified ranges of material parameters. This will
be a fundamental requirement for the generation of training sets for material classi-
fication and segmentation

• Export of multiple images exploiting the different Cycles rendering passes: compos-
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Figure 3.10: Blender tool for the automatic creation of RTI dataset given light direction
files.

ite image, Specularity image, shadow image, material indexes. This will be useful to
develop methods for shadows detection and/or robust fitting of a matte component.

The plugin is available at the website https://github.com/giach68/SyntheticRTI.

3.1.5 Photometric Stereo benchmarks

The most popular PS benchmark is currently the DiLiGenT dataset[132]. It is composed of
captured images of real objects made of different materials, together with accurate meta-
data about light and camera calibration. The dataset has been used in a large number of
papers, and with calibrated and uncalibrated PS methods. Sablatnig and Wimmer [10]
used a dataset of ancient coins to evaluate the accuracy of a single PS method when the
light sampling is varied. However, no details on ground truth estimation are provided
and those data have not been publicly released. Xiong et al. [161] created a PS dataset
with seven relatively-diffuse objects, captured with a CanonEOS 40D camera under di-
rectional lighting, and calibrated with chrome spheres [161]. Alldrin et al. [4] acquired
high-dynamic-range images of two known objects in a dark room and calibrated the lights
by employing reflective spheres.

While the use of real, calibrated images allows the evaluation of the methods on real
materials and illumination, there are still few drawbacks. Light intensity and direction
need to be calibrated, and it is not possible to avoid calibration errors. The camera model
is not orthographic and lights are not directional but are approximately point lights. Shi et
al. [132] provide both light positions and camera parameters, but often they are not used
by many tested algorithms, which assume the orthographic camera model and directional
lights. This may introduce a bias in the evaluation. Moreover, real lights are typically not
uniform, and the intensity calibration can introduce errors as well. The objects and the
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acquisition setups used to create the benchmarks are not exactly similar to those employed
in the classical handheld RTI or light dome acquisition methods typically used in the Cul-
tural Heritage domain. Furthermore, by using real acquisitions it is not possible to control
and modify the local properties of the materials so it is hard to evaluate how the different
PS methods behave with varying reflectance functions and spatial variations of them.

A multi-light images dataset with synthetic rendering (CyclesPS) has already been pro-
posed, for example in [60]. However, it only features non-realistic objects with different
materials assigned in superpixels, used to train (and test) local CNN-based PS algorithms.

This motivated us to create SynthPS, i.e., a specific dataset with synthetic, physically-
based renderings of surfaces that can be considered typical examples of Cultural Heritage
objects, which are made of different homogeneous and heterogeneous materials and have
different geometrical complexity.

These features make the proposed dataset also suitable to design specific evaluation
tests, testing the robustness of the different methods to a variety of specific factors (mate-
rials, material uniformity, depth variations, etc.) that are useful to choose the best approach
for practical applications.

We rendered the objects with different configurations of uniform directional lights, by
changing their number and their spatial configuration. We use this dataset to evaluate sev-
eral recent PS approaches, both in terms of their accuracy and robustness against different
factors(chapter 4). The resulting contribution consists of several guidelines to choose the
proper image capture strategy and processing algorithm, together with a public benchmark
that can be used by researchers to evaluate novel PS methods.

3.2 Summary

In this chapter, we proposed novel benchmark datasets that can be used to evaluate MLIC
based methods, Reflectance Transformation Imaging, image relighting, photometric stereo
and material classification/segmentation. The benchmark consist of synthetic, SynthRTI
and SynthPS, simulated using a physically based rendering engine and real acquisitions,
RealRTI.

SynthRTI is generated considering, mainly, RTI methods but can be used to evaluate
image relighting and photometric stereo algorithms. And SynthPS is generated consider-
ing Photometric stereo algorithms for the applications of cultural heritage but can be used
to evaluate image relighting, RTI and other MLIC based algorithms. SynthPS is com-
posed of synthetic images simulating acquisitions of surfaces with different geometrical
complexity, homogeneous and heterogeneous materials and assuming perfectly directional
lights and orthographic view, thus avoiding inaccuracy in light or camera calibration. The
image sets can be used to simulate light domes configurations with different densities
and asymmetric layout simulating the effect of obstacles preventing the positioning of the
lights from one side of the object.

We have used SythRTI and RealRTI to evaluate a neural network based RTI method
NeuralRTI, [38] and SynthPS to evaluate Photometric Stereo algorithms to reconstruct
surfaces of objects typically captured in multi-light acquisitions performed in the Cultural
Heritage domain, described in chapter 4.
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CHAPTER4
Evaluation of Photometric stereo

algorithms for Cultural Heritage application

As the capture of MLIC data is cheap and quite popular in the Cultural Heritage (CH)
domain, Photometric Stereo(PS) could be a really useful tool to acquire high-resolution
geometrical detail of the objects. However, it is not very clear which are the algorith-
mic choices that should be adopted to optimize the reconstruction quality. PS algorithms
are typically evaluated on few benchmarks not particularly representative of typical CH
applications, and they do not allow the evaluation of the variability of the methods’ per-
formances as a function of material types, camera and light calibration error, and image
pre-processing(section 3.1.5).

In this chapter, we have used out SynthPS benchmark dataset(section 3.1.3) to test
several PS methods, ranging from classical ones, to robust approaches, and those based on
(deep) neural networks. The main reasons for this selection are related to the popularity
of the chosen methods, the fact that they exhibit good results in existing benchmarks, and
the public availability of their implementations.

4.1 Evaluation

4.1.1 Tested algorithms
The selected PS algorithms based on model fitting are standard Least Squares fitting of
Lambertian model (LS) [154]; Trimmed Least Squares (Trimmed), i.e., LS fed with pruned
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data, typically obtained by removing saturated values and a fixed percentage of high, possi-
bly non-Lambertian, measures (in our tests 5%); Least Median of Squares(LMS) [36, 107];
Bayesian Regression(BR) [62]; Low-rank matrix completion and recovery (LMR) [155];
Sparse Regression [63].

Among deep learning algorithms, we either choose local or global methods; in the
former ones, the normals are obtained on a per-pixel basis, while the latter train the net-
work on the entire image domain. Furthermore, we also considered some uncalibrated
methods (i.e., unknown input light directions). The tested deep learning based algorithms
are: PS-FCN [18] (calibrated / global); CNN-PS [60] (calibrated / local); SDPS-Net [17]
(uncalibrated / global). PS-FCN is a CNN based architecture that accepts a set of images
as input, extracts features for each image, aggregates them via max-pooling, and finally
infers the normal map. The method does not require a pre-defined set of light directions
during training and testing, and it can handle multiple images and light directions in an
order-agnostic manner. CNN-PS accepts as input an observation map, which is a 32x32
grid that encodes light intensity as a function of the light direction. A wide set of synthetic
images is used in the training phase. Several different maps are generated in the prediction
step, forcing a rotational invariance nature of the normal map estimation, which makes the
method more robust. SDPS-net is a two-stage CNN based architecture. The first stage es-
timates the light directions, while the second stage uses the result of the first stage together
with the captured images to compute the final normal map. Despite being uncalibrated, the
method exhibits state-of-the-art performances on the DiLiGenT benchmark and performs
well on challenging surfaces. However, it assumes surfaces with non-negligible relief and
made of homogeneous material.

4.1.2 Results
The comparison of the methods is based on the statistics of angular error. For each pixel,
the angular error is calculated as arccos(nTo n) in degrees, where n0 and n are ‘ground
truth’ and estimated normals respectively.

4.1.2.1 Uniform materials

For the three uniform material objects, the normal reconstruction errors for the typical 49-
light dome configuration are reported in Table 4.1. It is possible to see that the accuracy
of "global" neural methods is low for the nearly planar objects, while the local method
(CNN-PS) provides good results like robust methods. CNN-based methods are far better
than model-fitting techniques on normal-varying objects (bas-relief and tablet); although
it explicitly needs shadows and relevant shading to solve for the light directions, the un-
calibrated approach (SDPS) provides the best results.

Looking at the performances on different materials (Figure 4.1), it is possible to see
that the performances of the best methods for each category are almost the same for matte
and plastic materials, independently of roughness and are in some cases improved with
smaller albedo values. Plots are done for the bas-relief results but are similar for the
tablet. The performances of robust fitting methods are poor in the case of metallic surfaces.
Neural methods are far better in this case, with SPDS-net (uncalibrated/global) generally
providing the best results. Subsurface scattering is instead deteriorating the performances
of all the methods in the same way.
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LS Trim. LMS BR LRM SR PSFCN CNNPS SDPS
MAT 0.35 0.56 0.83 0.28 0.26 0.24 1.58 0.26 17.91
PLA_WS 0.33 0.59 0.39 0.40 0.26 0.24 1.72 0.33 14.44
PLA_W 0.32 0.50 0.40 0.25 0.23 0.24 1.10 0.23 17.38
PLA_WR 0.32 0.40 0.41 0.37 0.40 0.23 1.83 0.25 23.91
PLA_G 0.37 0.77 0.40 0.73 0.71 0.29 0.67 0.25 42.08
PLA_D 0.59 1.69 0.56 2.52 2.58 0.50 3.11 0.24 33.60
MET_S 0.79 3.45 0.77 4.25 4.35 0.68 1.87 0.76 7.13
MET_R 0.54 0.67 0.62 1.62 1.69 0.46 2.24 0.23 42.27
SUB 0.42 0.74 0.57 0.43 0.45 0.35 1.34 0.33 23.03

Average 0.45 1.04 0.55 1.21 1.21 0.36 1.72 0.32 24.64

(a) nearly planar canvas

LS Trim. LMS BR LRM SR PSFCN CNNPS SDPS
MAT 17.40 16.57 12.86 13.59 12.82 18.36 10.99 9.78 9.35
PLA_WS 16.75 16.90 13.34 14.10 13.44 18.54 11.55 10.68 9.73
PLA_W 17.01 16.83 13.29 14.09 13.44 18.47 11.36 10.36 9.90
PLA_WR 17.31 16.80 13.25 14.11 13.45 18.48 11.40 10.17 10.69
PLA_G 14.71 15.03 12.57 12.87 12.30 16.89 10.08 9.93 7.00
PLA_D 14.85 15.15 13.70 13.64 13.27 15.42 10.53 10.84 9.95
MET_S 18.23 19.52 22.07 18.60 18.71 18.14 12.12 13.76 8.42
MET_R 15.12 16.17 16.42 15.20 15.06 16.55 11.59 11.52 10.21
SUB 19.67 20.05 17.29 17.89 17.46 20.85 16.91 14.77 17.71

Average 16.78 17.00 14.98 14.90 14.44 17.97 11.84 11.31 10.33

(b) bas-relief

LS Trim. LMS BR LRM SR PSFCN CNNPS SDPS
MAT 11.98 9.26 6.76 7.84 7.18 12.06 7.05 6.61 9.59
PLA_WS 10.67 9.55 7.18 8.11 7.58 11.84 7.26 7.14 6.68
PLA_W 10.98 9.52 7.19 8.14 7.61 11.77 7.05 6.69 7.45
PLA_WR 11.37 9.42 7.21 8.20 7.67 11.79 7.07 6.47 7.84
PLA_G 9.46 9.29 6.49 7.49 6.98 10.67 6.61 6.79 4.29
PLA_D 12.79 14.01 7.96 9.16 8.43 10.18 6.88 7.46 4.15
MET_S 16.83 18.59 14.03 13.43 12.77 12.41 7.65 9.15 5.34
MET_R 11.11 13.54 10.42 10.64 10.50 10.75 8.20 7.36 5.19
SUB 13.60 13.63 11.59 11.93 11.58 14.47 10.96 9.63 10.84

Average 12.09 11.87 8.76 9.44 8.92 11.77 7.64 7.48 6.82

(c) tablet

Table 4.1: Mean angular error (deg.) for the normal reconstructions on the three ob-
jects of the SingleMaterial dataset with simulated 49 light dome and all the assigned
materials. Bold fonts indicate the best results.
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Figure 4.1: Average errors for selected techniques: basic Lambertian (LS), a robust fitting
(LRM), calibrated global network-based method (PS-FCN), calibrated local network-
based method (CNN-PS) and uncalibrated network-based method (SDPS-Net) on the
49-lights normal recovery for the bas-relief models as a function of the different uni-
form materials.

Let us now look at the effect of dome light density. Figure 4.2 shows the average
angular errors on the bas-relief dataset with varying density. It is possible to see that the
average errors are nearly the same by reducing the light density to 28 lights in a reasonably
regular distribution, even if not all the methods are robust against the replacement of the
dome configuration with the 50 degrees ring proposed by Sablatnig and Wimmer [10].
Neural methods are the best, but CNN-PS is not effective in the ring configuration (10
lights). This is due to the encoding of the pixel information as a 2D "observation map" that
requires a reasonable density. The uncalibrated method performances are also decreased
in the ring configuration as a larger number of lights are required for calibration. Neural
methods are also more robust against asymmetry of the light direction configuration as
shown in Figure 4.3.

It might be surprising to note that the uncalibrated method performs well despite the
error in the light direction evaluation. However, it is possible to see that the addition of a
randomly directed fixed-angle noise to the input light directions does not alter too much
the accuracy of the methods as shown in Figure 4.4. The only method that seems to require
accurate light directions is CNN-PS.

This fact also explains the success of the uncalibrated SPDS-Net method: as shown
in Table 4.2 the average accuracy of the light direction estimated by its LCNet subnet
estimating the light directions is not too accurate: fails on Object 1 and has a MAE close
to 10 degrees on the depth varying surfaces, but the normal estimation subnet is robust
against the error in the input light direction when it is lower than 10 degrees.

The average errors on the entire images, however, do not show how the performances
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Figure 4.2: Average mean angular errors (on all the different material) for the bas-relief
normal estimation vs number of lights in radially symmetric configurations.

of the methods change in critical regions, for example where the normals create large
angles with the view directions and where nonlocal effects like shadows are relevant.

To analyze the performance of the methods in challenging regions we can look at error
maps, like those shown in Figure 4.5, and plot methods accuracy against local properties,
e.g., the z-component of the ground truth normals, or the percentage of shadowed light
directions, which can be obtained from the synthetic rendering output (see figure 3.5). We
report in Figure 4.5 the error maps for the bas-relief 49-lights dome test, material 3 (white
plastic).

It is possible to see that, as expected, the error is higher where the surface is not flat and
the effect of shadows and inter-reflections is higher; this is more evident for Lambertian
model-fitting methods. This fact can be quantitatively shown by plotting the errors as a
function of local surface properties. Figure 4.6 shows the average pixel errors on the 49-
lights capture of the bas-relief model (average on all the materials) for pixels as a function
of the angle between the actual surface normal and the view direction. It is possible to
see that, while for surfaces nearly perpendicular to the view direction all the methods are
similarly accurate, the errors grow with the angle at different ratios, with neural methods
far better at large angles. Figure 4.7 shows the average pixel errors on the 49-lights capture
of the bas-relief model (average on all the materials) as a function of the percentage of
locally shadowed lights (known from the rendering step). The error is similar for all the
methods and low when shadowed directions are less than 20%, then there is a rapid growth
with neural methods far better. CNN-PS seems more robust when the percentage exceeds
70%. SDPS-Net, despite not using input light directions, provides the best results, even
if the largest errors seem more relevant than those of other neural methods in Figure 4.5.
As reflected in Figure 4.7, these points correspond to the ones with a large percentage of
shadowed pixels.
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Figure 4.3: Average errors on bas-relief normals estimation vs number of lights removed
from a side of the 49-lights dome.

Figure 4.4: Average errors on bas-relief normals estimation vs simulated error in light
direction calibration.
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Object1 Object2 Object3
MAT 57.60 6.35 9.22
PLA_WS 61.71 8.33 8.39
PLA_W 58.44 8.06 8.51
PLA_WR 57.97 7.31 8.77
PLA_G 60.47 7.68 8.11
PLA_D 65.98 9.14 8.97
MET_S 59.76 12.03 10.20
MET_R 60.20 9.51 8.67
SUB 60.14 16.79 10.56
Average 60.25 9.47 9.04

Table 4.2: Light direction estimation errors obtained on the 49-lights image collections
with the self-calibration module of SDPS-Net on the three uniform surfaces with dif-
ferent materials assigned

LS Trim. LMS BR LRM SR PSFCN CNNPS SDPS
Object1 5.52 5.21 4.38 4.81 4.67 5.19 6.99 4.04 12.10
Object2 12.23 11.80 9.28 9.73 9.17 12.62 9.74 7.92 19.87

Average 8.88 8.51 6.83 7.27 6.92 8.92 8.37 5.98 15.99

Table 4.3: Average of the MAE obtained by the different methods on the two multimaterial
objects. Bold fonts indicate the best results.

4.1.2.2 Non-uniform materials

When the materials are not uniform, the ranking of the methods is completely different.
As expected, because the hypothesis of uniform material is exploited in the direction cali-
bration network, SPDS-Net fails, but also PS-FCN is no longer performing well. CNN-PS
is clearly the best one, probably due to its local nature, even if robust fitting methods are
not too far, as shown in Table 4.3.

It is interesting to see in Figure 4.8 that the accuracy of CNN-PS is practically constant
when the number of the directional dome light is reduced from 77 to 28 lights uniformly
distributed, but this method completely fails if the dome is replaced with a single-elevation
ring. This is due to the impossibility of estimating a dense observation map exploiting ro-
tational symmetry. Least Median of Squared robust fitting, on the other hand, seems suffi-
ciently accurate also in this case, even if not as in the uniform light dome configuration.

Another limit of the CNN-PS method, at least with the training provided by the authors,
is related to the symmetry of the input light set. In onsite handheld acquisitions typical of
the Cultural Heritage domain it is rather usual that lights cannot be placed on a side of the
surface of interest. However, CNN-PS is sensitive to the asymmetrical removal of lights
as shown in Figure 4.9

Looking at the error maps for the Lion 49-light capture (Figure 4.10) we can see that
the error of SDPS-Net is strongly influenced by the background roughness (patches are
visible in the error map). CNN-PS is, clearly, the most effective technique, even if robust
fitting methods are effective as well.
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(a) Least Squares (b) Trimmed LS (c) Least Median of Squares

(d) Bayesian Regression (e) Low-Rank Matrix (f) Sparse Regression

(g) PS-FCN (h) CNN-PS (i) SDPS-Net

Figure 4.5: Error maps encoding local errors in normals for the white plastic bas-relief
captured with the simulated 49-lights dome and reconstructed with different PS algo-
rithms.

The behavior of the methods is different with respect to the surface normal or the
percentage of shadowed directions. Figure 4.12 shows that many robust fitting methods
(but not LMS) present a strong growth of the error with the angle between normal and view
direction, while the error of SDPS-Net is large but mostly unaffected by normal direction.

If we look at the effect of shadowed directions, CNN-PS is constantly the best method
independently of the number of shadowed directions. LMS starts to fail when the number
of shadow outliers exceeds 40%, while LRM behaves well and is quite close to CNN-PS
at large values (see Figure 4.11).

4.1.2.3 Effect of different image encoding

In our synthetic image encoding, we did not apply gamma correction and we recorded a
linear signal, encoded with 16 bits per channel, simulating raw images captured with a sen-
sor with a high dynamic range. However, multi-light image captures often are performed
with low-cost hardware and may be encoded as 8 bits images, possibly with gamma cor-
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Figure 4.6: Average MAE (all materials) obtained with all the tested methods on the
pixels of the bas-relief 49-lights image collections vs angle between normal and view
direction.

Figure 4.7: Average MAE (all materials) obtained with all the tested methods on the pixels
of the bas-relief 49-lights image collections vs percentage of shadowed directions.
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Figure 4.8: Average MAE on the two multimaterial objects vs number of lights in a sym-
metric dome configuration.

Figure 4.9: Average MAE on the two multimaterial objects vs number of lights removed
from a side of the simulated 49-lights dome.

rection or unknown nonlinear mapping. We performed some tests also to verify the effects
of this on the accuracy of the reconstructed normals performed with PS algorithms. Fig-
ure 4.13 shows the results obtained with the tested methods on the original 16 bits linear
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(a) Least Squares (b) Trimmed LS (c) Least Median of Squares

(d) Bayesian Regression (e) Low-Rank Matrix (f) Sparse Regression

(g) PS-FCN (h) CNN-PS (i) SDPS-Net

Figure 4.10: Error maps encoding local errors in normals for a multimaterial object
captured with the simulated 49-lights dome.

images (blue bars), on 8 bits linear images (red bars), 8 bits nonlinear images (γ = 2.2)
remapped linearly before normal estimation, and 8 bits nonlinear images not corrected
(purple bars). The results show that for simulated acquisitions the 8-bit discretization does
not affect the results. With real acquisitions and non-ideal sensors, results can be different,
but in this case, there is no need for keeping the full dynamic range. Furthermore, it is
interesting to note that the best method (CNN-PS) is rather robust with respect to the lack
of correct linearization of the input illumination.

4.2 Summary

In this chapter, exploiting the features of SynthPS we performed a set of tests on state
of the art PS techniques, that can be used to derive suggestions or even guidelines for the
practical reconstruction of normal maps and surfaces from MLIC data, for cultural heritage
application. Here are the main outcomes of our tests:

• Neural methods are promising, providing the best results in most of the compar-
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Figure 4.11: Average MAE obtained on the pixels of the Lion 49-lights capture by the
different methods vs percentage of shadowed directions.

isons. However, due to intrinsic limits or training on limited surface types, no single
method can cope with all the possible acquisition settings.

• SDPS-Net is quite effective for uniform materials and does not require light calibra-
tion. However, as clearly stated by the authors, it does not work on nearly-planar
objects and multimaterial surfaces.

• PS-FCN even if calibrated is not accurate on nearly-planar objects and does not per-
form well on multimaterial objects. This may be due to the use of global information

• The methods based on robust Lambertian fitting works sufficiently well on matte
and plastic materials, but less on metallic ones.

• CNN-PS seems the most reasonable choice in general, as it works well on nearly
flat surfaces and it is the more effective in the case of non-uniform materials. How-
ever, it is more sensitive than the other techniques to the accuracy of light direction
calibration and the asymmetry of the light layout. This fact is an intrinsic limitation
of the method using "observation maps" as input but can be reduced using other
learning based method to densify sparse input maps.

• Performances of the training-based methods depend on the training data used. Good
performances of CNN-PS may be biased by the fact that it is trained with synthetic
data rendered with Cycles as SynthPS. Performances of these methods can however
be improved on different sets of data by enlarging the training set including different
kinds of data.
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Figure 4.12: Average MAE obtained on the pixels of the Lion 49-lights capture by the
different methods vs angle between normal and view direction.

Figure 4.13: Average MAE on the two multimaterial objects obtained with the tested
methods on differently encoded images: 16 bits linear, 8 bits linear, 8 bits with standard
gamma correction and inverse correction before fitting, 8 bit with gamma correction
without linearization.

• On well exposed images it seems to be not crucial to keep 12-16 bits depth in input
images as there is no apparent decrease in performance with a simple linear mapping
onto 8 bits.

59





CHAPTER5
NeuralRTI:Neural Transformation Imaging

Reflectance Transformation Imaging(RTI) is a computational photography technique widely
used in the cultural heritage and material science domains to characterize relieved surfaces.
It consists of capturing multiple images from a fixed viewpoint with varying lights. Han-
dling the potentially huge amount of information stored in an RTI acquisition, that consists
of typically 50-100 RGB values per pixel, allowing data exchange, interactive visualiza-
tion, and material analysis is not easy. The solution used in practical applications consists
of creating "relightable images" by approximating the pixel information with a function of
the light direction, encoded with a small number of parameters. This encoding allows the
estimation of images relighted from novel, arbitrary lights, with a quality that, however, is
not always satisfactory.

Despite the remarkable results obtained with neural network based methods on other
tasks related to the processing of multi-light image collections, (e.g. Photometric Stereo
[17, 165]) no practical solutions based on them have been proposed to replace classical
RTI(PTM, HSH, DMD and PCA/RBF) methods.

In this chapter, we present NeuralRTI, a novel framework for pixel-based encoding and
relighting of RTI data. Using a simple autoencoder architecture, we show that it is possible
to obtain a highly compressed representation that better preserves the original information
and provides increased quality of virtual images relighted from novel directions, especially
in the case of challenging glossy materials. The experiments performed on SynthRTI and
RealRTI datasets(chapter 3) demonstrate the advantages of the proposed relightable image
encoding. The context of our work has presented in chapter 2, section(2.3).
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Figure 5.1: Our neural RTI builds on an asymmetric encoder-decoder architecture. The
encoder receives a per-pixel RTI data as input, i.e. a set of pixel values associated with
a different lighting direction. These measurements are then passed through a sequence
of fully connected layers until a fully connected layer finally produces a k-dimensional
code. The decoder concatenates the code vector with the light direction and passes
them through a sequence of fully connected layers with componentwise nonlinearities.
The last layer outputs a single RGB color.

5.1 Neural Reflectance Transformation Imaging

The basic idea of Neural RTI is to use the data captured in a multi-light image collection to
train a fully-connected asymmetric autoencoder mapping the original per pixel information
into a low dimensional vector, and a decoder able to reconstruct pixel values from the pixel
encoding and a novel light direction.

Autoencoders [9] are unsupervised artificial neural networks that learn how to com-
press the input into a lower-dimensional code, called the latent-space representation, and
then reconstruct an output from this representation that is as close as possible to the orig-
inal input. In the recent past, autoencoders have been widely used for image compression
[56, 166, 168] and denoising [74, 158], as they can learn non-linear transformations, unlike
the classical PCA, thanks to non-linear activation functions and multiple layers. We spe-
cialized this kind of architecture to create an RTI encoding that is compact like currently
used RTI files and can be used as well for interactive relighting, provided better quality
and fidelity to the original data.

Our encoder/decoder network, represented in Figure 5.1 is trained end-to-end with the
pixel data of each multi-light image collection to be encoded and the corresponding light
directions as input. The training procedure minimizes the mean squared loss between
predicted and ground truth pixel values on the set of given light directions.

The rationale of the network design is that we can then store the compact pixel code
together with the coefficients of the decoder network (that are unique for all the pixel lo-
cations) as a relightable image. Given a light direction included in the original set, we
can reconstruct the original images (compression), while using generic light directions we
can generate relighted images. We assume that, if the sampling of the original data is rea-
sonably good as in real-world RTI acquisitions, the network can provide better relighting
results compared to traditional methods, as it can learn non-linear light behaviors and not
only the coefficients but also the relighting function is adapted to the input data (shape and
materials).

The encoder network (Figure 5.1, left) includes 4 layers, each consists of one activation
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layer. The first three layers contain 3N units, where N is the number of input lights, and
the last layer is set to the desired size k of the compressed pixel encoding (9 in our tests).
Each layer is equipped with the Exponential Linear Unit (ELU) activation function. Since
the encoder network is used only during the training, there are no particular constraints on
the architecture or its size. However, from empirical analysis, we found that 9 coefficients
seem sufficient to provide good relight quality and the size of intermediate layers of en-
coders and decoders equal to the input size provides good reconstruction results limiting
overfitting.

The decoder network (Figure 5.1, right) consists of 3 hidden layers consists of 3N units
each. The input is the concatenation of the pixel encoding and the 2D vector with the light
direction. The output is the predicted single RGB pixel value, illuminated from the given
light direction.

We used 90% of the total RTI data pixel as training data and a 10% sampled uniformly
across pixel locations and light directions as the validation set. Training is performed
with the Adam optimization algorithm [65] with a batch size of 64 examples, a learning
rate of 0.01, a Gradient decay factor of 0.9 and a squared gradient decay factor of 0.99.
The network is implemented using the Keras open-source deep learning library. After the
training, the codes corresponding to pixel locations are converted to byte size with the
offset+scale mapping and stored as image byte planes, and the coefficients of the decoder
(3N2+5N ) are stored as header information to be used as an input to the specific relighting
tool and used at runtime to relight images give novel arbitrary light directions.

In our tests, we trained the RTI encodings on a GeForce RTX 2080 Ti machine with a
single GPU, and training takes approximately one hour whereas the time required to create
a 320× 320 relighted image is approximately 0.007 seconds.

5.2 Results and evaluation

On the novel SynthRTI (section 3.1.2) and RealRTI (section 3.1.1) datasets, we performed
several tests to evaluate the advantages of the proposed neural encoding and relighting
approach with respect to standard RTI encoding.

5.2.1 Evaluation methodology

We followed two different protocols for the evaluation of the relighting quality on Syn-
thRTI and RealRTI. On the synthetic data, we created the relightable images with the
different methods using the Dome subsets and tested the similarity of the images of the
Test subset with the images relighted with the corresponding light directions. The simi-
larity has been measured with the Peak Signal to Noise Ratio (PSNR) and the Structural
Similarity Index (SSIM).

On the RealRTI, as test data are missing, we followed a leave-one-out validation pro-
tocol: for each of the image collections, we selected 5 test images with different light
elevation. Each of them has then, in turn, removed from the collection used to create re-
lightable images and we evaluated the similarity of the removed images with the images
relighted from the corresponding light direction. We finally averaged the similarity scores
of the 5 tests.
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5.2.2 Compared encodings
We compared the novel neural encoding with the RGB RTI encodings obtained with
second-order Polynomial Texture Maps (PTM), second and third-order Hemispherical
Harmonics RTI (HSH) and PCA-compressed RBF interpolation [116]. In PTM encod-
ing, 6 fitting coefficients per color channel are obtained as floating-point numbers and
compressed to byte size mapping the range between global max and min values into the
8 bits range. The total encoding size is therefore 18 bytes per pixel. In the second-order
HSH, we similarly have an encoding with 9 coefficients per color channel and a total of
27 bytes per pixel. In the third-order HSH, we have 16 coefficients per color channel and
a total of 48 bytes per pixel. We implemented the encoding and relighting methods using
Matlab. Note that we could further compress the PTM/HSH encoding by using the LRGB
version, using a single chromaticity for all the light direction. This choice, however, makes
it not possible to recover the correct tint of metallic reflections. In the PCA-RBF encoding,
it is possible to choose the number of PCA components used for the input data projection.
We decided to test the results obtained with 9 and 27 components. We used the original
"Relight" code provided by the authors of [116] to create the encoding and relight images.
In the Neural encoding, as in PTM/HSH, we quantize coefficients to 8 bits integers with
the min/max mapping so that they can be stored into image planes. This will allow easy
integration of the novel format into existing viewers.

5.2.3 SynthRTI
If we look at the SSIM and PSNR values obtained on average on the three shapes with the
single materials, we see that the neural relightable images are quite good, as the average
scores estimated on all the dataset (8 materials times 3 shapes) are quite high despite the
low number of parameters used by the coding (9). Figure 5.2 shows a plot representing
the scores as a function of the number of encoding bytes and NeuralRTI stays on the top
left of the plot. Scores of 3rd order HSH are higher, but the method requires 48 bytes
for the encoding and, as we will see, it creates more artifacts on challenging materials.
Other methods to compress the relightable image encoding are not as effective as Neural-
RTI. This is demonstrated by the poorer results of 2nd order HSH encoding, which can
be considered a compressed version of the 3rd order one, and by the poorer results of
the PCA-based compression of the full original information featuring 147 bytes per pixel
(Relight).

Figure 5.3 shows the SSIM values for the different materials obtained by low-dimensional
encoding methods as PCA/RBF (9 coefficients), Neural (9) and HSH 2nd order (27). Av-
erage SSIM values are close for HSH and Neural, but NeuralRTI performs better on chal-
lenging materials simulating dark plastic behavior and polished metals (5 and 6), despite
the three times more compact code. Differences are statistically significant (p < 0.01 in
a T-Test). HSH seems to handle significantly better the material with subsurface scatter-
ing effect on, probably thanks to color separation. Algorithms ranking does not depend
on the geometric complexity of the model. Table 5.1 shows average PSNR values for the
different models.

A visual comparison clarifies much better the advantages of NeuralRTI. Figure 5.4
shows relighting performed with 2nd order HSH (a), 3rd order HSH (b), PCA/RBF with 9
or 27 coefficients (c,d), NeuralRTI (e) on the canvas object with assigned white "plastic"
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(a) average SSIM

(b) average PSNR

Figure 5.2: Plots representing average SSIM and PSNR scores of the relighted images
obtained with different methods from the test light directions of the SingleMaterial set.
Scores are plotted versus the number of bytes used for the compressed encoding. Best
methods should stay on top left.

(material 2) behavior. (e) shows the ground truth image corresponding to the input direc-
tion. Only the Neural relighting (e) can reproduce the specular highlight with reasonable
accuracy.

Figure 5.5 shows relighting results obtained with different methods on the bas relief
shape with a metallic material (6) assigned, compared with the corresponding ground truth
test image (f). It is possible to see that the highlights and shadows provided by the novel
technique are the most similar to the real ones. HSH and PCA/RBF encodings with a
limited number of parameters (a) and (c) appear matte. Adding more coefficients (b,d),
the quality is better, but the contrast and the quality of the detail are not as good as in the
result obtained with Neural RTI (e), despite the heavier encoding. Like the other methods,
NeuralRTI fails in reproducing correctly all the cast shadows (see for example the one on
the right of the woman on the top right). This is expected, as the method is local, but the
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Figure 5.3: Bar chart showing average SSIM of selected methods on the different materi-
als. Neural relighting and 2nd order HSH perform similarly on rough materials, while
neural relight is significantly better on glossy materials (5 and 6, see Table 3.1)

PTM(18) HSH(27) HSH(48) [116](9) [116](27) Neur.(9)
canvas 29.03 35.42 41.24 34.20 34.26 37.50
tablet 23.79 27.63 29.92 25.87 26.80 28.06
bas relief 24.47 27.22 28.82 25.55 26.31 27.43
avg 25.77 30.09 33.33 28.54 29.13 31.00

Table 5.1: Average PSNR of the methods on the different shapes (all SingleMaterial sets).
Parentheses include the number of coding bytes.

material appearance is realistic on this challenging material.
Plotting the average relighting quality scores obtained on the MultiMaterial subset

(Figure 5.6), we see that NeuralRTI compares favorably with the other methods, as, de-
spite the compact encoding, it demonstrates the highest relighting quality. This is because
many of the multi-material combinations include metallic and glossy materials, that are not
rendered properly by the other methods. This fact appears clear looking at the bar chart
in Figure 5.7. The NeuralRTI relighting has significantly higher SSIM values (p < 0.01
in T-tests) for all the material combinations except 2,3 and 4. 2 is fully matte, 3 is all
simulating rough plastic, 4 is mostly composed of rough materials. Average PSNR values
for the different geometric models are reported in Table 5.2.

A visual analysis of the results demonstrates here the advantages of NeuralRTI as well.
Figure 5.9 shows relighted images obtained from the encodings made on the dome MLIC
of material mix 5. Here we have two tints and, on the left, plastic behavior with 4 levels of
roughness and, on the right, metallic behavior with 4 levels of roughness (increasing from
left to right). 2nd order HSH fails in reproducing the correct highlights (a), compared
with the ground truth ones (f). 3rd order HSH better represents specularity (b), but still
with artifacts, and requires 48 bytes per pixel. PCA/RBF-relighted image also appears
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(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure 5.4: Comparison of relighted images from simulated RTI data of a painted canvas,
"plastic" material, light elevation 80 degrees.

matte with 9 bytes encoding (c) and is only slightly improved using 27 coefficients (d).
NeuralRTI provides a good relighting of all the image regions, creating an image that is
quite similar to the reference one in the test set. The directional light, in this example,
comes here from an elevation of 60 degrees. In general, the ranking of the relighting
quality is not changed by the input light elevation. Quality scores are all higher for higher
elevation values.

5.2.4 RealRTI
Tests on real images confirm the evidence coming from those performed on the synthetic
ones (and this also shows that the rendered materials have reasonably realistic behaviors).
Looking at the average SSIM and PSNR plots obtained on the whole RealRTI dataset, it
is possible to see that Neural RTI provides the most accurate relighting even using only 9
coefficients. The difference in the average score is mainly due to the different quality of
the relighting of shiny metallic objects. The bar chart in Figure 5.8 reveals that significant
differences are found in items 9 and 10, which are metallic coins.

This fact can be seen by visually comparing relighted images with different methods.
Figure 5.11 shows an image relighted with the leave-one-out procedure from a metallic
coin acquisition. Relighting obtained with PCA/RBF with 9 coefficients shows a wrong
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(a) 2nd order HSH fitting (27
coefficients)

(b) 3rd order HSH (48
coefficients)

(c) PCA/RBF (Relight, [116]), 9
coefficients

(d) PCA/RBF (Relight, [116]),
27 coefficients

(e) NeuralRTI (9 coefficients) (f) ground truth image

Figure 5.5: Comparison of relighted images from simulated RTI data of a shiny (metal
smooth) bas-relief.

tint in the central part, limited highlights, and halos, the use of 27 coefficients removes
the tint issue. Image relighted with HSH shows a correct tint thanks to RGB decoupling,
but relevant halos and missing highlights, especially in the 2nd order version. The Neu-
ralRTI result is the only one with realistic highlights. Furthermore, it is possible to see
that the proposed technique also avoids the typical artifact arising in the shadowed regions
of RTI relighting, which appear as a blending of the shadows of the input images when
obtained using PTM, HSH, and RBF. A detailed quantitative and qualitative results, on
both SythRTI and RealRTI, can be found in the appendix A.

5.2.5 Comparisons with other network architectures
As we pointed out in Section 2.3, there are no available frameworks for the neural network
based compressed encoding of relightable images, but there are, actually, methods for
multi-light data relighting based on different network architectures, like those described
[120, 162]. We tested the use of these architectures, adapted for our scope and compared
the relighting accuracy with the one provided by our method but did not include the re-
sults in the previous sections as it would not be fair to compare encodings not specifically
designed and used for this kind of sampling. We show our results here just to confirm that
our NeuralRTI encoding seems particularly suitable for the task also considering different
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(a)

(b)

Figure 5.6: Plots representing average SSIM (a) and PSNR (b) scores of the relighted im-
ages obtained with different methods from the test light directions of the MultiMaterial
set. Scores are plotted versus the number of bytes used for the compressed encoding.

network architectures. In [162], relighting is performed on 5 selected images, correspond-
ing to those closer to an ideal sampling learned from a training set and to an encoding
size of 5 bytes per pixel. This is, clearly, not the ideal way to compress a standard RTI
dataset, but we still compared the relighting quality. Relighting is then global, based on
the function learned on the training set. This can result in global illumination effects and
realistic, even if hallucinated shadows.

The method in [120] is designed for a different application, e.g. compressing high
dimensional multi-light and multi-view data of nearly planar patches. We instead focus
on non-planar samples of potentially sharp BRDFs. The network of [120] uses 1D con-
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PTM HSH(27) HSH(48) [116](9) [116](27) Neur.(9)
canvas 25.17 28.45 30.03 27.95 28.45 33.26
tablet 20.56 22.76 24.24 20.89 22.28 23.74
bas relief 22.34 23.81 25.10 21.54 22.47 25.17
average 22.69 25.01 26.46 23.46 24.40 27.39

Table 5.2: Average PSNR of the methods on the different shapes (all MultiMaterial sets).
Parentheses include the number of coding bytes.

Figure 5.7: Bar chart showing average SSIM of selected methods on the different materi-
als. Neural relighting and 2nd order HSH perform quite similarly on rough materials,
while neural relight is significantly better on glossy materials (5 and 6, see Table 3.1)

volutions, while we avoid them and instead use more FC layers and different activation
functions that work better with sharp-and-rotated BRDFs. We test an architecture similar
to [120] in our case, with three 1D convolutional layers and a single fully connected layer,
encoding with 9 bits and relighting similarly.

Looking at results (see Table 5.3), it is possible to see that the adapted methods do not
provide good results when compared with our method and other RTI encodings, showing
that a specifically designed neural architecture is the right choice for the RTI relighting
task.

5.2.6 Ablation study
In our experiment, we have investigated the influence of different network parameters,
i.e. the number of layers, number of units in each layer, different encodings as well as
hyperparameters, specially on the decoder network. From our investigation, we found
that increasing the number of layers does not change the performance that much whereas
it increases the execution time. Above 3-4 hidden layers, the improvement in relighting
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Figure 5.8: Bar chart showing average SSIM of selected methods on the different objects.
It is possible to see that the great improvement of the NeuralRTI relight is obtained for
the shiny metallic objects (coins, items 9,10)

accuracy compared to the increase in the size of the decoder is minimal. For this reason,
we use a decoder network with 3 hidden layers as a compromise between accuracy and
computation time. We have also investigated the effect of the number of units in each layer.
As we can see from table 5.4 setting the number of units to 3N, where N(49 in this case) is
the number of input lights gives us the best result. Despite setting the number of units to
3N is good from the same table we can see that reducing the units doesn’t deteriorate the
performance that much. However, it improves the execution time significantly.

Another study we have performed is the influence of different encodings. In this case,
as shown in table 5.5, the performance slightly increases when we increase the encoding
size. However, when we compare the performance gain to the execution time is almost
insignificant. For this reason, we set the encoding size to 9.

5.2.7 Interactive relighting
We tested the Neural RTI encoding in an existing web-based solution for the interactive
relighting RTI framework. The current encoding results in a relighting that is far more
complex than the simple weighted sum of the RTI/HSH coefficients and involves several
multiplications that are proportional to the squared decoder layer size, however, we kept
the number and the size of the decoder layers sufficiently small to allow interactive relight-
ing.

To implement the web viewer, we used the tensorflow.js library [134]. The 9 coeffi-
cients per pixel, quantized to 8 bits, are loaded in the browser as a binary typed array and
mapped back to the original floating-point coefficients range. The light direction param-
eter, varying with the mouse position is concatenated with the coefficients and processed
in the decoder network. Tensorflow.js library adopts a WebGL backend for the network
processing and the data managed as textures in the GPU. The result is then rendered in
a canvas element. Similarly to PTM, HSH and PCA web viewers approach the coeffi-

71



Chapter 5. NeuralRTI:Neural Transformation Imaging

Average PSNR

Ours (9)
Adapted
Neural BTF (9)

Adapted Deep
Relighting (15)

SynthRTI single 31.00 28.37 13.15
SynthRTI multi 27.39 23.49 12.46
Real 32.31 29.64 26.61
Average 30.23 27.16 17.41

Average SSIM

Ours (9)
Adapted
Neural BTF (9)

Adapted Deep
Relighting (15)

SynthRTI single 0.898 0.852 0.449
SynthRTI multi 0.899 0.808 0.436
Real 0.927 0.89 0.836
Average 0.908 0.850 0.574

Table 5.3: Adaptation of other network architectures not specifically designed for the
relighting of typical RTI stacks resulted in poor results compared to our solution.

Average SSIM
25 nodes 75 nodes 147 nodes 300 nodes

SynthRTI 0.841 0.842 0.853 0.844
Real 0.922 0.941 0.947 0.930

Average 0.881 0.891 0.900 0.887

Average PSNR
25 nodes 75 nodes 147 nodes 300 nodes

SynthRTI 27.271 28.302 28.744 25.533
Real 32.148 32.210 32.310 31.102

Average 29.709 30.256 30.527 28.317

Table 5.4: Image relighting quality of different network configurations. Here we can see
that the network configuration with the number of nodes equal to 3N(in this case 147)
at each layer performs well.

Average SSIM
Number of Nodes

size of coefficient 100 147 200
9 0.8406 0.8414 0.8422

27 0.8404 0.8437 0.834
48 0.8467 0.8392 0.8443

Table 5.5: Image relighting quality as a function of latent coefficient performed on bas-
relief shape with the single materials. Here, we evaluate the quality of a relighted
image by encoding in 9, 27 and 48 bytes.
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(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure 5.9: Comparison of images relighted from the encodings created with the Multi-
Material 5 dome collection and the corresponding ground truth reference.

cients can be combined and compressed in three JPEG or PNG images and split into a
multiresolution pyramid of tiles.

Figure 5.12 shows some snapshots from an interactive surface inspection performed
with the web viewer on our encoding.

A gallery of interactively relightable web-based visualizations of a selection of Syn-
thRTI and RealRTI items can be seen at the project webpage https://univr-rti.
github.io/NeuralRTI/.

5.3 Summary

In this chapter, we presented a NeuralRTI, a neural network-based relighting tool that can
provide better results than the current state-of-the-art methods, with reduced storage space.
The quality of the images created with our novel technique is particularly good especially
on surfaces with metallic and specular behavior that are not well handled by the existing
methods. Furthermore, the relighted images are less affected by the blended shadows
artifacts typical of RTI.

NeuralRTI can be used immediately as an alternative to the classic PTM, HSH and
PCA-RBF files and could be directly integrated into the existing visualization frameworks,
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(a)

(b)

Figure 5.10: Average quality scores of relighted images on the RealRTI dataset (all 12
objects), as a function of number of bytes used for the encoding.

as it is efficient enough to support real-time relighting. We demonstrate this with a specific
web viewer based on tensorflow.js We believe that this tool will be particularly useful in the
domain of Cultural Heritage and material science surface analysis, where RTI processing
is widely employed.

The main limitation of the proposed technique is that it is a "local" method, not learning
global effects like cast shadows. This limitation, however, holds similarly for the currently
used techniques and it must be stressed that NeuralRTI provides better highlights and
shadow simulations, avoiding blending artifacts. This is probably due to the ability to
constrain non-linearly the space of the reflectance patterns.

We plan, as future work, to investigate how our method, developed to handle the typical
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(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) ) NeuralRTI (f) ground truth image

Figure 5.11: Comparison of relighted images on a real challenging surface.

Figure 5.12: Our web-based interactive relighting solution allows, like similar applica-
tions working with PTM/HSH/PCA-RBF encoding. Moving the cursor over the image,
the user controls the light direction for the novel illumination. In this case, moving
from right to left, he can gradually move from raking light from the right, to illumina-
tion from top, to raking light from left.

sampling of RTI acquisition behaves with varying light directions sampling density, pos-
sibly specializing the codes for different acquisition protocols. Our compressed encoding
can be also used as a basis for further surface analysis, e.g. material and shape characteri-
zation. We plan to test methods to recover effectively normals and BRDF parameters from
the compact encoding of the captured objects.
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CHAPTER6
Crack Detection in Single- and Multi-Light

Images of Painted Surfaces using
Convolutional Neural Networks

Cracks represent an imminent danger for painted surfaces that needs to be alerted before
degenerating into more severe aging effects, such as color loss. Automatic detection of
cracks from painted surfaces’ images would be therefore extremely useful for art con-
servators; however, classical image processing solutions are not effective to detect them,
distinguish them from other lines or surface characteristics. A possible solution to improve
the quality of crack detection exploits Multi-Light Image Collections (MLIC), which are
often acquired in the Cultural Heritage domain thanks to the diffusion of the Reflectance
Transformation Imaging (RTI) technique, allowing a low cost and rich digitization of art-
works’ surfaces. In this chapter, we propose a pipeline for the detection of crack on egg-
tempera paintings from multi-light image acquisitions and that can be used as well on
single images. The method is based on single or multi-light edge detection and on a cus-
tom Convolutional Neural Network able to classify image patches around edge points as
crack or non-crack, trained on RTI data. The pipeline can classify regions with cracks with
good accuracy when applied on MLIC. Used on single images, it can give still reasonable
results. The analysis of the performances for different lighting directions also reveals op-
timal lighting directions.
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6.1 Introduction

Cracks are damage that can affect Cultural Heritage objects on many layers. For instance,
as pointed out in [29], cracks can affect not only the pictorial layer of a painting but the var-
nish and support layers as well. Cracks may occur due to several reasons: the drying of the
paint layer (since the evaporation of organic components causes their shrinkage), external
mechanical factors (vibrations, seism, impacts) and stress induced by aging or fluctuations
of humidity over time [115], where the cracks burst as non-uniform contractions from the
substrate layer through the superficial layer [31]. Hence, cracks represent a form of degra-
dation both aging-dependent and aging-independent and the detection of such degradation
at any stage in the lifecycle of artwork reveals meaningful clues for conservators. More-
over, in the case of paintings, the craquelure (which is the network of connected cracks)
might also be associated with a certain school of painting and can be useful for recogniz-
ing the style of an artist [12, 13]. Cracks are multi-surface phenomena, since, apart from
paintings, they have been investigated in concrete surfaces as well [21, 86]. In addition
to this, cracks are often used for structural health monitoring of cultural heritage build-
ings, where commonly mechanical displacements lead to deep discontinuities in structural
elements of the building such as ancient support walls [75].

In this chapter we propose a novel approach for crack detection exploiting both MLIC
typically acquired in the CH domain and Convolutional Neural Networks. The idea is to
exploit available multi-light image data of aged egg-tempera painting to develop a pipeline
for crack detection in similarly painted surfaces based on (multi-image) edge detection and
a custom CNN based classifier to select crack candidates and label them in a supervised
manner.

The contribution of the work is both the demonstration of a practical pipeline that can
be directly used on similar surfaces or retrained for other surface feature detection, analysis
of the improvements of the edge detection and classification approaches with MLIC data.

The chapter is structured as follows. In Section 2, we review the related works. In
section 3, we present the rationale of the method, the dataset used and describes all the
processing steps. Finally, Section 4 presents the experimental results and section 5 con-
cludes the chapter.

6.2 Related Work

Automatic detection of cracks on digital images, especially in the case of painted surfaces,
is particularly difficult, as the geometric and color features visually characterizing them
are quite subtle and difficult to discriminate from those related to drawing lines, noise, and
other aging effects.

The common pipeline for cracks classification in digital images is therefore complex,
and usually involves a step of pre-processing consisting of morphological operators: white
and black top-hat transformations [29], opening, closing, spurring and cleaning [21]. After
the pre-processing step, the classification of cracks proceeds either with an unsupervised,
supervised, or semi-supervised approach. In the unsupervised approach, usually, a combi-
nation of edge detection and further heuristics are used to label cracks [31].

To restore the Ghent Altarpiece, [127] proposes a crack detection workflow followed
by crack inpainting. For reducing the noise in the image, they initially apply anisotropic
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diffusion filtering and proceed with crack detection based on a multiscale morphological
approach by switching the structuring element within the top-hat transform to different
sizes. Besides, they explore the distinct contrast provided by the color channels of RGB
and HSV color spaces either for identifying cracks with extreme brightness values or for
isolating the misidentified cracks. Thus, they found that the green channel is enhancing the
dark cracks, while the blue channel enhances the bright cracks. Similarly, they were able
to distinguish between deceivingly crack-resembling elements (brows) and dark cracks,
by applying heuristic on the saturation channel of the HSV image. As an extension of the
work in [127], in [26] two other methods are proposed except the multiscale top-hat trans-
form: the oriented elongated filters originally applied for blood vessels segmentation and
the k-SVD dictionary learning with hysteresis thresholding. To validate these methods, a
semi-automatic clustering is performed with a k-means algorithm that receives as input a
feature vector composed of several joint color and shape properties of the crack pixels and
their neighborhood. The latter is particularly descriptive of the bright borders that usually
surrounds cracks. In [115], built on top of [127] and [26], a semi-supervised approach
is adopted for crack detection in multimodal images (visible, infrared and x-ray radiogra-
phy). The rationale of their improved method lies in using a Bayesian conditional tensor
factorization (BCTF), by estimating for each multimodal pixel the posterior probability of
pertaining to the ”cracks” class.

Nonetheless, in the case of crack detection in paintings, [31] suggest that a supervised
approach is highly recommended because there are elements within a painting (especially
thin and dark brushstrokes on a bright background or bright brushstrokes on a dark back-
ground) that visually resemble the structure of a crack, so the unsupervised algorithm
outputs increased false positives.

Among the supervised learning approaches applied in the image processing domain,
the most popular now is, clearly, the use of Convolutional Neural Networks (CNN). CNN’s
have been used to solve the problem of automatic crack detection in concrete surfaces [16].
In [119], CNNs are combined with 3D modeling for spotting defects in tunnel infrastruc-
tures. In [94], authors improve a standard genetic algorithm by training a CNN, with only
a minor increase in cracks’ classification accuracy for general-purpose tasks.

Another interesting option for better crack detection is the use of Multi-Light imaging,
aka Photometric Stereo or Reflectance Transformation Imaging. This kind of image ac-
quisition, consisting in taking multiple photos from a single viewpoint with changing light
direction is quite popular in the Cultural Heritage domain as it can be obtained with low-
cost setups and provides an effective visualization of surfaces [106]. Multi-Light image
collections (MLIC) have been used for crack detection [66, 70, 82, 133, 136], typically
using few lights and specific setups.

6.3 The proposed approach

To develop and validate crack detection algorithms based on Multi-Light Image Collec-
tions (MLIC), we rely on a set of acquisitions obtained from a European project on the
analysis of artworks’ aging, Scan4Reco [34]. In this project, mockups of wood pantings
have been realized using different pigments and coatings and then artificially aged to char-
acterize degradation effects. All the items have been acquired at different aging steps with
a free-form RTI setup, with the acquisition and processing pipelines presented in [23].
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Figure 6.1: Artificially aged egg-tempera samples. Images are taken from the original
MLIC captures featuring 50 different light directions.

Figure 6.2: The proposed crack detection pipeline: edges are extracted on single images
or MLICs and single or multiple patches around each edge location are classified with
the same CNN-based classifier. In the case of MLIC based crack detection, edge labels
corresponding to the different patches are combined by majority voting.

The calibration procedures applied results in a set of 50 intensity-compensated images,
with estimated light direction [48].

Our idea is to exploit the multi-light images, captured at the second aging step rep-
resenting 36 painted squares with different pigments and coatings, and presenting visible
cracks that can have been annotated by experts to develop and test a novel approach to
automatically identify regions with cracks on egg-tempera paintings.

The proposed method is based on a processing pipeline able to automatically identify
crack regions in single and multi-light images. The pipeline is based on a (multi-light) edge
detection and a Convolutional Neural Network-based labeling of image patches around
edges. The processing pipeline is summarized in Figure 6.2.

In the following subsections, we present the rationale of the different steps.

6.3.1 Edge detection and cracks
Figure 6.3 shows that the detection of the cracks identified in these images by CH experts
is quite hard. The top row show two images of a MLIC of cracked egg tempera and the
second edge maps extracting thresholding Sobel gradient magnitude estimation. Part of the
cracks are not visible in both images and consequently in the edge maps. The complete
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detection of the cracks is possible looking at the whole dataset and it is reasonably captured
by multi-light edge detection.

A few methods have been proposed to extract edges from MLIC/RTI data. For example
Brognara et al. [11] localize edges as maximal variations of 3D normals computed from
Polynomial Texture Map fitting. Pan et al [100] also use PTM coefficients, but estimate
edges using the idea of Di Zenzo [33] for multidimensional image edge detection, e.g. es-
timating the Jacobian matrix and evaluating eigenvalues to determine gradient magnitude
and direction.

In our work we just applied the Jacobian approach on the set of the intensity images
of the MLIC collection to recover a gradient intensity, that is thresholded in a conservative
way to recover a superset of the edge points that are considered as candidate crack loca-
tions. An example result of the procedure is represented in the left image of the bottom
row of Figure 6.3.

6.3.1.1 Ground truth crack annotation

The annotation of the ground truth crack position has been performed as follows: experts
were provided with selected images of the MLIC where cracks were maximally visible
and the edge map provided by the multi-light edge detector. They had to draw a polygonal
area including the edges that should be classified as a crack. The annotation resulted in
binary maps corresponding to each of the 36 MLIC used.

6.3.2 CNN-based edge classification

To automatically label detected edges as crack or non-crack, we consider a 31x31 patch
around them and train a classifier based on a Convolutional Neural Network (CNN). CNNs
[50] are powerful learning tools demonstrating superior performance on both visual object
recognition and image classification tasks [68]. As the number and the direction of the
input lights are not necessarily the same in different acquisitions, we designed a classifier
predicting the feature class (crack/non-crack) based on a single image patch. After the
training process, the classifier can then be used both to classify features extracted on a
single image or to classify features extracted on a multi-light acquisition using a voting
approach: given an edge point extracted on a multi-light image collection, we apply the
classifier to all the patches of the images centered in the point and assign the most frequent
label.

6.3.2.1 Patch dataset creation and labelling

To train the classifier, we considered a subset of the ground truth crack pixels (avoiding to
take close pixels that would result in heavily correlated patches) and, for each MLIC, an
equal number of positive(crack) and negative(noncrack) samples, Figure 6.4.

To evaluate the patch classification method and the full pipeline, we divided the dataset,
using 30 MLICs of painted squares and the corresponding annotated patches as a training
set, and the remaining 6 painted squares and the corresponding patches as a test set, both
for the classifier evaluation and the full crack detection pipeline testing.
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Figure 6.3: Top row: two images of an egg tempera sample MLIC. The visibility of the
surface features changes with respect to the light direction i.e. more visible on the high
elevation and less visible on the low elevation. Middle row: the corresponding edge
maps estimated on the single images. Bottom row: MLIC based edge detection (first
column) and edge points annotated as cracks (second column).
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Figure 6.4: Examples of positive (red) and negative (blue) patches centered in edge points
and used to train (and test) the classification of candidate crack points.

Figure 6.5: An illustration of the architecture of our CNN. Conv#: layers corresponding to
convolution operations and max-pooling: max pooling applied on the previous layer.

6.3.2.2 Network architecture

Figure 6.5 shows our CNN model. It contains six convolutional layers and three fully
connected layers. The first two fully-connected layers have 100 neurons each and the last
one contains 2 neurons. The input is a 31x31 grayscale patch, like those obtained with
the procedure described in Section 6.3.2.1). In the first layer, the input patch is convolved
with 32 filters of size 3x3, outputting 32 feature maps of size 31x31 each. In the second
layer, the same operation is performed followed by 2x2 max-pooling and subsampling by
a factor 2. In the third and fourth layers, the feature maps are convolved with 64 3x3 filters
and followed by 2x2 max-pooling and subsampling, resulting in 64 7x7 feature maps. In
the fifth and sixth layers, input features are convolved with 128 3x3 filters and followed
by max-pooling. The output of the last fully connected layer is fed to a 2-way softmax
which produces a distribution over the 2 class labels. All hidden layers are equipped with
the Rectified Linear Unit (ReLU) activation function.

The model is trained on 54,810 training samples which contain an equal number of
positive and negative samples and validated on 6,087 samples. It is trained using Adam
optimization algorithm [65] with a batch size of 64 examples, a learning rate of 0.0003, a
Gradient decay factor of 0.9 and a squared gradient decay factor of 0.99. We found that
this combination of parameters was important for the model to learn. Batch normalization
and dropout layers [137], which can prevent overfitting, with a rate of 0.2 (20% dropout)
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are also used. It is trained on a GeForce RTX 2080 Ti machine with a single GPU.
In our tests, this architecture seemed better suited for the task with respect to several

other CNNs tested, like other deep networks originally developed for crack detection in
concrete [73] or LeNet5 [71] which has an architecture with a lower number of convo-
lutional layers and a lower number of filters. The network we adopted is a reasonable
tradeoff between complexity and trainability.

6.3.3 Full detection pipeline
Using the trained classifier, the idea of the method is to use the proposed pipeline to auto-
matically extract crack points as follows: if the input is a single image, a Sobel edge detec-
tion is performed using conservative thresholding and then the candidate points are classi-
fied. Finally, the map of positive points is post-processed by removing isolated points. In
the case of MLIC data, the edge map is extracted with the Di Zenzo like multi-light edge
detection, for all the pixels we classify all the corresponding patch and obtain the final
label with majority voting. Finally, we post-process the map removing isolated points.

6.4 Results

In our experiments, we both evaluated the performances of the patch classification on the
dataset created from the Scan4Reco painted samples and evaluated the use of the detection
pipeline to automatically detect cracks.

6.4.1 Patch classification
To evaluate the quality of the edge classification, we evaluated the classification accuracy
on the annotated dataset patches extracted from the six test squares. Table 6.1 shows the
classification errors for the patches of the different MLIC test data obtained with single
image classification and MLIC classification based on the same CNN-based classifier and
majority voting. The accuracy is not very high, but the task is quite hard due to the dif-
ferences in pigments and coatings used in the different squares. The use of MLIC data
makes the classification more accurate as expected. If we look at the results obtained with
single images, however, we see that the accuracy is not that bad, and depends on the light
direction. If we consider the variation in classification accuracy versus the elevation of the
light used, it is possible to see (Table 6.2) that using perpendicular lights the automatic
classification works better (this may be counter-intuitive, as a typical way of inspecting
surfaces changing light direction is the use of raking lights.

6.4.2 Automatic crack detection
To automatically detect cracks from single light images it is, however, necessary also to
rely on single image edge detection, that is less able to recover all the correct candidate
crack points to be classified.

Figure 6.6 shows the cracks detected on six test squares. Results seem good despite
the quite hard visibility of the cracks and the huge amount of clutter, removed during
post-processing using a simple morphological operator, area opening.
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Test square Single Image Voting
1 65.64 72.26
2 81.33 90.08
3 85.24 90.49
4 87.11 87.85
5 75.01 75.14
6 66.65 76.87

Avg. 76.83 82.12

Table 6.1: Classification accuracy for the dataset patches extracted on the 6 test painted
squares. We report average accuracy obtained on single patch classification and the
average accuracy on voting based MLIC-based classification

Accuracy (%) in elevation range
0-30 deg. 30-60 deg. 60-90 deg.

1 60.75 64.63 68.92
2 77.01 82.39 84.60
3 81.31 87.56 86.84
4 85.63 87.88 87.83
5 67.87 77.96 81.77
6 58.96 66.11 74.88

Avg. 71.92 77.75 80.81

Table 6.2: Average accuracy in single patch edge classification for selected elevation
ranges. Cracks are better recognized when the illumination is from higher elevation
angles.

The results obtained on the multi-light data (middle row) appear better than those ob-
tained on the single image example, that is, however, rather good. This is due to the better
quality of both the edge detection performed with the multi-light Di Zenzo approach and
the better classification accuracy obtained using CNN.

As can be seen in figure 6.7, in the case of prediction on single images, the quality
appears better on high elevations despite the middle and low elevations are also provid-
ing satisfactory results. If we see the crack map lines superimposed over the image(cyan
points), on the high elevations(right image), the cracks’ maps lines are continuous. This
continuity shows in most of the cases that the classifier can classify the crack points cor-
rectly. Probably the increased illumination intensity and the subsequent inter-reflections
are more effective than raking light for the enhancement of the crack details.

To demonstrate the crack detection on real paintings, we used our method on a MLIC
scan of a MLIC capture of real artwork, e.g. the Icon St. Michele (17th - 18th century).
It is an egg tempera painting on wood support and includes some regions with cracks.
As can be shown in Figure 6.8, it is possible to see that the proposed method can extract
reasonably well the cracks neglecting most of the other image edges not corresponding to
cracked painting.
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Figure 6.6: Cracks detection on test painted squares. Top row: corresponding cracks
detected on a single image after CNN classification superimposed on images (cyan
points). Middle row: corresponding cracks detected on MLIC after CNN classification,
superimposed on albedo image (green points). Third row: ground truth crack points
superimposed on albedo image (green points).

Figure 6.7: Crack points detected on a single image at various elevation angles super-
imposed on the corresponding images. Left to right crack detected from an image
captured at elevation angles of 18, 44 and 66 respectively. As we can see, on the left
image the lines which represent a crack edge are disconnected. Whereas in the middle
and mainly on the right one they are connected. This tells us that on the high elevation
almost all the crack points are detected precisely and on the low elevation not.

6.5 Conclusion

The automatic identification of specific painting features like cracks can be extremely
useful for conservators to monitor the aging of the items, highlighting possibly critical
regions of the surface.

The use of machine learning tools coupled with multi-light imaging is surely a good
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Figure 6.8: Crack points detected on real images. Left: example image chosen from the
Multi-light image collection, one of the few where cracks are visible. Middle: grayscale
albedo. Right: corresponding cracks detected on MLIC after CNN classification, su-
perimposed on the grayscale albedo image (green points).

way to address the problem of automatic crack detection, but it is not widely studied in the
literature. We proposed a specifically designed pipeline that can be used to detect cracks
(but also other critical features with specific training). Results are encouraging, even if
they could be certainly improved and tested on more data with heterogeneous features.

One problem related to the use of machine learning for the automatic interpretation of
CH data is the lack of large annotated databases specifically designed to solve practical
problems for analysis and conservation applications. Therefore, We plan to collect novel
datasets to evaluate the proposed approach on larger collections of MLIC data.
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CHAPTER7
Conclusion

Multi-Light Image Collections(MLICs) are a series of images, acquired from the static
viewpoint but varying the lighting condition, arranged in a stack. They are used as the
main means to non-destructively gather information on scenes and objects at many scales,
as well as to provide users with useful visualization tools for object analysis. In this the-
sis, we present methods that exploit Multi-Light Image Collections (MLICs) for surface
analysis and visualization and proposed schemes that exploit MLIC to create a relightable
image and to attack the problem of crack detection. Moreover, we have proposed bench-
mark datasets and evaluated the performance of different photometric stereo algorithms
for cultural heritage applications.

The first chapter provides background information on Multi-light image collections.
Here, we discuss different acquisition setup used by the MLIC community, categorizing
them into two main categories. Then, we discuss different light calibration techniques and
conclude the chapter discussing application areas where MLICs have been successfully
used for the research of daily analysis work.

In chapter 2, we discuss the use of MLIC for surface visualization and analysis and
point out available tools used to support the analysis. In this chapter, we discuss methods
that strive to support the direct exploration of the captured MLIC, that generate relightable
models from MLIC, non-photorealistic visualization methods that rely on MLIC and visu-
alization tools used to do MLIC analysis.

One of the challenges in the Multi-Light Image Collections(MLIC) community, is the
lack of benchmarks for evaluation. Usually, MLIC based methods evaluated using spe-
cific homemade datasets or a few publicly available benchmark(for example DiLiGent,
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[132]). The main problem of these types of a benchmark is that they are not representative
of those typically captured in the real-world applications of MLIC acquisition. Thus, the
availability of specific benchmarks for different surface analysis tasks will be fundamental
to validate methods and develop guidelines for the use of MLIC visualization software in
different domains. To this end, in chapter 3 we have proposed benchmarks(RealRTI, Syn-
thRTI and SynthPS) that can be used to evaluate algorithms that rely on MLIC. Utilizing
RealRTI and SynthRTI we have evaluated the NeuralRTI method. In chapter 4, we have
evaluated the performance of different photometric stereo algorithms using SynthPS.

In chapter 5, we proposed a neural network-based RTI method, aka NeuralRTI, a
framework for pixel-based encoding and relighting of RTI data. In this method using a
simple autoencoder architecture, we show that it is possible to obtain a highly compressed
representation that better preserves the original information and provides increased quality
of virtual images relighted from novel directions, particularly in the case of challenging
glossy materials.

Finally, in chapter 6 we proposed a method for the detection of crack on the surface
of paintings from multi-light image acquisitions and that can be used as well on single
images. The proposed method is based on a processing pipeline able to automatically
identify crack regions in single and multi-light images. The pipeline is based on a (multi-
light) edge detection and a Convolutional Neural Network-based labeling of image patches
around edges.

Challenges for future research

Finally, we want to highlight promising and challenging research areas for future work.
We summarize the main identified ones in the following sections.

Standardization of protocols, data exchange formats, and visualization approaches

One relevant challenge for the MLIC data visualization side is the development of stan-
dardized acquisition, processing, encoding, and visualization methods for this kind of data.
Most image capture setups share a light-direction based parameterization, even if with dif-
ferent densities and constraints. However, there are no well-defined standards to encode
the calibrated data stack. Moreover, in all the intermediate steps of the MLIC processing
pipeline (e.g. light calibration, data storage, reflectance models, and parameters encoding)
there is a clear lack of guidelines and widely accepted exchange formats. Also, for the
relightable image visualization, even if the requirements for most practical applications
seem to be quite similar (users need to be able to relight the surfaces with novel illumina-
tion, using false colors to represent attributes over the surface, visualize material signatures
clicking on specific points), there are not standard container formats for the data that allows
for interoperability of different solutions. The RTI framework [20] can be considered a de
facto standard for some applications in CH since it is based on free and known software,
but many more recent and performing solutions for relightable images and enhancements
are not integrated and not compatible. Moreover, creators of light dome applications typi-
cally develop proprietary solutions for encoding and rendering data. It would be therefore
useful soon to spend some efforts on the development of standardized protocols and data
formats. This would also make it possible to experiment with novel visualization and user
interface techniques.
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Improving direct visualization

The improvement in capture techniques is making dense acquisition more practical. Direct
visualization techniques (Sec. 2.1) have shown their applicability in several domains, but
are currently under-developed. The need to access at visualization time large amounts of
data has, in particular, restricted their applicability, especially in remote settings, where
bandwidth is limited. Relighting based on low-frequency fitting (Sec. 2.3) is by far the
most commonly employed visualization, but significant inaccuracies have been shown to
exist [105]. Early attempts at using resampling and compression methods to support direct
interpolation are promising [116], but this research is in the early stage and only supports
aggressive lossy compression. It is reasonable to expect that the area of direct visual-
ization can be significantly improved, tackling at least two different directions. On one
hand, the interpolation of nearby images can be improved by exploiting more prior knowl-
edge instead of using plain smoothness constraints. Moreover, multiresolution structures
and compression techniques can be exploited, as done, e.g., in massive volumetric ren-
dering [7], to allow for the real-time browsing of full MLICs on bandwidth- and storage-
limited settings.

Smart use of machine learning techniques for relighting

In chapter 5 we have shown that using an artificial neural network, aka deep learning, it is
possible to perform RTI, image relighting, better than the traditional model-based method.
Deep learning is a powerful learning method inspired by how the brain works. For MLIC
processing aimed at recovering shape (Photometric Stereo), as demonstrated in chapter
4 CNN-based methods have recently demonstrated the possibility of recovering normals
better than traditional methods. So, it is expected that these methods could be used also
to recover other intrinsic properties of the material for visualization. A key factor for
the development of novel machine learning solutions will consist in the creation of large
datasets of real and simulated MLIC datasets to train the algorithms. Accurate and fast
rendering techniques will be required to quickly generate images, but also, for example,
to compute loss functions in CNN training based on a similarity between rendered and
reference images.

Improved interaction and data fusion for illustrative and perceptually-motivated pre-
sentation

While a variety of data fusion and illustrative techniques have been presented, this area
seems under-developed to other visualization areas, such as, e.g., volumetric data explo-
ration, where these techniques have shown to significantly improve data understanding.
Several data-fusion techniques have been introduced, e.g., in multispectral/hyperspectral-
only data-fusion and visualization [163] that could be explored also to enhance the per-
ception of details in MLICs. Moreover, besides few examples (Sec. 2.4), most of the used
techniques perform just overlays of feature maps and/or contrast enhancement using ma-
nipulations of some shape and appearance parameters. User interaction, in these cases,
remains very limited.

In the area of visualization, however, many promising solutions have been explored, in-
cluding a vast array of perceptually-motivated illustrative rendering approaches [118], and
several interactive tools connected to illustrative methods, such as interactive lenses [143].
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Chapter 7. Conclusion

We foresee as a promising research direction the integration and further development of
these techniques into the MLIC visualization and analysis pipeline.

Availability of specific benchmarks and datasets

Despite we have introduced the MLICs benchmark dataset (chapter 4), we believed that a
more benchmark dataset, that can consider different material behaviour, is highly needed
for future evaluation of different MLIC based algorithms. As previously shown, the use-
fulness of the different visualization approaches is not easily evaluated with a simple quan-
titative comparison of relighted images or normal maps with a ground truth reference by
using common similarity metrics. From a visualization point of view, we should be able
to evaluate the possibility of performing different tasks, e.g., searching for specific infor-
mation, or evaluating details without distortion or artifacts. The task should be performed
on different materials in accordance with the end user applications. Thus, the availability
of specific benchmarks for different surface analysis tasks will be fundamental to validate
methods and develop guidelines for the use of MLIC visualization software in different
domains.
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APPENDIXA
Supplementary material

Neural Reflectance Transformation Imaging

Introduction

In this chapter, we present details quantitative and qualitative experimental results, on both SynthRTI
and RealRTI datasets. The complete SynthRTI and RealRTI datasets as well as the NeuralRTI en-
coding and relighting codes and synthetic RTI rendering tools are accessible from a project webpage
https://univr-rti.github.io/NeuralRTI/.

A.0.1 SingleMaterial
Figure A.1 shows relighting results obtained with different methods on the bas-relief object with
assigned "matte white" behavior.

Here it is interesting to note that the shadow cast by the different methods. As all methods
are local so that no one can deliver a result similar to the ground truth (f) where the low elevation
of the light causes large cast shadow. However, it is possible to see that while HSH fitting (a,b)
and PCA/RBF interpolation (c,d) result in bright shadow areas and blended artifacts, the result of
the Neural RTI relighting (e) presents a darker and more realistic result, even if with borders not
corresponding to the real ones, and no blended artifacts.

Figure 5.4 shows relighting results obtained with different methods on the canvas object with
assigned "plastic" behavior. Only the Neural relighting (e) can reproduce the specular highlight with
reasonable accuracy.

Figures 5.4 and A.2 show that in the case of non-matte materials our novel techniques provide
more realistic results both on flat and relieved geometries and bright and dark base colors.

107

https://univr-rti.github.io/NeuralRTI/


Appendix A. Supplementary material
Neural Reflectance Transformation Imaging

(a) 2nd order HSH (b) 3rd order HSH (c) ) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure A.1: Comparison of relighted images from simulated RTI data of the bas relief,
"matte" material, light elevation 20 degrees.

The only material for which NeuralRTI seems to perform worse than the other method is the one
with subsurface scattering (Figure A.3). It is interesting to note that, in this case, the rendered images
are noisy. Images relighted with NeuralRTI appear noise-free with flattened local variations. The
effect may depend also on rendering noise due to the path tracing sampling, but we will investigate it
as well as try to generate novel sets with an increased number of realistic materials. Table A.1 shows
the average PSNR and SSIM values for the three models with all the materials. Bold fonts indicate
the best results. On the bas relief model, creating more shadows, the neural relighting is more often
the best method despite the lowest number of parameters.

A.0.2 MultiMaterial
Figures A.4-A.12 show that NeuralRTI is able to better reproduce the high frequency behaviours
which are challenging for widely used classical PTM/HSH methods techniques([81], [88]), despite
the reduced encoding size. Shadows are definitely darker in A.4. No other methods simulate cor-
rectly the specular behavior of the materials in Figure A.6 ,A.7 and A.8, for example. Especially the
metallic objects are realistically rendered only by the NeuralRTI method (see Figures A.8-A.12).

Table A.2 shows that NeuralRTI provides the best relighting quality for almost all the material
combinations, even compared with the classic 27 and 48 bytes encoding.
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A.1. Relighting results: RealRTI dataset

(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) ground truth image

Figure A.2: Comparison of relighted images from simulated RTI data of a cuneiform
tablet, "plastic black" material, light elevation 60 degrees.

A.1 Relighting results: RealRTI dataset

Finally, we show other examples of relighting results obtained on selected collections from the Real-
RTI dataset. We still compare the novel technique with classical RTI solutions with equal or higher
pixel coding size, this time averaging the results of 5 Leave-One out tests, creating a relightable
image on N-1 images of the input dataset and testing quality on the remaining light direction of the
input set.

A visual comparison shows that also on the real acquisitions, NeuralRTI is the best option to
create plausible specular and shadow components (Figure A.13,A.16). The interpolation of the
illumination for the metallic coin is quite realistic and the shadows dark and with sharp contours.

Table A.3 shows that considering the average quality measures, NeuralRTI outperforms the
classical RTI techniques on most surfaces. There are only a few cases where other methods like HSH
encoded provided better quality scores (even if with 27/48 bytes encoding), e.g. on item 6 (Figure
A.15). Typically it happens on flat, matte surfaces, where the low-frequency fitting functions used
in classical RTI may help in recovering a more accurate base color. This does not result, however, in
the perception of better visual quality.
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(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure A.3: Comparison of relighted images from simulated RTI data of a cuneiform
tablet, "subsurface" material, light elevation 40 degrees.

(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure A.4: Comparison of relighted images from simulated RTI data of a bas relief,
multimaterial, light elevation 40 degrees.
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A.1. Relighting results: RealRTI dataset

PSNR SSIM
Material PTM(18) HSH2(27) HSH3(48) [116](9) [116](27) Neur.(9) PTM(18) HSH2(27) HSH3(48) [116](9) [116](27) Neur.(9)

1 31.88 46.37 50.87 34.88 34.90 41.02 0.994 0.997 0.997 0.996 0.996 0.994
2 26.72 30.87 33.78 31.15 31.23 34.38 0.982 0.985 0.988 0.985 0.987 0.986
3 28.50 36.42 42.39 33.22 33.21 35.44 0.991 0.994 0.995 0.993 0.993 0.990
4 35.31 40.19 48.03 38.55 38.48 41.98 0.993 0.995 0.997 0.995 0.995 0.994
5 27.02 27.06 29.46 33.82 34.10 39.43 0.954 0.962 0.975 0.979 0.980 0.987
6 23.14 26.21 33.15 33.62 34.01 36.50 0.953 0.971 0.983 0.980 0.978 0.986
7 31.10 40.02 49.85 35.09 34.86 36.18 0.992 0.994 0.995 0.994 0.994 0.992
8 28.58 36.20 42.41 33.27 33.32 35.11 0.987 0.990 0.991 0.986 0.989 0.975

average 29.03 35.42 41.24 34.20 34.26 37.50 0.981 0.986 0.990 0.988 0.989 0.988

(a) Canvas

PSNR SSIM
Material PTM(18) HSH2(27) HSH3(48) [116](9) [116](27) Neur.(9) PTM(18) HSH2(27) HSH3(48) [116](9) [116](27) Neur.(9)

1 23.02 27.46 29.19 26.47 26.77 28.17 0.818 0.845 0.855 0.820 0.851 0.859
2 22.09 25.78 27.60 23.88 25.09 25.55 0.7716 0.810 0.8338 0.765 0.811 0.822
3 22.62 26.84 28.75 25.20 26.01 26.33 0.805 0.837 0.853 0.797 0.834 0.823
4 29.04 32.47 34.49 30.23 31.42 33.11 0.8582 0.887 0.901 0.847 0.884 0.892
5 24.16 26.20 28.79 25.29 26.73 29.09 0.7484 0.794 0.834 0.764 0.843 0.852
6 20.16 23.85 27.28 22.31 22.90 25.19 0.737 0.8011 0.856 0.768 0.845 0.854
7 24.79 28.58 30.61 26.66 27.31 28.54 0.844 0.876 0.887 0.834 0.864 0.866
8 24.48 29.83 32.61 26.89 28.19 28.50 0.871 0.902 0.919 0.814 0.877 0.837

Average 23.79 27.63 29.92 25.87 26.80 28.06 0.807 0.844 0.867 0.801 0.851 0.850

(b) Cuneiform tablet

PSNR SSIM
Material PTM(18) HSH2(27) HSH3(48) [116](9) [116](27) Neur.(9) PTM(18) HSH2(27) HSH3(48) [116](9) [116](27) Neur.(9)

1 23.78 26.64 27.67 24.94 25.79 25.70 0.811 0.832 0.836 0.806 0.836 0.817
2 22.98 25.12 26.41 23.40 24.55 26.53 0.764 0.798 0.814 0.764 0.809 0.834
3 23.50 26.17 27.35 24.39 25.33 25.41 0.797 0.825 0.834 0.793 0.828 0.812
4 29.58 32.03 33.31 30.19 30.83 32.11 0.877 0.901 0.907 0.879 0.901 0.907
5 24.81 26.37 28.51 26.39 26.94 29.16 0.782 0.818 0.844 0.826 0.867 0.883
6 20.56 23.97 26.80 22.92 22.98 25.89 0.743 0.814 0.856 0.798 0.849 0.870
7 25.10 28.04 29.19 26.20 26.67 27.56 0.837 0.872 0.876 0.841 0.866 0.872
8 25.46 29.44 31.30 25.99 27.38 27.06 0.875 0.900 0.916 0.835 0.876 0.849

average 24.47 27.22 28.82 25.55 26.31 27.43 0.811 0.845 0.860 0.818 0.854 0.855

(c) bas relief, with all the 8 single materials assigned

Table A.1: Average PSNR and SSIM scores for the relighting from test light directions of
the synthetic RTI SingleMaterial data of three basic shapes. Bold fonts indicate best
results.
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(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure A.5: Comparison of relighted images from simulated RTI data of a bas relief,
multimaterial, light elevation 20 degrees.

(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure A.6: Comparison of relighted images from simulated RTI data of a bas relief,
multimaterial, light elevation 60 degrees.
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A.1. Relighting results: RealRTI dataset

(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure A.7: Comparison of relighted images from simulated RTI data of a bas relief,
multimaterial, light elevation 80 degrees.

(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure A.8: Comparison of relighted images from simulated RTI data of a canvas, multi-
material, light elevation 80 degrees.
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(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure A.9: Comparison of relighted images from simulated RTI data of a cuneiform
tablet, multimaterial, light elevation 20 degrees.

(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure A.10: Comparison of relighted images from simulated RTI data of a cuneiform
tablet, multimaterial, light elevation 40 degrees.
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A.1. Relighting results: RealRTI dataset

(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure A.11: Comparison of relighted images from simulated RTI data of a cuneiform
tablet, multimaterial, light elevation 60 degree.

(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure A.12: Comparison of relighted images from simulated RTI data of a cuneiform
tablet, multimaterial, light elevation 80 degrees.
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PSNR SSIM
Material PTM(18) HSH2(27) HSH3(48) [116](9) [116](27) Neur.(9) PTM(18) HSH2(27) HSH3(48) [116](9) [116](27) Neur.(9)

1 22.99 24.90 26.76 26.14 26.27 32.60 0.909 0.884 0.933 0.941 0.943 0.969
2 33.03 44.13 44.83 35.57 35.59 38.06 0.992 0.996 0.996 0.993 0.993 0.989
3 26.51 29.07 31.53 30.97 31.08 34.42 0.974 0.987 0.991 0.981 0.982 0.986
4 26.07 30.43 31.63 29.97 30.42 33.51 0.969 0.978 0.980 0.971 0.973 0.976
5 23.77 25.69 26.93 26.34 26.81 32.32 0.913 0.893 0.935 0.944 0.947 0.978
6 24.06 25.79 27.78 25.89 27.07 32.01 0.927 0.913 0.951 0.934 0.948 0.968
7 23.03 25.25 27.05 25.62 26.09 32.58 0.910 0.888 0.933 0.932 0.939 0.964
8 23.67 25.45 26.82 25.69 26.67 32.29 0.907 0.884 0.927 0.924 0.939 0.963
9 23.39 25.37 26.96 25.33 26.03 31.58 0.907 0.887 0.928 0.926 0.934 0.969

Average 25.17 28.45 30.03 27.95 28.45 33.26 0.934 0.923 0.953 0.949 0.955 0.973
(a) Canvas

PSNR SSIM
Material PTM(18) HSH2(27) HSH3(48) [116](9) [116](27) Neur.(9) PTM(18) HSH2(27) HSH3(48) [116](9) [116](27) Neur.(9)

1 19.26 21.25 22.94 20.62 21.35 23.34 0.657 0.703 0.734 0.685 0.757 0.781
2 23.05 26.35 27.47 23.72 25.29 25.71 0.866 0.883 0.890 0.831 0.878 0.874
3 21.61 23.99 25.58 21.59 23.28 24.05 0.833 0.860 0.874 0.798 0.853 0.852
4 21.43 23.50 24.46 21.26 22.95 23.40 0.817 0.840 0.850 0.765 0.838 0.830
5 20.17 22.16 23.73 20.52 21.74 23.90 0.815 0.841 0.864 0.802 0.864 0.889
6 20.27 22.30 23.86 20.38 21.81 23.57 0.781 0.813 0.836 0.759 0.824 0.846
7 19.55 21.63 23.32 19.98 21.33 23.23 0.750 0.785 0.813 0.718 0.811 0.834
8 19.96 21.89 23.45 20.13 21.53 23.36 0.764 0.795 0.820 0.747 0.814 0.841
9 19.74 21.74 23.40 19.82 21.28 23.11 0.786 0.815 0.840 0.762 0.828 0.857

Average 20.56 22.76 24.24 20.89 22.28 23.74 0.785 0.815 0.836 0.763 0.830 0.845
(b) Cuneiform tablet

PSNR SSIM
Material PTM(18) HSH2(27) HSH3(48) [116](9) [116](27) Neur.(9) PTM(18) HSH2(27) HSH3(48) [116](9) [116](27) Neur.(9)

1 19.35 20.44 21.84 20.53 21.16 24.34 0.632 0.654 0.668 0.741 0.772 0.830
2 31.51 34.92 35.62 25.52 26.15 28.14 0.921 0.935 0.937 0.887 0.902 0.911
3 25.38 27.09 28.81 22.98 23.98 26.01 0.852 0.873 0.886 0.847 0.871 0.890
4 23.76 24.77 25.41 22.51 23.41 25.17 0.826 0.838 0.848 0.832 0.864 0.877
5 20.59 21.77 23.15 20.85 21.74 25.14 0.737 0.757 0.778 0.840 0.868 0.913
6 20.58 21.83 23.31 20.72 21.80 25.27 0.728 0.749 0.768 0.803 0.840 0.890
7 19.63 20.84 22.30 20.17 21.16 24.50 0.690 0.715 0.731 0.771 0.827 0.877
8 20.24 21.37 22.68 20.37 21.43 23.69 0.707 0.727 0.741 0.790 0.830 0.852
9 20.04 21.30 22.73 20.26 21.36 24.27 0.720 0.739 0.758 0.798 0.840 0.880

Average 22.34 23.81 25.10 21.54 22.47 25.17 0.757 0.776 0.790 0.812 0.846 0.880
(c) bas relief, with all the 9 material mixtures assigned

Table A.2: Average PSNR and SSIM scores for the relighting from test light directions of
the synthetic RTI MultiMaterial data of three basic shapes. Bold fonts indicate best
results.

116



A.1. Relighting results: RealRTI dataset

(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure A.13: Comparison of relighted images from Real RTI data of item3.

(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure A.14: Comparison of relighted images from Real RTI data of item5.
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(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure A.15: Comparison of relighted images from Real RTI data of item6.

(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure A.16: Comparison of relighted images from Real RTI data of item10.
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A.1. Relighting results: RealRTI dataset

(a) 2nd order HSH (b) 3rd order HSH (c) PCA/RBF [116], 9
coefficients

(d) PCA/RBF [116], 27
coefficients

(e) NeuralRTI (f) Ground truth image

Figure A.17: Comparison of relighted images from Real RTI data of item11.

PSNR SSIM
Item PTM(18) HSH2(27) HSH3(48) [116](9) [116](27) Neural(9) PTM(18) HSH2(27) HSH3(48) [116](9) [116](27) Neural

1 34.75 39.37 39.99 37.06 37.01 38.50 0.981 0.985 0.985 0.971 0.971 0.985
2 28.04 36.28 38.14 34.35 34.50 35.53 0.959 0.982 0.984 0.973 0.973 0.976
3 24.96 25.14 28.79 28.08 28.62 31.11 0.898 0.910 0.921 0.931 0.939 0.961
4 26.03 31.02 31.34 32.67 32.92 34.82 0.957 0.980 0.981 0.975 0.976 0.983
5 31.75 33.22 32.50 25.17 25.39 37.62 0.875 0.920 0.896 0.882 0.879 0.952
6 33.34 39.24 39.91 31.43 31.48 38.43 0.935 0.963 0.966 0.898 0.894 0.953
7 32.15 33.17 33.81 29.18 28.87 29.07 0.965 0.975 0.972 0.957 0.957 0.953
8 29.08 30.68 31.67 29.17 29.18 31.12 0.892 0.905 0.909 0.874 0.875 0.897
9 21.10 22.34 22.66 21.55 21.82 25.91 0.728 0.758 0.742 0.752 0.774 0.854

10 16.93 18.64 20.12 18.26 18.59 22.30 0.617 0.648 0.656 0.666 0.685 0.771
11 29.35 30.10 29.53 27.91 28.25 31.30 0.909 0.913 0.886 0.884 0.899 0.932
12 29.68 30.24 30.62 28.65 29.17 31.98 0.898 0.904 0.883 0.887 0.886 0.907

Average 28.10 30.79 31.59 28.62 28.82 32.31 0.884 0.904 0.898 0.888 0.892 0.927

Table A.3: Average PSNR and SSIM scores in the Leave-One-Out testing (see main paper)
of the relightings performed on the 12 real acquisitions of the RealRTI dataset. Bold
fonts indicate the best results.
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A.2 Displaying encoded coefficients

Further interesting analysis can be done by analyzing the meaning of the encoded coefficients. The
meaning of the coefficients is not the same for the different RTI dataset, as the decoder is learned,
however, a visual analysis of the NeuralRTI encoded byte planes represented as greyscale images can
reveal interesting aspects of the captured surface. Figures A.18 and Figures A.19 shows example for
two different challenging surfaces. It is possible to see that some coefficients seem related to specific
material properties (roughness, glossiness).

Figure A.18: Image sample (top left) and the nine NeuralRTI encoded byte planes repre-
sented as greyscale images for a coin RTI encoding

Figure A.19: Image sample (top left) and the nine NeuralRTI encoded byte planes repre-
sented as greyscale images for a painting RTI encoding.
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